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High pollution persists in many developing countries despite strict environmental
rules. We use a field experiment and a structural model to study how plant emission
standards are enforced. In collaboration with an Indian environmental regulator, we
experimentally doubled the rate of inspection for treatment plants and required that
the extra inspections be assigned randomly. We find that treatment plants only slightly
increased compliance. We hypothesize that this weak effect is due to poor targeting,
since the random inspections in the treatment found fewer extreme violators than the
regulator’s own discretionary inspections. To unbundle the roles of extra inspections
and the removal of discretion over what plants to target, we set out a model of environ-
mental regulation where the regulator targets inspections, based on a signal of pollu-
tion, to maximize plant abatement. Using the experiment to identify key parameters of
the model, we find that the regulator aggressively targets its discretionary inspections,
to the degree that half of the plants receive fewer than one inspection per year, while
plants expected to be the dirtiest may receive ten. Counterfactual simulations show that
discretion in targeting helps enforcement: inspections that the regulator assigns cause
three times more abatement than would the same number of randomly assigned inspec-
tions. Nonetheless, we find that the regulator’s information on plant pollution is poor,
and improvements in monitoring would reduce emissions.

KEYWORDS: Environmental regulation, rules versus discretion, regulatory inspec-
tions, development and pollution, industrialization.

1. INTRODUCTION

RECENT POLLUTION LEVELS in emerging economies like China and India exceed the
highest levels ever recorded in rich countries. Such pollution reduces lifespans (Chen,
Ebenstein, Greenstone, and Li (2013), Greenstone, Nilekani, Pande, Ryan, Sudarshan,
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and Sugathan (2014), Ebenstein, Fan, Greenstone, He, and Zhou (2017)) and labor pro-
ductivity (Graff-Zivin and Neidell (2012), Chang, Zivin, Gross, and Neidell (2016), Ad-
hvaryu, Kala, and Nyshadham (2016), He, Liu, and Salvo (2016)). High pollution persists
despite strict emission standards on the books. Regulatory enforcement is thus the cru-
cible for environmental quality, but we know little about why enforcement fails. Regula-
tors blame a lack of resources to carry out regulations. Other observers offer less charita-
ble explanations, for example, that regulators with wide discretion choose not to enforce
standards due to corruption, laziness, or incompetence (Stigler (1971), Leaver (2009)).!
Whether regulatory discretion helps or hinders enforcement is generally uncertain. While
discretion can be abused, it also allows regulators to use local information to strengthen
enforcement.

Gujarat, India is an ideal setting in which to study regulatory enforcement. Gujarat is
one of India’s most industrialized states and contends with major pollution challenges.
Pollution is not due to a lack of standards, as there are strict maximum limits on air and
water emissions from industrial plants. Neither is it from an inability to punish violators:
in 2008, before our study, the Gujarat Pollution Control Board (GPCB) ordered 9% of
the plants in our sample to close, at least temporarily, sometimes cutting off their utilities.

While punishments are severe when meted out, the chance of being caught is low. The
GPCB has a limited inspection budget and chooses which plants to inspect. Half of the
plants are inspected less often than the prescribed rate, while other, similar plants are
inspected many times more. This discretion in inspection targeting may hurt or help reg-
ulatory enforcement. It would hurt enforcement if plants bribe the regulator to avoid
inspections or if regulators shirk and avoid the dirtiest plants to minimize conflict and
monitoring costs. Discretion may also help if it allows the regulator to use local informa-
tion to target more polluting plants. Understanding the effects of limited resources and
regulatory discretion on enforcement is generally hard due both to poor data on regula-
tion and outcomes, and the endogeneity of inspection targeting.

This paper uses a field experiment and structural estimation to unbundle the roles of re-
sources and discretion in regulatory enforcement. The experiment covered 960 industrial
plants and ran for 2 years. All sample plants came from the highest category of pollution
potential. The inspection treatment, assigned to half of plants, was cross-randomized with
an audit reform experiment in the subset of plants that were eligible for environmental
audits (Duflo, Greenstone, Pande, and Ryan (2013)).? The inspection treatment met the
de jure inspection rate by providing the resources needed to bring all treatment plants up
to at least the required minimum number of inspections. The treatment also removed the
regulator’s discretion over these extra inspections by allocating them randomly across all
treatment plants. It did not alter pollution standards or the regulatory penalties for vio-
lations. The regulator continued to exercise discretion in allocating its existing budget of
inspections across both the treatment and the control groups.

'The view that discretion leads to regulatory abuse of power was clearly expressed by the current Indian
Prime Minister when he unveiled a scheme of randomly assigned inspections for compliance with labor rules:
“Now computer draw will decide which inspector (labor) will go for inspection to which factory and he will
have to upload his report online in 72 hours. These facilities are what I call minimum government, maximum
governance. I have been hearing about ‘inspector raj’ since childhood” (The Economic Times (2014)).

2For example, all seven of the cities in Gujarat that are monitored for air pollution exceed the national
standards for fine particulate matter (Central Pollution Control Board (2012)).

3In 1996, the High Court of Gujarat ordered GPCB to instate a third-party audit system wherein plants from
polluting sectors must provide an annual audit report to GPCB. Duflo et al. (2013) evaluated a reform of this
audit system and found that making third-party auditors more accountable to the regulator and less beholden
to the plants they audit improves truth-telling and lowers pollution.
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The analysis is conducted with unusually rich, perhaps unique, data on the regulatory
process, plant abatement, and pollution. On the regulatory process, we code nearly 10,000
pieces of correspondence between the regulator and sample plants, which record their
interactions over 5 years (from 2 years before the experiment through 1 year after). These
documents include plant inspections, pollution readings, regulatory notices, and penalties
on the regulator’s side, as well as written responses from plants, such as documentation
of abatement equipment. We also ran an independent end-line survey of plant pollution
and abatement costs.

Our experimental results pull on each link in the chain from inspections to emissions,
which, in the end, the treatment did not meaningfully reduce. First, the experiment was
implemented, in that inspection rates in the treatment group were twice those in the con-
trol, and treatment plants report higher perceived inspection rates, showing the scrutiny
was felt. Second, treatment plants were more often found in violation of pollution stan-
dards and received more citations for those violations. Third, GPCB followed up on in-
spections in both treatment arms the same way: all inspections were entered in the same
database and were judged by the same officials. We empirically verify that, conditional
on an inspection’s findings, treatment status did not affect the regulator’s followup. Yet,
fourth, despite more citations, treatment plants were no more likely to be penalized. Fifth,
we cannot reject the null of a zero treatment effect on average plant pollution emissions,
although we find a small increase in the share of firms in compliance.*

Why did the bundled treatment, including both additional resources and reduced dis-
cretion, prove so weak at lowering emissions? A pattern of evidence suggests that a main
reason is the removal of regulatory discretion over which plants to inspect. Data on status
quo inspections and the process of regulatory sanctions, after an inspection, show that the
regulator reserves the most costly penalties for extreme violations of regulatory standards.
The treatment did identify many more plants that violated emissions standards, but did
not find any more extreme violators, which would have been candidates for the most costly
penalties. This gap suggests that the regulator’s discretionary inspections, while done at
a low rate on average in the status quo, nonetheless found many of the dirtiest plants.
Adding random inspections mostly picked up smaller violators that the regulator would
not have penalized in any case.

