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Abstract

Knowledge of mechanisms is critical for causal reasoning. We contrasted two possible organi-

zations of causal knowledge—an interconnected causal network, where events are causally con-

nected without any boundaries delineating discrete mechanisms; or a set of disparate mechanisms

—causal islands—such that events in different mechanisms are not thought to be related even

when they belong to the same causal chain. To distinguish these possibilities, we tested whether

people make transitive judgments about causal chains by inferring, given A causes B and B causes
C, that A causes C. Specifically, causal chains schematized as one chunk or mechanism in seman-

tic memory (e.g., exercising, becoming thirsty, drinking water) led to transitive causal judgments.

On the other hand, chains schematized as multiple chunks (e.g., having sex, becoming pregnant,

becoming nauseous) led to intransitive judgments despite strong intermediate links (Experiments

1–3). Normative accounts of causal intransitivity could not explain these intransitive judgments

(Experiments 4 and 5).
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1. Introduction

Causal inference underlies our ability to predict the future, to explain the past, and to

plan interventions on our environment. To make these inferences, humans rely on a

remarkable ability to narrow the set of potential causes to a manageable size (Ahn &

Kalish, 2000; Johnson & Keil, 2014; Lagnado, Waldmann, Hagmayer, & Sloman, 2007;

Peirce, 1997/1903). One critical cue for narrowing this hypothesis space is knowledge of

causal mechanisms—that is, knowledge of processes that reliably lead from causes to

effects (e.g., Ahn, Kalish, Medin, & Gelman, 1995; Bullock, Gelman, & Baillargeon,

1982; Shultz, 1982). In this study, we examine how causal mechanisms are mentally
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represented—as interconnected networks of influence, or as isolated causal schemas

decontextualized from other mechanisms. We use the phenomenon of intransitive causal

judgment (i.e., A causes B, B causes C, but A does not cause C) to argue that mechanisms

are represented as relatively isolated chunks and to show that this representational format

has downstream consequences for causal judgment.

1.1. Representing causal mechanisms

The use of mechanism information in everyday causal inference has been well docu-

mented. In causal attribution tasks (e.g., determining the cause of John’s traffic accident),

people overwhelmingly request information about causal mechanisms (e.g., asking

whether John was drunk). That is, people attempt to fit the effect into their causal sche-

mas or explanatory frameworks, using knowledge of generic causal mechanisms (here,

alcohol consumption causes perceptual distortions, which can in turn cause traffic acci-

dents) to link together the particular effect in question with its most likely cause (Ahn

et al., 1995).

Mechanism information also influences performance in a variety of causal reasoning

tasks. For example, causal mechanisms influence the use of causal vocabulary (e.g.,

“cause” and “prevent”; Walsh & Sloman, 2011). In common effect structures (i.e., A and

B both are causes of C), the causes are seen as competing when they rely on distinct

mechanisms, resulting in a discounting effect (Sloman, 1994; see also Waldmann &

Holyoak, 1992 for related phenomena), but as mutually supporting when they rely on a

common mechanism, resulting in a conjunction effect (Ahn & Bailenson, 1996). More-

over, in common cause structures (i.e., A is a cause of both B and C), people are more

likely to violate the “screening off” principle (i.e., B and C are probabilistically indepen-

dent, given knowledge of A) when the effects are seen as brought about by the same

mechanism (Park & Sloman, 2013).

Although such ramifications of mechanism knowledge for causal judgment are exten-

sive and well documented, less is known about how mechanism information is repre-

sented in semantic memory. One possibility is that people represent causal structures in

interconnected webs or networks (see Fig. 1A), and when we recruit mechanism knowl-

edge, we simply “zoom in” on a part of such a network. Alternatively, people may isolate

and “chunk” (Chase & Simon, 1973; Miller, 1956) particular cause–effect configurations

or mechanisms as individual units in memory, without also storing the connections

between those mechanisms and other potentially contiguous mechanisms (see Fig. 1B). In

what follows we explain each of these two views in detail.

The network approach has a long tradition in cognitive psychology. According to net-

work or spreading activation theories of semantic memory (e.g., Anderson, 1983; Collins

& Loftus, 1975), concepts are linked to one another via various kinds of associative links

(such as “is a,” “has a,” etc). These theories have enjoyed considerable success in

explaining a variety of memory effects. In particular, the number and strength of links to

be traversed predict the likelihood of semantic priming, the degree of interference, and

the time required to verify a semantic relationship (Anderson, 1983).
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On the view that causal mechanisms are represented in a network-based manner, the

various causal mechanisms that we have stored in memory would be linked together if

they share at least one common variable. For example, the event type Exercising would

be linked to Becoming Thirsty, which would be linked to Drinking Water. Similarly, Hav-
ing Sex would be linked to Becoming Pregnant, which would be linked to Becoming
Nauseous. Bayesian network theories of causation (e.g., Pearl, 2000; Spirtes, Glymour, &

Scheines, 1993) would be a quintessential example of such an approach. For example,

Glymour and Cheng (1998) provide the following example of a causal mechanism (from

Baumrind, 1983):

The number of never-married persons in certain British villages is highly inversely cor-

related with the number of field mice in the surrounding meadows. [Marriage] was

considered an established cause of field mice by the village elders until the mecha-

nisms of transmission were finally surmised: Never-married persons bring with them a

disproportionate number of cats. (p. 295)

In this example, the number of cats is said to be a mechanism mediating the relation-

ship between marriage and the number of mice. Representing this mechanism in a net-

work would require a link from Unmarried People to Cat Population, and from Cat
Population to Mouse Population. Because inferences traversing any number of links are

in principle computable using Bayesian networks, a network-based representation would

lend itself naturally to psychological versions of Bayes net theories (e.g., Gopnik et al.,

2004; Griffiths & Tenenbaum, 2005). Although these theories would not require that all

possible events be linked in a giant network, these theories do require that causally adja-

cent events should be represented in a locally connected manner—that is, as a causal net-

work. The general success of these theories in modeling causal reasoning lends some

initial plausibility to a network-based representation of causal mechanisms.

(A)

(B)

Fig. 1. (A) A network-based representation of a causal chain A ? B ? C. (B) A schema-based representa-

tion of a causal chain A ? B ? C, where A and B are chunked, B and C are chunked, but A and C are not

chunked.
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Network representations would predict that causation is generally transitive—that is,

when A causes B and B causes C, then A would cause C (see Fig. 1A). For example,

exercise (A) leads to thirst (B), and thirst (B) leads to drinking water (C), and intuitively,

it also seems that exercise (A) leads to drinking water (C). Indeed, David Lewis (1973,

2000) argued that normatively, causation is always transitive (see also Strevens, 2008),

and transitive inferences have been demonstrated empirically in studies using artificial

stimuli (e.g., Ahn & Dennis, 2000; Goldvarg & Johnson-Laird, 2001; Von Sydow, Meder,

& Hagmayer, 2009). Since network theories predict causal transitivity, these previous

findings of causal transitivity weigh in favor of such theories (but see General Discus-

sion).

Alternatively, causal mechanisms could be stored in relatively isolated chunks (Chase

& Simon, 1973; Miller, 1956) or schemas (Alba & Hasher, 1983; Bartlett, 1932; Schank

& Abelson, 1977). On such a view, some configurations of events might be stored as one

coherent, schematized mechanism, such as Exercise causing Thirst causing Water Con-
sumption. In other cases, even though two different mechanisms share an event in com-

mon, they may be stored separately. For instance, Sex causing Pregnancy would likely be

stored as one mechanism, and Pregnancy causing Nausea as a separate mechanism, as

illustrated in Fig. 1B.

Schematized causal mechanisms may be useful ways to organize clusters of events that

co-occur in coherent and reliable causal patterns, just as concepts are useful ways of

organizing clusters of correlated features (Rosch & Mervis, 1975; see also Zacks & Tver-

sky, 2001 on clustering in event perception). Because we have concepts such as tigers,

we can readily make inductive inferences such as “they are dangerous” (Murphy, 2002).

Likewise, a causal mechanism for exercise can allow us to infer that a person would

become thirsty after exercising.

At the same time, clustering events or features into concepts, schemas, or causal

mechanisms necessarily entails discrete representations (see Dietrich & Markman, 2003;

Markman, 1999). For instance, dogs and cats are disparate categories without overlap in

category membership. This discretization can lead to striking categorical perception

effects, wherein stimuli that are objectively very similar are perceived as psychologically

much more distant because they belong to different categories or schemas (e.g., Eimas,

Siqueland, Jusczyk, & Vigorito, 1971; Livingston, Andrews, & Harnad, 1998).

Our core prediction is that discrete representations of causal mechanisms can lead to

causal intransitivity. That is, we propose that causal chains of the form A ? B ? C are

transitive only when A, B, and C are represented in the same schema. This prediction fol-

lows from the “narrative” strategy often used in everyday causal reasoning, wherein people

reject a causal relationship between two events if one cannot use background knowledge

to generate a “story” leading from the cause to the effect (e.g., Kahneman & Tversky,

1982; Taleb, 2007). If people represent mechanisms in terms of schemas rather than net-

works, then an inability to apply a schema leading from A to C would weaken the per-

ceived causal strength of the A ? C link. For example, Exercise, Thirst, and Water
Consumption are likely to be stored in the same schema, so we would predict that since

exercise (A) causes thirst (B) and thirst (B) causes water consumption (C), people would
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therefore also think that exercise (A) causes water consumption (C). However, in other

cases, A and B share a schema and B and C share a schema, but A and C do not share a

schema, as in the sex/pregnancy/nausea example. Thus, even though sex (A) causes preg-
nancy (B) and pregnancy (B) causes nausea (C), people would be hesitant to agree that sex

(A) causes nausea (C). As noted, a network representation, in linking causal schemas

together that share variables in common, commits itself to even this second case being

judged transitive. Any difference between the strength of the link between Exercise and

Water Consumption and the link between Sex and Nausea would have to be due to the

strength of the intermediate links, not due to the topology of the representation.

