
A SIMPLE SVD ALGORITHM FOR FINDING HIDDEN PARTITIONS

VAN VU

Abstract. Finding a hidden partition in a random environment is a general and important

problem, which contains as subproblems many important questions, such as finding a hidden
clique, finding a hidden coloring, finding a hidden bipartition etc.

In this paper, we provide a simple SVD algorithm for this purpose, answering a question

of McSherry. This algorithm is easy to implement and works for sparse graphs under optimal
density assumptions.

1. The problem and a new algorithm

The hidden partition problem is the following. L et X be a set of n vertices with a partition
X = ∪ki=1Xi; for all 1 ≤ i ≤ j ≤ n and any x ∈ Xi, y ∈ Xj , put a random edge between x
and y with probability pij . Given one such random graph, one has to recover the sets Xi. This
problem is of importance in computer science and statistics, and contains as special cases several
well-studied problems such as hidden clique, hidden bisection, hidden coloring, clustering etc
(see, for instance, [1, 2, 3, 6, 7, 8, 10, 12, 13, 16, 18, 20, 14, 23, 21] and the references therein).
In what follows, we refer to Xi as clusters.

In an influential paper [26], Mc Sherry provided a (randomized) polynomial time algorithm
that solves the general hidden partition problem for a large range of parameters. As corollary,
he derived several earlier results obtained for special cases. We refer the reader to this paper for
a detailed discussion of results prior to [26].

The general idea of [26] (and many earlier works on clustering) is to find a good geometric
representation of the vertices. We say that a representation is perfect if there is a number r > 0
such that

• Vertices in the same cluster have distance at most r from each other.
• Vertices from different clusters have distance at least 4r from each other.

Once a perfect representation is obtained, it is easy to find the clusters. If r is known, then the
solution is obvious. If r is not known, then there are several simple algorithms. For instance, one
can create a minimal spanning tree (with respect to the distances) on the vertices and then remove
the largest k − 1 edges. In what follows, we put all these simple algorithms under a subroutine
called Clustering by Distances and the reader can choose his/her favorite to implement.

1991 Mathematics Subject Classification. 68Q87, 68W20, 60C05.

V. Vu is supported by research grants DMS-0901216 and AFOSAR-FA-9550-09-1-0167.

1

2 VAN VU

In the rest of the paper, su := |Xi| if u ∈ Xi and s := minu∈X su = mini |Xi|. We assume that
n is sufficiently large, whenever needed. Asymptotic notation are used under the assumption
n → ∞. All explicit constants (such as the 4 above) are adhoc and we make no attempt to
optimize them.

A popular way to find a perfect representation is to project the points of X (seen as vectors
in Rn) onto a properly chosen low-dimensional subspace H. The main technical part of Mc
Sherry’s algorithm is a subroutine called CProj (Combinatorial Projection), which creates H

in a combinatorial way. The inputs in this subroutine are a matrix Â, parameters k, s, and a
properly chosen threshold τ . For a matrix M , PM denotes the orthogonal projection onto the
column space of M and Mv is the column indexed by v.

Algorithm 1: Combinatorial Projection (CProj)

(1) While there are at least s/2 unclassified nodes, choose an unclassified node vi randomly

and define Ti := {u|‖PÂT (ÂTvi − Â
T
u)‖ ≤ τ}, where u ranges over the set of unclassified

nodes. Mark each u ∈ Ti as classified.
(2) Assign each remaining node to the Ti with the closest projected vi.
(3) Let ĉi be the characteristic vector of Ti.
(4) Return Pĉ, the orthogonal projection matrix onto the span of the ĉi.

Algorithm 2: Mc Sherry’s algorithm

(1) Randomly partition the set {1, . . . , n} into two parts A and B. Let Â, B̂ be the
submatrices of the adjacency matrix formed by columns from A and B. (One next uses this
two matrices to produce two projections using CPROJ, thinking of their columns as nodes.)

(2) Let P1 = CProj(B̂), P2 = CProj(Â) and compute H̄ = [P1(Â)|P2(B̂)].
(3) Run Clustering by Distances on the projected points.

For more details about this algorithm, we refer the reader to [26].

Let P be the probability matrix (pij)1≤i,j≤n. For a vertex u ∈ X, u denotes the corresponding
column in P . Define

∆ := min ‖u− v‖,
where the minimum is taken over all pairs u, v belonging to different clusters. Mc Sherry proved
[26]

Theorem 1. Assume that σ2 � log6 n/n is an upper bound on the variances of the entries.
There is a constant C > 0 such that if

(1) ∆ ≥ Cσk1/2(

√
n

s
+

√
log

n

ε
),

the above algorithm (with a proper choice of the threshold τ) recovers the partition with probability
1− ε with respect to the random graph and k−1 with respect to the auxiliary random bits.

The main open question raised by Mc Sherry in [26] is to find a more natural and simpler
algorithm, which does not involve the subroutine CPROJ (see [26, Section 4.4]). In this paper,
we address this problem by presenting and analyzing a spectral algorithm, which, in many cases,

A SIMPLE SVD ALGORITHM FOR FINDING HIDDEN PARTITIONS 3

work under optimal density assumption. Both the algorithm and the analysis are simple (the
proof is only few pages). Furthermore, our algorithm is easy to implement. Its main operation
is to compute the leading few eigenvectors of a matrix, a task for which many software packages
are available.

We managed to push the bound σ2 � log6 n/n to σ2 � log n/n, which is optimal.The bound
log6 n/n in Theorem 1 comes from a technical result concerning random matrices by Füredi and
Komlos [17] and the analysis in [26] is sharp with respect to this result. It seems hard to improve

upon F?̈redi-Komlos’ result to get the log n bound (such an improvement would be interesting
on its own right), and our new density bound was obtained via a different rout.