Motivated by this evidence, the second part of the paper uses a structural model to
separate the roles of resources and regulatory discretion. We model environmental regu-
lation under imperfect information and use the experimental variation in inspections to
identify key parameters of the model. In the model, the regulator is benevolent and seeks
to reduce pollution but is constrained by resources and information. The model includes
two stages. In the targeting stage, the regulator chooses which plants to inspect, subject
to its inspection budget, based on plant observables and noisy signals of plants’ pollution,
unobserved by the econometrician but known to the regulator. Plants decide whether to
abate pollution given the threat of inspections. More polluting plants are both more likely
to abate, because an inspection offers them a greater threat of penalties, and abate more
conditional on taking action, because the abatement technology is proportional to pollu-
tion levels. The second stage is a penalty stage where, after an inspection, penalties may be
levied on noncompliant plants. The regulator must follow an exogenous process for apply-
ing penalties to polluting plants. We estimate this process as a policy function, using our
rich data on the regulatory process, and hold the estimated policy fixed in counterfactuals.

“The effects of both the inspection and audit treatments on pollution are negative, but their interaction is
positive and significant, consistent with the information obtained from these channels being substitutable.
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The plant’s objective is to minimize the total cost of environmental regulation by trad-
ing off costly abatement actions against the risk of future inspections and the penalties
they may beget. We use the penalty stage of the model to recover these unobserved penal-
ties, using the plant’s choice, in a dynamic problem, of when to install costly abatement
equipment. This revealed preference approach has the benefit of capturing all the costs
of regulation, including formal penalties such as a mandated plant closure, and informal
costs such as disruption and bribes.

The model estimates yield three broad sets of results. First, the regulator aggressively
targets plants with high pollution signals, even though its signals are weakly related to true
plant pollution. The estimates imply that half of plants receive fewer than 1 inspection per
year, while plants expected to be the dirtiest may receive 10. This finding suggests that tar-
geting, rather than neglect, is a reason why many plants are left largely alone. A sensitivity
analysis, using the method of Andrews, Gentzkow, and Shapiro (2017), confirms that the
estimates of key model parameters are especially sensitive to the variation created by the
experiment. If the experimental treatment effects on pollution had been greater, for ex-
ample, we would have estimated the parameter that governs the efficacy of abatement in
our model to be higher.

Second, regulatory penalties are costly when applied, but the risk of penalties is low.
We estimate that a realized plant closure costs about $50,000, inclusive of formal and
informal costs, or roughly 2 months of mean plant profits in our sample. Using these costs
and the probability of penalties, the expected discounted value of an initial inspection to
a plant is negative $2000. Even for plants where an initial inspection reveals a pollution
reading of at least five times the regulatory standard, the expected value of the inspection
is negative $6000—greater than for a plant with average pollution, but far smaller than
the cost of certain punishment.

Third, counterfactual exercises reveal that regulatory discretion in choosing which
plants to inspect is valuable, especially for tight inspection budgets. At the GPCB’s cur-
rent inspection rate, the inspections chosen by the regulator induce three times more
abatement than would the same number of randomly assigned inspections. The value of
discretion declines as the number of inspections available to the regulator increases. The
experiment doubled inspections, from the status quo, and assigned them randomly. We
simulate that the effect on abatement of the same number of added inspections would
have been 15% greater than the estimated treatment effect if the added inspections were
assigned according to the regulator’s discretion.

In a regime with discretion, improving the regulator’s information can boost the ef-
ficacy of inspections. A technology that gave the regulator perfect information on plant
emissions would increase abatement by 30% at the status quo number of inspections. This
abatement is the same as would be achieved by a one-third increase in the inspection bud-
get if the added inspections were allocated with discretion. Such technology is not science
fiction: continuous emissions monitoring systems (CEMS) are used widely in the United
States, and India has announced plans to roll out these devices in heavily polluting sectors
(Central Pollution Control Board (2013, 2014)).

This paper makes several contributions to the literature. First, to the best of our knowl-
edge, it provides the first experimental evidence on how inspections change plant emis-
sions.” Second, we also believe it the first study with such rich data on the process of
environmental regulation, including data on regulatory actions, penalties, and indepen-

3Studies of regulatory inspections in the United States show that inspections reduce pollution significantly
(Hanna and Oliva (2010), Magat and Viscusi (1990)). The studies rely on observational data wherein dirtier
plants are more likely to get inspections, and this endogeneity is a strong concern (see Shimshack (2014) for
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dently measured plant pollution emissions. Third, our model demonstrates how structural
analysis can be used to unbundle the channels through which an experimental treatment
works. Our model captures the context of the experiment, including unobserved plant
heterogeneity, and we use the model estimates to simulate counterfactuals that either
were not part of the experiment (e.g., expanding inspections with discretion) or could not
plausibly have been part of any experiment (e.g., removing discretion from status quo
inspections). We find that regulatory discretion, which is seldom measured despite great
theoretical interest, can be valuable.® We also highlight that poor information is a major
constraint on regulatory efficacy.

2. CONTEXT AND EXPERIMENTAL DESIGN
2.1. Context: Regulation of Industrial Pollution in India

In India, national laws set pollution standards, and practically all enforcement of en-
vironmental regulations occurs at the state level. States may make their standards more
strict than the national standards, but cannot relax them (Ministry of Environment and
Forests (1986)). State Pollution Control Boards, such as the Gujarat Pollution Control
Board (GPCB), are responsible for enforcing the provisions of the Water Act (1974), Air
Act (1981), and Environmental Protection (1986) Act, and their attendant command-and-
control pollution regulations.

Turning to our study partner, the GPCB is responsible for monitoring and regulating
approximately 20,000 industrial plants in the Indian state of Gujarat. The practices of
the GPCB are largely common with other Indian states. Each GPCB regional office has
several inspection teams and a regional officer who assigns inspections to plants. During
an inspection, the team observes plant conditions and its environmental management, and
often, but not always, collects pollution samples for laboratory analysis. Officers at the
regional and head office review inspection reports, which describe the plant’s condition,
and analysis reports, which list pollution concentrations for air and water pollutants.

Regulations mandate routine inspection of plants in sectors with the highest pollution
potential (“red” category plants) every 90 days if they are large or medium scale and
once per year if they are small scale.” In the year before the experiment, 42% of control

a recent survey). Studies of regulatory efficacy in emerging economies are more mixed, with Tanaka (2013),
for example, finding large reductions in pollution from a control policy in China and Greenstone and Hanna
(2014) finding cuts in pollution in India from policies targeting air, but not water, pollution. On the costs of
regulation, Greenstone, List, and Syverson (2012) find U.S. regulations lower manufacturing productivity, and
Ryan (2012), using a dynamic model, finds that the U.S. Clean Air Act Amendments raised entry costs in
the cement industry. There are few studies of environmental regulation in developing countries, but Aghion,
Burgess, and Redding (2008) and Besley and Burgess (2004) document negative productivity effects of rigid
industrial regulation for India.

®Environmental regulation is a classic setting for incentive regulation (Laffont and Tirole (1993), Laffont
(1994), Boyer and Laffont (1999)). Limited regulatory capacity and commitment typically change the optimal
regulatory policy in emerging economies with incomplete markets (Laffont (2005), Estache and Wren-Lewis
(2009)). Papers in organizational economics, such as Aghion and Tirole (1997), suggest that formal and real
authority may then optimally diverge, leading to substantial value for discretion. More broadly, our findings res-
onate with the literature on effective policy design when state capacity is limited (Besley and Persson (2010)).
For instance, consistent with this paper’s findings, Rasul and Rogger (2013) report significant gains from pro-
viding Nigerian bureaucrats autonomy in decision-making. Other papers note, to the contrary, bureaucrats and
politicians may misuse discretion in environmental regulation (Burgess, Hansen, Olken, Potapov, and Sieber
(2012), Jia (2014)).

"The GPCB follows a government classification for plants based on their reported scale of capital invest-
ment, with small scale being investment less than INR 50m ($1 million), medium, INR 50-100m ($1-2 million),
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plants were inspected at less than the prescribed rate. These routine inspections, which
the experiment manipulated, make up 35% of total inspections. The remainder are due
to plant applications to operate (30%), public complaints (11%), and followups on prior
inspections or penalties (24%).

