Pre-prints

Ziokowski LH*, Nikolaev YA*, Chikamoto A, Oda M, Feketa VV, Monedero-Alonso D, Ardasheva AA, Bae SS, Xu CS, Pang S, Gracheva EO, Bagriantsev SN. Structural and functional dissection of the Pacinian corpuscle reveals an active role of the inner core in touch detection. BioRxiv 2024, https://doi.org/10.1101/2024.08.24.609509

 

2024

Junkins MS, Feng NY, Merriman DK, Bagriantsev SN, Gracheva EO. Suppression of neurons in circumventricular organs enables months-long survival without water in thirteen-lined ground squirrels. Science 2024, 386, 1048–1055.

Mohr SM, Dai Pra R, Platt MP, Feketa VV, Shanabrough M, Varela L, Kristant A, Cao H, Merriman DK, Horvath TL, Bagriantsev SN, Gracheva EO. Hypothalamic thyroid hormone deficiency underlies reversible anorexia in ground squirrels during hibernation. Nature Communications 2024, 15:5803.

Gibo S, Yamaguchi Y, Gracheva EO, Bagriantsev SN, Tokuda IT, Kurosawa G. Frequency-modulated timer regulates torpor-arousal cycles during hibernation in distinct small mammalian hibernators. npj Biol Timing Sleep 2024, 1:3.

Junkins MS*, Feng NY*, Murphy LA, Curtis G, Merriman DK, Bagriantsev SN, Gracheva EO. Neural control of fluid homeostasis is engaged below 10°C in hibernation. Current Biology 2024, 34, 1-8.

 

2023

Nikolaev YA*, Ziolkowski LH*, Pang S, Li W-P, Feketa VV, Xu CS, Gracheva, EO, Bagriantsev SN. 3D architecture and a bi-cellular mechanism of touch detection in mechanosensory corpuscle. Science Advances, 2023, 9:eadi4147.

Feketa VV, Bagriantsev SN, Gracheva EO. Ground squirrels — experts in thermoregulatory adaptation. Trends in Neurosciences 2023, https://doi.org/10.1016/j.tins.2023.04.008

Neuberger A, Oda M, Nikolaev YA, Nadezhdin KD, Gracheva EO, Bagriantsev SN, Sobolevsky AI. Human TRPV1 structure and inhibition by the analgesic SB-366791. Nature Communications 2023, 14, 2451.

Ziolkowski LH, Gracheva EO, Bagriantsev SN. Mechanotransduction events at the physiological site of touch detection. eLife 2023, 12:e84179.

 

2022

Dai Pra R, Bagriantsev SN, Gracheva EO. Quick guide: Ground squirrels. Curr Biol 2022, 32,R589-683.

Ziolkowski LH, Gracheva EO, Bagriantsev SN. Tactile sensation in birds: Physiological insights from avian mechanoreceptors. Curr Opin Neurobiol 2022, 74: 102548.

Dai Pra R, Mohr SM, Merriman DK, Bagriantsev SN, Gracheva EO. Ground squirrels initiate sexual maturation during hibernation. Curr Biol 2022, 32,18822-11828.

Junkins MS, Gracheva EO, Bagriantsev SN. Towards understanding the neural origin of hibernation. J Exp Biol 2022, 225 (1): jeb229542.

 

2021

Gracheva EO, Bagriantsev SN. Sensational Channels. Cell 2021, 184(26): 6213-16.

Nadezhdin KD, Neuberger A, Nikolaev YA, Murphy LA, Gracheva EO, Bagriantsev SN, Sobolevsky AI. Extracellular cap domain is an essential component of the TRPV1 gating mechanism. Nature Communications 2021, 12(1):2154.

 

2020

Nikolaev YA, Feketa VV, Anderson EO, Schneider ER, Gracheva EO, Bagriantsev SN. Lamellar cells in Pacinian and Meissner corpuscles are touch sensors. Science Advances 2020, 6(51):eabe6393.

Mohr SM, Bagriantsev SN, Gracheva EO. Cellular, Molecular, and Physiological Adaptations of Hibernation: The Solution to Environmental Challenges. Ann Rev Cell Dev Biol 2020, 36:315-338.

Feketa VV, Nikolaev YA, Merriman DK, Bagriantsev SN, Gracheva EO. CNGA3 acts as a cold sensor in hypothalamic neurons. eLife 2020, 9:e55370.

