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Abstract

Climate change is escalating global flood risks, affecting one in every four people. This increases
health and economic challenges, particularly in South Asia where 576 million people face flood
risks. Early warning systems (EWS) have the potential to reduce socioeconomic flood impacts,
yet inadequate dissemination infrastructure, low literacy rates, and distrust in external agencies
may hamper their effectiveness. We experimentally evaluate a flood EWS that pairs a cutting-
edge flood forecasting system with community-based alert dissemination in Bihar, one of India’s
most flood-prone states. Household surveys indicate treatment communities received more flood
alerts but also more false positives, yet with fewer missed floods, overall alert accuracy improved.
This fostered greater trust in alerts and led to better preparedness and health outcomes, with
treatment households exhibiting higher adaptation and health scores and a 30% reduction in
medical costs compared to control communities.

Introduction. Climate change is escalating flood risks globally, impacting one in every four
individuals (IPCC, 2023). Flood and extreme rainfall occurrences have increased by more than
50% since 2010, and fourfold since 1980 (EASAC, 2018). Between 2011 and 2020, floods killed
45,000 individuals, with 73% occurring in lower-income nations (Guha-Sapir, 2020). These disas-
ters compound health and economic issues, elevating morbidity and poverty amongst vulnerable
populations. In South Asia, 576 million people are exposed to significant flood risk, accounting for
30.4% of the population (Rentschler et al., 2022). The Ganges-Brahmaputra River basin, which
has 600 million residents and 200 million poor, is especially vulnerable. Even minor floods can
impact millions, as shown from 2000-2010, with over 16,000 deaths, 200 million displaced, and 20
billion dollars in economic damages (Priya et al., 2017).

Flood early warning systems (EWS) have the potential to reduce flood-related morbidities and
economic losses in South Asia. Back-of-the-envelope estimates of potential EWS benefits over a
decade of normal floods are more than 500 times the 10-year system cost (Teisberg and Weiher,
2009). In 2022, the UN Secretary-General launched “Early Warnings for All”, proposing a US$ 3.1
billion investment over five years to strengthen observation and forecasting capabilities, as well as
dissemination and communication of warnings. While recent advances in computation and machine
learning have significantly improved the accuracy of 48-72 hour flood prediction (Nearing et al.,
2024), we currently lack estimates of EWS effectiveness based on actual dissemination activities.
A range of last-mile delivery difficulties, including communication infrastructure, state capacity,
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societal trust, and literacy levels, may have an impact on EWS systems’ ability to affect household
behavior.

In this paper, we report on the first experimental evaluation of a flood EWS covering roughly 3.6
million people in Bihar, India. Our evaluation spans three flood cycles over five years. We build on
a partnership of Indian Central Water Commission with Google, wherein alerts based on Google’s
advanced flood-forecasting technology are disseminated as push notifications to location-services-
enabled android smartphones. In 2019, via a pilot study, we evaluated the status quo flood EWS
where the additional treatment simply amplified alert awareness to a single local leader. We found
no treatment impacts. Specifically, despite widespread flooding, less than half the Bihari households
received alerts and this was not differential by treatment status. Over the next two years we worked
with Google to add localized features to the flood alert and with a local organization to develop a
community-based alert dissemination system.

We experimentally assessed this approach over the two flood cycles in 2022 and 2023. Our inter-
vention spans 319 village communities across 12 flood-prone districts. While all communities have
access to Google’s flood-forecasting system, the community-based outreach was randomized to se-
lected 160 treatment communities, reaching over 1.8 million people. In each treatment community,
two-to-three android-phone-owning volunteers were trained on understanding flood alerts. Flood
alerts were disseminated by volunteers to the community via both traditional (loudspeakers and
flag planting) and modern (WhatsApp groups) modes of communication.

Initial results from our household surveys show households in treatment communities more likely
to receive flood alerts, with a greater number of alerts received compared to those in control
communities. Importantly, while treatment communities received more alerts, they also experienced
a higher rate of false positive alerts (alerts without subsequent floods). However, despite the increase
in false positives, the reduction in false negatives (situations with flooding but no alerts) led to an
improvement in overall alert accuracy. Consequently, treatment communities were more likely to
report trusting flood alerts compared to control communities.

These improvements in accessibility, accuracy, and trust translated into more proactive adaptive
behavior, protecting treatment households’ health from severe flooding. Quantitatively, treatment
households in severely flooded areas had a score that was 0.18 standard deviations higher on indices
measuring proactive adaptation and physical health compared to control households in similar areas.
Overall, treatment households reported a 30% decrease in medical expenditures.