Plants found in violation of pollution standards can be harshly penalized. The regu-
lator can mandate that a plant install abatement equipment, post a bond against future
performance, or even shut down, by ordering that a plant’s water and electricity be cut.
Utility disconnections remain in force until the plant has shown progress toward meeting
environmental standards; the median duration of closure in our data is 24 days. Because
abatement equipment is observable, plants may install equipment to show compliance,
even when operational changes could fix an initial violation.® In addition to formal penal-
ties like closure, plants may incur other costs of regulation, such as disruptions to plant
operations during inspections or bribes.

2.2. Experimental Design

The goal of our experiment was to estimate the impact of moving from the status quo,
infrequent inspections allocated with discretion, to regular inspections of all plants at
prescribed inspection rates. Such a reform would bring the GPCB into compliance with
its own prescribed inspection rates and the Central Pollution Control Board’s (CPCB)
inspection rules.

To this end, between August 2009 and May 2011 we worked with GPCB to increase
inspection frequency for a random subset of highly polluting plants. We identified the
population of 3455 red-category (i.e., high pollution potential) small- and medium-scale
plants in three regions of Gujarat (Ahmedabad, Surat, and Valsad), which constitutes
roughly 15% of the more than 20,000 regulated plants in Gujarat. By CPCB rules, these
plants are supposed to be inspected either once per year if they are small scale or once in 3
months if they are medium scale (Ministry of Environment and Forests (1999)). From this
population, the sample of 960 plants was drawn in two batches. First, we selected all 473
audit-eligible (i.e., “super red”) plants in Ahmedabad and Surat. Second, we randomly
selected 488 plants from the remaining audit-ineligible population.

Inspection treatment assignment was randomized within region by audit-treatment-
status strata (treatment, 233 plants; control, 240 plants; non-audit-eligible, 487 plants).
The treatment was thus cross-randomized and implemented concurrently with the audit
reform treatment studied by Duflo et al. (2013). The 481 plants assigned to the inspection
treatment were assigned at least one annual initial (routine) inspection and up to four in-
spections per year. In the first quarter, the plant was assigned one initial inspection, after
which it was randomly assigned on a quarterly basis to be inspected again with probability
0.66. After four quarters, this cycle started over.’

and large, above INR 100m ($2 million) (throughout, we use an exchange rate of $1U.S. = INR 50). Prescribed
inspection rates for these plants are comparable to those applied to large plants, by air pollution potential, in
the United States (Hanna and Oliva (2010)).

8The regulator, in principle, can also take a violator to court for criminal sanction, but this is rare and does
not occur in our data, because documenting violations is burdensome and there are long prosecutory delays.

9Toward the end of the inspection treatment, in the month prior to the end-line survey, we also assigned,
randomly and independently of the other treatments, some plants to receive a letter from GPCB reminding
them of their obligations to meet emissions limits. This letter reiterated the terms of plants’ environmental
consent, which in principle they already knew, but it may have also served to increase the salience of regulatory
compliance. The letter had no effect on emissions or compliance (Appendix Table S.VIII (Duflo, Greenstone,
Pande, and Ryan (2018))).
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Regional GPCB teams consisting of an environmental engineer and scientist conducted
treatment inspections. To not overburden current staff, we worked with GPCB to rehire
and integrate three recently retired GPCB scientists into the overall team. Rehired staff
were sometimes allocated to regular inspections, and regular staff were often allocated
to inspections assigned under the treatment, so that teams were well mixed in practice.!’
Each morning in each region, the designated inspection team was randomly assigned a list
of plants from the treatment group at which to conduct initial “routine” inspections that
day. This mimicked GPCB’s practice of assigning teams to plants, except that the plant
assignment was random, rather than being based on an official’s discretion.

In all respects but targeting, control and treatment inspections were the same. Treat-
ment and control inspection reports entered the same database without any distinguishing
flag, had samples analyzed by the same GPCB labs, and had the same GPCB officials de-
ciding on followup inspections and punishment.

Two of our experimental design choices are worth discussing. First, our treatment si-
multaneously modifies the number of inspections and the method of assignment. Sepa-
rate experiments on these two components would have been interesting: increasing the
budget but with regulatory discretion, and, separately, asking the regulator to randomly
inspect plants while holding the existing budget constant. We could not get the regulator’s
buy-in for the second option. Regarding the first option, we lacked the budget to do two
different treatment arms—one with and one without discretion—and we concluded there
was more to be learnt by testing the de jure policy, with a prescribed rate of inspections
for all plants. Our joint treatment implies that we need the structural model to separate
the impacts of resources and discretion.

Second, we explicitly asked the regulator to follow up on the treatment and control
initial inspections identically. If randomly assigning inspections at a prescribed rate was
adopted permanently, then the regulator might change its followup behavior in response,
which our experimental estimates will not capture. Identical followup allows us to focus on
the one dimension, of inspection targeting that did change. Moreover, had the regulator
been free to vary how inspections were handled in the two groups, pure experimental or
Hawthorne effects would have been a concern (e.g., the regulator trying to look tough, or
ignoring the treatment inspections).

2.3. Data

The paper uses two sources of data: an end-line plant survey and GPCB administrative
records. The end-line survey was conducted between April and July 2011 (the experiment
ended in May 2011) by independent agencies, mainly engineering departments of local
universities, supervised by the research organization Abdul Latif Jameel Poverty Action
Lab—South Asia (J-PAL South Asia). The survey collected pollution readings, expendi-
tures for abatement equipment investment and maintenance, and data on other aspects
of plant operations. The GPCB issued letters that required plants to cooperate with the
surveyors and stated truthfully that the results would not be used in regulation. Attrition
was low and did not differ by treatment status (12.9% of plants closed during the study
and only 4.7% attrited for other reasons; see Appendix Tables S.V and S.VI).

The second source of data is 9624 GPCB documents on its interactions with plants. We
categorize these documents by (a) whether they record an action of the regulator or a

10 Administrative data on staff assignments across all three regions shows that only one staff member, who
was newly rehired, participated in treatment inspections only, whereas 32 staff members, mostly current em-
ployees, participated in both treatment and control inspections.
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plant and (b) the type of action they record. Figure 4 shows the actions of the regulator
and plant and Appendix Table S.I maps these actions to their documentation.

The regulator can choose to inspect, warn, punish, or accept. To inspect is to revisit the
plant and gather another pollution reading. Inspect is documented by an inspection re-
port and an analysis report giving lab results on pollution. To warn is to threaten the plant
that it is at risk of regulatory action and is documented by regulatory letters, citations
for violations of pollution standards, and warnings that the plant will be closed absent
some remedial action. Punish records only costly punishments, mainly plant closure, doc-
umented by a closure direction sent to the plant or a notice to the utility to cut off the
plant’s water or electricity. Accept means to accept that the plant is in compliance and is
documented by the regulator revoking a prior action in writing or simply taking no further
action against a plant.

The plant has only two actions: comply and ignore. Comply is documented by the instal-
lation of abatement equipment, typically with a certification or invoice from the vendor
that did the work. Ignore is documented by any letter the plant writes to the regulator
that does not give evidence of compliance.!! The action ignore is also inferred from the
absence of any plant response between regulatory actions.

Many regulator and plant actions occur in response to a prior action. We use two main
rules to create chains of related actions. First, documents that explicitly cite one another
are linked. Second, documents concerning the same plant that follow within a short time
(usually 30 days) are linked. We also impute additional ignore actions, when none are
documented, to enforce an alternating-move structure. Appendix A describes the linkage
rules in more detail.