The schema and network theories therefore make quite different predictions about cau-

sal intransitivity, which we test in Experiments 1–3. These experiments focus on a set of

22 items, which were designed to vary in the extent to which A, B, and C formed a single

schematized mechanism, or two disparate mechanisms that were joined by the B event.

First, we demonstrate that there is considerable variety in schematization across these

chains (Experiment 1). The exercise/thirst/drinking chain, for example, is highly schema-

tized, whereas the sex/pregnancy/nausea chain is much less schematized. We also show

that all these chains constitute mechanisms in the sense allowed by the network theory,

that B always explains why A led to C, just as the number of cats explains why an

increase in the number of singles led to a decrease in the number of mice (Glymour &

Cheng, 1998). Next, we look at the consequences of schematization for causal transitivity.

Whereas the network theory would predict that all causal chains should be transitive so

long as the intermediate links (A ? B and B ? C) are equally strong, the schema theory

would predict that less schematized chains would be intransitive even if both links are

very strong. We therefore obtain both the strength of the intermediate links and the tran-

sitivity of each causal chain, to see whether transitivity can vary even when the interme-

diate links are equally strong (Experiments 2 and 5). Then, we extend these results to a

recognition memory paradigm, to provide converging evidence for causal intransitivity as

well as to support our claim that these findings are consequences of the organization of

memory (Experiment 3).

Note, however, that causal intransitivity can occur for reasons other than chunking. We

address these alternative interpretations in Experiments 4 and 5. In the next section, we

briefly review these additional sources of intransitivity.

1.2. Normative sources of intransitivity

Previous writers have identified a number of reasons why causal chains can be norma-

tively intransitive (e.g., Bj€ornsson, 2006; Broadbent, 2012; Hitchcock, 2001). A worri-

some possibility is that we may find a relationship between schematization and

transitivity, but for the opposite of the reason we are claiming. Whereas we are claiming

that being unschematized leads a causal chain to be judged intransitive, it could instead

be that some causal chains are normatively intransitive, leading them not to be schema-

tized. Therefore, we must rule out these normative reasons for our causal chains to be

intransitive. Based on Hitchcock (2001) and our own review of the literature, we found
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five reasons why causality can be normatively intransitive. We call these threshold effects
(Hausman, 1992), incompatible aspects (McDermott, 1995; Paul, 2000; Schaffer, 2005),

alternative causal pathways (Eells & Sober, 1983), petering out (Lowe, 1980), and lack
of necessity or sufficiency (e.g., Bonnefon, Da Silva Neves, Dubois, & Prade, 2008,

2012).

First, a threshold effect occurs when A influences the value of B, and B influences the

value of C, but the influence of A on B does not push B beyond some threshold necessary

to influence the value of C (Hausman, 1992). For example, swimming in the ocean causes

the ingestion of salt water (A ? B), and the ingestion of salt water causes dehydration

(B ? C). Yet a person who swims in the ocean will only ingest a small amount of salt

water (say, 50 mL), and a larger amount (say, 200 mL) is required for dehydration to

occur, so swimming in the ocean does not cause dehydration. One way of understanding

threshold effects is that rather than A ? B ? C constituting an intransitive causal chain,

the underlying claims are in fact A ? B1 and B2 ? C, where B1 6¼ B2 but B1 and B2

have identical linguistic descriptions because quantitative information is omitted (see also

Lewis, 2000). Threshold effects are only possible when quantitative information is left

tacit for B1 and B2, but the underlying values are different for B1 and B2—in the salt

water case, B1 is “ingesting 50 mL of salt water” and B2 is “ingesting 200 mL of salt

water,” whereas both are described as “ingesting salt water.”

Second, in cases of incompatible aspects, the property of the intermediate event B
modified by A is not relevant to whether C occurs. Suppose a terrorist plans to detonate a

bomb using his right hand, when his right hand is bit by a dog (A), causing him to push

the button with his left hand (B), causing the bomb to explode (C); the dog bite did not

cause the bomb to explode (McDermott, 1995). One account of this case (Paul, 2000;

Schaffer, 2005) holds that causal claims are understood relative to the contrast they

invoke—that is, “A caused B” means that A (rather than A’) caused B (rather than B’).
Depending on what aspects of A and B are singled out in this contrast, the truth of the

causal claim could come out differently. In this case, the dog bite caused the terrorist to

push the button with his left hand rather than with his right hand (call this contrast B1),

but the dog bite did not cause the terrorist to push the button with his left hand rather

than not push the button at all (contrast B2). Therefore, the aspect of B modified by A is

not causally relevant to C—the dog bite causes B1, but it is B2 that causes the bomb to

explode. Although B can be described as a left-handed button-pushing, it is this event

qua left-handed (B1) that is caused by A, and qua button-pushing (B2) that causes C. This
sort of intransitivity has been empirically documented in causal learning experiments

where a dichotomous event A causes a change to one aspect of a complex category B,
and a different aspect of B causes a change to a dichotomous event C (Hagmayer, Meder,

von Sydow, & Waldmann, 2011). In such cases, aspects of the intermediate event that

are qualitatively heterogeneous at the token level are described homogeneously at the

type level (i.e., “A influences B” and “B influences C”). Transitivity is not normatively

guaranteed under such circumstances.

Third, transitivity in causal chains can fail because of alternative preventive causal
pathways from A to C (Eells & Sober, 1983; Hitchcock, 2001). For example, Nancy may
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be dirty at time t1, causing her to take a shower (A ? B), and taking a shower may cause

her to be clean at t2 (B ? C). But it seems odd to say that Nancy being dirty at t1 caused
her to be clean at t2. Intransitivity occurs because there is also a preventive link between

A and C; if one does not take a shower (i.e., holding constant the value of B), being dirty

at t1 makes it less likely that one will be clean at t2. Such direct preventive pathways can

result in violation of the Causal Markov Condition (see Pearl, 2000; Spirtes et al., 1993

and Experiment 4 below for details), making transitive inferences invalid.

Fourth, a causal chain can peter out over successive links (Lowe, 1980). In such cases,

although each causal link is individually plausible, the causal link between the first and

last event seems implausible. To borrow Lowe’s (1980) example, consider the classic

nursery rhyme:

For want of a nail the shoe was lost,

For want of a shoe the horse was lost,

For want of a horse the rider was lost,

For want of a rider the battle was lost,

For want of a battle the kingdom was lost,

And all for the want of a horseshoe nail.

While each causal link in this chain seems (at least somewhat) plausible, the overall cau-

sal connection between the first cause and the terminal effect is quite tenuous. According

to some probabilistic analyses of causation (e.g., Jenkins & Ward, 1965), causal strength

is proportional to the increase in the probability of the effect in the presence of the cause.

If there are no alternative causal pathways between links, the causal strength between the

first event in a causal chain “peters out” as the effects become more distant from the

cause.

Finally, we consider the possibility that intransitivity may result from the relative

necessity and sufficiency (e.g., Pearl, 2000) of A for B or B for C. Intuitively, some

events seem to be causes because they are sufficient for an effect. For example, falling

off a twenty-story building virtually guarantees death. Other relationships seem to be cau-

sal because they are necessary. For example, water is required for plants to grow. One

possibility is that transitivity fails when intermediate causal strengths are low, as mea-

sured by the sufficiency or necessity of A for B or B for C. For example, sex is not a suf-

ficient cause of pregnancy, so perhaps this is why the sex/pregnancy/nausea chain is

intransitive. In particular, it has been proposed that the crucial factor for transitivity is

whether A is a necessary cause for B in A ? B ? C (Bonnefon et al., 2008, 2012; see

Experiment 5 for details).

Throughout these experiments, we address the concern that some of our chains might

be intransitive due to the normative factors mentioned above. Experiment 2 addresses the

possibility that these findings are driven by threshold effects or by incompatible aspects,

and Experiment 4 addresses concerns about alternative causal pathways, petering out, and

lack of sufficiency or necessity. Finally, Experiment 5 tested for intransitivity in a new

set of items that were specifically chosen to dissociate necessity and schematization.

S. G. B. Johnson, W. Ahn / Cognitive Science (2015) 7



Throughout these experiments, we predict that relatively unschematized causal chains will

be intuitively transitive, even holding these normative factors constant.

2. Experiment 1

The goal of Experiment 1 was to empirically develop a set of causal chains varying in

the extent to which they were schematized. We used 22 causal chains (Table 1), which

we anticipated would vary in schematization. Each chain consisted of three temporally

connected events (A, B, C) in which adjacent events (A and B, or B and C) would likely

be perceived as causally connected (see Experiment 2 for empirical support). In Experi-

ment 1, we measured two different senses in which these chains could comprise causal

mechanisms.

First, we measured the extent to which each causal chain was schematized, or repre-

sented as one coherent unit in semantic memory. To measure this, participants were asked

to rate the extent to which B needed to be explicitly mentioned to explain to another per-

son why A led to C. We asked for judgments about explaining the causal chain to others
to reduce the possibility of hindsight bias (e.g., believing that one could have easily

inferred pregnancy after hearing that sex led to nausea), relying on participants’ assump-

tion that schemas would be culturally shared common knowledge. To the extent that a

causal chain is schematized, it should be possible for most people to understand the cau-

sal chain without explicitly mentioning the intermediate event B, because B is represented

in the same schema as A and C and would be inferred automatically. This follows from

the critical role of schemas in inductive inference (Bartlett, 1932; Schank & Abelson,

1977). For example, upon hearing that Allison exercised and drank water, one would

infer automatically that she became thirsty because all three of these events belong to a

common schema. A speaker would therefore be unlikely to mention thirst in explaining

why Allison’s exercising led her to drink. But to the extent that a causal chain is not

schematized, explicit mention of B would be necessary to understand the relationship

between A and C, since A and C do not share a common schema, but are only related to

one another in virtue of B. Upon hearing that Francine had sex and experienced nausea,

the inference that her nausea was caused by pregnancy is effortful or sometimes impossi-

ble, and it would be infelicitous for a speaker to omit this fact. We predicted that our

items would vary considerably in the perceived need to mention B, as the items were

designed to vary in the extent to which they had underlying schematized mechanisms.