 

2019

Feng NY, Junkins MS, Merriman DK, Bagriantsev SN, Gracheva EO. Osmolyte depletion and thirst suppression allow hibernators to survive for months without water. Curr Biol 2019, 29(19): 3053-58. A commentary by Sandra Martin “Water balance: abstaining from obtaining while retaining“.

Zheng W*, Nikolaev YA*, Gracheva EO, Bagriantsev SN. Piezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors.  PNAS 2019, 116(35): 17547-17555.

Gracheva EO, Bagriantsev SN. Neural mechanisms of thermoregulation. Neurosci Letters 2019, Jun 3;707:134318.

Schneider ER, Anderson EO, Feketa VV, Mastrotto M, Nikolaev YA, Gracheva EO, Bagriantsev SN. A cross-species analysis reveals a common strategy for mechanosensory specialization in trigeminal ganglia. Cell Reports 2019, 26(8): 1979-1987.

Zheng W, Gracheva EO, Bagriantsev SN. A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels. eLife 2019, 8:e44003.

 

2018

Emrick JJ, Mathur A, Wei J, Gracheva EO, Gronert K, Rosenblum MD, Julius D. Tissue-specific contributions of Tmem79 to atopic dermatitis and mast cell-mediated histaminergic itch. PNAS 2018, 115(51):E12091-E12100.

Hoffstaetter LJ*, Mastrotto M*, Merriman DK, Dib-Hajj SD, Waxman SG, Bagriantsev SN, Gracheva EO. Somatosensory neurons enter a state of altered excitability during hibernation. Curr Biol 2018, 28:2998-3004. *co-authors.

Gracheva EO, Bagriantsev SN. Communication: Potassium channels define the dialect. Curr Biol 2018, 28(13): R744-6.

Anderson EO, Schneider ER, Matson JD, Gracheva EO, Bagriantsev SN. TMEM150C / Tentonin3 is a regulator of mechano-gated ion channels. Cell Reports 2018, 23(3): 701-708.

Hoffstaetter LJ, Bagriantsev SN, Gracheva EO. TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflügers Archiv 2018, e-pub 02/27/2018.

 

2017

Matos-Cruz V, Schneider E, Mastrotto M, Merriman D, Bagriantsev S, Gracheva E. Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters. Cell Reports 2017, 21(12): 3329-37.

Schneider E*, Anderson E*, Mastrotto M, Matson J, Schulz V, Gallagher P, LaMotte R, Gracheva E, Bagriantsev S. Molecular basis of tactile specialization in the duck bill. PNAS 2017, 114(49): 13036-41. *co-authors. A commentary by Ruhma Syeda “Dabbling with Piezo2 for mechanosensation“.

Glogowska E, Schneider E, Maksimova Y, Schulz V, Lezon-Geyda K, Wu J, Radhakrishnan K, Keel S, Mahoney D, Freidman A, Altura R, Gracheva E, Bagriantsev S, Kalfa T, Gallagher P. Novel mechanisms of PIEZO1 dysfunction in Hereditary Xerocytosis. Blood 2017, 130(16):1845-1856.

Anderson EO, Schneider ER, Bagriantsev SN. Piezo2 in cutaneous and proprioceptive mechanotransduction in vertebrates. Curr Top Membr (Piezo channels) 2017, 79: 197-217.

 

2016

laursen-et-al-2016-pnas-featured-image-16-04269-500Laursen WJ, Schneider ER, Merriman DK, Bagriantsev SN, Gracheva EO. Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. PNAS 2016, 113(40): 11342-47.

Schneider ER, Gracheva EO, Bagriantsev SN. Evolutionary specialization of tactile perception in vertebrates. Physiology 2016, 31(3):193-200.

Miller MR, Mannowetz N, Iavarone AT, Safavi R, Gracheva EO, Smith JF, Hill RZ, Bautista DM, Kirichok Y, Lishko PV. Unconventional endocannabinoid signalling governs sperm activation via sex hormone progesterone. Science 2016, Apr29;352(6285):555-9.

 

2015

Bagriantsev SN, Gracheva EO. Molecular mechanisms of temperature adaptation. J Physiol 2015, 593(16):3483-91.

Laursen WJ, Anderson EO, Hoffstaetter L, Bagriantsev SN, Gracheva EO. Species-specific temperature sensitivity of TRPA1. Temperature 2015, 2:1-13.

Gracheva EO, Bagriantsev SN. Evolutionary adaptation to thermosensation. Curr Opin Neurobiol 2015, 34:67-73.