The resulting chains of interactions between the regulator and plants give a picture of
the probabilities of punishment and plant compliance. Table I summarizes the structure
of the chained interactions between the regulator and plants across rounds.'? Columns 1
through 6 give the frequency of actions of the regulator or plant in that round, from
regulatory records, and column 7 gives the total number of observations in that round.
The stage begins with a regulatory inspection. The plant and the regulator then alternate
moves until the regulator decides to Accept the plant’s compliance.

The rapidly descending numbers of observations in column 7 shows that the regulator
seldom penalizes plants: 87% of chains end after a single inspection, with the regulator
accepting in the third round. Over 900 chains continue beyond that stage, and a handful
go on for a dozen rounds or more as violating plants are inspected and punished. If the
regulator does not immediately accept the state of the plant, then it is initially more likely
to issue a warning: in round three, 9.5% of actions are warnings against 2.2% that are
punishments. Thereafter, the regulator is increasingly more likely to punish. Conditional
on reaching a given round the probability of punishment rises monotonically with every
round from 2.2% in round 3 to 18.1% in round 9 before turning downwards, in late rounds
that are seldom observed. Initial plant compliance is low but rises monotonically, with
probabilities of 0.4, 7.2, 8.9, 16.5 and 17.5 percent over the second through tenth rounds,
before levelling off.

"For example, a plant where GPCB found high air pollution readings claimed in correspondence, “At the
time of visit our chilling plant accidentally failed to proper working, so chilling system of scrubber was not
effective by simple water. Same time batch was under reaction and we were unable to stop our reaction at that
time. Now it is working properly.” That is, a piece of air pollution control equipment failed, causing pollution
to be higher than normal during the visit. These types of explanations are common when plants are found to
be well out of compliance.

20nline Appendix Table B4 gives an example of an extended regulator-plant interaction.
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TABLE I
STRUCTURE OF PENALTY STAGE ACTIONS?

Regulatory Action Plant Action

Inspect Warn Punish Accept Ignore Comply N % Left
Round ) @) 3) “) 5) (©) ™) ®)
1 100.0 0.0 0.0 0.0 7423 100.0
2 99.6 0.4 7423
3 1.0 9.5 2.2 87.3 7423 100.0
4 92.8 7.2 941
5 233 4.8 53 66.6 941 12.7
6 91.1 8.9 314
7 18.8 11.8 9.9 59.6 314 4.2
8 83.5 16.5 127
9 21.3 5.5 18.1 55.1 127 1.7
10 82.5 17.5 57
11 26.3 3.5 10.5 59.6 57 0.8
12 87.0 13.0 23
13 26.1 4.3 8.7 60.9 23 0.3
14 77.8 22.2 9
15+ 16.7 8.3 0.0 75.0 100.0 0.0 9 0.1
Total without inspections 0.0 4.6 1.6 42.7 50.2 0.9 7824
Total 31.0 3.2 1.1 29.4 34.6 0.6 25,217

4The table reports actions taken by the regulatory machine and by the firm in the penalty stage using administrative data. Figure 5
defines actions and their payoffs and Table IT maps them to regulatory documents. Each of columns 1-6 gives the probability, within
that row, of the party moving at that round when taking the action indicated in the column header. Column 7 gives the total number
of actions observed in that round and column 8 gives the percentage of penalty stages that continue up to at least that round. The
penalty stage always starts with an inspection. Action rounds within the stage then alternate between actions of the regulatory machine
and sample plants. The penalty stage ends when the machine accepts. Rounds after the 15th round are not shown and the row 15+
summarizes these rounds: 6 chains go at least 17 rounds and 4 chains go 19 rounds.

2.4. Randomization Balance Check

Plant characteristics and past regulatory interactions such as inspections, pollution
readings, and citations are balanced by treatment assignment. Appendix Table S.IV
presents a randomization check. Of 18 baseline measures reported, there is a significant
difference between the treatment and the control groups at the 10% level on only one
measure.

Many plants face costly penalties or take remedial actions despite the poor coverage
of inspections. In the control group, 40% of plants had any pollution reading collected
in the year prior to the experiment, and 34% of plants had a pollution reading above the
limit (fully 85% of those with a reading taken). Many plants (22% in the control group)
were cited for violations. More forcefully, 24% of control plants were mandated to install
abatement equipment,” 7.5% were ordered temporarily closed, 2% had to post a bank
guarantee (performance bond), and 1% had utilities cut off.

3This rate of equipment mandates is unusually high; an Air Action Plan issued a blanket mandate for all
firms in some cities and sectors to upgrade their air pollution control devices (Gujarat Pollution Control Board
(2008)).
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3. RESULTS: EXPERIMENTAL ESTIMATES

This section examines how the experimental inspection treatment affects regulatory ac-
tions, plant abatement costs, and pollution emissions. To motivate our structural analysis,
we then document how the regulator targets discretionary inspections.

3.1. Regulatory Action

Table II presents differences in regulatory outcomes by treatment status during the
experiment. Each row considers a different outcome. As we move down the table rows,
we move along four links in the chain from inspections to penalties for violating plants.

First, the treatment was implemented faithfully (panel A). Within a row, the second and
third columns report the means for control and treatment plants, while the last column
reports the coefficient on the inspection treatment dummy from a regression of each out-
come on treatment and dummies for strata used in randomization. Control plants were
inspected an average of 1.40 times per year over the course of the experiment. Treatment
plants were assigned to be inspected 2.12 more times per year and actually were inspected
an additional 1.71 times per year, more than doubling the annual rate of inspection, to
3.11 times. The treatment increased initial inspections, which start a new chain of inter-
actions with the regulator, by 1.50 times per year.

Treatment-assigned inspections could, in principle, either crowd-out or crowd-in the
regulator’s discretionary inspections. Crowd-out would arise if the regulator diverts in-
spections away from treatment plants that are now being inspected at the prescribed
rate. Crowd-in would occur if initial random inspections trigger followup inspections
when a violation is found. On net, discretionary inspections were neither crowded-out
nor crowded-in, perhaps because both effects cancel out.

Second, plants were aware of the increase in inspection frequency. Panel B reports
perceived inspection frequency. Both control and treatment plants overstate how many
inspections they receive in a given year. Though not officially told they would be inspected
more, treatment plants recognized the change and recalled being inspected a significant
0.71 times more than control plants in 2010. While correctly signed, the perceived differ-
ence understates by 58% the actual difference in inspection rates. A placebo check shows
that there was no difference in perceived inspections in 2008, prior to the experiment.

Third, the additional treatment inspections led to more detected pollution violations
and regulatory citations, which threaten action against plants. Panel C examines the num-
ber of regulatory actions against sample plants: the regulatory actions are ordered by in-
creasing severity, from pollution readings, citations, and warnings through to actions like
mandated closures and utility disconnections that have a large cost to plants. Treatment
plants are a significant 0.21 share more likely to have a pollution reading collected over
the nearly 2-year treatment, on a meager 0.38 base in the control. These readings lead
directly to more treatment plants being found in violation of a standard (0.22 increase)
and a greater number of citations (0.21 share per year) for these violations, more than
doubling the citation rate in the control. Treatment plants see a statistically significant an-
nual increase of 0.07 closure warnings, which formally threaten to close the plant unless
remedial action is taken.

Fourth, despite the extra violations, there is no significant evidence of greater regula-
tory penalties for treatment plants. For example, closure directions, the mandated instal-
lation of equipment, and utility disconnections are higher in the treatment, but by small
and statistically insignificant amounts (last two rows of panel C). This fact will be cen-
tral to our interpretation of the effect on compliance and abatement: despite increased
inspections and violations, costly punishments did not increase.
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TABLE II
REGULATORY INTERACTIONS DURING EXPERIMENT?

