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Abstract 

Other things being equal, people prefer simpler 
explanations to more complex ones. However, complex 
explanations often provide better fits to the observed data, 
and goodness-of-fit must therefore be traded off against 
simplicity to arrive at the most likely explanation. In three 
experiments, we examine how people negotiate this trade-
off. As a case study, we investigate laypeople’s intuitions 
about curve-fitting in visually presented graphs, a domain 
with established quantitative criteria for trading off 
simplicity and goodness-of-fit. We examine whether people 
are well-calibrated to normative criteria, or whether they 
instead have an underfitting or overfitting bias (Experiment 
1), we test people’s intuitions in cases where simplicity and 
goodness-of-fit are no longer inversely correlated 
(Experiment 2), and we directly measure judgments 
concerning the complexity and goodness-of-fit in a set of 
curves (Experiment 3). To explain these findings, we posit 
a new heuristic: That the complexity of an explanation is 
used to estimate its goodness-of-fit to the data. 

Keywords: Explanation; causal reasoning; intuitive 
statistics; simplicity; diagnostic reasoning. 

Introduction 
The simplest explanation is often the most likely to be 
true. Suppose, for example, that a patient has two 
symptoms: a runny nose (E1) and a cough (E2). Three 
diagnoses are available: influenza (H1), which explains 
both symptoms; Hay fever (H2), which explains only the 
runny nose; and Strep throat (H3), which explains only the 
cough. If these diseases are equally common, then any 
reasonable doctor would surely posit influenza (H1) to 
explain both symptoms, rather than hay fever to explain 
the runny nose and Strep throat to explain the cough (H2 
& H3). Laypeople share these intuitions: Other things 
being equal, adults and children prefer explanations 
invoking fewer causes and believe they are more likely to 
be true (Bonawitz & Lombrozo, 2012; Lombrozo, 2007). 

These intuitions relate to normative probabilistic 

reasoning (Lombrozo, 2007). The posterior odds favoring 
the simple explanation [H1] over the complex explanation 
[H2,H3] is the product of the prior odds [P(H1)/P(H2,H3)], 
representing the probability of each hypothesis being true 
before observing the evidence, and the likelihood ratio 
[P(E1,E2|H1)/P(E1,E2|H2,H3)], representing the probability 
of the evidence being observed under each hypothesis. If 
we assume that the simple explanation (influenza) and the 
complex explanation (hay fever and Strep throat) lead to 
both symptoms with the same probability, then the 
likelihood ratio is 1. Lombrozo (2007) noted, however, 
that the prior odds often favor simple explanations: If H1, 
H2, and H3 have equal base rates, then P(H2,H3) = 
[P(H1)]2. Since the complex explanation has a lower prior, 
the posterior odds favor the simpler explanation. 

However, the posterior odds do not always favor the 
simpler explanation, because the evidence is often made 
more likely (or, put differently, is “better modeled”) by a 
complex explanation than by a simple explanation, 
leading the likelihood ratio to favor the complex 
explanation. For example, consider a patient who has a 
runny nose and a stomach ache. One explanation is that 
the patient has only a cold, which would make a runny 
nose very likely and would make a stomach ache 
plausible (but not especially likely). Alternatively, the 
patient could have both a cold and a stomach virus, which 
would make both symptoms very likely. The more 
complex explanation has a lower prior, but a higher 
likelihood. This is often the case: The more (generative) 
causes invoked by an explanation, the lower its prior, but 
the more likely it is to predict the observed effects 
because each added cause has the potential to produce the 
observed effects. How do people negotiate this trade-off 
between simplicity and goodness-of-fit? 

One possibility is that people would require 
disproportionate evidence to abandon a simpler 
explanation in favor of a more complex one. Lombrozo 
(2007) found that people use a simplicity heuristic, 
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assigning higher priors to simpler explanations, with 
many participants recalling simpler explanations as 
having higher base rates than warranted by the data. This 
heuristic led to non-normative explanatory preferences 
when probabilities were manipulated explicitly: When a 
simple and complex explanation had equal priors, 80% of 
participants preferred the simple explanation, and 40% of 
participants preferred the simple explanation even when it 
was 10 times less likely than the complex explanation. 