Second, as mentioned earlier, some writers have suggested that what it means to be a

causal mechanism is to fully mediate or explain a causal relationship (e.g., Glymour &

Cheng, 1998). We measured this explanatory sense of mechanism by asking participants

to rate the extent to which B explains why A led to C. If people have network representa-

tions of causal mechanisms, then intermediate links can potentially differ in strength,

leading to variation in the extent to which causal chains are mechanisms in this explana-

tory sense. In developing stimuli, we aimed to equate the extent to which our chains

constituted causal mechanisms in this explanatory sense relevant to the network view.
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Thus, we anticipated that all 22 of our chains would comprise causal mechanisms in this

sense (i.e., B explaining why A led to C) because we selected all these items such that A
strongly causes B and B strongly causes C (see Experiment 2 for empirical support). That

is, this definition of mechanism should apply not only to the chains we would expect to

be highly schematized (e.g., exercise, thirst, and drinking water) but also to the chains we

would expect to be relatively unschematized (e.g., sex, pregnancy, and nausea). Conse-

quently, any subsequent differences in inferences that we find between more and less

schematized causal chains would be difficult to explain on the network view.

2.1. Methods

Participants in all experiments were recruited and compensated through Amazon

Mechanical Turk and were from the United States. Measures were taken to prevent par-

ticipants from completing multiple experiments reported in this article. Thirty participants

were recruited for Experiment 1 and two were excluded for providing random ratings for

noncausal filler chains (see below).

Materials include 22 test items and 11 filler items. The test items were sets of three

events that can form a causal chain (A ? B ? C) where we expected both intermediate

links to be highly causal (see Table 1). The filler chains contained one or more noncausal

links and were used to detect random responding (e.g., Hannah ate a hash brown, then

Hannah wore a red hat, then Hannah won the lottery). For every chain, participants first

completed the Explanation measure:

Consider the following events, A and C:
A: Carl studied for a while, then

C: Carl got a perfect score on the test

Now consider the following event, B, which occurred between A and C as follows:

A: Carl studied for a while, then

B: Carl learned most of the material, then
C: Carl got a perfect score on the test

Participants then rated “To what extent do you think that event B explains why A led

to C?” on a scale from 1 (“B does not at all explain why A led to C”) to 9 (“B fully

explains why A led to C”). Because we anticipated that these ratings would be at ceiling

for the test chains but at floor for the noncausal filler chains, we excluded from analysis

two participants whose scores on the noncausal filler items were more than two SDs
above the mean on this measure.

If a participant’s rating on the Explanation measure was above the scale midpoint (5)

for a given item, they completed the Need to mention measure on the following screen.

They were told to “consider again the events A, B, and C” from the previous screen,

which were listed as a reminder. They then were asked to “suppose you were explaining

to someone how event A led to event C” and rated “To what extent do you think that it

is essential to explicitly mention B in explaining how A led to C?” on a scale from 1 (“B
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is not important to mention because it is obvious”) to 9 (“B is important to mention

because it is not obvious”). This question was only asked for participants who had agreed

that B explained why A led to C, since the Need to mention question is ill-defined if B
does not explain the relationship between A and C. For instance, it would be unnecessary

to mention Hannah’s wearing a red hat (B) in explaining how Hannah’s eating a hash

brown (A) led to Hannah’s winning the lottery (C). However, this judgment does not

reflect a belief that the three events are schematized, but rather a belief that B does not

even explain why A led to C.
The 33 chains were presented in a random order. All experiments reported in this article

were conducted online using Qualtrics software, with no time limit except as indicated.

2.2. Results and discussion

As anticipated, B was not judged to explain why A led to C for the filler items

(M = 1.27, SD = 0.17), but was judged highly relevant in explaining why A led to C for

the test items (M = 7.95, SD = 0.52). In addition, all test items were rated significantly

above the scale midpoint (all ps < .05 using the False Discovery Rate procedure to cor-

rect for multiple comparisons; Benjamini & Hochberg, 1995). Therefore, for all 22 of our

test items, B constituted a causal mechanism in the sense of mediating the relationship

between A and C. The mean Explanation ratings for each test item are shown in Table 1.

To evaluate the extent to which participants believed that the causal chains were

chunked or schematized into single causal mechanisms, we reverse-coded the Need to
mention question to form a measure we will refer to as Chunking. That is, for chains

where it was essential to mention B, this was indicative of low chunking, and for chains

where it was not essential to mention B, this was indicative of high chunking. The mean

Chunking ratings for each test item are shown in Table 1. Among our set of test items,

the explanation measure had no association with the chunking ratings, r(20) = .08,

p = .74.

These results show that factors other than the extent to which B explains why A causes

C can influence the extent to which causal mechanisms are represented as single chunks

in long-term memory. This finding is not straightforwardly explained by a network-based

theory of causal representation but is consistent with a schema-based theory, which

allows causal chains to be discretely represented in multiple disparate schemas even if

they share a common variable. It may nonetheless be perfectly clear that B mediates the

relationship between A and C in the case at hand—as acknowledged by our participants.

In Experiments 2 and 3, we will explore the consequences of schematization for the tran-

sitivity of causal chains.

3. Experiment 2

As we suggested in the introduction, causal chains that are chunked together seem to be

transitive—when A causes B and B causes C, A also seems to cause C—yet this does not
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seem to be true for the chains that consist of two disparate mechanisms. In Experiment 2,

we sought to verify this claim. In particular, we predicted that the more a chain was shown

to be schematized in Experiment 1, the more transitive it would be judged to be. Thus, the

relatively unschematized chains would be seen as less transitive—that A would cause B
and B would cause C, but A would not cause C. We also measured the causal strength of

the intermediate (A ? B and B ? C) links to ensure that intransitivity did not occur

merely because the more schematized chains had stronger intermediate links.

3.1. Methods

Thirty-two participants were recruited for Experiment 2 and two were excluded for

providing random ratings for the noncausal filler chains. For each of the 22 test chains

and 11 filler chains from Experiment 1, participants provided ratings of A ? B, B ? C,
and A ? C causality as follows. For each chain, participants first saw the three events

(e.g., “Carl studied for a while, then Carl learned most of the material, then Carl got a

perfect score on the test”) and were asked, “To what extent would you say that: [X]
caused [Y]” where X and Y were filled in with A and B, B and C, or A and C from

Table 1 (e.g., “Carl studying for a while caused Carl to learn most of the material”). Rat-

ings were provided on a 9-point scale (1: “definitely would not”; 5: “unsure”; 9: “defi-

nitely would”). For each chain, ratings were elicited in the same fixed order (A ? B,
B ? C, A ? C). This order creates some demand to infer A ? C after responding affir-

matively to A ? B and B ? C, providing a stronger test against our hypothesis that

some chains are intransitive. Each chain was presented on a separate screen in a random

order.

3.2. Results and discussion

As shown in Table 1, the intermediate (A ? B and B ? C) links were rated very

strong for virtually all the test chains (M = 8.02, SD = 0.57 for A ? B; M = 8.24,

SD = 0.33 for B ? C), with only one intermediate link (of 44) not significantly higher

than the scale midpoint (i.e., p < .05 using the False Discovery Rate procedure to correct

for multiple comparisons; Benjamini & Hochberg, 1995). In contrast, the strength judg-

ments of the A ? C links were much lower overall (M = 6.64) and much more variable

(SD = 1.44). Thus, these chains vary in the extent to which they are seen as transitive or

intransitive, even though all intermediate links are very strong.

To test the hypothesis that intransitivity occurs when causal mechanisms are not

chunked together into one schema, we used the chunking ratings from Experiment 1 to

predict A ? C causal ratings in a multiple regression, using item means as the unit of

analysis. As hypothesized, chunking significantly predicted A ? C causal ratings,

b = 0.52, SE = 0.09, p < .001. However, it is also critical to ensure that that the A ? C
ratings are not lower for some chains simply because the A ? B and B ? C links are

weaker (i.e., a “petering out” effect at the token level; Lowe, 1980). To verify that differ-

ences in the strength of the intermediate links were not responsible for our intransitive
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chains, we conducted another regression predicting A ? C causal ratings from chunking,

but also including A ? B and B ? C causal strength as adjustment variables. The effect

of A ? B causal strength reached marginal significance, b = 0.68, SE = 0.34, p = .060,

whereas the effect of B ? C causal strength was not significant, b = �0.67, SE = 0.70,

p = .35. Most important, the effect of chunking remains significant when adjusting for

these other variables, b = 0.58, SE = 0.11, p < .001.1 Because the A ? C links differ in

strength despite equally strong A ? B and B ? C links, a network theory of causal rep-

resentation cannot straightforwardly explain this result.

Could there be some normative reason why some of these causal chains were judged to

be intransitive? In the introduction, we outlined five reasons why a causal chain can be nor-

matively intransitive—threshold effects, incompatible aspects, alternative causal pathways,

petering out, and lack of necessity or sufficiency. If a causal chain is perceived as intransi-

tive for one of these reasons, this could potentially undermine our claim that it is intransitive

due to its failure to be schematized—instead, that chain could fail to be schematized simply

because it is normatively intransitive. We defer consideration of three of these accounts—
alternative preventive pathways, petering out at the type level, and lack of necessity or

sufficiency—until Experiment 4. However, the design of this experiment speaks against

threshold effects or incompatible aspects as explanations of our intransitive chains.

A threshold effect occurs when A causes B to have a certain value (say, B1), and B
only affects C if B is set above a threshold (say, B2) that is higher than B1 (Hausman,

1992). To borrow the example from the introduction, swimming in the ocean causes the

ingestion of a small amount of salt water (say, 50 mL), and the ingestion of a larger

amount (say, 200 mL) causes dehydration, so swimming in the ocean does not cause

dehydration. In this experiment, however, participants were presented with A, B, and C at

the token level, and B was the same token event in both A ? B and B ? C. As a result,

B1 and B2 would have been equated, so a threshold effect cannot have occurred.