Control Treatment Difference

Panel A. Inspections by Treatment Status

Number of inspections assigned in treatment, annual 0 212 2.12%*
[0] [0.57] (0.026)
Total inspections, annual over treatment 1.40 3.11 1.71%
[1.59] [1.77] (0.11)
Initial inspections, annual over treatment 1.28 2.79 1.50**
[1.38] [1.52] (0.094)
Observations 480 480
Panel B. Perceived Inspections by Treatment Status
Perceived inspections, 2008 2.53 2.66 0.13
[1.42] [1.40] (0.10)
Perceived inspections, 2009 2.78 3.16 0.38**
[1.44] [1.37] (0.100)
Perceived inspections, 2010 2.92 3.62 0.71%
[1.58] [1.46] (0.11)
Total perceived notices and closures received, 2010 0.27 0.30 0.025
[0.64] [0.70] (0.048)
Observations 388 403
Panel C. Regulatory Actions by Treatment Status
Pollution reading ever collected at plant (=1) 0.38 0.60 0.21%+*
[0.49] [0.49] (0.032)
Any pollution reading above limit at plant (=1) 0.34 0.55 0.22%+*
[0.47] [0.50] (0.031)
Number of pollution readings above limit at plant 1.17 2.84 1.67
[2.58] [3.67] (0.20)
Total citations 0.15 0.35 0.20*
[0.42] [0.69] (0.037)
Total water citations 0.046 0.12 0.071***
[0.22] [0.37] (0.020)
Total air citations 0.021 0.042 0.021*
[0.14] [0.20] (0.011)
Total closure warnings 0.094 0.17 0.077***
[0.34] [0.48] (0.027)
Total closure directions 0.16 0.20 0.042
[0.48] [0.54] (0.033)
Total bank guarantees 0.060 0.065 0.0042
[0.27] [0.25] (0.017)
Total equipment mandates 0.027 0.040 0.013
[0.19] [0.23] (0.014)
Total utility disconnections 0.040 0.042 0.0021
[0.22] [0.20] (0.013)
Observations 480 480

aThe table shows differences in actual inspection rates (panel A), perceived inspection rates (panel B), and other regulatory actions
(panel C) between the treatment and control groups of plants during the treatment period of approximately 2 years. The second and
third columns show means with standard deviations given in brackets. The third column shows the coefficient from regressions of each
variable on treatment, where each regression includes region fixed effects and a control for the audit sample. * p < 0.10; ** p < 0.05;
o p < 0.01.

Our experimental design was meant to rule out one potential explanation for the lack
of additional punishments in the treatment—namely, that the regulator, despite regularly
following-up on status quo inspections, just ignored the treatment inspections. We check
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the assumption of equal followup directly in Appendix Table S.VII, where we regress the
probability that the regulator lets a plant go after an inspection on treatment status and
the contents of that inspection. This probability does not differ by treatment status, with-
out controls (column 1) or conditional on pollution (column 3). The other columns add
interactions between the treatment and controls for pollution and other characteristics,
and test for the joint significance of the interactions of treatment with these observables.
We fail to reject that the treatment interactions are zero in all specifications. Thus the
followup to an inspection is the same for treatment and control plants, conditional on the
regulator’s own information.

3.2. Plant Abatement Costs, Pollution, and Compliance

Table III, panel A presents estimates of treatment effects on plant abatement costs. We
use end-line survey descriptions of abatement expenditures to separate abatement costs

TABLE III
END-LINE POLLUTION AND COMPLIANCE ON TREATMENTS?

1) (@) 3 (€]
Panel A. Plant-Level Costs
Capital Costs Maintenance Costs
(USD x 10%) Any (=1) (USD x 10%) Any (=1)

Inspection treatment (=1) —0.221 0.0213 0.838* 0.00974

(0.453) (0.0344) (0.499) (0.0224)
Plant characteristics Yes Yes Yes Yes
Audit experiment Yes Yes Yes Yes
Control mean 2.050 0.567 0.264 0.108
Observations 791 791 791 791

Panel B. Plant-by-Pollutant Level Pollution

Pollution Compliance
Inspection treatment (=1) —0.105 0.0366*

(0.0839) (0.0213)
Audit treatment (=1) —0.187* 0.0288

(0.0849) (0.0258)
Audit x inspection treatment (=1) 0.286* —0.0365

(0.142) (0.0353)
Control mean 0.682 0.614
Observations 4168 4168

2The table shows intent-to-treat effects of inspection treatment assignment on plant costs and pollution outcomes. Panel A shows
regressions for plant costs estimated at the plant level. Costs are divided into capital and maintenance costs based on descriptions of
each expenditure (see Appendix A). Cost amounts are in thousands of U.S. dollars (USD). Capital costs, which are reported as lump
sum in the survey, are amortized to an equivalent constant annual expenditure (using an interest rate of 20% and a 10-year equipment
lifespan). Plant characteristic controls include dummies for size, use of coal or lignite as fuel, high waste water generated, and all
regions. Audit experiment includes dummies for audit treatment and audit sample. Robust standard errors are given in parentheses.
Panel B shows regressions for pollution and compliance at the plant-by-pollutant level. Pollution consists of air and water pollution
readings for each plant, taken during the end-line survey, where each pollutant is standardized by dividing by its standard deviation.
Compliance is a dummy for each pollutant being below its regulatory standard. Controls include region fixed effects and a dummy for
the audit sample. Standard errors clustered at the plant level are given in parentheses. * p < 0.10; ** p < 0.05; *** p < 0.01.
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for capital and maintenance.'* Abatement capital expenditures are observable by the reg-
ulator and are sometimes mandated in response to a high pollution reading. Maintenance
expenditures are not directly observable by the regulator, but proxy for greater use of
abatement equipment and may thus be associated with lower pollution. More than half
of control plants (0.57) install capital equipment, at an amortized cost of about $2000 per
year (column 1), while average maintenance costs are about $264 per year with only 11%
of plants reporting positive maintenance expenditures. As a basis of comparison, sam-
ple plants spend about $145,000 on electricity annually. We find no meaningful effect on
either capital abatement expenditures or whether any capital expenditure was incurred
(columns 1 and 2). The column 3 estimate suggests that treatment plants did increase
maintenance expenditure by $838 (standard error $499; p-value < 0.10). This effect is
large relative to the control level of maintenance expenditures, but small in economic
terms for plants of this size. Additionally, there is an insignificant treatment effect on the
probability of reporting any maintenance expenditure (coefficient 0.01 share; standard
error 0.02) (column 4).

Table III, panel B reports the results from regressions of pollution levels (column 1)
and compliance (column 2) on treatment assignments for the inspection treatment, audit
treatment, and their interaction. Pollution is measured in standard deviations for each
pollutant at the plant-by-pollutant level and standard errors are clustered at the plant
level.'’> Compliance is an indicator for whether a plant-by-pollutant reading is below the
pollutant-specific standard.

The treatment had modest impacts on pollution emissions. In column 1, the treatment
reduced plant pollution emissions by 0.10 standard deviations (standard error 0.084). This
effect is about half the size of the statistically significant —0.187 standard deviation reduc-
tion in pollution due to the audit treatment.'® The treatment increased inspections by 1.71
per year; the implied local average treatment effect is therefore a reduction of 0.06 stan-
dard deviations of pollution per inspection. The audit-by-inspection interaction is large
and positive. The sign of the interaction is as expected. Audits provide three reports of
pollution in a year. If audit quality improves, then the informational value of extra in-
spections falls. Conversely, if plants are inspected regularly, then the audit adds less. The
magnitude of the interaction is large enough to offset the sum of the main effects. How-
ever, we can reject neither that there is no effect of both interventions combined ( p-value
0.97) nor that the joint effect for plants in both the inspection and audit treatment groups
is equal to the inspection treatment main effect ( p-value 0.19).

The column 2 entries indicate that the inspection treatment marginally increased com-
pliance with pollution standards: treatment plants are 3.7 percentage points (standard
error 2.1 percentage points; p-value = 0.087) more likely to comply, on a base of 61%
compliant pollution readings in the control. (Multiple pollutants are observed in the sur-
vey and only 10% of plants are compliant on all pollution readings measured.”)