Context. Bihar, one of India’s poorest and most flood-affected states in the Ganges-Brahmaputra
river basin, embodies the challenges faced by rural communities in South Asia. Annually, floods
impact 6.87 million hectares out of Bihar’s total area of 9.42 million hectares, making it home to
17.2% of India’s flood-prone areas. Three-quarters of the population in north Bihar (approximately
50 million people) live with the constant threat of flood devastation (NSRC and ISRO, 2020). Our
formative research reveals the severe disruption floods cause to lives and livelihoods in Bihar:
following the 2019 flood season, 65% of households saw a decrease in agricultural income, 54%
reported sickness, and over 20% experienced damage to livestock, homes, and personal belongings
(Figure 1).

Despite the high risk, only 20% of Bihar’s flood forecasting stations are operational, and just 38%
of people in flood-prone areas are aware of active EWS (Tripathi et al., 2022). Our pilot study
underscores these gaps: during the 2019 flood season, while over 95% of households were affected
by floods, only 45% received any alert (Figure 2). Moreover, although 60% of households desired
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information on forecast timing and 40% on water depth, only 15% of those who received alerts were
provided this information (Figure 3).

Intervention. Our evaluation includes 319 panchayats (communities) with >3.6 million people
in 12 flood-prone districts of Bihar (Figure 4).1 160 of these 319 communities form the treatment
group, while the rest are in the control. Google’s cutting-edge forecasting and android-based
alerting system are combined with incentivized grassroots volunteers trained in community outreach
activities for the flood EWS intervention.2

In 2019, via a pilot study, we evaluated the status quo flood EWS where the additional treatment
simply amplified alert awareness to a single local leader. We found no treatment impacts. Specif-
ically, as we mentioned above, despite widespread flooding, less than half the Bihari households
received alerts and, crucially, this was not differential by treatment status. Following this pilot, in
2021, we partnered with a local NGO, Yuganter, to train community-based volunteers to use Google
flood alerts in each treatment community. We further refined the effectiveness of this dissemination
channel via volunteer incentives and launched our evaluation in 2022. Our evaluation is scheduled
to run through the 2026 flood season.

Data collection. Each year, we have a set approach: from June to October, we implement our
community-based intervention. Then, during the flood season, in late August or early September,
we conduct a telephonic midline survey. This survey evaluates the accessibility of the intervention
and the extent of protective actions undertaken by households. After the flood season, between
November to February, we carry out an in-person endline survey. This survey aims to assess the
effects of the flood on physical health and economic well-being, as well as to gauge post-flood
adaptations. Additionally, it collects information on accessibility and proactive adaptations from
households that we couldn’t reach during the midline survey. Between December 2022 and March
2023, we conducted an extensive in-person survey, reaching out to 5,582 households spread across
319 communities in our study. These households represent the central element of our midline and
endline data collection activities, and empirical analysis.3

Google’s flood forecasting and android-based alerting system. Google’s flood forecasting system uses
two AI models with public data: a hydrologic model forecasting river water flow, and an inunda-
tion model identifying flood-prone areas and estimating water levels. As mentioned above, detailed
alerts about forecasted timing and water depth, preferred by many, reach only a few households.
This system predicts floods 2 to 4 days in advance, integrating forecasts into Google’s Public Alerts
service.

When a flood alert is issued, Google notifies Android smartphones with location services turned
on in the areas likely to be impacted by the flood. Both the treatment and control communities
have access to this system. For every flood event, several alerts are disseminated: initially, warning
alerts providing projected water levels are sent a few days before the anticipated event; these are
then escalated to severe alerts as the situation intensifies, and subsequently revert to warning alerts
as flood waters begin to subside.

1Panchayats are the lowest level of administrative division in rural India. Each panchayat typically oversees the
administration of 2 to 5 villages, forming the grassroots level of India’s political system.

2Our intervention encompasses both flash and prolonged riverine (freshwater) floods in rural areas.
3Since the study’s sample had not been finalized, the 2022 midline survey was unique. For this survey, we gathered

the sample of respondents through phone calls to local leaders. Furthermore, its primary focus was to assess how
accessible our intervention was to households, rather than evaluating the range of protective actions that households
may have taken, which was instead assessed in the 2022 endline survey.
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However, our project identifies a crucial gap: these alerts often miss the most vulnerable, typically
in rural areas, who might be illiterate or lack smartphone access. In rural Bihar, few households
use location services, and even among smartphone users, only about 55% can correctly access
Google’s flood alerts on their phones. We aim to bridge this gap using a community volunteer
model, enhancing villagers’ access to this vital information.