Likewise, these results are unlikely to be due to incompatible aspects of the intermedi-

ate event (Paul, 2000; Schaffer, 2005). In such cases, intransitivity occurs because the

property of B affected by A is different from the property of B that is responsible for

affecting C. Yet, in Experiment 1, the intransitive chains contained intermediate events in

which only one property could plausibly be involved in either the A ? B or B ? C rela-

tion. For example, drinking wine caused one to sleep (rather than not sleep) and sleeping

(rather than not sleeping) caused one to have a dream. To make the strongest case against

this account, consider a relatively intransitive chain that seems to be the most plausible

candidate for such an explanation: “Karen stepped on a dog, then the dog growled loudly,

then a child was scared” (item 21 in Table 1). Perhaps the causal relations should be

decomposed as “Karen stepped on a dog, causing the dog to growl loudly (rather than

not growl at all)” and “The dog growled loudly (rather than quietly), causing a child to

be scared.” Yet the B ? C relation cannot depend on the loudness of the growl rather

than the growl itself, because “the dog growled quietly, causing the child to be scared” is

a perfectly reasonable claim. Similar linguistic tests seem to rule out all plausible alterna-

tive contrasts for the other intransitive chains, rendering it unlikely that incompatible

aspects can explain our intransitive causal chains.
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In the next experiment, we seek converging evidence for the relationship between

schematization and transitivity, using a different measure of transitivity.

4. Experiment 3

People falsely recognize new sentences that are implied by previously memorized sen-

tences (e.g., Bransford, Barclay, & Franks, 1972). For example, given, “The hungry

python caught the mouse,” more participants falsely recalled, “The hungry python ate the

mouse” than correctly recalled the original sentence (Brewer, 1977). Experiment 3 used

this paradigm to test transitive inference from causal sentences. After memorizing the

A ? B sentences (e.g., “Carl studying for a while caused Carl to learn most of the mate-

rial”) and B ? C sentences (“Carl learning most of the material caused Carl to get a per-

fect score on the test”), participants’ recognition memory was tested using the old

sentences plus A ? C (“Carl studying for a while caused Carl to get a perfect score on

the test”) and C ? A (“Carl getting a perfect score on the test caused Carl to study for a

while”) as new sentences. If participants automatically infer A ? C from A ? B and

B ? C, they would falsely recognize the A ? C sentences but not the C ? A sentences.

Thus, while the false alarm rate for C ? A sentences would be low for all chains, the

false alarm rate for A ? C sentences would be high to the extent that a chain is transi-

tive, because A ? B and B ? C imply A ? C to the extent that a causal chain is transi-

tive. We therefore anticipated more false recognition of the A ? C sentences for the

more schematized chains.

4.1. Methods

Thirty-six participants were recruited and six were excluded because their perfor-

mance was at chance. Participants were instructed that they were participating in a

memory experiment where they were to identify new and old sentences. Participants

then completed four practice items, which involved temporal but not causal relations,

such as “John bought sunglasses, then John went to the beach” (A–B) and “John went

to the beach, then John made a sandcastle” (B–C). Just as in the recognition task in

the main experiment, they responded to those old sentences, as well as new sentences

of the form “John bought sunglasses, then John made a sandcastle” (A–C) and “John

made a sandcastle, then John bought sunglasses” (C–A). Accuracy feedback was pro-

vided to ensure that any findings from the main task were not due to participants’

misunderstanding the nature of the task and believing that logical implications count

as old sentences.

Next, participants saw the 22 test chains from Table 1, in a random order. Each screen

contained the two old sentences for each chain, with A ? B above B ? C. Participants
could look at each item for up to 10 s or press the space bar to advance to the next item

when ready. Because the old sentences included A ? B and B ? C for each of the 22

test chains used in Experiments 1 and 2, there were 44 old sentences in total.
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Immediately afterward, participants completed the recognition task. They were told

that they would see sentences of which half were old and half were new, and that their

task was to classify the sentences in fewer than 5 s, by pressing “y” for an old sentence

and “n” for a new sentence. They were instructed explicitly that a sentence did not count

as old unless it was presented word for word, and that the task was not to identify logical

inferences. All 44 sentences used in the presentation phase were used as old sentences.

The new sentences were A ? C and C ? A for each of the 22 test chains, and there

were thus 44 new sentences. Each sentence was presented on a separate screen in a ran-

dom order. No accuracy feedback was provided.

4.2. Results and discussion

For our main analyses, we examined the proportion of participants committing a miss

(i.e., responded “no” to an old item) or a false alarm (i.e., responded “yes” to a new item)

for each item (see Table 2). The proportion of misses was low and did not significantly

differ between A ? B sentences (M = 0.11, SD = 0.08) and B ? C sentences

Table 2

Proportion of errors for each item in Experiment 3

Item A ? B B ? C A ? C C ? A

1 0.13 0.10 0.57 0.07

2 0.15 0.17 0.63 0.03

3 0.17 0.03 0.56 0.10

4 0.07 0.23 0.34 0.03

5 0.13 0.17 0.45 0.07

6 0.13 0.23 0.63 0.13

7 0.21 0.20 0.50 0.00

8 0.10 0.14 0.52 0.07

9 0.03 0.23 0.40 0.07

10 0.03 0.18 0.20 0.03

11 0.07 0.17 0.37 0.03

12 0.07 0.24 0.59 0.07

13 0.14 0.17 0.20 0.07

14 0.10 0.07 0.27 0.07

15 0.07 0.17 0.20 0.00

16 0.00 0.17 0.14 0.07

17 0.13 0.17 0.10 0.03

18 0.07 0.28 0.13 0.00

19 0.33 0.03 0.14 0.07

20 0.03 0.17 0.17 0.00

21 0.07 0.13 0.17 0.00

22 0.27 0.07 0.13 0.00

Note. Items are listed in descending order of chunking scores from Experiment 1 (that is, the same order

as Table 1). The A ? B and B ? C columns give miss proportions, and the A ? C and C ? A columns

give false alarm proportions.
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(M = 0.16, SD = 0.07), t(21) = �1.67, p = .11, d = 0.36. However, false alarms were

much more frequent for A ? C (M = 0.34, SD = 0.19) than for C ? A sentences

(M = 0.05, SD = 0.04), t(21) = 7.90, p < .001, d = 1.68.

Most critically, the proportion of false alarms for A ? C sentences for each item was

very strongly correlated with that item’s chunking score from Experiment 1, r(20) = .85,

p < .001. The miss proportions were not correlated with chunking for either A ? B,
r(20) = .07, p = .76, or for B ? C, r(20) = .12, p = .59, indicating that memory was not

simply worse overall for the items with higher chunking scores. Instead, it appears that

for the more chunked items, participants represent A and C as parts of the same causal

mechanism, leading to a high false recognition rate for the A ? C sentences. Consistent

with this possibility, the C ? A false alarm proportion, though low overall (M = 0.05),

was somewhat higher for the more chunked items, r(20) = .46, p = .030, suggestive of a

stronger association between A and C for the more chunked items.

Although petering out at the token level could not explain the intransitivity found in

Experiment 2, we conducted a follow-up analysis to verify that the effect of chunking on

A ? C false alarms could also withstand adjustment for A ? B and B ? C causal

strength. A multiple regression predicting each item’s proportion of A ? C false alarms

from chunking (Experiment 1) and A ? B and B ? C causal strength ratings (Experiment

2) revealed that only chunking was a significant predictor of A ? C false alarms, b = 0.08,

SE = 0.01, p < .001 (for A ? B causal ratings, b = 0.01, SE = 0.04, p = .86; for B ? C
causal ratings b = �0.04, SE = 0.09, p = .68). Once again, petering out cannot explain the

variation in transitivity among items, but the chunking of causal mechanisms can.

These findings add to the results of Experiment 2 in showing that chunking predicts

transitivity, as measured by a very different kind of dependent variable—error rates on a

recognition memory task. The false alarm rates for A ? C sentences were higher for

chains that were highly chunked, consistent with our claim that A and C were stored in

the same schema for the more highly chunked chains.

5. Experiment 4

Although Experiment 2 rendered petering out at the token level, threshold effects, and

incompatible aspects unlikely as explanations for our intransitive chains, three other alter-

native accounts remain on the table: alternative causal pathways, petering out at the type

level, and lack of necessity and sufficiency. Experiment 4 examined whether the relation-

ship between schematization and intransitivity holds up even after adjusting simulta-

neously for alternative causal pathways, probabilistic strength of the intermediate links,

necessity, and sufficiency. Across Experiment 4A–D, we collected 12 conditional proba-

bility judgments relevant for those remaining three alternative accounts (see Table 3 for

sample wordings). Then, we used multiple regression to predict the effect of chunking on

transitivity, while adjusting for the potential effects of each alternative account.

In Experiment 4A, we examined the possibility that alternative causal pathways from

A to C can explain the intransitive chains (Eells & Sober, 1983; Hitchcock, 2001). For
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example, although drinking wine (A) causes sleep (B), and sleep causes dreaming (C), peo-
ple may believe that wine-drinking prevents one from having a dream. If people believe in

such alternative preventive causal pathways, apparent intransitivity (refusing to endorse that

A causes C) may be simply due to this other, preventive path between A and C.
To test whether alternative preventive paths between A and C exist for our intransitive

chains, we tested the “screening off” property for each chain (also known as the Causal

Markov Condition; Pearl, 2000; Spirtes et al., 1993). If there is no alternative pathway

between A and C, then B will “screen off” the influence of A on C, so that A provides no

additional information about C once B is accounted for—that is, P(C|A,B) = P(C|~A,B) and
P(C|A,~B) = P(C|~A,~B). If there is an alternative preventive pathway from A to C (e.g., if

wine prevents dreaming), then screening off is violated: Even given that a person falls

asleep, he or she is less likely to dream if he or she drank wine, so P(C|A,B) < P(C|~A,B).
Put differently, an alternative preventive pathway from A to C means that the contingency

between A and C would be negative when holding B constant. In Experiment 4A, one

group of participants made frequency estimations corresponding to P(C|A,B) and

Table 3

Sample question wordings from Experiment 4

Experiment Judgment Example Question

4A P(C|A,B) Of 100 people who studied for a while and learned most

of the material, how many would get a perfect score on the test?

