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Abstract Current primary stroke preventive strategies seem insufficient in light of 
the increased prevalence of stroke, the steady or increasing death rates from cardio-
vascular illnesses, and the expanding list of stroke risk factors. A class of computer 
algorithms known as machine learning (ML) can learn from data without having to be 
explicitly programmed. To predict stroke and its effects, a number of physiological 
and clinical indicators have been used. A cyber-physical stroke rehabilitation system 
(CP-SRS) as well as the modified Rankin Scale (mRS90) and National Institutes of 
Health Stroke Scale (NIHSS24) have both been predicted using ANN models. The 
results of this study indicate that neural networks might create a new and efficient 
way to categorize stroke patients’ risk. 
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1 Introduction 

Stroke is the world’s largest cause of death and disability, with a lifetime risk of 25% 
[1]. Ischemic heart disease, according to the World Health Organization is one of 
the main cause of deaths worldwide. The second and third most frequent causes of 
mortality are stroke and COPD, respectively. 89% of DALYs and 86% of fatalities 
worldwide in low- and middle-income countries are caused by stroke. Given the 
increasing prevalence of stroke, the steady or rising death rates from cardiovascular 
diseases, and the growing list of stroke risk factors, current primary stroke prevention 
methods look insufficient. Machine learning (ML) refers to a data-learning classes
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of computer algorithms without being explicitly programmed. Several early studies 
[2–6] have used machine learning to predict stroke lesions. A number of physiolog-
ical and clinical parameters have been used to predict stroke and its effects. Lin et al. 
[7] developed a hybrid artificial neural network with a tenfold cross-validation to 
achieve a 0.94 AUC in both ischemic and hemorrhagic stroke using preadmission 
and inpatient data. When follow-up information was added, the prediction’s accuracy 
rose to 0.97 AUC. They screened 206 clinical variables with little performance loss 
to identify 17 important features from the ischemic stroke dataset and 22 critical 
traits from the hemorrhagic stroke dataset [7]. Support vector machines have also 
been utilized to forecast motor and cognitive recovery during rehabilitation therapy 
during the early stage of stroke, as well as to evaluate the cost-benefits of thrombol-
ysis and thrombectomy therapy during the acute stage of stroke [8, 9]. For high-risk 
undiagnosed family members of familial hypercholesterolemia, random forest (RF) 
has also been employed to speed up early diagnosis and rapid intervention [10]. RF 
for imputation and automated hyperparameter optimization (AutoHPO) has been 
utilized to predict stroke, with an ACC of 71.6% and a sensitivity of 67.4% [11]. 
Other classification techniques include spiking neural networks (SNNs) for personal-
ized modeling of spatio-temporal data (SSTD) and event prediction, artificial neural 
networks (ANNs) for early atherosclerosis diagnosis and to determine whether a 
perfusion deficit exists and where it will be located on CT perfusion images, and 
kNN to find a gene expression pattern that is distinct in peripheral blood that may aid 
in the early identification of a stroke [12–15]. Additionally, ANN models have been 
developed to forecast the modified Rankin Scale (mRS90) and National Institutes 
of Health Stroke Scale (NIHSS24) as well as to validate the cyber-physical stroke 
rehabilitation system (CP-SRS) [16, 17]. The findings of the present study suggest 
that neural networks may develop a novel and effective method for classifying the 
risk of stroke patients. 

2 Materials and Methods 

2.1 Study Design and Subjects 

This study used data from Lee et al. [18]’s observational cohort study based on 
electronic health records. From January 2012 to December 2015, this observational 
cohort study using electronic health records was conducted in a tertiary referral 
hospital. The tertiary stroke center’s treatment met the standards set forth by the 
Brain Attack Coalition, and the stroke unit also held certification from the Korean 
Stroke Association. With a population of around four million, the regional emer-
gency medical center provides care to the southern portion of Gyeonggi Province 
in South Korea, and its emergency room (ER) sees about 89,000 patients yearly
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[18–20]. All patients’ stroke diagnoses were made according to three categories: 
true stroke, ischemic stroke, hemorrhagic stroke, and non-emergent vs. emergent 
large vessel occlusion. After reviewing the ER file, imaging results, and laboratory 
test results for potential differential diagnoses, the conclusive stroke diagnosis was 
made. When the neurologic evaluation and imaging data from CT and/or magnetic 
resonance imaging, including diffusion weighted images, were in agreement, a true 
stroke was recognized. True stroke and ischemic stroke are two different types of 
transient cerebral ischemia event. When the clinical data was consistent with non-
vascular etiologies, stroke mimics were discovered. A significant arterial occlusion 
and hemorrhagic stroke were both confirmed by the initial CT angiography. The 
internal carotid artery, the M1 or M2 portion of the middle cerebral artery, or the 
basilar artery are all examples of ELVO [21, 22]. In the end, 11 variables were taken 
into consideration for training, including infarct lateral, infarct site, gender, age, 
seizure absent, starting glucose, systolic blood pressure, diastolic blood pressure, 
pulse rate, body temperature, and arterial oxygen saturation (SaO2). The supplemen-
tary file section has a download link for the data used. A total of 900 males and 660 
females had their data collected. Table 1 gives the distribution of the various variables. 
On average, ages, initial glucose, systolic blood pressure, diastolic blood pressure, 
pulse rate, body temperature, and SaO2 for males were 61.83, 149.90, 147.94, 85.52, 
83.17, 36.47, and 99.55, while for females, it ranged from 66.62, 144.55, 147.20, 
85.48, 83.31, 36.52, and 99.32, respectively.