However, people could also use a complexity heuristic, 
wherein complexity is used to estimate the likelihood or 
goodness-of-fit. Since simpler explanations (i.e., invoking 
fewer generative causes) often have higher prior 
probabilities, and complex explanations (i.e., invoking 
more generative causes) often have higher likelihoods, 
this pair of opponent simplicity and complexity heuristics 
may at times allow for negotiation of the 
simplicity/goodness-of-fit trade-off in a computationally 
tractable manner, without the need for explicit 
probabilistic reasoning. When in operation, a complexity 
heuristic would be in tension with a simplicity heuristic, 
potentially leading to no bias or even a complexity bias. 

Here, we examined laypeople’s intuitions about curve-
fitting, a domain with established quantitative criteria for 
trading off these explanatory virtues (Forster & Sober, 
1994). Although curve-fitting and verbal explanation 
tasks such as diagnostic reasoning are superficially quite 
different, they share deep formal similarities in that both 
tasks require trade-offs among explanatory virtues. 
Intuitions about curve-fitting are therefore a useful test 
case for explanatory reasoning more broadly—one where 
the virtues of simplicity and goodness-of-fit are 
operationalized in an especially direct way. 

In these studies, we collected judgments of what family 
of curve was most appropriate when fitting scatterplot 
data, comparing those judgments to normative 
benchmarks (Experiment 1) and to judgments in matched 
cases where simplicity and goodness-of-fit no longer 
competed (Experiment 2). We also sought direct evidence 
for a complexity heuristic by measuring both perceived 
complexity and perceived goodness-of-fit for a set of 
curves (Experiment 3). If people use a complexity 
heuristic, we would expect an illusory increase in 
perceived goodness-of-fit for more complex curves. 

Experiment 1 
Consider the task of choosing how complex of a curve to 
use in fitting a set of datapoints (see Figure 1). It is 
assumed that these data were produced by both an 
underlying signal (the same each time a sample is drawn 
from the population) and random noise (which is different 
each time a new sample is drawn). Choosing a very 
complex curve will result in a tight fit to the current set of 
data points, but such a curve is likely to overfit—fitting 
the noise in addition to the underlying trend, resulting in 
poor predictive value for a new sample from the same 
population. In contrast, choosing a very simple curve may 

result in underfitting—failing to take advantage of all the 
information available in the original dataset for 
identifying the underlying trend, again leading to poor 
predictions. This trade-off between simplicity and 
goodness-of-fit is made by optimizing model selection 
criteria known as Akaike’s Information Criterion (AIC) 
and the Bayesian Information Criterion (BIC), which 
reward models for having good fits to the data and 
penalize models for using larger numbers of parameters. 

To see whether people make this trade-off in 
accordance with normative model selection criteria, we 
generated a set of 16 scatterplots, 8 of which had 
normatively quadratic fits according to both AIC and 
BIC, and 8 of which had normatively cubic fits according 
to both AIC and BIC. Participants were asked to select the 
best curve for each scatterplot from multiple choice 
options of degrees 1 through 4 (see Figure 1-A). Two 
wordings were used to elicit these judgments, between 
subjects—asking which curve “best represents” the 
underlying trend, and which curve would “best predict” a 
different set of data from the same population. The former 
wording might elicit more intuitive judgments, while the 
latter wording might make the task clearer to participants. 

If people use the complexity of a curve as a cue for 
estimating its fit to the data, we might find an overfitting 
bias. Alternatively, it is plausible that people would 
instead have an underfitting bias, since simpler 
explanations are assigned high priors in a biased manner 
(Lombrozo, 2007). This would also be consistent with 
Little and Shiffrin’s (2009) finding of an underfitting bias 
in the generation of curves for scatterplot data. Although 
generating hypotheses (here, best fit curves) involves 
computational challenges beyond evaluating hypotheses, 
this result nonetheless motivates the possibility that 
underfitting would extend to an evaluation task. 

Method 
Participants We recruited 80 participants from Amazon 
Mechanical Turk; five were excluded from analysis 
because they failed a check question (see below). 
Materials The materials were 16 datasets displayed in 
scatterplots, and their best fit curves of degrees one 
through four (see Figure 1-A). Each scatterplot plotted a 
dataset including 41 data points, sampled at intervals of 
0.25 from 0 to 10 on the x-axis. The y-values were 
determined by taking the values of second and third 
degree polynomials and adding Gaussian noise to each 
data point. Two quadratic functions and two cubic 
functions were used, and four random datasets were 
generated from each of these functions—two at relatively 
high levels of noise, and two at relatively low levels of 
noise (mean R2 = .279 vs. .475). In addition, the best fit 
curves of degrees one through four always differed from 
each other by at least 7% at one or more points, to ensure 
that the best fit curves could be discriminated from each 
other. In addition, the normative complexity of the data 
was always the same as that of the data-generating 
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function. For the quadratic functions, the mean R2 was 
.276, .390, .411, and .434 for the best fit curves of degrees 
1–4, respectively (and the quadratic fit is best according 
to AIC and BIC), and for the cubic curves, the mean R2 
was .183, .364, .469, and .490 for fits of degrees 1–4 (and 
the cubic fit is best according to AIC and BIC).  
Procedure Participants were instructed that they would 
see sets of data plotting the relationship between two 
properties of minerals called ‘caltedness’ and ‘limency’, 
and that each dataset would correspond to a different 
mineral. Fictitious physical properties were chosen 
because participants would likely have prior expectations 
(if any) of a linear relationship, providing a stronger test 
against the possibility of overfitting. 