Community-based alert dissemination. In each treatment community, three android-phone owning
volunteers are trained at the start of the flood season to understand flood alerts from Google’s fore-
casting and alerting system. Flood alerts are then disseminated by volunteers via both traditional
(e.g., loudspeakers) and modern (e.g., WhatsApp groups) modes of communication. No volunteers
are recruited in control communities. Our 2023-2026 interventions differ slightly in that we recruit
two community volunteers per treatment panchayat instead of three. In addition, unlike in 2022,
we also directly message (via WhatsApp groups and SMS) treatment households, who were enrolled
in the 2022 endline survey, about any flood alerts.

Empirical Strategy. Research questions. Our research inquiry is structured around the follow-
ing key questions:

1. Accessibility. How effectively did our flood EWS deliver warnings to households? We assess
this by gathering data during the flood season on the sources, methods, number, accuracy,
usefulness, trustworthiness, and timing of the flood alerts received.

2. Ex ante adaptation. Did households take preemptive actions to mitigate flood impacts after re-
ceiving flood alerts? During the flood season, we survey households to see how they protected
family members, crops, livestock, personal items, and property.

3. Physical health. Has the EWS contributed to better health outcomes during the flood season?
After the flood season, we inquire about instances of illness, injury, or death in the household,
including the duration, medical costs, symptoms, and causes. This helps us understand the
health impact of the floods and the effectiveness of the EWS in mitigating these impacts.

4. Economic well-being. Did the EWS improve households’ economic conditions during and
after the floods? We track household income from various sources like agriculture, non-farm
businesses, wage employment, and livestock after the flood season.

5. Ex post adaptation. Did receiving alerts reduce the need for emergency actions or spending
after the floods? After flood season, we collect household expenses data from flood season
and the past year. Additionally, we track work and school absences and school dropouts, to
gauge the broader impact of EWS on daily life.

Econometric specification. To estimate these impacts, we will estimate the following reduced-form
regression specification:

Yhvpd = γ0 + γ11(Treatpd) + µd + vpd (1)

Treatpd takes the value 1 if community (panchayat) p in district d is in the treatment group, 0
otherwise. Yhvpd is outcome of interest for household h in village v in panchayat p in district
d. Because random assignment of the 319 panchayats between the treatment and control group
was stratified at the district level, we also include district fixed effects (µd). vpd is an error term,
clustered at the panchayat level. We also plan to estimate Equation 3, factoring in the severity of
flood alerts, which is indicated by the total number of alerts received. We anticipate that the effects

4



on proactive adaptation (ex ante), physical health, economic conditions, and reactive adaptation
(ex post) will be influenced by the severity of the floods.

In our study, which is based on a randomized design, an essential assumption for identifying cause-
and-effect relationships is that the allocation of treatment is independent of any unobserved factors
that might affect the outcomes. To test this assumption, we use the 2022 endline survey to examine
and confirm that there is a balanced distribution across fixed observable characteristics that are
unlikely to be affected by our intervention and might influence the primary outcomes of our study
(Table 1).

Floods. In 2022 and 2023, roughly the same number of panchayats received alerts, with around
80% in both the control and treatment groups in both years (Figure 5).4 This suggests that the
extent of flooding was similar across the two years. However, the intensity, as measured by the
number of alerts, was markedly different: in 2022, the average number of alerts per panchayat was
around 50 for both control and treatment groups, whereas in 2023, it decreased to an average of 25
for both the groups (Figure 6). This indicates that although the floods were as extensive in both
years, the intensity was significantly higher in 2022 compared to 2023.

Short-Run Impacts. Accessibility. Initial results suggest that our flood EWS effectively deliv-
ered warnings to households in both 2022 and 2023. Households in treatment communities were
more likely to receive flood alerts, with a greater number of alerts received compared to those
in control communities. These communities also benefited from more timely and accurate alerts;
treatment communities were also more inclined to trust flood alerts.