The main new technical ingredient in our analysis is Lemma 10 concerning the magnitude of
the orthogonal projection of a random vector onto a deterministic subspace. This lemma seems
to have a wide range of potential applications.

As we focus on complete recovery, the density bound log n/n is necessary. If one’s goal is to
obtain an approximate recovery, then there are many earlier works considering density as small
as c/n, which we are going to discuss in the paper. Our algorithm can be adjusted to work at
this density as well, but the detail is involved and we defer it to a future paper.

To this end, Mk denotes the subspace spanned by the first k left singular vectors of a matrix M .
Let P̂ be our input, namely the adjacency matrix of a random graph generated by P . Arguably,
the most natural choice for H would be P̂k (SVD), which leads to the algorithm below

Algorithm 3: SVD I

(1) Project the columns of P̂ onto P̂k.
(2) Run Clustering by distances on the projected points.

While SVD I could well win the contest for being the simplest algorithm, and perhaps the first
most practitioners of the spectral method would think of, it is hard to analyze in the general
case. In what follows, we analyze a slightly more technical alternative, SVD II, which is a variant
of an algorithm proposed in [26, Section 1].

Algorithm 4: SVD II

(0) Randomly partition X into two subsets Y and Z. Let B be the adjacency matrix of the
bipartite graph between Y and Z. Let Y1 be a random subset of Y by selecting each
element with probability 1/2 independently and let Â be the submatrix of B formed by the
columns indexed by Y1.
(1) Project the columns of B indexed by Y2 := Y \Y1 on Âk.
(2) Run Clustering by Distances on the projected points.

Compared to SVD I, the extra steps in SVD II are the random partitions in Step (0), done in
order to reduce the correlation. (A careful reading of [26] reveals that one also need an extra
partition in Algorithm 2 to make the analysis go through; in particular the proof of [26, Theorem

12] needs modification, as Â and B̂ are not independent.) For simplicity, we assume that P has

rank k. If the rank is k′ < k, then in Step (1) we project onto Âk′ ; the analysis remains the
same.

4 VAN VU

Notice that SVD II gives a partition of Y2, not X. There are many ways to extend it to a
partition of X. For instance, we can run the algorithm l times (for some small l) and find
partitions of Y 1

2 , . . . , Y
l
2 , where Y i2 are random subsets of X with density 1/4 (the input graph is

the same, only the random partitions are different). If a cluster C in Y i2 and a cluster C ′ in Y i
′

2

intersect, then they must belong to the same cluster in X and we can merge them. If we choose
l = 3 log n, say, then with probability 1− o(n−1), all vertices of X must belong to some Y i2 and
we recover the clusters X1, . . . , Xk at the end. We omit the details.

Let us now analyze SVD II. Let λ1(P) ≥ · · · ≥ λk(P) := λ be the non-trivial singular values of
P . In particular λ := λk(P) is the least singular value of P .

Theorem 2. There is a constant C > 0 such that the following holds. Assume that σ2 ≥
C logn

n and s ≥ C log n, k = o((n/ log n)1/2). Then SVD II clusters Y2 correctly with probability

1− o(n−1) if one of the following two conditions is satisfied

• Condition 1. ∆ ≥ C(σ
√

n
s +
√

log n).

• Condition 2. ∆ ≥ C
(
σ
√

n
s +
√
k
(
σ
√

log n+ logn√
s

+ σ
√
n logn
λ

))
.

If we omit the assumption s ≥ C log n, the statement still holds but with probability

1− o(n−1)− c
k∑
i=1

e−|Xi|/c

for some constant c.

The conditions on ∆ in Theorems 1 and 2 are incomparable (see also Theorem 5 below for
a comparison). The lower bound σ2 ≥ C log n/n is optimal, up to the value of C. If σ2 <
(1− ε) log n/n, then with high probability, there are linearly many isolated points, which can be
assigned to any cluster. On the other hand, if one’s goal is to find an optimal solution (regardless
that it comes from the hidden structures or not), then one can go below log n/n; see for instance
[1, 9]. We can reduce the failure probability o(n−1) to o(n−K) for any constant K at the cost of
increasing the constant C.

In practice, one is often satisfied with an approximate solution. We say that a partition X =
∪ki=1X

′
i is ε-correct if |Xi\X ′i| ≤ ε|Xi|. Similarly, we say that a geometric representation of X is

ε-perfect if there are points x1, . . . , xk with distance at least 8r from each other so that at least
(1− ε)|Xi| points from Xi has distance at most r to xi.

Theorem 3. Given ε > 0, there is a constant C > 0 such that the following holds. If σ2 ≥
C logn

n , s ≥ C log n and

∆ ≥ Cσ
√
n

s
,

then with probability at least 1− ε the projection in SVD II produces an (1− ε)-perfect represen-
tation of the points in Y2.

We say that X1, . . . , Xk are γ-balanced if |Xi| ≤ (1 + γ)s where s = minj |Xj |.

Lemma 4. For arbitrary positive constants ε, γ, k, let δ := ε
k+(k−1)(1+γ) . Given an δ-perfect rep-

resentation of γ-balanced sets X1, . . . , Xk, we can find an ε-correct partition by a fast randomized
algorithm which succeeds with probability 1− o(n−1).

A SIMPLE SVD ALGORITHM FOR FINDING HIDDEN PARTITIONS 5

For the description of the algorithm and the proof of Lemma 4, see Appendix B. In what follows,
we refer to this algorithm as Approximate Clustering. Combining Theorem 3 and Lemma 4, we
have the following algorithm and theorem.