1“We distinguish maintenance from capital costs by searching descriptions of expenditures for strings asso-
ciated with maintenance, like “maintain” or “change.” See Appendix A for details. Capital costs are amortized
into an annual flow of expenditures for comparison to maintenance costs.

5 All specifications include region fixed effects and an audit-eligibility indicator. Since only Ahmedabad
includes both audit-eligible and -ineligible plants, this specification is equivalent to using region-by-eligibility
fixed effects.

16The audit treatment effect on pollution reported in Duflo et al. (2013) was estimated in the inspection
control group only and was slightly larger.

"To test the robustness of this compliance effect, Appendix Table S.9 reports placebo checks where com-
pliance is coded to occur at various multiples of the real standard. The effect of inspection treatment on
compliance is statistically significant only at the true standard.
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A. Experimental Data B. Model

Inspection treatment coefficient in bin
Inspection treatment coefficient in bin
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Pollution in standard deviations relative to regulatory limit Pollution in standard deviations relative to regulatory limit

FIGURE 1.—The effect of treatment on pollution distribution. The figures report coefficients on the inspec-
tion treatment assignment from regressions of dummies for a pollution reading being in a given bin, relative
to the regulatory standard, on inspection treatment, audit treatment, inspection x audit treatment, a dummy
for being audit-eligible, and region fixed effects. Part (A) reports coefficients from such regressions on the
experimental data and (B) reports coefficients from the same regressions run on model-generated data using
the constrained model estimates of Table VI. Pollution readings are standardized by subtracting the regulatory
standard for each pollutant and dividing by the pollutant’s standard deviation; bins are 0.2 standard deviations
wide and centered at the regulatory standard shown by the vertical line. Each plant has multiple pollutant
observations and regressions are run pooled for all pollutants together. The “whiskers” show 95% confidence
intervals for the inspection treatment coefficient.

Compliance can increase without a large reduction in average pollution if plants near
the standard are the most responsive to the inspection treatment. Figure 1(A) plots the
coefficients on inspection treatment from regressions of indicators for a pollutant read-
ing being in a given bin, relative to the regulatory standard, on treatment assignments
(as in Table III, panel B, column 3, but with finer bins rather than a single dummy for
compliance). Treatment reduces pollution readings just above the standard more than in
any other bin, though this decrease is not statistically significant (p-value 0.17), and it
significantly increases the number of readings just below the standard, in [—0.2, 0.0]. The
treatment thus shifted some plants that were modestly out of compliance with the de jure
standard into compliance.

3.3. Status quo Targeting of Inspections

The experimental results are puzzlingly weak. A doubling of inspections and citations
failed to increase penalties or reduce average emissions, and led only to small changes in
abatement costs and compliance, despite that the regulator does punish plants found in
violation and does so similarly in the treatment and the control groups. Did the marginal
treatment inspections not generate much abatement because they are random, while dis-
cretionary inspections are targeted? We provide several pieces of evidence on targeting
in the status quo.

First, Figure 2(A) and (B) demonstrates that the treatment did not appreciably increase
the number of plants subject to five or more inspections in a year, which are typically
severe violators. Instead, it increased the frequency of inspections for plants that would
not have been inspected regularly, reducing the share of plants inspected at less than the
prescribed rate from 50% in the control to 13% in the treatment group.
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FIGURE 2.—Model fit to inspections and pollution. The figure compares the distributions of inspections
and pollution in the model to those in the experimental data. Panels (A)—-(D) show the distributions of the
annual inspection rate (i.e., inspections per year). Inspections include only initial inspections and not followups.
Panels (A) and (B) give the distributions in the data in the control and treatment groups, respectively, using
administrative records of inspection reports. Panels (C) and (D) give the same distributions in the model.
Panels (E) and (F) give the distribution of pollution in the data and in the model, respectively. The units
of pollution are units of the regulatory standard p, such that a value of 2 represents pollution at twice the

standard, etc.
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FIGURE 3.—Regulatory targeting of extreme polluters. The figure shows the number of plants with pollution
readings either taken or that fall in various bins, relative to the regulatory standard, during the first year of the
intervention for the control and treatment groups, respectively. The first pair of bars shows the number of
plants that had at least one pollution reading taken. The remaining four pairs show the number of plants with
at least one reading above the standard (>1p), more than 2 times the standard (>2p), more than 5 times the
standard (>5p), and more than 10 times the standard (>10p).

Second, despite the additional inspections, Figure 3 reveals that the treatment did not
increase the number of extreme violators, that is, plants with pollution readings 5 or 10
times the standard.’® The treatment did find many plants that exceed the standard by
smaller amounts. This lower intensity of marginally discovered violations suggests that
the regulator is already inspecting the dirtiest plants, using the few inspections available
in the control group.

Third, our end-line survey pollution readings, in the control group, predict future regu-
latory inspections conditional on plant observables and the regulator’s own past readings
(Appendix Table S.X). Since the regulator did not see the end-line survey readings, this
prediction must mean the regulator has its own signals of plant pollution and uses these
signals to target inspections.

Thus, it appears that the regulator is selectively inspecting and punishing the most pol-
luting plants. The failure of the treatment to use the regulator’s private information may,
in turn, explain the surprising finding that the treatment had only weak impacts on penal-
ties and emissions. The following sections build on this insight to specify and estimate a
model of the regulator’s targeting problem.

4. A MODEL OF INSPECTION TARGETING AND ENFORCEMENT

To understand why the treatment did not meaningfully reduce plant emissions, we set
out a structural model of regulation and plant behavior to unbundle the roles of resources
and regulatory discretion. We consider a benevolent regulator, who seeks to maximize
abatement, given available information, resource constraints, and the process of applying

8Thirty-five (10) plants in the treatment group have a pollution reading greater than 5p (10p), compared
to 33 (12) in the control group. These rates are practically identical, and the null hypotheses that detection
probabilities for plants with readings >5p and >10p do not differ by treatment status cannot be rejected.
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penalties. Thus, we abstract away from the possibility that the regulator’s choice of in-
spections is corrupted and ask whether high plant pollution can be explained in terms of
the constraints on the regulator’s actions and information. (Our specification will allow
corruption in the conduct of inspections, just not their assignment.)

We model regulator—plant interactions as a game in two stages.

Stage 1. Targeting
(i) The regulator chooses an inspection targeting rule to minimize plant pollution
subject to a budget of inspections.
(ii) Plants choose whether to run their abatement equipment, given their abatement
cost, known level of pollution, and the regulator’s targeting and penalty rules.
(iii) The regulator observes a part of plant pollution and inspects plants by applying
the targeting rule (i) to this signal, yielding a pollution reading from the inspection.

Stage 2. Penalty
(i) The regulator acts as a regulatory machine, following exogenous rules for followup
and punishment based on pollution measured in inspections and plant actions.
(ii) Plants face a single-agent dynamic problem: they play against the regulatory ma-
chine and decide when to comply versus when to risk future penalties.

The model thus encompasses both the targeting of inspections, which our experiment
changed, and the penalties from high pollution readings, which it did not. To accord with
the experiment, we simplify the regulator’s behavior in the penalty stage by estimating a
regulatory machine policy function that maps states to action probabilities. The estimates
and targeting counterfactuals therefore take the penalty stage policy as given.

4.1. Targeting Stage
4.1.1. Targeting Stage Actions

Plant j has a latent level of pollution in period m of

10g Pjn = o + $1.X; + s + Uajm, 1)
where X; are observable plant characteristics, u;; is a pollution shock known to both the
plant and the regulator, and u,;, is a pollution shock known only to the plant, which
varies over time. We assume both pollution shocks are normal with u;; ~ AV (0, o7) and
Usjm ~ N (0, 03). The higher is the share of the residual variance in pollution that is due to
oy, the better is the information of the regulator. At the extreme, if o, = 0, the regulator
has perfect information and observes pollution at each plant; this would be the case if the
regulator had access to a perfectly functioning monitoring technology.