During the 2022 flood season, households in treatment communities received 2.41 more alerts (a
298% increase) on average during the 2022 flood season (June-October), were 27% more likely
to receive any alerts, 46.5% more likely to receive alerts before water reached their area, and 57%
more likely to say they trust the alerts completely (Figures 7 - 10). In 2023, treatment communities
received 4.35 more alerts on average (a 558% increase), were 74% more likely to receive any alert,
88% more likely to receive an alert before water reached their panchayat, and 89% more likely to
say they trust alerts completely. Furthermore, across the two flood cycles, the intervention’s impact
was equitable across social strata, enhancing access for households regardless of their caste status,
traditionally lower or upper (Table 2). This indicates that the measures taken effectively bridged
customary social divides, ensuring inclusive reach of the benefits.

Importantly, while treatment communities received more alerts, they also experienced a higher rate
of false positive alerts (alerts without subsequent floods). The treatment group experienced more
false positives, 8.09%, compared to the control group at 3.64% (Figure 11). Despite the increase
in false positives, the reduction in false negatives (situations with flooding but no alerts) led to
an improvement in overall alert accuracy. The control group experienced a higher rate of false
negatives at 42.97%, significantly more than the treatment group’s 32.84%. Overall, the treatment
group had a lower incidence of forecast errors at 40.94% compared to the control group at 46.61%.

Ex ante adaptation and physical health. We also find encouraging effects on proactive adaptive
behaviors and physical health in areas that experienced significant flooding, as proxied by the
number of alerts sent via Google’s forecasting and android-based alerting system (Figure 12).
Specifically, we observed that households in the treatment group who received the most alerts
(top tercile) were more likely to engage in precautionary actions against flooding and experienced

4As one might expect, the number of communities that were alerted by Google’s flood forecasting and android-
based alerting system is balanced across treatment and control groups.
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fewer health issues due to flooding. Quantitatively, these households in the top tercile for alerts
had a score that was 0.18 standard deviations higher on indices measuring proactive adaptation
and physical health compared to control households receiving a similar number of alerts. Within
the health index, the most heavily impacted treatment households showed a decrease in sickness
and injury (Table 3), mainly due to fewer cases of waterborne diseases and slip-related accidents.
Overall, treatment households observed 0.36 fewer illness symptoms (a 16.56% decrease) compared
to control households (Table 4). As a result, households in treatment areas incurred roughly INR
6,500 less on illness treatment (a 32.87% decrease). In fact, based on the estimated reduction in
medical expenditures alone, we estimate that for every $1 spent on the program, the intervention
would generate a minimum benefit of $30 during a severe flooding season.

Next, we examine how flood EWS impact physical health differently across gender and age groups
within households. Our findings don’t indicate significant variations in sickness rates between men
and women (Tables 5 and 6). However, women appear to benefit more in terms of injury prevention
from the EWS than men. This difference may be attributed to the roles women usually play during
floods, often being the primary caretakers in the home and, consequently, more exposed to risks
of slip-related injuries. The protective effects of EWS against sickness are most pronounced in the
oldest populations (those over 60 years of age) (Tables 7 - 9). In terms of injury prevention, the
benefits are primarily observed in the 16-60 age group, supporting the hypothesis that the larger
protective impacts on injury for women are due to their higher exposure to injury risks, as this
age group includes many women in caretaker roles. The impacts on both sickness and injury for
children under 16 are smaller than for the older members of households.

Economic well-being and ex post adaptation. We fail to find evidence for improved economic well-
being or decrease in ex-post adaptation in severely flooded communities. This suggests that the
lead time of 2-4 days is sufficient for households to take immediate actions like sandbagging homes
or moving food to a safe location to protect their health against the impending flood. However,
for economic well-being, particularly in the context of agricultural communities, such a short lead
time may not be enough to take effective measures to protect agricultural land and crops, often
caught between the post-planting and pre-harvest phases, making them especially vulnerable to
flooding with limited mitigation options. Additionally, economic adaptation strategies like building
protective structures or altering farming practices may require even greater trust in the EWS, which
may take time to develop. Without this level of trust, farmers are less likely to undertake costly
adaptive measures that could mitigate economic losses and lessen the necessity for extensive post-
flood adaptation.

