Julien Berro on Google Scholar and on Pubmed
Submitted preprints
Wang X, Berro J* and Ma R*
Vesiculation pathways to clathrin-mediated endocytosis.
BioRxiv 2024.08.13.607731 [Preprint]
*: co-corresponding authors
Mousavi SI, Lacy M, Li X, Berro J.
Fast actin disassembly and fimbrin mechano-sensitivity explain fast turnover during clathrin-mediated endocytosis.
BioRxiv 2022.11.25.517735 (v2 Nov 2023) [Preprint]
Published
Ren Y*, Yang J, Fujita B, Zhang Y*, Berro J*
Cross-regulations of two connected domains form a mechanical circuit for steady force transmission during clathrin-mediated endocytosis.
Cell Reports. 2024 (in press) (earlier bioRxiv version 2023.10.23.563344)
*: co-corresponding authors
Ren Y, Fernandez R, Saito T, Fujita B, Mousavi SI, Berro J*.
Fast fission yeast genome editing by CRISPR/Cas9 using gap repair and fluoride selection.
Methods in Molecular Biology [Invited Book chapter for the issue “Schizosaccharomyces pombe: Methods and Protocols”]. 2024 (in press).
Fernandez R, Berro J.
CRISPR-Cas9 editing efficiency in fission yeast is not limited by homology search and is improved by combining gap-repair with fluoride selection.
MicroPubl Biol. 2024:17912/micropub.biology.001191.
PMID: 38778900
Ren Y, Yang J, Jin H, Zhang Y*, Berro J* .
Force redistribution during clathrin-mediated endocytosis revealed by new phase-separating force sensors.
Science Advances. 2023 Oct 13;9(41):eadi1535.
PMID:37831774
*: co-corresponding authors
(Earlier bioRxiv version)
Ren Y*, Lin Q, Berro J*.
2A peptide from ERBV-1 efficiently separates endogenous protein domains in the fission yeast Schizosaccharomyces pombe
MicroPubl Biol. 2023. 2023 Sep 11;2023:10.17912/micropub.biology.000941
PMID:37767365
*: co-corresponding authors
MicroPubl Biol. 2022 Jan 6;2022:10.17912/micropub.biology.000508. doi: 10.17912/micropub.biology.000508. eCollection 2022.
PMID: 35024575
Mol Biol Cell. 2022 Mar 1;33(3):ar16. doi: 10.1091/mbc.E21-07-0362. Epub 2021 Dec 15.
PMID: 34910589
Adaptation of actin dynamics and membrane tension control for yeast endocytosis.
Elife. 2021 May 13;10:e62084. doi: 10.7554/eLife.62084
PMID: 33983119 (Ealier bioRxiv version).
Endocytosis against high turgor pressure is made easier by partial coating and freely rotating base.
(Earlier bioRxiv version).
DNA-origami-based fluorescence brightness standards for convenient and fast protein counting in live cells.
Nano Lett. 2020 Nov 9. doi: 10.1021/acs.nanolett.0c03925. Online ahead of print.
PMID:33164530 (Earlier bioRxiv version)
Nutrient-dependent control of RNA polymerase II elongation rate regulates specific gene expression programs by alternative polyadenylation.
Genes & Development 2020 Jul 1;34(13-14):883-897.
PMID:32499400
Force production by a bundle of growing actin filaments is limited by its mechanical properties.
Biophys J. 2020 Jan 7;118(1):182-192.
PMID:31791547 (Earlier bioRxiv version)
Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis.
Elife. 2019 Dec 19;8:e52355. PMID:31855180 (Earlier bioRxiv version)
Crosslinking actin networks produces compressive force.
Cytoskeleton (Hoboken). 2019 May;76(5):346-354.
PMID:31278856 (Earlier bioRxiv version)
Actin assembly produces sufficient forces for endocytosis in yeast.
Molecular Biology of the Cell. 2019 Jul 22;30(16):2014-2024.
PMID:31242058 (Earlier bioRxiv version)
“Essentially, all models are wrong, but some are useful”-a cross-disciplinary agenda for building useful models in cell biology and biophysics.
Biophysical Reviews. 2018 Dec;10(6):1637-1647. Review.
PMID:30421276
Quantitative Biology of Endocytosis. In: Colloquium Series on Quantitative Cell Biology (Marshall WF, ed), Vol. 4. San Rafael (CA): Morgan & Claypool Life Sciences Publishers. doi: 10.4199/C00164ED1V01Y201805QCB004.