For each dataset, participants were shown a scatterplot 
(e.g., the top panel of Figure 1-A) and told that “The 
following scatter plot shows multiple measurements of 
caltedness and limency for a sample of the mineral 
[mineral name]. Each measurement is affected by both 
the inherent relationship between caltedness and limency 
in [mineral name], as well as by random errors such as 
variability from sample to sample and imprecision in 
measuring equipment,” where a different mineral name 
was given for each dataset. On the next page, participants 
were presented with four multiple choice options (e.g., the 
bottom panel of Figure 1-B), each an image of the dataset 
(displayed in blue) with a best fit curve (displayed in 
black) overlaid, of degrees one through four. Between-
subjects, participants were told either to select the option 
“that you believe best represents the relationship between 
caltedness and limency for [mineral name]” in the 
represents condition, or “that you believe would best 
predict the relationship between caltedness and limency 

for a different sample of [mineral name]” in the predicts 
condition. The datasets were presented in a random order, 
and the response options were randomized for each item. 

After the main task, participants completed a check 
question (a dataset for which the quadratic fit was clearly 
optimal). Five participants were excluded from data 
analysis because they answered this question incorrectly. 

Results and Discussion 
The multiple choice options corresponded to the best fit 
curves for each dataset for degrees one through four, and 
therefore formed an interval scale from 1 to 4. Unbiased 
performance on this task would yield a score of 2.5 on 
this scale (the midpoint), because half of the curves were 
of degree 2 and half were of degree 3. Instead, 
participants selected curves with mean degree 2.72 (SD = 
0.70), which is significantly greater than 2.5, t(74) = 2.74, 
p = .008, d = 0.32. A mixed-model ANOVA with degree 
(quadratic or cubic) and noise (high or low) as within-
subjects factors and wording (represents or predicts) as a 
between-subjects factor revealed only a main effect of 
degree, F(1,73) = 23.81, p < .001, ηp

2 = .25, because 
participants fit higher degree curves to the normatively 
cubic (M = 2.85, SD = 0.76) than to the normatively 
quadratic (M = 2.59, SD = 0.72) datasets. In particular, 
there was no main effect of wording, F(1,73) < 0.01, p = 
.97, ηp

2 < .01, indicating that participants overfitted 
equally regardless of whether they were selecting the 
curve that best represented the data or the curve that 
would best predict a different set of data. 

Could these effects can be accounted for by a response 
strategy such as random responding, centering, or 

(B) Experiment 2 (A) Experiment 1 
Figure 1: Example stimulus items: (A) An item from Experiment 1. (B) The matched version of that item from Experiment 2. 

The top panels show scatterplots without curves, and the bottom panels show response options (curves of degrees 1–4). 
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response variation? Although there appears to have been 
some regression to the mean (hence the slight underfitting 
for the cubic curves), these strategies would not lead to 
biased responses above the midpoint. Since the normative 
responses were degrees 2 and 3, and response options 
were curves of degrees 1–4, these strategies would lead to 
an unbiased mean near the midpoint of the scale. 

This overall overfitting bias is surprising in light of an 
underfitting bias in curve generation (Little & Shiffrin, 
2009) and the tendency to overestimate the priors of 
simple explanations (Lombrozo, 2007). This bias may 
occur because people use the complexity of a curve as a 
cue to goodness-of-fit, compensating for the simplicity 
heuristic that would push people toward underfitting. 
However, an alternative explanation is that the simplicity 
heuristic—that is, using simplicity to estimate prior 
probability—is not at work in this task, and people would 
choose relatively complex curves regardless of how well 
they fit the data. We test this possibility in Experiment 2. 