Furthermore, the absence of a decrease in ex-post adaptation could indicate that, notwithstanding
the advance warning, the severity of floods overruns the capacity to safeguard economic assets like
farmland. The resulting damage may render post-flood adaptive measures, such as repairing and
improving infrastructure or investing in future flood prevention, unfeasible or ineffective in the
immediate aftermath due to the extensive resources and planning required. Moreover, since health
benefits are concentrated among males over 60 and women aged 16-65, who are likely home caretak-
ers, it’s entirely expected that we observe no reductions in work absences as post-flood adaptations,
given their less direct involvement in external work. Overall, the lack of evidence for improved eco-
nomic well-being and ex-post adaptation suggests that while EWS can be beneficial for immediate
health, their utility in protecting economic assets and enabling effective post-disaster adaptation
is limited without additional, more extensive measures and without overcoming technological and
trust-related barriers.
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Longer-Run Impacts. As underlined by the discussion above, understanding the longer-term
impact of EWS, that is, estimates that incorporate behavioral responses to accurate alerts or
inaccurate alerts, is crucial to evaluate the system’s effectiveness. Multiple accurate alerts may
foster trust and encourage more proactive safety measures, whereas false positive alerts could
diminish trust.5 In addition, drawing conclusions of the effectiveness of EWS based on one or two
seasons could be misleading, especially if they are atypical in terms of flood frequency or severity.
Therefore, our study will (i) analyze the aggregate effects of EWS over a set of highly variable flood
seasons, (ii) investigate how the accuracy of alerts influences community trust and the adoption of
proactive safety measures, considering that inaccurate alerts might undermine trust.
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Figures and Tables

Figure 1: Floods are highly disruptive to lives and livelihoods in Bihar.
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Source: Household survey in rural Bihar (Jan-Feb 2020).
N = 810 households.

Notes. Figure reports the proportion of households who reported negative outcomes following the 2019 flood season.
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Figure 2: Most at-risk households do not have access to flood warnings.
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Source: Household survey in rural Bihar (Jan-Feb 2020). N = 810 households.

Notes. Figure reports the proportion of households who were a) affected by flooding in 2019 and b) were affected by
flooding and received a flood warning.

Figure 3: Existing flood early warning systems don’t provide information desired by at-risk house-
holds.
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Notes. Figure reports - in purple - the share of households who received each type of information from flood alerts
during the 2019 monsoon season, and - in orange - the share of households who desired each type of information.
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Figure 4: Location of Sample Villages in Bihar

Non-sample districts
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Control villages
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Notes. The map depicts Bihar, a northern state of India. Our sample consists of 159 control panchayats covering
291 villages and 160 treatment panchayats covering 300 villages in 12 districts.

Figure 5: Flooding was extensive and balanced across treatment and control.
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Notes. Figure reports the proportion of panchayats who were sent an alert by the Central Water Commission/Google
between June and October. Treatment consists of 160 panchayats and control consists of 159 panchayats. Treatment-
control differences are reported in the top left area of the plot region. In brackets, this is expressed as a percentage
of the control mean. Whiskers are 95% confidence intervals.
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Figure 6: The intensity of flooding was higher in 2022, but balanced across treatment and control
in both years.
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Notes. Figure reports the number of days in which panchayats were sent flood alerts by the Central Water Commis-
sion/Google between June and October. Treatment consists of 160 panchayats and control consists of 159 panchayats.
Treatment-control differences are reported in the top left area of the plot region. In brackets, this is expressed as a
percentage of the control mean. Whiskers are 95% confidence intervals.
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Figure 7: Treatment households are more likely to receive an alert.
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any source between June and October. Treatment-control differences are reported in the top left area of the plot
region. In brackets, this is expressed as a percentage of the control mean. Whiskers are 95% confidence intervals.
Standard errors are clustered at the panchayat level.

Figure 8: Treatment households receive greater # of alerts.
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October (top-coded at the 99th percentile). Treatment-control differences are reported in the top left area of the plot
region. In brackets, this is expressed as a percentage of the control mean. Whiskers are 95% confidence intervals.
Standard errors are clustered at the panchayat level.
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Figure 9: Treatment households are more likely to receive alerts before water reaches the community
(panchayat).
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Notes. Figure reports the percentage of control and treatment household households that reported - between June
and October, for at least one source of alert - that alerts typically arrived before water reached their panchayat.
Treatment-control differences are reported in the top left area of the plot region. In brackets, this is expressed as
a percentage of the control mean. Whiskers are 95% confidence intervals. Standard errors are clustered at the
panchayat level.