Buy on Morgan Claypool website or on Amazon
Molecular mechanisms of force production in clathrin-mediated endocytosis.
FEBS Letters. 2018 Nov;592(21):3586-3605.
PMID:30006986
Structural organization and energy storage in crosslinked actin assemblies.
PLoS Computational Biology. 2018 May 29;14(5):e1006150.
PMID:29813051 (Earlier bioRxiv version)
High-speed super-resolution imaging of the proteins in fission yeast clathrin-mediated endocytic actin patches.
Molecular Biology of the Cell. 2018 Feb 1;29(3):295-303.
PMID:29212877
Single-molecule imaging of the BAR-domain protein Pil1p reveals filament-end dynamics.
Molecular Biology of the Cell. 2017 Aug 15;28(17):2251-2259.
PMID:28659415 (Earlier bioRxiv version)
Mycofumigation through production of the volatile DNA-methylating agent N-methyl-N-nitrosoisobutyramide by fungi in the genus Muscodor.
Journal of Biological Chemistry. 2017 May 5;292(18):7358-7371.
PMID:28283571
Use of a fluoride channel as a new selection marker for fission yeast plasmids and application to fast genome editing with CRISPR/Cas9.
Yeast. 2016 Oct;33(10):549-557.
PMID: 27327046
Three myosins contribute uniquely to the assembly and constriction of the fission yeast cytokinetic contractile ring.
Current Biology. 2015 Aug 3;25(15):1955-65.
PMID: 26144970
Local and global analysis of endocytic patch dynamics in fission yeast.
Molecular Biology of the Cell. 2014 Nov 5;25(22):3501-14.
PMID: 25143395
Synergies between Aip1p and capping protein subunits (Acp1p and Acp2p) in clathrin mediated endocytosis and cell polarization in fission yeast.
Molecular Biology of the Cell. 2014 Nov 5;25(22):3515-27. doi: 10.1091/mbc.E13-01-0005.
PMID: 25143407
Assembly and Architecture of Interphase Contractile Ring Precursor Nodes in S. pombe.
Journal of Cell Biology. 2014 Mar 17;204(6):977-88.
PMID: 24637325
Molecular diversity, metabolic transformation, and evolution of carotenoid feather pigments in cotingas (Aves: Cotingidae).
Journal of Comparative Physiology B. 2012 Dec; 182(8):1095-116.
PMID: 22669477
Mathematical Modeling of Endocytic Actin Patch Kinetics in Fission Yeast: Disassembly Requires Release of Actin Filament Fragments.
Molecular Biology of the Cell. 2010 Aug 15; 2905-15.
PMID: 20587776
Highlights of Molecular Biology of the Cell, August 2010
Quantitative Analysis of the Mechanism of Endocytic Actin Patch Assembly and Disassembly in Fission Yeast.
Molecular Biology of the Cell. 2010 Aug 15; 21 (16):2894-904.
PMID: 20587778
Highlights of Molecular Biology of the Cell, August 2010
Stochastic severing of actin filaments by actin depolymerizing factor/cofilin controls the emergence of a steady dynamical regime.
Biophysical Journal. 2008 Mar 15; 94(6):2082-94.
PMID: 18065447
Actin-filament stochastic dynamics mediated by ADF/cofilin.
Current Biology. 2007 May 15; 17(10):825-33.
PMID: 17493813
Highlighted in the Journal of Cell Biology, 2007 June 04; 177(5):746.
Berro J, Michelot A, Blanchoin L, Kovar DR, Martiel JL
Attachment conditions control actin filament buckling and the production of forces.
Biophysical Journal. 2007 Apr 1; 92(7):2546-58.
PMID: 17208983
Book chapters and review papers
[Book chapter in French] Chapitre7: Approches individus-centrées pour l’étude du cytosquelette (Agent-based modeling of the cytoskeleton) in “Le vivant discret et continu”
Editions Matériologiques. Sept 2013; Chapitre 7, p. 195-218.
Link to the book
[Review] Mathematical models and simulations of cellular processes based on actin filaments.
Journal of Biological Chemistry. 2009 Feb 27; 284(9):5433-7.
PMID: 18940808
Patents
Berro J, Ren Y, Zhang Y. Coiled-coil peptides for force-dependent applications. PCT Application No PCT/US23/69505. Filed June 30, 2023. WO2024006993A1