P(C|~A,B) Of 100 people who did not study for a while but learned most

of the material, how many would get a perfect score on the test?

P(C|A,~B) Of 100 people who studied for a while but did not learn most

of the material, how many would get a perfect score on the test?

P(C|~A,~B) Of 100 people who did not study for a while and did not learn most

of the material, how many would get a perfect score on the test?

4B P(B|A) Of 100 people who studied for a while, how many would learn most

of the material?

P(B|~A) Of 100 people who did not study for a while, how many would learn

most of the material?

P(C|B) Of 100 people who learned most of the material, how many would

get a perfect score on the test?

P(C|~B) Of 100 people who did not learn most of the material, how many

would get a perfect score on the test?

4C Sufficiency of A for B Consider 100 cases in which someone studies for a while. In how

many cases will this cause them to learn most of the material?

Sufficiency of B for C Consider 100 cases in which someone learns most of the material.

In how many cases will this cause them to get a perfect score

on the test?

4D Necessity of A for B Consider 100 cases in which someone learns most of the material.

In how many cases was this caused by their studying for a while?

Necessity of B for C Consider 100 cases in which someone gets a perfect score on the test.

In how many cases was this caused by their learning most

of the material?

Note. Wordings correspond to item 7 in Table 1, where A is “studying or a while,” B is “learning most of

the material,” and C is “getting a perfect score on the test”.
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P(C|~A,B), allowing us to compute the A–C contingency when B is present [ΔPAC|B = P(C|
A,B) – P(C|~A,B)], and another group of participants made frequency estimates of P(C|A,
~B) and P(C|~A,~B), allowing us to compute the A–C contingency when B is absent

[ΔPAC|~B = P(C|A,~B) – P(C|~A,~B)]. If either ΔPAC|B or ΔPAC|~B is negative for a chain, an

alternative preventive pathway from A to C could lead that chain to be intransitive.

In Experiment 4B, we examined whether petering out at the type level could explain

our findings (Lowe, 1980). Petering out occurs when the A ? B and B ? C links are

viewed as weakly causal, but the strength of these intermediate links “peters out” so that

the A ? C link is not viewed as causal. Specifically, if the contingency between A and B,
ΔPAB = P(B|A) – P(B|~A), or the contingency between B and C, ΔPBC = P(C|B) – P(C|~B),
were low for a chain, then the contingency between A and C would be even lower.

Although participants in Experiment 2 judged the A ? B and B ? C links to be

equally causal for the transitive and intransitive chains, these judgments were obtained at

the token (particular) level rather than the type (category) level. Some causal relationships

hold at the token but not the type level—for example, hitting a golf ball into a tree may

cause a golfer to make a hole in one on some particular occasion, but one would not say

that in general hitting golf balls into trees causes holes in one (Rosen, 1978). Depending

on the strategy used for making the A ? C causal judgments in Experiment 2, the

strength of the type-level links could play a role. In particular, participants could have

relied on temporal contiguity to answer the questions about the A ? B and B ? C links

(Lagnado & Sloman, 2006), since the events occurred in a fixed order, but relied on the

contingency of the intermediate links to answer the questions about the A ? C links. If

so, petering out at the type level could explain why participants sometimes gave low rat-

ings for A ? C, even as temporal contiguity led them to endorse the A ? B and B ? C
links. To assess this possibility, Experiment 4B measured P(B|A), P(B|~A), P(C|B), and
P(C|~B) to compute ΔPAB and ΔPBC.

Finally, we measured the sufficiency and necessity of the intermediate links (Einhorn

& Hogarth, 1986; Mackie, 1965; Pearl, 2000). An event A is sufficient for an event B if

B always occurs when A occurs. For instance, falling off a 20-story building is a suffi-

cient cause for death. In Cheng (1997), causal power is defined as the sufficiency of the

cause for bringing about the effect. Experiment 4C measured the sufficiency of the inter-

mediate links to test whether differences in intermediate strength as measured in terms of

sufficiency can account for differences in transitivity.

Alternatively, necessity could play a role in transitivity. A is necessary for B if B can

only occur when A occurs. For instance, watering a houseplant is necessary for it to

grow. Bonnefon et al. (2008, 2012) propose that people often adopt a conception of cau-

sality on which causal chains are transitive when a saliency condition is met, such that A
is such a necessary cause of B that observing B leads one to expect A. According to Bon-

nefon et al. (2008), we often equate actions (A) and their consequences (B) in causality

ascriptions when the consequences are highly diagnostic of the actions, but not when the

consequences are not highly diagnostic; in only the former case would transitivity be jus-

tified. Borrowing their example, suppose Cindy drives to the countryside (A), causing her

license plate to become muddy (B), causing her to get a fine (C). In the case where A is
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a salient or necessary cause of B—that is, Cindy’s license plate getting muddy occurs

only after she goes to the countryside—it seems appropriate to identify A with B, and to

say that driving to the countryside caused Cindy to get fined. But, in the case where A is

not necessary for B—say, because Cindy sometimes drives down her muddy driveway—
it does not seem appropriate to say that going to the countryside caused her to get fined.

Therefore, a lack of necessity in the A ? B link could account for the intransitive chains.

Experiment 4D tested this possibility.

5.1. Methods

We recruited 159 participants for Experiment 4 (n = 40, 39, 39, and 41 for Experi-

ments 4A–D, respectively). For all four experiments, participants provided frequency esti-

mates (Buehner, Cheng, & Clifford, 2003; Gigerenzer & Hoffrage, 1995) corresponding

to the questions summarized in Table 3, for the 22 sets of test chains from Experiments

1–3. Before completing these ratings, they were instructed that “these questions will ask

you to think about a sample of 100 people” and that this sample should be thought of as

“a typical, representative sample of people in the United States.” All ratings were com-

pleted on a sliding scale from 0 to 100.

For Experiment 4A, 18 participants estimated P(C|A,B) and P(C|~A,B) for each chain,

and 22 participants estimated P(C|A,~B) and P(C|~A,~B) for each chain. Estimates of each

type of probability judgment were blocked, so that a participant might have rated P(C|A,B)
for all 22 chains (in a random order), followed by P(C|~A,B) for all 22 chains (in a differ-

ent random order). The order of the blocks was counterbalanced. These scores were

converted to ΔPAC|B and ΔPAC|~B by taking the difference between the two judgments (i.e.,

ΔPAC|B = P(C|A,B) – P(C|~A,B) and ΔPAC|~B = P(C|A,~B) – P(C|~A,~B)), which could

potentially range from �100% to 100%.

For Experiment 4B, 18 participants estimated P(B|A) and P(B|~A) and 21 estimated

P(C|B) and P(C|~B). These probability judgments were blocked, with the order of the 22

items randomized within each block. The positive block (e.g., P(B|A)) always preceded

the negative block (e.g., P(B|~A)) to provide context for the negative judgment. These

scores were converted to ΔPAB and ΔPBC by taking the difference between the two judg-

ments (i.e., ΔPAB = P(B|A) – P(B|~A) and ΔPBC = P(C|B) – P(C|~B)), which could poten-

tially range from �100% to 100%.

For Experiment 4C, 19 participants rated the sufficiency of the A ? B link for each

chain, and 20 participants rated the sufficiency of the B ? C link for each chain, and for

Experiment 4D, 21 participants rated the necessity of the A ? B link for each chain, and

20 participants rated the necessity of the B ? C link for each chain. These ratings were

completed in a random order and could potentially range from 0% to 100%.

5.2. Results and discussion

We used multiple regression to test whether chunking continued to predict transitivity

after adjusting for the effects of alternative causal pathways, petering out, and necessity

20 S. G. B. Johnson, W. Ahn / Cognitive Science (2015)



T
ab
le

4

P
ro
b
ab
il
it
y
ju
d
g
m
en
ts
fo
r
ea
ch

it
em

in
E
x
p
er
im

en
t
4

E
x
p
er
im

en
t
4
A
:

A
lt
er
n
at
iv
e
P
at
h
w
ay
s

E
x
p
er
im

en
t
4
B
:

C
o
n
ti
n
g
en
cy

R
at
in
g
s

E
x
p
er
im

en
t
4
C
:

S
u
ffi
ci
en
cy

R
at
in
g
s

E
x
p
er
im

en
t
4
D
:

N
ec
es
si
ty

R
at
in
g
s

It
em

ΔP
A
C
|~
B

ΔP
A
C
|B

ΔP
A
B

ΔP
B
C

A
?

B
B
?

C
A
?

B
B
?