13



Figure 10: Treatment households are more likely to trust alerts completely.
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alert - that they trusted alerts ‘completely’. Treatment-control differences are reported in the top left area of the plot
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Standard errors are clustered at the panchayat level.
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Figure 11: Treatment households experience less forecast error due to fewer instances of false
negatives, but are more likely to receive false positives.
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errors.
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(b) Treatment HHs are less likely to not receive alerts
when flooded.
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(c) Treatment HHs are more likely to be alerted, but
not flooded.
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Notes. Panel (a) reports the proportion of control and treatment households who experienced either false positive
or false negative alerts. Panel (b) reports the proportion of control and treatment households who experienced false
negatives between June and October - their panchayat was flooded and they did not receive any alert. Panel (c)
reports the proportion of control and treatment households who experienced false positives - they received an alert
and their panchayat was not flooded. Treatment-control differences are reported in the top left area of the plot region.
In brackets, this is expressed as a percentage of the control mean. Whiskers are 95% confidence intervals. Standard
errors are clustered at the panchayat-round level.
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Figure 12: Treatment HHs take more proactive steps and are better protected, in terms of physical
health, in severely flooded communities.
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Notes. Figure reports treatment effects on KLK indices constructed from families of related outcomes, standardized
such that a 1-point increase reflects a 1 standard deviation improvement in outcomes. Cutoffs for alerts terciles are
defined by the panchayat-level distribution of alerts sent by the Central Water Commission/Google in 2022. The
ex-ante adaptation estimates include a midline dummy, equal to 1 if this module was surveyed during the flood
season. In the case this module was surveyed during the flood season, this household is binned according to the
number of alerts received up to the day of the survey. Regression uses round and district fixed effects and standard
errors are clustered at the panchayat-round level. ∗ Significant at the 10 percent level, ∗∗ Significant at the 5 percent
level, ∗∗∗ Significant at the 1 percent level.
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Table 1: Household characteristics are balanced across treatment and control communities.

(1) (2) (3) (4)
Variables Control Treatment Difference N

HH size 5.479 5.431 -0.048 5,582
[2.385] [2.540] (0.087)

HH head’s age (yrs) 44.713 44.903 0.190 5,582
[15.000] [15.446] (0.524)

Male HH head (=1) 0.999 0.998 -0.000 5,582
[0.038] [0.042] (0.001)

Proportion of females in the HH 0.478 0.475 -0.003 5,582
[0.157] [0.159] (0.005)

Hindu (=1) 0.890 0.914 0.025 5,582
[0.314] [0.280] (0.020)

Muslim (=1) 0.098 0.075 -0.023 5,582
[0.297] [0.264] (0.020)

Scheduled Castes (=1) 0.181 0.164 -0.017 5,567
[0.385] [0.370] (0.018)

HH head’s education: Grad & above 0.166 0.152 -0.014 5,582
[0.372] [0.359] (0.012)

Number of members, 0-5 yrs 0.698 0.697 -0.000 5,582
[1.042] [1.030] (0.035)

Number of members, 6-15 yrs 1.172 1.133 -0.039 5,582
[1.307] [1.331] (0.041)

Number of members, 60+ yrs 0.496 0.523 0.027 5,582
[0.709] [0.725] (0.023)

Smartphone ownership (=1) 0.915 0.915 0.000 5,582
[0.278] [0.278] (0.008)

GIS distance to river (kms) 2.767 2.648 -0.119 5,556
[2.198] [2.035] (0.235)

Reported distance to river (kms) 7.036 5.475 -1.561 5,521
[51.714] [43.204] (1.388)

Panchayat flooded in Jun-Oct, 2022 (Satellite) 0.655 0.584 -0.070 5,582
[0.476] [0.493] (0.056)

Panchayat flooded in Aashadh-Kartik (Reported) 0.877 0.871 -0.006 5,582
[0.328] [0.335] (0.020)

Altitude (meters) 6.868 4.538 -2.330 5,582
[214.140] [113.645] (6.924)

Land owned (acres) 1.071 1.286 0.216 5,542
[2.412] [12.359] (0.250)

N 2,743 2,839 5,582
Clusters 159 160 319

Notes.Table reports balance for household-level characteristics. Columns (1) and (2) report control and treatment means,
respectively. Column (3) reports treatment-control differences. Standard errors clustered at the level of panchayat in
parentheses and standard deviations in brackets. ∗ Significant at the 10 percent level, ∗∗ Significant at the 5 percent
level, ∗∗∗ Significant at the 1 percent level.
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Table 2: Impacts on accessibility are similar across social strata.