Experiment 2 
It is a mathematical truism that the best fit curve of a 
higher-degree polynomial family will be a better fit to the 
data than the best fit curve of a lower-degree polynomial 
family. However, it is not the case that any curve of 
higher degree will be a better fit than any curve of lower 
degree. By randomly perturbing the datasets used in 
Experiment 1, we generated a new set of scatterplots for 
which the curves used in Experiment 1 no longer 
exhibited the characteristic property that more complex 
curves are better fits to the data (see Figure 1-B). If 
people use simplicity as a proxy for prior probability 
(Lombrozo, 2007) in this task, then they should no longer 
choose complex curves for these scatterplots. In contrast, 
if people choose relatively complex curves for any dataset 
(regardless of actual fit), then the results of Experiment 2 
would be similar to Experiment 1. 

Method 
Participants We recruited 80 participants from Amazon 
Mechanical Turk; 15 were excluded because they failed 
the check question used in Experiment 1. 
Materials The curves were identical to those used in 
Experiment 1, but the datasets were perturbed randomly 
so that the quartic curves were no longer the best fits. 
Instead, for each dataset, the linear curve was a slightly 
better fit than the quadratic curve, and so forth, subject to 
the constraint that R2 for the linear curve be no more than 
.03 greater than R2 for the quartic curve (see Figure 1-B). 
Procedure The procedure was the same as Experiment 1. 

Results and Discussion 
Even though the curves used in Experiment 2 were 
identical to those in Experiment 1, participants selected 
curves of mean degree 2.12 (SD = 0.74), which is 
significantly below the midpoint of the scale, t(64) = 
−4.17, p < .001, d = −0.52. A two-way ANOVA with 

experiment (Exp. 1 or Exp. 2) and wording (represents or 
predicts) as between-subjects factors revealed only a main 
effect of experiment, F(1,136) = 24.15, p < .001, ηp

2 = 
.15. There was no main effect of wording, F(1,136) = 
0.18, p = .67, ηp

2 < .01, nor an interaction of wording with 
experiment, F(1,136) = 0.22, p = .64, ηp

2 < .01, showing 
that these effects did not depend on whether participants 
were selecting the curve that best represented the data or 
would best predict a different set of data. 

These results are consistent with Lombrozo’s (2007) 
finding that simplicity is used as a proxy for prior 
probability. This experiment also acts as a control for 
Experiment 1, showing that the overfitting found in 
Experiment 1 occurred as a consequence of the increasing 
values of R2 associated with increasingly complex 
curves—when R2 was approximately constant between 
curves, people tended to choose relatively simple curves. 

Nonetheless, participants still chose curves 
considerably above the floor of the scale—the mean of 
2.12 indicates that participants chose quadratic curves on 
average. Although scale-use strategies (e.g., centering or 
response varying) may at least partially account for this 
result, one might nonetheless expect participants to more 
frequently choose linear curves, since they were both the 
simplest and the best-fitting curves for each scatterplot. 
One possibility is that people’s estimates of goodness-of-
fit were distorted by the complexity of the curves. If 
people used complexity to estimate goodness-of-fit, then 
they might choose more complex curves simply because 
they believed they were better fits to the data. This 
possibility was tested in Experiment 3. 

Experiments 3A and 3B 
To test directly whether complexity is used as a heuristic 
for estimating goodness-of-fit, participants in Experiment 
3A provided their estimates of how well the curves fit the 
data for the 64 curves used as response options in 
Experiment 2. Because perceived complexity is not 
necessarily a linear function of the curve’s degree, we 
collected perceived complexity judgments in Experiment 
3B. We expected that both actual goodness-of-fit (as 
measured by R2) and perceived complexity would 
independently influence goodness-of-fit judgments. 

Method 
Participants We recruited 120 participants from Amazon 
Mechanical Turk for Experiment 3A, and 40 participants 
for Experiment 3B. (A greater number of participants 
were necessary for Experiment 3A due to lower between-
items variance.) Seven participants from Experiment 3A 
and zero participants from Experiment 3B were excluded 
because they failed check questions (see below). 
Materials The materials for Experiment 3A were the 64 
scatterplots and curves of degrees 1 through 4 used as 
response options in Experiment 2 (see Figure 1-B). 
Therefore, the R2 values were slightly higher for the linear 
than for the quartic curves (see Table 1). These curves 
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  Table 1: Means and SDs in Experiments 3A and 3B. 
 