C

1
7
.3
2

1
4
.4
4

3
6
.0
0

3
1
.8
1

6
2
.2
6

4
3
.3
5

2
5
.5
7

9
0
.9
5

2
2
.8
2

1
1
.5
0

2
9
.6
7

3
1
.5
7

6
1
.4
2

4
3
.4
0

7
1
.1
9

8
7
.9
0

3
�3

.5
0

2
3
.1
7

1
3
.8
3

3
0
.4
3

8
7
.8
4

4
3
.3
5

5
8
.1
9

5
7
.8
5

4
1
0
.0
5

�5
.7
2

2
7
.5
6

3
3
.1
4

6
6
.7
4

6
8
.3
0

7
0
.2
9

7
5
.4
5

5
7
.9
1

1
3
.8
3

5
8
.1
7

2
2
.6
2

5
3
.6
8

5
5
.6
5

4
6
.3
3

7
9
.3
5

6
0
.9
1

1
.7
8

3
4
.0
0

1
3
.1
4

6
1
.2
1

3
6
.2
5

5
4
.9
5

3
3
.2
0

7
1
.8
2

8
.5
6

3
6
.1
1

2
3
.5
7

7
2
.3
2

4
8
.7
0

8
2
.4
3

8
9
.4
0

8
8
.3
2

1
.6
7

3
4
.6
1

2
7
.1
4

7
3
.4
2

6
0
.6
5

5
0
.7
6

5
0
.7
5

9
1
2
.5
5

1
2
.3
9

4
8
.5
6

9
.8
1

6
3
.9
5

2
4
.9
5

8
.0
5

2
1
.3
5

1
0

5
.4
5

1
3
.7
8

3
9
.3
3

1
.2
4

6
7
.3
2

2
2
.6
5

1
3
.9
5

4
2
.9
0

1
1

�4
.8
6

�3
.8
3

0
.7
2

5
2
.6
7

6
8
.0
0

5
7
.7
0

1
1
.1
4

9
5
.3
5

1
2

1
.5
9

1
.2
8

2
6
.6
7

2
5
.3
8

5
6
.0
5

3
6
.5
5

5
0
.1
0

2
0
.5
5

1
3

2
.9
5

1
3
.6
7

6
1
.6
1

4
7
.6
7

8
7
.6
8

7
2
.1
5

6
2
.3
8

9
4
.4
0

1
4

�2
.9
5

1
1
.5
6

2
2
.6
1

2
2
.9
5

3
3
.4
2

5
3
.0
0

8
9
.2
9

1
5
.8
5

1
5

2
.7
3

3
.0
0

4
3
.2
8

3
2
.7
6

5
8
.3
2

7
2
.5
5

7
2
.4
3

2
6
.9
0

1
6

�3
.7
7

�0
.9
4

6
4
.4
4

4
9
.1
9

7
1
.7
9

8
1
.0
0

3
8
.7
6

5
.8
5

1
7

�4
.4
1

�1
2
.7
2

6
6
.4
4

3
5
.1
9

6
3
.4
2

7
3
.5
0

2
1
.8
6

7
2
.6
0

1
8

�3
.0
0

�6
.5
6

4
0
.0
0

1
1
.3
8

6
1
.6
3

2
7
.3
0

2
1
.6
2

1
3
.9
0

1
9

1
.0
5

1
.1
7

3
3
.0
6

1
7
.8
1

7
3
.0
5

6
0
.2
5

3
0
.5
2

5
0
.7
0

2
0

0
.4
5

�0
.6
7

1
.9
4

3
3
.6
7

7
0
.7
9

6
3
.6
5

1
9
.5
7

2
8
.4
5

2
1

7
.5
0

5
.3
3

4
2
.6
7

3
7
.9
5

7
1
.2
1

6
2
.3
5

1
9
.0
0

1
5
.5
0

2
2

�6
.8
6

0
.1
7

3
5
.9
4

4
0
.3
3

7
8
.6
3

9
1
.5
5

1
8
.5
2

6
2
.2
0

N
o
te
.
It
em

s
ar
e
li
st
ed

in
d
es
ce
n
d
in
g
o
rd
er

o
f
ch
u
n
k
in
g
sc
o
re
s
fr
o
m

E
x
p
er
im

en
t
1
(t
h
at

is
,
th
e
sa
m
e
o
rd
er

as
T
ab
le
s
1
an
d
2
).

S. G. B. Johnson, W. Ahn / Cognitive Science (2015) 21



and sufficiency of the intermediate links (see Table 4 for item means for all measures).

The dependent measure for this regression was a composite transitivity measure, formed

by converting the item means for the A ? C causal ratings (from Experiment 2) and

A ? C false alarm rates (from Experiment 3) to z-scores, and averaging these scores.

These two measures of transitivity were highly correlated, r(20) = .77, p < .001, suggest-

ing that these measures tapped into the same underlying construct.

We tested the role of the explanatory variables by conducting a series of regressions,

adding the explanatory variables stepwise (see Table 5). In the first regression, chunking

was strongly predictive of transitivity, b = 0.38, SE = 0.05, p < .001. In the second

regression, we also included the A ? B and B ? C causal ratings from Experiment 2.

The relationship between chunking and transitivity held up after these adjustments,

b = 0.41, SE = 0.06, p < .001, and the causal strengths of the intermediate links did not

predict transitivity (ps > .10). In the third regression, we also entered the Explanation rat-

ings from Experiment 1 and six variables measured in Experiment 4—ΔPAB, ΔPBC, ΔPAC|
B, ΔPAC|~B, Necessity(AB), and Necessity(BC). We did not enter the sufficiency ratings in

this step because including these variables created a multicollinearity problem (see below

for details); excluding the sufficiency ratings from the model resulted in acceptable multi-

collinearity diagnostics (tolerance was greater than .25 for each predictor). Once again,

the relationship between chunking and transitivity held up after adjusting for all these

variables, b = 0.41, SE = 0.10, p = .002. This shows that petering out, alternative causal

pathways, and lack of necessity cannot explain why some chains are less transitive, and

chunking still strongly predicts transitivity after adjusting for these variables.

The sufficiency ratings created a multicollinearity problem in part because the B ? C
sufficiency ratings were negatively correlated with chunking, r(20) = �.40, p = .062.

Neither A ? B nor B ? C sufficiency was positively associated with transitivity—this

correlation was nonsignificant for A ? B sufficiency, r(20) = �.15, p = .52, and signifi-

Table 5

Regression analysis predicting transitivity scores

Predictor Step One Step Two Step Three

Chunking (Experiment 1) 0.38 (0.05)*** 0.41 (0.06)*** 0.41 (0.10)**

AB causal ratings (Experiment 2) 0.26 (0.19) 0.20 (0.30)

BC causal ratings (Experiment 2) �0.33 (0.38) 0.48 (0.71)

B explains AC (Experiment 1) �0.12 (0.35)

ΔPAC|B (Experiment 4A) �0.01 (0.02)

ΔPAC|~B (Experiment 4A) 0.00 (0.03)

ΔPAC (Experiment 4B) 0.00 (0.01)

ΔPBC (Experiment 4B) �0.01 (0.01)

Necessity(AB) (Experiment 4D) 0.00 (0.01)

Necessity(BC) (Experiment 4D) �0.01 (0.01)

Note. Table entries are the unstandardized coefficients (and SEs) in a linear regression predicting the com-

posite transitivity measure (the mean of z-transformed A ? C causal ratings and A ? C false memory from

Experiments 2 and 3), calculated for each item.

*p < .05, **p < .01, ***p < .001.
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cantly negative for B ? C sufficiency, r(20) = �.54, p = .009. A lack of sufficiency

therefore cannot account for our intransitivity, because the sufficiency of the intermediate

links was, if anything, negatively correlated with our transitivity scale.

An additional issue concerns our participants’ violations of the causal Markov condi-

tion. These violations were measured by ΔPAC|B and ΔPAC|~B, and were not significantly

associated with transitivity in our regression analyses. Although it is specifically negative

values of ΔPAC|B and ΔPAC|~B that would normatively lead to intransitive judgments (i.e.,

negative values of ΔPAC), another possibility is that participants made intransitive judg-

ments when the Markov condition was violated, regardless of whether the violation was

positive or negative. In that case, one would expect the absolute values of ΔPAC|B and

ΔPAC|~B to predict transitivity. To test this possibility, we conducted a regression analysis,

parallel to step three in Table 5 but replacing ΔPAC|B and ΔPAC|~B with their absolute val-

ues. The results of this regression are nearly identical to those reported in Table 5: The

absolute values of the Markov violations did not predict transitivity scores (ps > .60), but

the chunking scores did (p = .001).

Taken together, these analyses show that the potential alternative explanations for

intransitivity (petering out, alternative causal pathways, and lack of sufficiency or neces-

sity) cannot jointly explain our chains’ intransitivity: Even after adjusting for these poten-

tial explanatory variables, the chunking of causal mechanisms was strongly associated

with transitivity.

6. Experiment 5

In our final experiment, we aimed to replicate the effect of schematization on transitiv-

ity using a new set of items. Specifically, we tested the possibility that schematization (or

lack thereof) of a causal chain can determine transitivity so strongly that it can produce

counterexamples to the most empirically well-tested account of causal transitivity—the

saliency condition (Bonnefon et al., 2008, 2012). Recall that the saliency condition holds

for a causal chain A ? B ? C if and only if A is necessary for B. This condition could

influence transitivity because A’s necessity for B means that B implies A. Since B implies

A, B ? C would imply A ? C. Thus, it would be especially powerful evidence for the

influence of schemas on transitivity if schematized causal chains where A is not necessary

for B (e.g., item 9 in Table 1, where Tess ate rancid pork, causing her to develop a minor

fever, causing her to go to the doctor) are judged more transitive than unschematized

chains where A is necessary for B (e.g., item 14, where the wind blew, causing Ivan’s hat

to blow away, causing Ivan to buy a new hat). We refer to the first kind of counterexam-

ple as schematized/nonsalient chains, and the second kind as unschematized/salient

chains. While a few items used in Experiments 1–4 were counterexamples of one of these

types, it is unclear how widespread such counterexamples are. To show that schematiza-

tion can lead to many of both kinds of counterexamples, we developed seven items of

each type for Experiment 5, which are summarized in Table 6.
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In Experiment 5A, we tested the saliency account for these chains. We collected

causal ratings, to verify that A ? C would be judged more causal for the schema-

tized/nonsalient chains than for the unschematized/salient chains, and necessity ratings,

to verify that A ? B necessity would be judged higher for the unschematized/salient

chains than for the schematized/nonsalient chains. Obtaining both of these differences

would dissociate A ? B necessity (or saliency) from A ? C causal ratings. In addi-

tion, we collected A ? B and B ? C causal ratings as in Experiment 2, to ensure

that differences in the strength of the intermediate links could not be responsible for

the dissociation. To test whether the A ? C ratings in Experiment 5A can be

explained by schematization, Experiment 5B adopted the measures from Experiment 1.

That is, we asked to what extent it was necessary to explicitly mention B in explain-

ing to another person how A led to C, anticipating that these ratings would be higher

for the unschematized items because the causal chain is not chunked into one unit.

We also asked participants to judge the extent to which B explained why A led to C
for each chain, to test whether the network-based definition of mechanism accounts

for transitivity in this new set of chains.