(1) (2) (3) (4)
Variables Control Mean Upper Strata Control Mean Lower Strata

Any Alert (=1) 0.220 0.168∗∗∗ 0.243 0.159∗∗∗

(0.036) (0.019)
Number of Alerts 0.706 3.848∗∗∗ 0.817 4.157∗∗∗

(0.634) (0.407)
Before Water Reached Panch. (=1) 0.153 0.180∗∗∗ 0.173 0.130∗∗∗

(0.034) (0.017)
Trust Completely (=1) 0.118 0.128∗∗∗ 0.147 0.116∗∗∗

(0.027) (0.016)

Notes. Upper Strata comprises non-EBC upper caste households. Lower Strata comprises OBC, SC, ST and EBC
households. Any Alert (=1) is equal to 1 if the household reported receiving an alert between June and October. Number
of Alerts is the number of alerts the household received, between June and October (top-coded at the 99th percentile).
Before Water Reached Panch. (=1) is equal to 1 if the household reported that - between June and October, for at least
one source - alerts typically were received before water reached their panchayat. Trust Completely (=1) is equal to 1 if
the household reported that - between June and October, for at least one source - they trusted the source completely.
Control means are reported in columns (1) and (3). Treatment effects are reported in columns (2) and (4). Standard errors
clustered at the panchayat-round level in parentheses. Regression includes round and district fixed effects. ∗ Significant
at the 10 percent level, ∗∗ Significant at the 5 percent level, ∗∗∗ Significant at the 1 percent level.

Table 3: Treatment HHs experienced less injury or illness in severely flooded communities

(1) (2) (3) (4)
Variables No Alerts Tercile 1 Tercile 2 Tercile 3

Sickness 0.052 -0.002 0.047 0.188∗∗†
(0.048) (0.036) (0.037) (0.080)

Injury 0.036 -0.009 -0.013 0.139∗†
(0.044) (0.031) (0.035) (0.074)

Death -0.045 0.038 -0.041 0.047
(0.044) (0.032) (0.037) (0.078)

Notes. Table reports treatment effects on KLK indices constructed
from families of related outcomes, standardized such that a 1-point
increase reflects a 1 standard deviation improvement in outcomes.
Standard errors are clustered at the panchayat-round level. Regres-
sion includes round and district fixed effects. Cutoffs for alerts terciles
are defined by the household distribution of alerts sent by the Central
Water Commission in 2022. ∗ Significant at the 10 percent level, ∗∗

Significant at the 5 percent level, ∗∗∗ Significant at the 1 percent level.
Anderson’s sharpened q-values are denoted †.
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Table 4: Treatment households are less likely to get sick, experience fewer types of disease, and
spend less on treating illness, in severely flooded communities.

(1) (2) (3) (4) (5)
Variables No Alerts Tercile 1 Tercile 2 Control Mean Tercile 3

Any member sick (=1) -0.004 0.007 -0.015 0.743 -0.037
(0.021) (0.017) (0.016) (0.039)

# members sick -0.064 0.032 -0.077 2.070 -0.284∗†
(0.090) (0.069) (0.073) (0.157)

Avg # days sick 0.278 -0.090 -0.776 9.562 -0.605
(0.622) (0.438) (0.482) (1.273)

Number of Symptoms -0.187∗ 0.021 -0.081 2.203 -0.365∗∗†
(0.096) (0.075) (0.066) (0.164)

Number of Causes -0.083∗ -0.034 -0.027 1.100 -0.183∗∗†
(0.046) (0.032) (0.035) (0.081)

Illness treatment (1K Rs) -0.926 0.308 -0.293 19.685 -6.470∗∗†
(1.858) (1.151) (1.250) (2.739)

Notes. Columns (1), (2), (3) and (5) report treatment effects. Column (4) reports control means for Tercile
3. Standard errors are clustered at the panchayat-round level. Cutoffs for alerts terciles are defined by the
household distribution of alerts sent by the Central Water Commission in 2022. Regression includes round
and district fixed effects. Standard errors clustered at the level of panchayat in parentheses. ∗ Significant at
the 10 percent level, ∗∗ Significant at the 5 percent level, ∗∗∗ Significant at the 1 percent level. Anderson’s
sharpened q-values are denoted †.

Table 5: Male members of treatment households are less likely to get sick in severely flooded
communities.