The regulator sets a targeting rule Z(u,;|X;, T}, 6r) that assigns an annual number of
initial, routine inspections as a function of pollution shock u,;, given plant characteristics,
treatment status, and targeting parameters 6r. The regulator sets the rule first and then
observes uy; to assign inspections.

Plants know Z(-|-), their characteristics, treatment status, and pollution shocks, and can
therefore calculate how often they will be inspected. Plants also know their cost of abate-
ment operations and maintenance ¢;, where logc¢; ~ N (u., 02). The cost and pollution
shocks are mutually independent, ¢; L uy; L s}, L Uz ,,+1. Plants use this information to
decide whether to run their existing abatement equipment, which action is not observed
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by the regulator.”” Running abatement equipment reduces pollution proportionally to
its latent level, such that log P;,, = loglsjm + ¢oRun, where ¢, < 0. The functional form
assumption that abatement is proportional to pollution provides the regulator one incen-
tive to target highly polluting plants. We cannot directly test this assumption, although
it seems to be realistic for many production processes: for example, air pollution control
equipment removes a fraction of pollution emissions that are sent up a plant’s chimney.?

4.1.2. Targeting Stage Payoffs and Equilibrium

An equilibrium in the targeting stage consists of an abatement rule for the plant that
minimizes the cost of regulation and a targeting function for the regulator that minimizes
pollution, given the signal of pollution it observes.

The cost of regulation for plants in the targeting stage is summarized by a penalty value
function V4 (P;,,), which gives the money value to the plant of an initial inspection (hence
subscript 0) that finds pollution reading P;,,. We derive this function in Section 5.1 as
the expected discounted value to the plant of all regulatory actions in the penalty stage,
including followup inspections, penalties, and possibly bribes.

A plant anticipating /; initial inspections will run its equipment if the reduction in ex-
pected penalties, from lower pollution at each initial inspection, exceeds its cost of main-
tenance

Run® =1{L;(Va(Py) = Va(Py) > ;). ©

We expect that the value V() will be decreasing in pollution, becoming more negative,
so that, for a plant that runs its equipment, ¢, < 0= P;,, < 15,,,, = W (Pj) — Vo(ﬁj,,,) > 0.
That is, for a sufficiently small cost of maintenance, running abatement equipment will
be worthwhile, since it will reduce expected penalties in the penalty stage that follows an
initial inspection.

The objective of the regulator is to set an inspection rule that maximizes total abate-
ment (i.e., minimizes total pollution). Targeting depends on endogenous parameters
A € 07 and additional exogenous parameters 3, p € 6r. The optimal targeting parame-
ter vector A* solves

X e argmax Y / f F(Zuyl X, T, A, B p) (Vo(Py) — Va(By))
A oLLN 3
x P,(1—e*)dF (U,) dF(U,)

such that Z /I(uleX],Tj,)\, B,p)dF(U1)=N7. (4)
j=L..N

.....

YPlants must install pollution control devices, depending on their sector and emissions potential, as a con-
dition of opening.

2 Air pollution control devices like filters, electrostatic precipitators, cyclones, and scrubbers are commonly
installed in industrial plants in both India and developed countries. The U.S. Environmental Protection Agency
(EPA) rates such equipment by the fraction of a pollutant it removes and reports efficacies of 90% for cyclones,
95-99% for bag filters, and 99% for scrubbers under their intended operating conditions (Environmental Pro-
tection Agency (2012)). As part of another project, we physically measured the efficacy of air pollution control
devices for a small number of plants in Surat, Gujarat, one of the areas in this paper’s sample, by comparing
pollution concentrations before and after control devices within the same plant’s exhaust system. We found
efficacies of 76% for cyclones and bag filters, somewhat worse than the EPA ideal.
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The integrand of the objective (3) is the product of the probability of plant abatement
and the quantity of abatement a plant achieves by choosing to run its equipment. This
plant-level expected abatement is integrated over the distributions of the two parts of
pollution, which the regulator observes after setting the targeting rule (u,;) or does not
observe (us), and summed over plants j=1, ..., N to yield total abatement.*'

The regulator’s budget constraint (4) is that total inspections under the chosen targeting
rule must be equal to the total inspection budget in expectation (i.e., the product of the
number of plants and the average inspection rate, I, per plant). While the targeting rule
depends on a stochastic shock, we treat the budget constraint as exactly binding, since
the regulator sets the rule before observing the u,;, the observed pollution shocks are
independent, and there are a large number of plants N. The regulator can therefore work
out how many inspections a given rule will yield in expectation and this expectation will
be very nearly right.

For our estimation and counterfactuals, we impose a probit link form for the targeting
rule,

M+XB1+T.B,+u
I<u1j|X,-,Tj,A,B,p>=A2<I>( i) )

®)
p

where ® is the normal cumulative distribution function. The parameters A, A,, B8, and p
determine the shape of the targeting rule: A, sets the maximum number of inspections, A,
shifts the share of plants that will have inspections near or far below the maximum, S is the
coefficient vector on plant observables, and p scales the argument of the targeting func-
tion. Loosely, a high A, and a very negative A; will concentrate inspections aggressively
in the plants observed to be dirtiest. This functional form is restrictive: unconstrained,
the regulator may not have chosen from the probit family. We specify this form for two
reasons. First, because it parsimoniously fits a range of interesting targeting rules (see
Appendix B for Monte Carlo simulations). Second, it greatly reduces the dimensionality
of estimation, relative to a nonparametric targeting rule, and thereby makes it possible to
constrain estimates by imposing the optimality of targeting.

4.2. Penalty Stage

The targeting stage takes as given the value function V;(P;,) of an initial inspection
conditional on pollution. To estimate this value function in the penalty stage, we model
a plant’s optimal compliance behavior after an initial inspection as a dynamic discrete
choice problem, assuming that the plant’s objective remains to minimize the overall cost
of regulation.

The penalty stage starts with round 1, when an initial inspection takes place, and in
subsequent rounds t =2, 3, ..., the plant j and the regulatory machine R alternate moves.
In all even rounds, the plant may comply or ignore the regulatory machine, where comply
requires a plant to pay a constant amount to install abatement equipment. In any odd

2 This objective function does not ascribe value to the penalty phase for the regulator. In particular, it does
not account for the fact that, by targeting a more polluting plant, the regulator, in the penalty stage, could
better compel the plant to install abatement equipment, providing a direct benefit of lower future pollution.
We neglect this outcome in the targeting stage because (a) most plants have unused abatement equipment, so
the installation of more equipment, on its own, is unlikely to reduce pollution and (b) the cost of maintenance is
far below the cost of new equipment, so the maintenance margin is a more likely channel for plant deterrence.
We believe that mandated equipment installation is mainly a way to punish plants and is of low marginal
environmental value.
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FIGURE 4.—Actions of the regulatory machine and plant at each node. The terminal nodes give the payoffs
in each round for the plant. The penalty stage begins with an inspection where the regulatory machine (M)
observes p;;. The machine can take four actions. If M inspects, M gets a new signal of pollution and the plant
may have to offer a bribe with payoff —b(pj;, a;_). If M warns, there is no cost to the plant. If M punishes, the
plant faces a cost —h(pj,). After each of these moves, the plant ignores or complies and M moves again. If M
accepts, the stage ends.

round after the first, the regulatory machine has four actions ag,: inspect, warn, punish,
or accept, which correspond to categorized regulatory data (Section 2.3).