Algorithm 5: SVD III

(0) Randomly partition X into two subsets Y and Z. Let B be the adjacency matrix of the
bipartite graph between Y and Z. Let Y1 be a random subset of Y by selecting each
element with probability 1/2 independently and let Â be the submatrix of B formed by the
columns indexed by Y1.
(1) Project the columns of B indexed by Y2 := Y \Y1 on Âk.
(2) Run Approximate Clustering on the projected points.

Theorem 5. Given constants ε, γ, k > 0, there is a constant C > 0 such that the following holds
for any hidden γ balanced partition X = ∪ki=1Xi. If σ2 ≥ C logn

n , s ≥ C log n and

∆ ≥ Cσ
√
n

s
,

then with probability at least 1− ε SVD III finds an ε-correct partition of Y2.

The advantage of Theorem 5 is that its assumption on ∆ is both simpler and stronger than that
of Theorems 1 and 2. The caveat here is that the partition is only ε-correct. It has turned out,
however, that in many cases one can easily upgrade an ε-correct partition to an exact one. We
will discuss this idea in the Hidden Bipartition problem below.

An important result that overlaps ours is that of Coja-Oghlan [9, Theorem 1.1], which also
improves upon Theorem 1, using an adaptive algorithm. The setting of [9, Theorem 1.1] is more
general than ours, allowing both very small and very large densities. Its purpose is to recover an
approximate partition, under certain assumptions. Assumption R1 in this theorem requires the
maximum expected degree to be at least log2 n

s ; we do not have this assumption. Assumption

R2 requires s ≥ log30 n; we require s ≥ C log n (in fact, s ≥ C is sufficient if we are satisfied with
success probability .99 instead of 1− o(n−1)). The main assumption R3 is a lower bound on ∆
of the form

∆ ≥ Ck3/2σ
√
n

s
+ C log(D +

n

s
)) max

1≤i≤k

k∑
j=1

pij(1− pij).

This assumption and the corresponding assumption in Theorem 2 are incomparable. In the
case when the first term is dominating, our assumption does not require the k3/2 factor. If one
aims for approximate recovery, the assumption on ∆ in Theorem 5 is the weakest. The proofs in
[9] also used spectral technique, but seem more delicate and longer than ours; see [9] for more
details.

Let us now consider the performance of SVD II and SVD III on few subproblems. We allow the
value of C to be flexible in order to omit smaller order terms for convenience.

Hidden clique. In this problem, k = 2, s is the size of the clique, and ∆ = (1 − p)
√
s, where p

is the density of the random graph. Condition 1 becomes

6 VAN VU

(1− p)s1/2 ≥ C(p1/2
√
n

s
+
√

log n)

which is satisfied if s ≥ C(
√
np +

√
log n). As np = Θ(σ2n) = Ω(log n), this simplifies to

s ≥ C√np.

Corollary 6. There is a constant C such that for any p ≥ C logn
n and s ≥ C√np, SVD II finds

the hidden clique of size s with probability 1− o(1).

This result is comparable to [26, Corollary 3]. The first polynomial time algorithm for hidden
clique of size C

√
n, for a large constant C, was provided by Alon, Krivelevich and Sudakov [2].

In fact, they showed that one can reduce C to any constant ε > 0, at the cost of pushing the
running time to nf(ε), where f(ε) tends to infinity as ε tends to zero. The constants C in all
these works are often large (and implicit). If one needs a really fast algorithm, then the best
current C is e−1, obtained by Deshpande and Montanary in a recent paper [13].

Hidden Bipartition. Let the two densities be .99 ≥ p > q > 0. We have k = 2, ∆ = |p− q|n1/2,
s = n/2, σ2 = Θ(p). The two singular values of P are (p + q)n and (p − q)n. Condition 2 of

Theorem 2 requires p−q
p1/4
≥ C

√
logn
n .

Corollary 7. There is a constant C such that the following holds Let .99 > p > q ≥ C log n/n be

edge densities such that p−q
p1/4
≥ C

√
logn
n then SVD II finds the hidden bipartition with probability

1− o(n−1).

The best known condition on ∆ is p−q√
p ≥ C

√
logn
n , under stronger density assumptions; see

[7, 10, 26]. We can obtain this bound on ∆ with Theorem 5 and an extra idea. Let us first apply

Theorem 5. The condition on ∆ has become p−q√
p ≥ C

√
logn
n . Thus, we have

Corollary 8. For any ε > 0 there is a constant C such that the following holds Let .99 > p > q ≥
C log n/n be edge densities such that p−q√

p ≥ C
√

logn
n then SVD III finds an ε-correct partition

with probability at least 1− ε.

We next upgrade an ε-correct partition to an exact one using the following general idea. At the
beginning we randomly split the input graph into two parts, Red and Blue by coloring each edge
Red or Blue with probability half, independently. First use the Red part as input to recover an
ε-correct partition for some small ε (say ε = .1). Next, reveal the Blue graph and use information
about edge distribution of this graph to correct the misclassified vertices.

Algorithm 6: Hidden Bipartition

(0) Randomly color the edges of the input graph Red and Blue with probability 1/2 each.
(1) Use SVD III on the Red graph to produce an .1-correct partition X ′1 ∪X ′2.
(2) Reveal of Blue graph. For u ∈ X ′i, label it misclassified if the number of Blue neighbors
(of u) in X ′i is less than the number of Blue neighbors (of u) in X ′3−i. Otherwise u is well
classified.
(3) Output Xi as the union of well classified vertices in X ′i and misclassified vertices in
X ′3−i.