(1) (2) (3) (4)
Variables No Alerts Tercile 1 Tercile 2 Tercile 3

Sickness 0.058∗ -0.006 0.045∗ 0.179∗∗∗

(0.034) (0.024) (0.027) (0.053)
Injury -0.000 0.022 -0.005 -0.000

(0.033) (0.022) (0.025) (0.049)

Notes. Table reports treatment effects on KLK indices constructed
from families of related outcomes, standardized such that a 1-point
increase reflects a 1 standard deviation improvement in outcomes.
Sample is all male household members. Standard errors are clustered
at the panchayat-round level. Regression includes round and district
fixed effects. Alerts terciles are based on the household distribution
of alerts recorded in 2022. ∗ Significant at the 10 percent level, ∗∗

Significant at the 5 percent level, ∗∗∗ Significant at the 1 percent level.
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Table 6: Female members of treatment households are less likely to get injured in severely flooded
communities.

(1) (2) (3) (4)
Variables No Alerts Tercile 1 Tercile 2 Tercile 3

Sickness 0.041 0.003 0.016 0.111
(0.038) (0.026) (0.029) (0.084)

Injury 0.026 -0.016 0.000 0.130∗∗∗

(0.028) (0.020) (0.021) (0.035)

Notes. Table reports treatment effects on KLK indices constructed
from families of related outcomes, standardized such that a 1-point
increase reflects a 1 standard deviation improvement in outcomes.
Sample is all female household members. Standard errors are clus-
tered at the panchayat-round level. Regression includes round and
district fixed effects. Alerts terciles are based on the household distri-
bution of alerts recorded in 2022. ∗ Significant at the 10 percent level,
∗∗ Significant at the 5 percent level, ∗∗∗ Significant at the 1 percent
level.

Table 7: Oldest members (over 60) of treatment households are less likely to get sick in severely
flooded communities.

(1) (2) (3) (4)
Variables No Alerts Tercile 1 Tercile 2 Tercile 3

Sickness -0.010 -0.035 0.051 0.273∗∗

(0.084) (0.054) (0.065) (0.131)
Injury 0.019 -0.049 -0.088 -0.069

(0.093) (0.060) (0.064) (0.141)

Notes. Table reports treatment effects on KLK indices constructed
from families of related outcomes, standardized such that a 1-point
increase reflects a 1 standard deviation improvement in outcomes.
Sample is all household members over the age of 60. Standard er-
rors are clustered at the panchayat-round level. Regression includes
round and district fixed effects. Alerts terciles are based on the house-
hold distribution of alerts recorded in 2022. ∗ Significant at the 10
percent level, ∗∗ Significant at the 5 percent level, ∗∗∗ Significant at
the 1 percent level.
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Table 8: Older members (16-60) of treatment households are less likely to get sick and injured in
severely flooded communities.

(1) (2) (3) (4)
Variables No Alerts Tercile 1 Tercile 2 Tercile 3

Sickness 0.037 0.014 0.033 0.188∗∗∗

(0.039) (0.025) (0.030) (0.066)
Injury 0.010 0.003 0.029 0.113∗

(0.034) (0.022) (0.023) (0.057)

Notes. Table reports treatment effects on KLK indices constructed
from families of related outcomes, standardized such that a 1-point in-
crease reflects a 1 standard deviation improvement in outcomes. Sam-
ple is all household members between the ages of 16 and 60. Standard
errors are clustered at the panchayat-round level. Regression includes
round and district fixed effects. Alerts terciles are based on the house-
hold distribution of alerts recorded in 2022. ∗ Significant at the 10
percent level, ∗∗ Significant at the 5 percent level, ∗∗∗ Significant at
the 1 percent level.

Table 9: Health impacts on children (under 16) are qualitatively smaller compared to impacts on
older members of treatment households.

(1) (2) (3) (4)
Variables No Alerts Tercile 1 Tercile 2 Tercile 3

Sickness 0.069∗∗ -0.012 0.028 0.086
(0.033) (0.028) (0.029) (0.077)

Injury 0.005 0.020 -0.026 0.033
(0.031) (0.018) (0.021) (0.038)

Notes. Table reports treatment effects on KLK indices constructed
from families of related outcomes, standardized such that a 1-point
increase reflects a 1 standard deviation improvement in outcomes.
Sample is all household members under the age of 16. Standard errors
are clustered at the panchayat-round level. Regression includes round
and district fixed effects. Alerts terciles are based on the household
distribution of alerts recorded in 2022. ∗ Significant at the 10 percent
level, ∗∗ Significant at the 5 percent level, ∗∗∗ Significant at the 1 per-
cent level.
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