Laursen WJ, Mastrotto M, Pesta D, Funk O, Goodman J, Merriman D, Ingolia N, Shulman G, Bagriantsev SN, Gracheva EO. Neuronal UCP1 expression suggests a mechanism for local thermogenesis during torpor. PNAS 2015, 112(5):1607-12.

 

2014

Laursen WJ, Bagriantsev SN, Gracheva EO. TRPA1 channels: chemical and temperature sensitivity. Curr Top Membr (Thermal sensors) 2014, 74:89-112.

Schneider ER, Anderson EO, Gracheva EO, Bagriantsev SN. Temperature sensitivity of two-pore (K2P) potassium channels. Curr Top Membr (Thermal sensors) 2014, 74: 111-133.

Bagriantsev SN, Gracheva EO, Gallagher PG. Piezo proteins: regulators of mechanosensation and other cellular processes. J Biol Chem 2014 289(46): 31673-81.

2014-10-14 PNAS CoverSchneider ER., Mastrotto M, Laursen WJ, Schulz VP, Goodman JB, Funk OH, Gallagher PG, Gracheva EO, Bagriantsev SN. Neuronal mechanism for acute mechanosensitivity in tactile-foraging waterfowl. PNAS 2014, 111(41): 14941-46.

 

2013

Giordano F, Saheki Y, Idevall-Hagren O, Colombo S, Pirruccello M, Milosevic I, Gracheva EO, Bagriantsev S, Borgese N, De Camilli P. Extended synaptotagmins act as PI(4,5)P2 and Ca2+ regulated tethers between the ER and plasma membrane. Cell 2013, 153(7): 1494-1509.

 

Slav and Elena’s publications before Yale

2014

Bagriantsev S, Chatelain FC, Clark KA, Alagem N, Reuveny E, Minor DL. Tethered protein display identifies a novel Kir3.2 (GIRK2) regulator from protein scaffold libraries. ACS Chem Neurosci 2014, 5(9): 812-22.

2013

Bagriantsev S, Ang K, Gallardo-Godoy A, Clark K, Arkin M, Renslo A, Minor DL. A high-throughput functional screen identifies small molecule regulators of temperature- and mechano‑sensitive K2P channels. ACS Chem Biol 2013, 8(8):1841-51.

Bagriantsev S, Minor DL. Using yeast to study potassium channel function and interactions with small molecules. Methods Mol Biol 2013, 995: 31-42.

Yu SC, Klosterman SM, Martin AA, Gracheva EO, Richmond JE. Differential roles for snapin and synaptotagmin in the synaptic vesicle cycle. PLoS One 2013: 8(2):e57842.

2012

Bagriantsev S, Clark K, Minor DL. Metabolic and thermal stimuli control K2P2.1 (TREK-1) through modular sensory and gating domains. EMBO J 2012, 31: 3297-308.

2011

Gracheva EO, Cordero-Morales JF, González JA, Ingolia NT, Aranguren CI, Manno C, Weissman JS, Julius D. Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature 2011: 476(7358):88-91. Highlighted in “Nature News and views”: Fenton MB. Heat-thirsty bats. 2011; 476:40-41. National Geographic: “How vampire bats tuned their thermometers to evolve a heat-seeking face“.

Bagriantsev S, Peyronnet R, Clark K, Honore E, Minor DL. Multiple modalities converge on a common gate to control K2P channel function. EMBO J 2011, 30: 3594-606.

Cordero-Morales JF, Gracheva EO, Julius D. Cytoplasmic ankyrin repeat domains of TRPA1 dictate sensitivity to thermal and chemical stimuli. PNAS 2011, 108(46):E1184-91.

2010

Gracheva EO, Ingolia NT, Kelly YM, Cordero-Morales JF, Hollopeter G, Chesler AT, Sánchez EE, Perez JC, Weissman JS, Julius D. Molecular basis of infrared detection by snakes. Nature 2010, 464(7291):1006-11. National Geographic: “Wasabi protein responsible for the heat-seeking sixth sense of rattlesnakes“.

Bagriantsev S, Minor DL. Small molecule ion channel match making: a natural fit for new ASIC ligands. Neuron 2010, 68(1):1-3.

Gracheva EO, Maryon EB, Berthelot-Grosjean M, Richmond JE. Differential regulation of synaptic vesicles tethering and docking by UNC-18 and TOM1. Front Synaptic Neurosci. 2010, 2:141.