A SIMPLE SVD ALGORITHM FOR FINDING HIDDEN PARTITIONS 7

Corollary 9. For any ε > 0 there is a constant C such that the following holds Let .99 > p >

q ≥ C log n/n be edge densities such that p−q√
p ≥ C

√
logn
n . Then algorithm Hidden Bipartition

solves the hidden bipartition problem with probability at least 1− ε.

We prove Corollary 9 in Section 4. This corollary is comparable with [26, Corollary 1], but with
a better (optimal) density assumption. The first result on Hidden Bipartition was obtained by
Bui et. al. [8] and Dyer and Frieze [14] under the condition q < (1−c)p. For a related problem of
finding the optimal bisection (which may not come from the hidden one), Boppana [7] presents
a spectral algorithm which succeeds for a large range of parameters, using convex optimization.
Condon and Karp [10] analyzed a linear time combinatorial algorithm for partitioning which
nearly achieves the same range of parameters as [7]. For works concerning densities as small
as c/n, we refer to Coja-Oghlan’s paper [9] where the author found approximate partitions. In
Section 4, we will also discuss an analogue of Corollary 9 for the hidden coloring problem.

The rest of the paper is organized as follows. In the next section, we present a few technical
lemmas, including Lemma 10 mentioned above. Then we prove Theorem 2 in Section 3. In
Section 4, we prove Theorem 3 and Corollary 9 and discuss related results. The proofs of Lemma
10 and Lemma 4 will be presented in the appendix.

2. Technical lemmas

Lemma 10 (Projection of a Random Vector). There are constants C1, C2 such that the following
holds. Let X = (ξ1, . . . , ξn) be a random vector in Rn whose coordinates ξi are independent
random variables with mean 0 and variance at most σ2 ≤ 1. Assume furthermore that the ξi are,
with probability 1, bounded by 1 in absolute value. Let H be a subspace of dimension d and ΠHξ
be the length of the orthogonal projection of ξ onto H. Then

P(ΠHX ≥ σ
√
d+ C1

√
log n) ≤ n−3.

Furthermore, if H has an orthornormal basis v1, . . . , vd such that max1≤i≤d ‖vi‖∞ ≤ α, then

P(ΠHX ≥ C2

√
d(σ
√

log n+ α log n)) ≤ n−3.

We prove Lemma 10 in the appendix.

Lemma 11 (Norm of a random matrix). There is a constant C0 > 0 such that the following holds.
Let E be a symmetric matrix whose upper diagonal entries eij are independent random variables
where eij = 1− pij or −pij with probabilities pij and 1− pij, respectively, where 0 ≤ pij ≤ 1. Let
σ2 := maxij pij(1− pij). If σ2 ≥ C0 log n/n, then

P(‖E‖ ≥ C0σn
1/2) ≤ n−3.

8 VAN VU

If σ2 ≥ log4 n
n , the statement is a corollary of [29, Theorem 1.4]. For smaller σ, one can prove

this lemma using the ε-net approach by Kahn and Szemeredi [22]. We omit the details, which is
very similar to the proof of Feige and Ofek for [15, Theorem 1.1].

Lemma 12 (Perturbation bound). Let M,N be matrices where δ := λk(M) − λk+1(M) > 0.
Then

sin∠(Mk, (M +N)k) ≤ δ−1‖N‖.

This lemma is a well known result in numerical linear algebra, known as Davis-Kahan-Wedin
theorem; see [5, 11, 32, 19].

3. Proof of Theorems 2

Recall that in the first step of the algorithm, we randomly partition the vertex set X into two
subsets Y and Z. Let B be the adjacency matrix of the bipartite graph between Y and Z. Let
Y1 be a random subset of Y by selecting each element with probability 1/2 independently and

let Â be the submatrix of B formed by the columns indexed by Y1.

Let A be the probability matrix pij corresponding to Â. As A is a large random submatrix of
P , it is not hard to show that λk(A) ≥ 1

8λk(P) with high probability (we provide a verification
of this fact at the end of the proof).

We view the adjacency matrix Â (between Y1 and Z) as a random perturbation of A, Â := A+E,
where the entries eij of E are independent and eij = 1− pij with probability pij and −pij with

probability 1 − pij . We denote by û,u, eu the columns corresponding to a vertex u in Â, A,E,
respectively. All matrices are of size approximately n/2 × n/4 by the definitions of Y,Z and
Y1, Y2.

Our leading idea is that the random perturbation E does not change Ak too much, thus hopefully
the projections onto Âk and Ak differ by only a small amount. The heart of the matter, of course,
is to bound this error term. While inviting, a straightforward application of Lemma 12 is too
crude in the general case (it does lead to some simple solution for some subproblems in certain
range of parameters). We will still make use of this lemma, but for a quite different purpose.

For simplicity, we assume in the rest of the proof that s ≥ C log n. For a sufficiently large
C, this implies that with probability 1 − o(n−1), each cluster Xi intersects Z in at least |Xi|/3
elements. Thus, the distance between two columns (belonging to different clusters) in A is at
least ∆/3. We aim to show that with high probability ‖PÂk

û− u‖ < ∆/30 for all u ∈ Y2. It is

easy to check that this provides a perfect geometric representation with r = ∆/15. If there is no
lower bound on s, then the probability that the random partition has this property is at least

1− c
∑k
i=1 e

−|Xi|/c for some constant c > 0.

For a fixed u, by the triangle inequality

‖PÂk
û− u‖ ≤ ‖PÂk

(û− u)‖+ ‖(PÂk
− I)u‖ = ‖PÂk

eu‖+ ‖(PÂk
− I)u‖.