Degree 1 2 3 4 
Goodness-of-Fit 

Exp. 3A 
51.47         
(19.55) 

54.02 
(19.17) 

54.06 
(19.18) 

52.48 
(19.18) 

Complexity 
Exp. 3B 

9.90 
(1.22) 

51.64 
(3.57) 

63.94 
(7.36) 

71.40 
(5.04) 

Actual R2 .523 .515 .507 .499  
Arclength 30.36  53.01 63.16  68.19 
 
also varied in noise, since higher and lower noise datasets 
were used in Experiments 1 and 2. The materials for 
Experiment 3B were the same 64 curves, but with the 
datapoints omitted. 
Procedure For Experiment 3A, participants were 
instructed that for each graph, they would “judge how 
closely the black line fits the blue data points” and were 
given examples of two identical quadratic curves, one 
with data that it fit poorly and the other with data that it fit 
well. They were then shown each of the 64 scatterplots 
with best fit  lines,  and rated  “how  closely  you think the 
black line fits the blue data points” on a scale from 0 
(“Very poor fit”) to 100 (“Very close fit”). After the main 
task, participants responded to two check questions with 
linear curves that were, respectively, very close and very 
poor fits. Participants who rated the close fitting curve no 
more than 20 points higher than the loose fitting curve 
were excluded from analysis. 

For Experiment 3B, participants were instructed that for 
each graph, they would “judge how complex the line is” 
and told that “relatively simple curves can be described in 
a small amount of information, while relatively complex 
curves require more information to describe.” Participants 
were given examples of a less complex (linear) curve and 
a more complex (quadratic) curve. They were then shown 
each of the 64 best fit lines without the datapoints, and 
rated “how complex you think the line is” on a scale from 
0 (“Very simple”) to 100 (“Very complex”). After the 
main task, participants responded to two check questions 
with curves of degrees 1 and 5. Every participant rated the 
curve of degree 5 more complex than the curve of degree 
1 by at least 20 points, so no participants were excluded 
from analysis. 

Results and Discussion 
Participants in Experiment 3A based their goodness-of-fit 
ratings both on the noisiness of the data and on the 
complexity of the curve (see Table 1 for item means and 
SDs). A repeated measures ANOVA was conducted with 
degree (linear, quadratic, cubic, or quartic) and noise 
(high or low) as within-subjects variables. There was a 
main effect of noise, F(1,112) = 938.96, p < .001, ηp

2 = 
.89, because the high noise curves were judged looser fits 
than the low noise curves (M = 35.35, SD = 13.14 vs. M = 
70.66, SD = 9.99). More interestingly, however, there was 
also a main effect of degree, F(3,336) = 9.68, p < .001, 
ηp

2 = .08, with linear curves judged the loosest fit even 

though they actually had the highest R2 values (albeit only 
slightly). Quadratic and cubic curves were judged the best 
fits, and quartic curves somewhat worse. Possible reasons 
for this non-monotonic pattern are discussed below. 

Participants in Experiment 3B used degree to judge 
complexity, F(3,117) = 297.29, p < .001, ηp

2 = .88, giving 
higher complexity ratings with increasing degree (see 
Table 1). However, degree had diminishing returns on 
perceived complexity, resulting in a large boost between 
linear and quadratic curves, but a more modest boost 
between cubic and quartic curves. 

These results are not what would be expected if 
participants were judging goodness-of-fit based solely on 
R2. One possibility is that the nonmonotonic pattern in 
Experiment 3A occurred because participants used both 
perceived complexity and the actual R2 to estimate 
goodness-of-fit. According to this explanation, since there 
was a large increase in perceived complexity between the 
linear and quadratic curves but only a small decrease in 
actual R2, participants would judge the quadratic curves 
better fits than the linear curves. In contrast, there was a 
much smaller increase in perceived complexity between 
the cubic and quartic curves but the same decrease in 
actual R2. This would lead to the overall decrease in 
perceived goodness-of-fit found in Experiment 3A. 

As a first test of this possibility, we computed for each 
of the 16 datasets the partial correlation between 
simplicity ratings (Exp. 3A) and goodness-of-fit ratings 
(Exp. 3B) across degrees, controlling for actual R2. The 
mean partial correlation for each dataset was r = .54, 
which is significantly different from 0 in a one-sample t-
test, t(15) = 3.66, p = .002, d = 0.92. This shows that 
when R2 is held constant, more complex curves tend to be 
rated better fits to the data. 