6.1. Methods

We recruited 60 participants for Experiment 5 (n = 30 each for Experiments 5A and

5B). Two participants from Experiment 5A and one participant from Experiment 5B were

excluded because they provided random responses on noncausal filler chains.

For Experiment 5A, each participant completed a causal ratings task and a necessity

judgment task, in a counterbalanced order. The causal ratings task was similar to Experi-

ment 2, except that participants were asked about the 14 test chains listed in Table 6

(seven schematized/nonsalient and seven unschematized/salient chains) and seven of the

noncausal filler chains used in Experiments 1 and 2. That is, participants saw each of the

21 chains, in the form “A occurred, then B occurred, then C occurred” and rated “To

what extent would you say that: [X] causes [Y]?” where X and Y were filled in with A
and B, B and C, and A and C, in that order. Ratings were completed on a 9-point scale

(1: “definitely would not”; 5: “unsure”; 9: “definitely would”). Causal ratings for all three

links were elicited on a single screen, and each chain was presented on a separate screen

in a random order.

In the necessity judgment task, participants answered, “Consider 100 cases in which B
occurs. In how many cases was this caused by A?” for each of the 14 test chains on a

sliding scale from 0 to 100. These questions were asked only of the A ? B link because

the saliency condition applies only to this link, and they were presented on separate

screens in a random order.

Experiment 5B was similar to Experiment 1, except that participants were asked about

the test and filler chains used in Experiment 5A. For each chain, participants were first

asked to rate the extent to which B explained why A led to C. If the participant responded

above the midpoint (5) to the Explains question, then he or she was asked to rate the

extent to which B needed to be explicitly mentioned in explaining how A led to C. These
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scores were reverse-coded to create the Chunking measure. The procedure and wordings

of the dependent measures were identical to Experiment 1.

6.2. Results and discussion

Our two main hypotheses were that transitivity would be predicted by chunking (as in

our previous experiments) and that transitivity would be dissociated from A ? B neces-

sity for this set of items. Both predictions were supported by linear regression analyses

on the mean ratings for each of the 14 test items (see Table 6 for item means). Because

Chunking and A ? B were strongly correlated by design, r(12) = �.95, p < .001, sepa-

rate regressions were used to avoid multicollinearity in testing these predictions.

To test whether chunking predicted transitivity, we conducted a linear regression with

A ? C causal ratings as the dependent variable, and A ? B and B ? C causal ratings

(from Experiment 5A) and the explanation and chunking ratings (from Experiment 5B) as

predictors. As in previous experiments, chunking was strongly predictive of transitivity

(as measured by A ? C causal ratings), b = 0.67, SE = .09, p < .001. None of the other

predictor variables significantly predicted A ? C causal ratings (ps > .10). This replicates

our previous finding that chunking was associated with transitivity, even after accounting

for the strength of the intermediate links. Once again, this result is consistent with

schema-based representations, but it is difficult to explain with network representations.

To test whether A ? B necessity could be dissociated from transitivity, we conducted

a linear regression with A ? C causal ratings as the dependent variable, and A ? B cau-

sal ratings, B ? C causal ratings, explanation ratings, and A ? B necessity as predictors.

As anticipated, A ? B necessity was negatively associated with A ? C causal strength

for this set of items, b = �0.04, SE = 0.01, p < .001, but explanation ratings and A ? B
and B ? C causal ratings did not significantly predict A ? C causal ratings (ps > .08).

This shows that the saliency condition—which is satisfied when A is necessary for B—
can be dissociated from transitivity: Causal chains can be transitive without satisfying the

saliency condition (if they are relatively schematized), and causal chains can satisfy the

saliency condition without being transitive (if they are relatively unschematized).

For this set of items, saliency was a negative predictor of transitivity, whereas

schematization was a positive predictor—consistent with schema-based representations.

Note that this evidence only counts against a strong version of the saliency account

on which saliency is necessary or sufficient (or both) for intransitivity, as we chose

these items with the goal of dissociating these variables. Indeed, all else being equal,

chains violating the saliency condition are less transitive than chains satisfying this

condition (Bonnefon et al., 2008, 2012). The current results highlight boundary condi-

tions on the saliency condition, however, and show that schematization can be the

more influential factor when saliency and schematization are in conflict. Although

these results cannot establish how prevalent such cases are, they do show that the sal-

iency condition is neither necessary nor sufficient for transitivity, and add to the pre-

vious results in reaffirming the relationship between schematization and transitivity

with a new set of items.
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7. General discussion

The present experiments contribute in two ways to our understanding of how causal

knowledge is represented and used. The primary issue we examined here is whether cau-

sal relations are represented as continuous networks of causal influence or as isolated cau-

sal chunks or islands. In examining this issue, we also showed that people sometimes

make intransitive causal judgments, endorsing “A causes B” and “B causes C” while

refusing to endorse “A causes C.” In the following two sections, we briefly summarize

these main contributions.

7.1. Causal networks or causal islands?

Knowledge of causal mechanisms is essential for making sense of the events around us

—for determining their causes, for predicting their effects, and for planning interventions.

Mechanism information is especially important for pruning the space of candidate causes,

so that we can infer causal structure in the face of an infinite hypothesis space (Ahn &

Kalish, 2000). However, previous empirical and theoretical work has not specified how

mechanisms are mentally represented. In this article, we considered two possible organi-

zations of causal knowledge—a network representation, on which causes are connected

to their effects via webs of influence akin to Bayesian networks (e.g., Gopnik et al.,

2004), and a schema representation, on which particular mechanisms are discretely stored

in informational islands and mechanisms sharing a common event would not necessarily

be linked to one another.

In Experiment 1, we distinguished between two ways in which a sequence of three

events can fail to constitute a causal mechanism—one consistent with a network represen-

tation, and one inconsistent. First, a sequence could fail to be conceptualized as a causal

mechanism simply because the intermediate event (B) is not seen as mediating or explain-

ing the relationship between A and C. Although a sequence could fail to constitute a

mechanism in this sense on the network theory (i.e., if A was not seen as causing B or B
was not seen as causing C), our participants acknowledged that all our items satisfied this

definition of causal mechanism. Nonetheless, our chains varied in the extent to which

they constituted mechanisms in a second sense—that A, B, and C were stored as one

chunk in semantic memory. Participants thought that for some of our chains, it would be

necessary to explicitly mention B in explaining how A led to C, whereas for other chains,
it was more obvious how A led to C, without mentioning B. We used this measurement

as a proxy for the extent to which the chains were chunked into a single, coherent mecha-

nism or were instead stored as two disparate mechanisms (one for the relationship

between A and B, and another for the relationship between B and C). Chains like “Allison

exercised for 20 min, then Allison became thirsty, then Allison drank a whole bottle of

water” tended to be stored in one chunk, and thus participants judged that one does not

need to mention that Allison became thirsty. In contrast, chains like “Francine had sex,

then Francine became pregnant, then Francine experienced nausea” were more likely to
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be stored in two chunks, and participants judged that one needs to mention that Francine

became pregnant to explain how the initial event led to the final event. Given that these

sequences are both seen as causal chains (with A causing B and B causing C), a network

representation does not straightforwardly accommodate discretization of this sort.

Although these findings alone demonstrate that there is variation in the extent to which

causal chains are schematized, it would be more convincing evidence that causal mecha-

nisms are represented discretely if we could also show that this representation has consis-

tent downstream consequences for causal inference. We used the phenomenon of causal
transitivity to provide such evidence. On a network representation, the causal strength of

a causal chain should be a function of the number and strength of the links (Baetu &

Baker, 2009; see also Anderson, 1983 on traversing links in other kinds of semantic net-

works). Therefore, for two chains A ? B ? C and X ? Y ? Z where A ? B and

X ? Y are equally strong and where B ? C and Y ? Z are equally strong, the transitive

A ? C and X ? Z links should be equally strong. However, Experiments 2 and 3

showed that this is not the case. To the extent that a chain was found to be chunked in

Experiment 1, people were more willing to infer that A causes C, holding constant the

strength of the intermediate links. This effect held up both in direct causal ratings (Exper-

iment 2) and in a recognition memory task (Experiment 3). For example, when Allison

exercised, became thirsty, and drank water, participants tended to schematize this as one

chunk in Experiment 1, and also tended to make the transitive inference (Allison exercis-

ing caused her to drink water) in Experiments 2 and 3. In contrast, when Francine had

sex, became pregnant, and experienced nausea, participants tended to divide this chain

into two chunks in Experiment 1 and were much less likely to make the transitive infer-

ence (Francine having sex caused her to experience nausea) in Experiments 2 and 3.

We studied inferences principally at the token level (e.g., Francine’s sex causing her to

become nauseous) rather than at the type level (e.g., sex in general causing nausea), but

the predictions of the network and schema theories also apply at the type level. However,

because people rely more on statistical evidence for evaluating type-causal relationships

(Johnson & Keil, in prep), a statistics-driven Bayesian network approach could potentially

account more accurately for transitivity judgments. Furthermore, some of the alternative

accounts rely on type-level factors (e.g., necessity and sufficiency of the intermediate

links), so it is possible that once these factors are accounted for, no intransitivity would

remain at the type level. As a test of this possibility, we collected conditional probability

judgments of P(C|A) and P(C|~A) at the type level using the same procedure as Experiment

4B, to calculate ΔPAC = P(C|A) – P(C|~A). A regression parallel to step three in Table 5

found that schematization also predicted these ΔP scores after adjusting for the other

explanatory variables, b = 4.40, SE = 1.27, p = .002, consistent with the schema-based

approach but once again in tension with the network-based approach.

7.2. Are causal relations transitive?

The issue of causal transitivity is also important in its own right, as a way to combine

premises in causal reasoning. Although transitive inferences have been found using more
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artificial stimuli (Ahn & Dennis, 2000; Goldvarg & Johnson-Laird, 2001; Von Sydow et al.,

2009), less work has examined inference patterns for chains of familiar events. It is unlikely

a priori that all causal chains should be judged transitive, because several normative reasons

for intransitivity have been documented (Hitchcock, 2001), which we termed threshold
effects, incompatible aspects, petering out, alternative causal pathways, and lack of neces-
sity or sufficiency. To see whether these previously documented reasons can account for all

causal intransitivity, we tested these accounts for our set of causal chains.