To bound the second term, we follow an argument from [26] and consider

A SIMPLE SVD ALGORITHM FOR FINDING HIDDEN PARTITIONS 9

(PÂk
− I)A = (PÂk

− I)Â− (PÂk
− I)E.

The spectral norm of the first term is λk+1(Ak) ≤ λk+1(A) + ‖E‖ = ‖E‖, as A has rank at
most k. The spectral norm of the second term is also at most ‖E‖. Thus, by Lemma 11, by
probability at least 1− n−3

‖(PÂk
− I)A‖ ≤ 2‖E‖ ≤ C0σn

1/2,

for some constant C0.

Let χu be the vector s
−1/2
u Iu where Iu is the indicator vector for the cluster containing u. As

χu has unit length, for any matrix M we have ‖M‖ ≥ ‖Mχu‖; thus

‖(PÂk
− I)A‖ ≥ ‖(PÂk

− I)Aχu‖ = s1/2u ‖(PÂk
− I)u‖.

Combining the last two inequalities, we conclude that with probability at least 1− n−3

‖(PÂk
− I)u‖ ≤ C0σ

√
n

su
,

for all u ∈ X.

Now we tend to the first term, whose analysis is more involved. By the first part of Lemma 10,

‖ PÂk
eu‖ ≤ σk1/2 + C1

√
log n

with probability 1− o(n−2), for a properly chosen constant C1. As sk ≤ n, the term σk1/2 is at

most σ
√
n/s and can be omitted. This yields that if

∆ ≥ C0σ
√
n/s+ C1

√
log n

then the algorithm succeeds with probability at least 1 − o(n−1). This proves the first part of
the theorem concerning Condition 1.

To prove the second part (Condition 2), we find a different way to bound the distance PÂk
eu.

Rewrite Â = A + E and let v be a column vector of A, normalized to have unit length. Recall
that |Xi ∩ Z| ≥ 1

3 |Xi| = si/3 for all i. By symmetry, each coordinate in v is repeated at least

s/3 times, thus ‖v‖∞ ≤ 2s−1/2. It follows that for any unit vector v ∈ Span(A), ‖v‖∞ ≤ 2s−1/2.
Furthermore, by Lemma 12 and Lemma 11, we have with probability 1− o(n−2) that

sin(Ak, Âk) ≤ C0
σ
√
n

λ

which implies that for any unit vector v ∈ Âk,

10 VAN VU

‖v‖∞ ≤ 2s−1/2 + C0
σ
√
n

λ
:= α

Using the second part of Lemma 10, we conclude that with probability 1− o(n−2),

‖PÂk
eu‖ ≤ C

√
k(σ
√

log n+ α log n) = C
√
k
(
σ
√

log n+
log n√
s

+
σ
√
n log n

λ

)
,

for all u and some properly chosen constant C, concluding the proof.

Let us now show that with high probability, λk(A) ≥ 1
8λk(P). We first compare the singular

values of P with the singular values of P̃ , the probability matrix of the bipartite graph spanned
by Y and X. Using Chernoff’s bound, one can easily show that with probability at least 1−n−2

(2) ||Xi ∩ Y | − |Xi|/2| ≤ 5
√
|Xi| log n

for all 1 ≤ i ≤ k.

We use the fact that for any matrix M of rank k λk(M) = infrank(M ′)=k−1 ‖M −M ′‖F . For

simplicity, let us assume for a moment that |Xi ∩ Y | = |Xi|/2. Let P̃ ′ be the matrix that define

λk(P̃). We define P ′, a rank (k − 1) approximation of P , by extending P̃ ′ as follows. For the

block indexed by Xi\Y , simply copy the block of P̃ ′ corresponding to Xi ∩ Y . It is trivial that
P ′ has rank k − 1 and

‖P − P ′‖2F = 2‖P̃ − P̃ ′‖2F
which implies λk ≤

√
2λk(P̃). With the same argument, we can compare λk(P̃) with λk(B) and

the later with λk(A), each time losing a factor of
√

2. At the end it would give λk(P) ≤ 23/2λk(A).

To make the argument precise, we need to remove the assumption |Xi ∩Y | = |Xi|/2. Using (2)
instead of this assumption, we can create a matrix P ′ such that

‖P − P ′‖2F ≤ 2‖P̃ − P̃ ′‖2F + 5

k∑
i=1

√
|Xi| log nσ4.

On the other hand, the extra term 5
∑k
i=1

√
|Xi| log nσ4 is less than 1

4λk(P)2 by the assumption
of the theorem. Thus, we can use the above estimate to get a slightly weaker bound λk(P) ≤
2λk(P̃), which leads to λk(P) ≤ 8λk(A), as desired.

4. Approximate Solutions and Upgrading

4.1. Proof of Theorem 3. We follow the proof of Theorem 2. The key is to bound ‖PÂk
eu‖.

Recall that

A SIMPLE SVD ALGORITHM FOR FINDING HIDDEN PARTITIONS 11

E‖PÂk
eu‖2 ≤ σ2k.

By Markov’s inequality, it follows that P(‖PÂk
eu‖ ≥ Kσk1/2) ≤ K−2. We call a vertex u good

if ‖PÂk
eu‖ ≤ Kσk1/2. For a sufficiently large C (depending on K), all good vertices will be

clustered correctly. Moreover, choosing K ≥ 2ε−1/2, the probability for u being good is at least
1 − ε/4, thus the expectation of the number of good elements in Xi is at least |Xi|(1 − ε/4).
As the good events are independent, an easy application of Chernoff’s bound yields that with
probability 1− n−2, at least |Xi|(1− ε) points from Xi are good. This completes the proof.