We followed up with a more fine-grained path analysis 
(Kline, 1998) with the 64 scatterplots as the units of 
analysis, and mean ratings of goodness-of-fit (from Exp. 
3A) and complexity (Exp. 3B) as endogenous (dependent) 
variables. To explore other factors that might affect 
complexity ratings, we computed each curve’s arclength 
and used this as an exogenous (predictor) variable, along 
with actual R2 and each curve’s degree. 
   As shown in the path diagram (Figure 2), degree (β = 
.69, p < .001) and arclength (β = .33, p < .001) both 
contributed to perceived complexity, with curves of 
higher degree and greater arclength receiving higher 
complexity ratings. Most importantly, perceived 
complexity was a significant predictor of goodness-of-fit 
ratings (β = .57, p = .005) after all other variables were 
taken into account, showing that people used complexity 
as a proxy for goodness-of-fit. The actual R2 also 
contributed to goodness-of-fit ratings (β = .77, p < .001). 
Curiously, controlling for the other variables, curves of 
greater arclength were actually perceived as worse fits to 
the data (β = −.76, p < .001). This may have occurred 
because the relative density of the datapoints compared to 
the length of the curve is lower for longer curves. The 
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negative association between arclength and perceived fit 
speaks against the possibility that the relationship 
between perceived complexity and fit occurred because 
participants were judging absolute distance to the curve 
rather than vertical distance (measured by R2). If that 
were the case, one would expect arclength to be positively 
associated with fit ratings, since longer curves have more 
variability along the y-axis and hence more opportunities 
for R2 and absolute distance to differ.   

These results support our hypothesis that complex 
explanations create an illusion of goodness-of-fit, at least 
in intuitive curve-fitting. Increases in perceived 
complexity were accompanied by increases in perceived 
goodness-of-fit, even when factors such as degree, 
arclength, and actual goodness-of-fit are controlled for. 

General Discussion 
In three experiments, we investigated how people 
negotiate the trade-off between simplicity and goodness-
of-fit in explanations by testing intuitions about curve-
fitting. In Experiment 1, participants showed an overall 
overfitting bias—a surprising result in light of 
Lombrozo’s (2007) finding that people assign higher prior 
probabilities to simple explanations in a biased manner. In 
Experiment 2, we showed that when simplicity and 
goodness-of-fit no longer compete, people prefer simpler 
curves, consistent with Lombrozo (2007). To explain 
these findings, we hypothesized that people use a 
complexity heuristic, in which complexity is used to 
estimate goodness-of-fit. In Experiment 3, we provided 
direct evidence for this claim, with more complex curves 
judged better fits to the data, after factors such as the 
actual goodness-of-fit are taken into account.  

Overall, these findings support an opponent heuristic 
account of simplicity preferences, with simplicity used in 
two opposing ways when evaluating explanations. First, 
people appear to assign higher prior probabilities [P(H)] 
to simpler explanations. Lombrozo (2007) showed this 
directly, with participants systematically overestimating 
the recalled base rates of simple explanations. Similarly, 
participants in our Experiment 2 showed a simplicity 
preference when goodness-of-fit was held constant. 
Second, people appear to assign higher likelihoods 
[P(E|H)] to complex explanations. We provided direct 
evidence for this claim in Experiment 3, where judgments 

of how well a curve fit a set of datapoints were influenced 
by the perceived complexity of the curve. 

Why might people use a complexity heuristic? One 
possibility is that people are sensitive to the normative 
structure of the environment, where more complex 
explanations (in the sense of having more generative 
causes) often provide better fits to the data. Alternatively, 
this heuristic may involve pragmatic or pedagogical 
inferences. Since more complex explanations are selected 
from a larger hypothesis space compared to simpler 
explanations, people may infer that more complex 
explanations are unlikely to be selected unless there was a 
reason for selecting that one in particular—in particular, 
that it had a better fit to the data. Converging evidence 
from other tasks such as verbal diagnostic reasoning can 
help to tease apart these possible accounts. 

Evidence from other tasks can also help to clarify the 
relationship between these findings and other lines of 
research. For instance, a complexity heuristic could in 
part explain why people seem to prefer verbal 
explanations involving more technical vocabulary 
(Weisberg, Keil, Goodstein, Rawson, & Gray, 2008). 
Another direction for future work is to clarify the 
relationship between cognitive and perceptual 
explanation. The results of Experiment 2 suggest a visual 
simplicity heuristic complementing Lombrozo’s (2007) 
results from verbal tasks. This raises the possibility that 
explanatory heuristics may be used widely across 
cognition, and perhaps even perception. 
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