In Experiment 2, we addressed the possibility of threshold effects or incompatible
aspects as explanations for our findings (Hausman, 1992; McDermott, 1995; Paul, 2000;

Schaffer, 2005). First, a threshold effect occurs when A affects the value of B and B
affects the value of C, but A does not affect the value of B sufficiently to affect the value

of C. However, in Experiment 2, the causal chain was described at the token level, so the

value of B was the same when A caused B and when B caused C within each chain.

Threshold effects are thus not possible explanations for the intransitive chains. Second, a

causal chain can be intransitive due to incompatible aspects when the property of B mod-

ified by A is not the same property of B relevant for modifying C. However, this also

seems unlikely to explain our findings. Most of our chains only indicated one property of

B which could be modified (i.e., whether B occurs or not), so the aspect of B modified by

A must be the same as the aspect of B modifying C. For example, having sex causes one

to be pregnant (rather than not pregnant), and being pregnant (rather than not pregnant)

causes one to experience nausea. The aspect of the intermediate event under consideration

appears to be the same in both links of each causal chain, so incompatible aspects appear

unable to explain our results.

In Experiment 4, we measured the contributions of alternative causal pathways (Eells

& Sober, 1983), petering out (Lowe, 1980), and lack of necessity or sufficiency (e.g.,

Bonnefon et al., 2008) to our intransitive chains. An alternative causal pathway occurs

when A’s occurrence activates multiple pathways—one causing C and one preventing C
—leading to a weak contingency between A and C. Petering out occurs when the proba-

bilistic strengths of the intermediate links are relatively weak, so the overall contingency

between A and C is so weak as to be considered noncausal. A lack of necessity or suffi-
ciency could potentially account for the differences in transitivity if the intermediate links

of some chains were more necessary or sufficient than others. In Experiment 4, we mea-

sured the probabilistic strength of each intermediate link, the probabilistic strength of

alternative causal pathways, and the sufficiency and necessity of each link. After adjust-

ing for these variables in a multiple regression, the chunking measure from Experiment 1

continued to predict transitivity, yet none of these probability variables were significant

predictors. In addition, Experiment 5 examined a specific proposal by Bonnefon et al.

(2008, 2012), emphasizing the role that A ? B necessity plays in judgments of transitiv-

ity. Using 14 new chains, we found that A ? B necessity judgments can dissociate from

transitivity, demonstrating that A ? B necessity is neither necessary nor sufficient for

transitivity, but that schematization nonetheless predicts transitivity. It is certainly possi-

ble, however, that the necessity of the A ? B link plays a subtler role in influencing tran-

sitive inferences.
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None of this is to deny that these normative factors can lead to intransitive causal

judgment. Indeed, incompatible aspects (Hagmayer et al., 2011) and lack of A ? B
necessity (Bonnefon et al., 2012) have been empirically shown to result in intransitive

causal judgments. Rather, these factors cannot account for the intransitivity found in the

current experiments, but lack of schematization can.

7.3. Why are some causal chains schematized?

One issue that is unresolved by these experiments is what causes some links to be

schematized together but others not to be. It is not simply a matter of some chains having

stronger causal links—this possibility was ruled out in Experiments 2 and 4. Instead,

other factors must be driving schematization. Here, we consider three factors that could

potentially contribute—the homogeneity of mechanisms, temporal contiguity, and tempo-

ral discreteness.

One possible factor is the homogeneity of the mechanisms underlying the A ? B link

and the B ? C link. For example, in the relatively schematized chain 5 (“Melissa was

outside in warm weather, then her body temperature rose, then her clothes were soaked

with sweat”), it seems that a single physiological mechanism—the body’s homeostasis

process—underlies both links in the chain. But in the case of sex, pregnancy, and nausea,

one could argue that the physiological mechanisms connecting sex and pregnancy are

very different from the physiological mechanisms connecting pregnancy and nausea, and

it is merely coincidental that these two physiological mechanisms are connected in the

middle by the same event. However, this explanation potentially risks circularity without

having an independent definition of homogeneity, as our intuitions about the homogeneity

of these mechanisms could instead be driven by schematization rather than the reverse.

Indeed, this problem is similar to the classic and still-unresolved problem of what makes

concepts coherent (or homogeneous). For instance, we have concepts such as emeralds,

but we do not have concepts such as emerubies—an emerald before 1997 or a ruby after

1997 (Goodman, 1955).

A second factor that could influence schematization is temporal contiguity. To the extent

that two events co-occur closer together in time, they are likelier to participate in a genu-

inely causal relationship (e.g., Johnson & Keil, 2014; Lagnado & Sloman, 2006) and like-

lier to be schematized. However, it does not appear that temporal contiguity can explain

much of the variability in our participants’ judgments. Although some of our relatively un-

schematized chains (e.g., Francine having sex, becoming pregnant, and experiencing nau-

sea) do lack temporal contiguity, other unschematized chains are highly contiguous (e.g.,

Karen stepping on a dog, the dog growling, and a child being scared) and some schema-

tized chains are relatively discontiguous (e.g., Pam failing to floss her teeth, having plaque

on her teeth, and developing cavities). Another problem with the temporal contiguity

explanation is that if A and B (or B and C) are discontiguous, making the chain

A ? B ? C unschematized, then the causal strength of the A ? B link (or the B ? C
link) would have been weak as well. Yet Experiments 2 and 5 found that our participants’

intransitive judgments could not be explained by the strength of these intermediate links.
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A third possibility concerns the nature of the temporal relationships among events in

the causal chains. For example, sex causing a person to become pregnant may call to

mind a temporally discrete event (i.e., conception), whereas it is the temporally extended

event of pregnancy that is associated with nausea. Thus, even though both intermediate

causal links are very strong, the overall relationship might be less likely to be schema-

tized due to the different time scales on which the links occur. Although this sort of

explanation does not appear to apply to the majority of the unschematized chains used in

this article, it may contribute to some of them and is an interesting object of future study.

We suspect that schematization is driven by a number of factors, including mechanistic

homogeneity and temporal factors, as well as the frequency with which we encounter

these chains in everyday experience and similarity of the links along dimensions other

than causality. If schematization is indeed multiply determined, this renders the problem

highly challenging, but all the more interesting for future research.

7.4. Pluralistic strategies for causal inference

Recently, many researchers across cognitive science have argued that our causal con-

cepts and inference strategies are pluralistic—that is, people have a multiplicity of causal

concepts and inference strategies that are deployed flexibly in context-dependent ways

(e.g., Danks, 2005; Hitchcock, 2003; Lombrozo, 2010; Woodward, 2011). As we noted in

the introduction, the link between schematization and transitivity follows from a com-

monly used narrative strategy for assessing causality, wherein a reasoner assesses a cau-

sal relationship between X and Y by trying to think of a plausible story for how X would

lead to Y based on their background knowledge (Kahneman & Tversky, 1982; Taleb,

2007). If people use discrete schema-based representations, we argued, they would be

more likely to make a transitive inference when X and Z are stored in the same schema

because this would make the narrative easier to construct. In contrast, a network represen-

tation would have no resources to explain differences in transitivity unless the intermedi-

ate links differed in causal strength, since the network representation is not discrete.

However, this explanation implies that schematization and transitivity would be closely

related only when people are using a narrative strategy. Indeed, this observation is consis-

tent with previous research, where transitive inferences have been found in cases where a

narrative strategy was unavailable, but other strategies could be used instead. In studies

using artificial stimuli where a narrative was missing but covariation information was

available, enabling use of a statistical strategy, people robustly inferred high A ? C
covariation from high A ? B and B ? C covariation (e.g., Ahn & Dennis, 2000; Baetu

& Baker, 2009), even to the point of inferring illusory correlations where in fact no cor-

relation exists (Von Sydow et al., 2009). And in studies using randomly constructed,

abstract premises (e.g., “Obedience causes motivation to increase” and “Increased motiva-

tion causes eccentricity”), people used a rule-based strategy to combine the premises,

drawing transitive conclusions (“Obedience causes eccentricity”; Goldvarg & Johnson-

Laird, 2001).
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In those studies using artificial stimuli, participants’ use of these strategies were suc-

cessfully isolated from their background knowledge, demonstrating that both a statistical

strategy and a rule-based strategy can result in transitive inferences. Yet, because we gen-

erally rely on prior knowledge for making causal inferences when it is available, it is

likely that we more often adopt a narrative strategy in everyday causal inference (Kahn-

eman & Tversky, 1982; Taleb, 2007; see also Ahn & Kalish, 2000). Consequently, intran-

sitive judgment may be relatively common in everyday causal thinking, in cases where

disparate schemas collide.

8. Conclusion

Causal knowledge is a primary tool we use to make sense of the flow of experience.

Despite this sense of flow, however, we have argued here that we break up these causal

relations into discrete units, into schematized causal mechanisms. This organization of

causal knowledge may be helpful in clustering stable causal patterns together, in much

the same way that categories are useful ways of organizing reliably co-occurring features.

Such ways of breaking the world into smaller pieces may help us to make sense of expe-

rience in a way that is manageable, given our cognitive limits.
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Note

1. We supplemented this item-level analysis with an additional analysis at the level of

individual participants. For each participant, we calculated the partial correlation

between that participant’s ratings of A ? C for each chain and each chain’s mean

chunking score from Experiment 1, adjusting for that participant’s A ? B and

B ? C causal judgments. Three participants could not be included in this analysis

because they rated all the A ? B or B ? C links at ceiling. Among the remaining

participants, their Fisher-transformed partial correlations were significantly greater

than 0, t(26) = 7.99, p < .001, with a mean inverse-transformed partial correlation

of r = .44. Thus, the chunking ratings made by a separate group of participants in
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Experiment 1 predicted the A ? C ratings of individual participants in Experiment

2. Although we do not report subject-level analyses for subsequent experiments,

subject-level analyses or raw data are available upon request.
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