4.2. Hidden bipartition: Proof of Corollary 9. We can assume, without generality, that
1/100 > p > q > 0. (To obtain the upper bound on p, one can randomly sparsify the input graph
if necessary.) Notice that the densities in the Red graph are p/2 and q/2. By Theorem 5, we
obtain an .1-correct partition with probability at least 1− ε/2, provided that

p/2− q/2√
p/2

≥ C
√

log n

n

for some sufficiently large constant C. By Chernoff bound, one can prove that with probability
1− o(n−1), all degrees in the Red graph are at most n/50 = .02n. In what follows, we condition
on this event.

Consider the Blue graph. Intuitively, this graph is also random with densities p/2 and q/2. We,
however, have to be a bit careful since the Blue graph is not entirely independent from the Red
one. Observe that

• If e is an edge in the Red graph, then it cannot be an edge in the Blue graph.
• If e is not an edge in the Red graph and both end points are in X1 (or X2), then e an

edge in the Blue graph with probability p1 := p/2
1−p/2 .

• If e is not an edge in the Red graph and one end point in X1 and the other in X2, then

e an edge in the Blue graph with probability q1 := q/2
1−q/2 .

• Conditioned on the Red graph, the events of non-edges in the Red graph become edges
in the Blue graph are mutually independent.

Let X ′1 ∪X ′2 be the .1-correct partition obtained by SVD III with the Red graph as input. Let
X ′i := Ai∪Bi where Ai := Xi∩X ′i and Bi := X ′i∩X3−i. By the definition of ε-correctness (in our
case ε = .1), Ai have size at least 1

2 (1−ε)n = .45n, for i = 1, 2. It follows that .55n ≥ |X ′i| ≥ .45n
and |Bi| ≤ .1n.

Consider u ∈ X ′1. Let NR(u) be the set of neighbors of u in the Red graph and di(u) be the
number of neighbors of u in X ′i in the Blue graph.

If u ∈ X1 (i.e. u is well classified), then

d1(u) := D1 =
∑

x∈A1\NR(u)

χ(x) +
∑

y∈B1\NR(u)

µ(y),

where χ(x) are iid indicator variables with mean p1 and µ(y) are iid indicator variables with
mean q1. Furthermore,

12 VAN VU

d2(u) := D2 =
∑

x∈B1\NR(u)

χ(x) +
∑

y∈A1\NR(u)

µ(y).

We have

D := D1 −D2 =
∑

x∈A1\NR(u)

(χ(x)− µ(x))−
∑

y∈B1\NR(u)

(χ(y)− µ(y)).

As NR(u) ≤ .02n and |Ai| ≥ .45n, Bi| ≥ .1n, it follows that

ED ≥ (p1 − q1)(|A1\NR(u)| − |B1\NR(u)|),
where the LHS is at least

(p1 − q1)(.45n− 0.02n− 0.1n) ≥ .3n(p1 − q1) ≥ .15n(p− q) ≥ 5 log n,

provided that the constant C in Corollary 9 is sufficiently large. Applying Chernoff bound, it is
easy to show that with probability at least 1−n−3, D > 0 or d1(u) > d2(u). A similar argument
shows that if u ∈ X2 (misclassified), then d1(u) < d2(u). By the union bound, we conclude that
the algorithm Hidden Biparittion succeeds with probability at least

1− ε/2− o(n−1)− n× n−3 ≥ 1− ε,
concluding the proof.

Algorithm 7: Hidden Coloring

(0) Randomly color the edges of the input graph Red, Blue, Green with probability 1/3
each.
(1) Use SVD III on the Red graph to produce an .1

k -correct partition X ′1 ∪X ′2 · · · ∪X ′k.
(2) Reveal the Blue graph. For u ∈ X ′i, label u misclassified if the number of neighbors of u
in X ′i is at least .5

k−1 its total degree. Let Yi be the set obtained from X ′i by deleting the
misclassified vertices.
(3) Output Xi as the set of all vertices with no neighbor in Yi in the Green graph.

4.3. Hidden coloring. We can obtain the following analogue of Corollary 9.

Corollary 13. For any constant ε > 0 there is a constant C such that the following holds Let
.99 > p ≥ C log n/n. Then algorithm Hidden Coloring solves the hidden coloring problem with
probability 1− ε.

Many researchers have worked on the problem of coloring random graphs which have k- color-
ings. Kucera [23], Turner [27], and Dyer and Frieze [11] presented effective algorithms for dense
graphs. Prior to Mc Sherry’s paper [26], Blum and Spencer [4] and Alon and Kahale [1] demon-
strate algorithms that color random sparse graphs properly with high probability. Corollary 13
is comparable to [26, Corollary 2], with a better (optimal) density bound. If we aim for an

A SIMPLE SVD ALGORITHM FOR FINDING HIDDEN PARTITIONS 13

approximate recovery (or an optimal coloring which may not comes from the hidden one) then
there are algorithms which work for lower density Ω(1/n); see [1, 9], in particular the discussion
in [9, Section 2.1].

The proof for the misclassified part follows the same idea as in the previous section; we omit
the details. After Step (2), we receive sets Yi which are big subsets of Xi. (One can easily show
that |Yi| ≥ |Xi|/2 with high probability.) It is easy to see (again by Chernoff’s bound) that the
only vertices which have no neighbors in Yi (in the Green graph) are the vertices of Xi. This
conclude the proof.

Using the same idea, one can handle a common generalization of Hidden Bipartition and Hidden
Coloring. Let X1, . . . , Xk be sets of size n/k. Draw edges within each Xi with probability p and
between Xi and Xj with probability q.

Corollary 14. For any ε > 0 there is a constant C such that the following holds Let .99 > p, q ≥
C log n/n be edge densities such that |p−q|√

p ≥ C
√

logn
n . Then one can recovers the partition with

probability at least 1− ε by an efficient algorithm.