3 Training and Testing 

In this study, we used a three-layer multilayer perceptron (MLP) model, consisting 
of an input layer with 11 independent variables, a hidden layer with a set number of 
neurons that were tuned by training, and an output layer that shows the likelihood 
of the principal outcome. By iteratively updating the weights between the neurons, a 
backpropagation technique was utilized to minimize the loss function and maximize 
the model’s ability to predict the primary outcome. Between predicted and actual 
values, there is discrepancy, which is represented by the loss function. In view of 
the relatively small sample size, training of neural networks was performed using 
backpropagation [23] with a 3, 5, and tenfold splits for training and testing/validation 
data. Different constant learning rates (lr’s) in range of 0.00001–0.19 were tested 
to find the optimal lr with minimization of the loss function, with higher lr’s the 
accuracy was seen to decrease (Fig. 1). A steady accuracy (0.89) seen with lr’s 
0.00001–0.01 was eventually selected for final training. Data normalization was 
necessary for continuous independent variables in order to locate the best solution 
faster. In order to scale variable data, the max–min technique was used [24]. The 
study cohort included an uneven distribution of patients who had or did not have a
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Fig. 1 Different tested learning rates and their accuracies 

primary outcome. This might skew predictions in favor of the non-recurrence group. 
As a result, we randomly chose a 1:1 matched number of patients for training and 
testing who did not have a primary outcome and those who did. We choose to generate 
13 different networks, each for prediction of stroke, hemorrhagic stroke, ischemic 
stroke, and stroke outcomes like affection of one side face, one side arm, one side leg, 
asymmetry, not ambulating, not able to speak, not able to grasp, visual disturbance, 
abnormal sensation, and mental change. Evaluation was performed using accuracy, 
precision, sensitivity, specificity, and fscore metrics on validation set. The training 
code can be accessed from the supplementary section. 

4 Results 

From total 1560 patients, 1153 subjects had stroke, 895 had ischemic type, 259 had 
hemorrhagic type, 473 had one side face affected, 965 had one side arm affected, 840 
had one side leg affected, 1163 had asymmetry, 587 were not ambulating, 762 were 
not able to speak, 243 were not able to grasp, 22 had visual disturbances, 218 had 
abnormal sensation, and 349 had mental changes. Approximately, 74% subjects were 
affected with stroke, and this number matched with remaining non-stroke subjects is 
a reasonable training size to generate neural network on. With only stroke outcome, 
infarct size and diastolic blood pressure constituted maximal weights on trained 
network (Fig. 2). For predicting all other outcomes, stroke outcome was considered 
as an additional input variable on trained network. For only hemorrhage outcome, 
stroke and age; for only ischemic outcome stroke; for only abnormal sensation 
outcome stroke, infarct site, body temperature; for only asymmetry outcome infarct 
site, systolic blood pressure; for only mental change outcome, body temperature and
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Fig. 2 Trained network for only stroke outcome

SaO2; for only not able to grasp outcome, infarct lateral, gender, initial glucose, 
body temperature and SaO2; for only not able to speak outcome, age, diastolic blood 
pressure, body temperature, and stroke; for only non-ambulating outcome, diastolic 
blood pressure, infarct lateral; for only one side arm outcome, gender, age, and SaO2; 
for only one side face outcome, body temperature, age, and stroke; for only one side 
leg outcome, infarct lateral, and gender; and for only visual disturbance outcome, 
infarct lateral and body temperature contributed maximal weights (Fig. 3). A three, 
five, and tenfold validation metrics are provided in Table 2 for only stroke outcome. 
Surprisingly, with only 1560 subjects, we were able to achieve a stroke prediction 
accuracy of 0.89, sensitivity of 0.95, specificity of 0.70, f score of 0.92, and precision 
of 0.90. With other sub-outcomes, visual disturbances followed by abnormal sensa-
tion, mental changes, not able to grasp, and hemorrhagic had maximal accuracies 
(Table 3). Prediction of ischemic stroke had minimal accuracy. Several other vari-
ables like nutrition, seizures, cardiac evaluation, etc., not considered in this training 
constitute risk factors for ischemic stroke [25]. This may be one of the reasons for 
poor ischemic stroke prediction accuracy when compared to other outcomes. 
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Table 2 Three, five, and 
tenfold validation evaluation 
metrics for stroke prediction 

Metric Threefold stroke Fivefold stroke Tenfold stroke 

Sensitivity 0.95 0.94 0.94 

Specificity 0.70 0.71 0.74 

f score 0.92 0.93 0.93 

Precision 0.90 0.91 0.92 

Accuracy 0.89 0.89 0.89

5 Discussion 

There are some flaws in the current study. The data comes from a retrospective single-
center study with an uneven set-in view of patient numbers with and without the main 
outcome. To balance the two groups, the no-recurrence occurrences were randomly 
down-sampled. It is possible that this process will discard training-related data. Addi-
tionally, we only used imaging characteristics that could be reliably detected during 
routine imaging exams and clinical variables that are simple to access in clinical 
practice, whereas subsequent relevant studies could accommodate more imaging 
characteristics and clinical variables that may affect the risk of stroke patients.
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6 Conclusion 

The contemporary stroke service system has greatly decreased the incidence of stroke 
relapse in these individuals by making prompt attention and management for stroke 
patients more accessible. However, some patient subgroups continue to have a high 
risk of having a future debilitating stroke and may be difficult to identify using tradi-
tional risk prediction scores. Therefore, a more precise and complex risk prediction 
system is needed. Our method has an advantage over conventional statistical tech-
niques or risk prediction scores because it reflects complex relationships between 
continuous and categorical independent variables and the outcome and quantifies 
the weights of independent variables in relation to their influence on the outcome. 
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