Chen K, Gracheva EO, Yu SC, Sheng Q, Richmond J, Featherstone DE. Neurexin in embryonic Drosophila neuromuscular junction. PLoS One. 2010, 5(6):e11115.

2008

Bagriantsev S, Gracheva EO, Richmond JE, and Liebman SW. Variant-specific [PSI+] infection is transmitted by Sup35 polymers within [PSI+] aggregates with heterogeneous protein composition. Mol Biol Cell 2008, 19(6):2433-43.

Gracheva EO, Hadwiger G, Nonet M, Richmond JE. Direct interactions between C. Elegans RAB-3 and RIM provide a functionally significant to target vesicles to presynaptic density. Neurosci Letters. 2008, 444(2):137-42.

Silva R.A.G.D, Huang R, Morris J, Fang J, Gracheva EO, Ren G, Kontush A, Jerome WG, Rye KA, Davidson WS. The structure of Apolipoprotein A-I in spherical high density lipoproteins of different size. PNAS. 2008, 105(34):12176-81.

Wang W, Bouhours M, Gracheva EO, Liao EH, Xu K, Sengar AS, Xin X, Roder J, Boone C, Richmond JE, Zhen M, Egan SE. ITSN-1 controls vesicle recycling at the neuromuscular junction and functions in parallel with DAB-1.Traffic. 2008, 9(5):742-54.

2007

Gracheva EO, Burdina AO, Touroutine D, Richmond JE. Tomosyn negatively regulates CAPS-dependent peptide release at Caenorhabditis elegans synapses. J Neurosci. 2007, 27(38):10176-10184.

Gracheva EO, Burdina AO, Touroutine D, Berthelot-Grosjean M, Parekh H, Richmond JE. Tomosyn negatively regulates both synaptic transmitter and neuropeptide release at the C. elegans neuromuscular junction. J Physiol. 2007, 585(Pt 3): 705-9.

Vitrenko YA,  Gracheva EO,  Richmond JE, Liebman SW. Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM. J Biol Chem. 2007, 282(3): 1779-87.

2006

Gracheva EO, Burdina AO, Holgado AM, Berthelot-Grosjean M, Hadwiger G, Nonet ML, Weimer RM, Richmond JE. Tomosyn inhibits Synaptic Vesicle Priming in Caenorhabditis elegans. PLoS Biology. 2006, 4(8).

Bagriantsev S, Liebman SW. Modulation of Aβ42 low-n oligomerization using a novel yeast reporter system. BMC Biology 2006, 4(1): 32.

Weimer RM, Gracheva EO, Meyrignac O, Miller KG, Richmond JE, Bessereau J. UNC-13 and UNC-10/Rim Localize Synaptic Vesicles to Specific Membrane Domains. J Neurosci. 2006, 26(31): 8048-7.

Bagriantsev S, Kushnirov VV, Liebman S. Analysis of amyloid aggregates using agarose gel electrophoresis. Methods Enzymol 2006, 412: 33-48.

Wang Y, Gracheva EO, Richmond JE, Kawano T, Couto JM, Calarco J, Vijayarantamn V, Jin Y, and Zhen M. A The C2H2 zinc-finger protein SYD-9 is a putative posttranscriptional regulator for synaptic transmission. PNAS. 2006, 103(27): 10450-5.

Liebman SW, Bagriantsev S, Derkatch IL. Biochemical and genetic methods for characterization of [PIN+] prion in yeast. Methods 2006, 39(1): 23-34.

2004

Bagriantsev S, Liebman SW. Specificity of prion assembly in vivo. [PSI+] and [PIN+] form separate structures in yeast. J Biol Chem 2004, 279(49): 51042-8.

2003

Bradley M, Bagriantsev S, Vishveshwara N, and Liebman S. Guanidine reduces stop codon read through caused by mutations in SUP35 or SUP45. Yeast 2003, 20(7):625-32.

2002

Goncharova EA, Vorotnikov AV, Gracheva EO, Wang CL, Panetteri JR, Stepanova VV, Tkachuk VA. Activation of p38 MAP-kinase and caldesmon phosphorylation are essential for urokinase-induced human smooth muscle cell migration. Biol Chem. 2002, 383(1): 115-26.

2001

Poliakov A, Tkachuk V, Ovchinnikova N, Potapenko N, Bagryantsev S, Stepanova V. Plasmin-independent elimination of the growth-factor domain in urokinase causes its rapid cellular uptake and degradation. Biochem J 2001, 355(3): 639-645.