This corollary is a variant of [26, Corollary 1], again with a weaker density bound; we omit the
details.

Appendix A. Proof of Lemma 10

Notice that the function ΠH(X) is 1-Lipschitz and convex, thus by Talagrand’s inequality [28]
for any t > 0

P(ΠHX ≥ µ+ t) ≤ 2 exp(−t2/4)

where µ is the median of ΠH(X). We do not know µ; however, we can bound from above. Slightly
abusing the notation, let Π := (πij) denote the projection matrix onto H, then

E|ΠHX|2 = EXTΠX =

n∑
i=1

πiiEξ
2
i ≤ σ2

n∑
i=1

πii = dσ2.

Combining this with the concentration inequality, it is not hard to show that µ ≤ σd1/2 +O(1),
concluding the proof of the first part of the lemma. The reader can also check [30] for a detailed
discussion on inequalities of this type.

To prove the second part, notice that if v1, . . . , vd form an orthonormal basis of H, then

‖ΠHX‖2 =

d∑
i=1

|X · vi|2.

Thus, our statement is a direct consequence of the following claim:

14 VAN VU

Claim 15. Let (a1, . . . , an) be real numbers such that
∑
i a

2
i = 1 and |ai| ≤ α for all i. Let ξi be

independent random variables with mean 0 and E|ξi|k ≤ σ2 for all k ≥ 2. Let S :=
∑n
i=1 aiξi.

Then

P(|S| ≥ 4(σ
√

log n+ α log n) ≤ 2n−3.

To prove Claim 15, notice that for any 0 < t ≤ α−1 we have

E exp(tS) =
∏
i

E exp(taiξi) =
∏
i

(1 +
σ2a2i t

2

2!
+
t3a3iEξ

3
i

6!
+ . . .)

Since Eξki ≤ σ2 for all k ≥ 2 and t|ai| ≤ 1, the right most formula is

≤
∏
i

(1 + σ2t2a2i) ≤ exp(σ2t2).

Markov’s inequality yields

P(S ≥ T) ≤ exp(−tT + t2σ2).

To optimize the RHS, let us consider two cases

Case 1. σ ≥ α
√

log n. Take T = 4σ
√

log n and t =
√
logn
σ ≤ α−1. With this setting −tT+t2σ2 =

−3 log n.

Case 2. σ < α
√

log n. Take T = 4α log n and t = α−1. In this setting, −tT + t2σ2 ≤
−4 log n+ log n = −3 log n.

One can bound P(−S ≤ T) the same way.

Appendix B. Approximate Clustering

Algorithm 8: Approximate Clustering

The input is a δ-perfect set X.
(0) Set S0 := X

(1) For i = 0, . . . , k − 1, choose a random point w from Si. Find a set X̃i+1 of (1− δ)s
points of distance at most 2r to w. Set Si+1 = Si\X̃i+1.

(2) Partition Sk into k parts X̃ ′i, 1 ≤ i ≤ k, of size |Xi| − (1− δ)s, respectively. Output

X ′i := X̃i ∪ X̃ ′i; i = 1, . . . , k.
(3) If in (1) one cannot find Xi+1 for some i, go back to (0) and repeat the cycle.

To analyze the algorithm, let us first consider the case that the clusters Xi have the same size.
In this case s = n/k and γ = 0.

A SIMPLE SVD ALGORITHM FOR FINDING HIDDEN PARTITIONS 15

Let W be a δ-perfect representation of a set of size N . Call a point w ∈ W good if it has
distance at most r to one of the centers x1, . . . , xk. If a point w is of distance at most r to xj ,
then the ball of radius 2r around w contains and at least (1 − δ)s points from Xj and at most

(k− 1)δs points from other Xl’s. Thus, if we take any set X̃j of (1− δ)s points in this ball, then
at least (1− δk)s of them belongs to Xj . For δ := ε/k, X ′is satisfies |Xi\X ′i| ≤ εs and we obtain
an ε-perfect partition.

The probability that Step (1) goes through successfully is the probability that we can choose k
consecutive good points. Notice that in Si, the number of good points is at least

(1− δ)n− (1− δ)is = (1− δ)ks− (1− δ)is = (1− δ)(k − i)s.

On the other hand

|Si| = n− (1− δ)is = ks− (1− δ)is = (k − (1− δ)i)s.

So the chance that we pick up a good point in Si is at least (1−δ)(k−i)
k−(1−δ)i := pi. The probability

that Step (1) goes through is at least ρ :=
∏k−1
i=0 pi.

The analysis for the case when the Xi is γ-balanced (|Xi| ≤ (1 + γ)s) is similar. If a point w is
of distance at most r to xj , then the ball of radius 2r around w contains at least (1− δ)s points

from Xj and at most (k − 1)δ(1 + γ)s points from other Xl’s. Thus, if we take any set X̃j of
(1− δ)s points in this ball, then at least

(1− δ)s− (k − 1)δ(1 + γ)s = (1− kδ − (k − 1)δ(1 + γ))s

of them belong to Xj . So for δ := ε
k+(k−1)(1+γ) , X

′
js satisfies |Xj\X ′j | ≤ εs and we obtain an

ε-perfect partition.

The values of pi and ρ change slightly compared to the case γ = 0. The size of Si now is

|Si| = n− (1− δ)is ≥ (1 + γ)ks− (1− δ)is = ((1 + γ)k − (1− δ)i)s.

Thus pi := (1−δ)(k−i)
(1+γ)k−(1−δ)i and

ρ :=

k−1∏
i=0

pi ≥
k−1∏
i=0

(1− δ)(k − i)
k(1 + γ)

= k!(
1− δ

k(1 + γ)
)k ≥ (

1− δ
e(1 + γ)

)k.

As a consequence, we obtain the following lemma, which implies Lemma 4.

Lemma 16. With probability at least 1 − n−2, Approximate Clustering produces an ε-correct

partition after at most 3ρ−1 log n ≤ 3(e(1+γ)1−δ)k log n cycles, given δ = ε
k+(k−1)γ .

16 VAN VU

Acknowledgement. The author would like to thank the referee for his careful reading and
numerous suggestions which greatly improve the quality of the paper.

References

[1] N. Alon, N. Kahale. A spectral technique for coloring random 3-colorable graphs. SIAM Journal on Comput-

ing, 26(6):1733–1748, 1997.
[2] N. Alon, M. Krivelevich, B. Sudakov. Finding a large hidden clique in a random graph. Random Structures

and Algorithms, 13, 457–466, 1998.

[3] Y. Azar, A. Fiat, A. Karlin, F. McSherry, J. Saia. Spectral analysis of data. Proceedings of the Thirty-Third
Annual ACM Symposium on Theory of Computing, 619–626, 2001.

[4] Z. Bai, J.W. Silverstein. Spectral analysis of large dimensional random matrices. Springer, 2009.

[5] R. Bhatia. Matrix analysis, volume 169. Springer Verlag, 1997.
[6] A. Blum, J. Spencer. Coloring random and semi-random k-colorable graphs. Journal of Algorithms, 19 no.

2, 204–234, 1995.

[7] R.B. Boppana. Eigenvalues and graph bisection: An average-case analysis. Proceedings of the 28th Annual
Symposium on Foundations of Computer Science, 280–285, 1987.

[8] T.N. Bui, S. Chaudhuri, F.T. Leighton, M. Sipser. Graph bisection algorithms with good average case behavior.

Combinatorica, 7 no. 2, 171–191, 1987.
[9] A. Coja-Oghlan, Graph partitioning via adaptive spectral techniques, Combinatorics, Probability and Com-

puting (2010), 19, 227-284.
[10] A. Condon, R.M. Karp. Algorithms for graph partitioning on the planted partition model. Random Structures

and Algorithms, 18 no. 2, 116–140, 2001.

[11] C. Davis, W.M. Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM Journal on Numerical
Analysis, 7(1):1–46, 1970.

[12] Y. Dekel, O. Gurel-Gurevich, Y. Peres. Finding hidden cliques in linear time with high probability. Proceed-

ings of the Eighth Workshop on Analytic Algorithmics and Combinatorics, 67–75, 2011.

[13] Y. Deshpande, A. Montanari. Finding hidden cliques of size
√

N/e in nearly linear time. Available at

arXiv:1304.7047 [math.PR].

[14] M.E. Dyer, A.M. Frieze. Fast solution of some random NP-hard problems. 27th Annual Symposium on
Foundations of Computer Science, 221–336, 1986.

[15] U. Feige and E. Ofek, Spectral techniques applied to sparse random graphs, Random Structures Algorithms

27 (2005), no. 2, 251275.
[16] U. Feige, R. Krauthgamer. Finding and certifying a large hidden clique in a semirandom graph. Random

Structures and Algorithms, 16 (2): 195–208, 2000.

[17] Z. Furedi and J. Komlos, The eigenvalues of random symmetric matrices, Combinatorica 1981, Volume 1,
Issue 3, 233-241.

[18] U. Feige, D. Ron. Finding hidden cliques in linear time. DMTCS proc. AM, 189–204, 2010.
[19] G.H. Golub, C.F. Van Loan. Matrix computations, volume 3. Johns Hopkins University Press, 1996.

[20] M. Jerrum, G.B. Sorkin. Simulated annealing for graph bisection. IEEE Symposium on Foundations of Com-

puter Science, 94–103, 1993.
[21] R. Kannan, S. Vempala. Spectral algorithms. Now Publishers Inc, 2009.

[22] J. Kahn and E. Szemerédi, STOC 1989.
[23] L. Kučera. Expected behavior of graph coloring algorithms. Fundamentals of computation theory, pages 447–

451. Springer, 1977.

[24] D.W. Matula. The employee party problem. Notices Am. Math. Soc., 19, pp. A–382, Feb.1972.

[25] C. McDiarmid. Concentration. In M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, B. Reed, eds.: Probabilistic
Methods for Algorithmic Discrete Mathematics, Springer, New York, 195–248, 1998.

[26] F. McSherry. Spectral partitioning of random graphs. Proceedings of the 42nd IEEE Symposium on Founda-
tions of Computer Science - FOCS, 529–537, 2001.

[27] J. Turner. Almost all k-colorable graphs are easy to color, Journal of Algorithms 9 (1988), no. 1, 63?82.

[28] M. Talagrand. A new look at independence. Ann. Probab., 24 no. 1, 1–34, 1996.
[29] V. Vu. Spectral norm of random matrices. Combinatorica, 27(6):721–736, 2007.

[30] V. Vu and K. Wang, Random weighted projections, random quadratic forms and random eigenvectors, to

appear in Random Structures and Algorithms.
[31] R. Xu and D. Wunsch, Clustering, Wiley 2014.

[32] P.-Å. Wedin. Perturbation bounds in connection with singular value decomposition. BIT Numerical Mathe-

matics, 12(1):99–111, 1972.

A SIMPLE SVD ALGORITHM FOR FINDING HIDDEN PARTITIONS 17

Department of Mathematics, Yale, New Haven, CT 06520

E-mail address: van.vu@yale.edu