Figure 4 shows these actions and their within-round payoffs for the plant. The plant’s
payoff for inspection includes any disruptions and bribes paid during the inspection. The
payoff for punishment is the cost associated with temporary closure and any remedia-
tion. Thus, the plant seeks to minimize regulatory costs by choosing between a known
abatement cost and the value of continuing the stage, possibly facing greater costs if the
regulatory machine chooses to inspect or punish. Each chain of interactions between the
plant and the regulatory machine is treated as independent.”? We assume that the plant
knows the regulatory machine’s action probabilities in each possible future state.

4.3. Simulations of Optimal Inspection largeting

How much should the regulator concentrate inspections among the plants with high
observed pollution shocks? Since the plant’s value of the penalty stage decreases (i.e.,
becomes more negative) with pollution, the regulator can induce more abatement by al-
locating inspections to plants with high pollution and therefore high expected penalties.
This argument favors a steep targeting function that concentrates inspections on heavily
polluting plants. Moreover, plant reductions in pollution are proportional to the pollu-
tion level, so allocating inspections to higher-polluting plants yields higher abatement
when those plants do abate. In favor of a flatter targeting function, however, abatement
also depends on the cost of running the equipment. If the regulator targets all inspections
to a few plants that it expects are highly polluting, it may miss some easy targets with low
running costs.

Appendix B reports Monte Carlo simulations that illustrate how changes in the shape
of the penalty function and regulatory information affect the choice of targeting rule, for

ZSpecifically, we assume that Uzj,m+1 i independent of u;; and u,;,,. The regulator observes u,;, but condi-
tional on this, does not, for example, use past penalty stage readings to determine targeting. The data broadly
support this assumption: the average time between chains, about 5 months, is much larger than the average
time between actions within a chain, 2 weeks. Further, recent pollution readings do not change regulatory tar-
geting of inspections (Appendix Table S.X, column 4). Last, the regulator has a short memory: 93% of the time
when an action cites a prior inspection it is the most recent prior inspection.
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one parameterization of the model. The simulations show that the results of this trade-off
vary with the regulator’s information (see Appendix Figure S.2 for greater detail). If the
regulator is poorly informed, it is better to concentrate inspections in the plants with the
highest observable pollution shocks. If the pollution signal is imprecise, then the regula-
tor targets large outliers that it is confident will be polluted enough to abate when fearing
inspection. If the regulator observes a larger fraction of the variance in pollution, the
optimal targeting function is flatter. In this case, the regulator is confident that plants ob-
served to be moderately polluting may also abate if inspected and so spreads inspections
around to catch plants with not only high pollution, but also low abatement costs.

5. ESTIMATION

The model is estimated moving backward. First, we use backward induction within the
penalty stage. Our penalty estimation pools treatment and control plants since, as we
discussed, the regulator applies the same penalty rules for all plants. Next, we use the
estimated value function from the penalty stage to obtain targeting stage parameters.

5.1. Maximum Likelihood for Penalty Stage

Building the likelihood for plant actions requires several preliminary steps. (i) We spec-
ify that the common state of the game comprises the pollution reading, the last two ac-
tions of the regulator and plant, and the game round. (ii) We estimate state transition
probabilities using a count estimator. (iii) We estimate a multinomial logit model of ac-
tion probabilities for the regulatory machine, conditional on the state. These steps are
described in detail in Appendix C of the supplementary material. Here we focus on the
specification of penalties and the value of regulation, taking the states, state transitions,
and regulatory policy as given.

The plant payoff if it complies by installing abatement equipment is —k. We assume all
plants have a cost for installing abatement capital equal to the average value of abatement
capital costs observed in our sample, k = $17,000.

The plant payoff, if the regulator chooses punish, takes one of two specifications: a
constant, h(p;) = —7, or a function of pollution

h(pj)=—m1{p < pjy <2p} — 1{2p < p;, < 5p} — :1{5p < p;},
where P is the legally mandated pollution threshold. This functional form allows the reg-
ulatory machine to punish high polluters with a higher probability and possibly different
penalties.

In some specifications, plants also have direct costs of inspections b(p;,, a;_) = (1 —
H{a;,_ = Comply}) x (v 1I{p < p;; <2p} +v.1{2p < p;, < 5p} +v:1{5p < p;:}). This func-
tion specifies that inspections are costless for plants that have recently complied, but for
plants that have not complied, inspections have a cost that depends on pollution emis-
sions. The form is meant to capture the idea that recent compliance may excuse the plant
from offering bribes or other disruptions.

Using these preliminaries, we build the plant’s action probabilities. The choice-specific
utility of taking action a;, for within-round payoff ;(aj|s,) is

vi(anls) = mi(ayls) + e;(auls) + 8y f(sialap,s) Y Pr(ag.lsi)
St1 AR, t+1

(6)
X {Wj(aR,z+1|Sz+1) +0 Zf(st+2|aR,t+17 S 1)V (S142) }

St+2
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We specify shocks e;(aj,|s,) to the utility of each action that are distributed identically and
independently across actions with a type-I extreme value distribution of unknown vari-
ance, generating closed-form solutions for action probabilities (Rust (1987)). The plant
discounts the value of future rounds by 6. The transition f(s;,|s,11), from the plant’s
point of view, contains both the machine’s action and any other change in the state before
the plant moves again. We assume that the machine’s action probabilities Pr(ag ;1/8:1)
and state transition probabilities f(-|-) are stable and known to the plant.

The plant’s optimal action in the penalty stage maximizes its expected discounted
value at each state. The value of the state is the value of this best action Vi(s,) =
max,c4, Vj(als,). In determining its move now, the plant takes into account current pay-
offs and the value of future states that are likely to follow. We use backward induction to
solve for the values of each state for the plant, conditional on a given set of penalty- and
inspection-cost vectors 0p = {7, v}.

Identifying the model parameters requires two known payoffs and a discount factor
(Rust (1994), Magnac and Thesmar (2002)). For the first payoff, we assume a zero payoff
from ignore for the plant. For the second, we assume the penalty function equals zero
for states when plants’ pollution reading is absent or below the standard. Given these two
assumptions, the variance of the plant action shock o, is then a free, estimable parameter.
We use a discount factor of 6 = 0.991 between rounds that has been calibrated, given the
average round duration, to match the annual returns on capital for Indian firms found by
Banerjee and Duflo (2014).

The likelihood over chains » and rounds ¢ is

=T},
LOp) =[] T] Pr(amlsim, ).
n  t=1
We use a gradient-based search with numerical derivatives to find parameters that max-
imize the probability of plant actions that are observed in the data. Given the estimated
parameters 0, we use backward induction to calculate the value of the penalty stage V;(-)
for each level of pollution at the time of an initial inspection.

5.2. Generalized Method of Moments for Targeting Stage

In the targeting stage, the regulator sets a rule for how to inspect plants. Plants, antic-
ipating the value of pollution that each inspection will yield and associated penalties, de-
cide whether to run their abatement equipment. The run decision is endogenous to plant
pollution shocks u;; and u,;,, both unobserved by the econometrician. Taken together,
the targeting stage is characterized by a system of equations for inspections, pollution,
and the run decision. We use the generalized method of moments for estimation with
both analytic and simulated moments.

5.2.1. Targeting Stage Estimation Moments

The parameters to be estimated are 07 = {¢, B, A1, Az, K¢, 01, 02}, Where ¢ are the
parameters of the pollution equation (1), 8 and A govern inspection targeting (5), w.
is the mean of the log abatement maintenance cost, and o; and o, give the standard
deviations of pollution shocks, which are known to both the plant and regulator (u,) or
the plant only (u,), respectively.

We additionally fix the values of two model parameters outside of the estimation: the
variance of the maintenance cost shock o, and an inspection targeting parameter p. While
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in principle they are identified, we found that estimating these parameters along with 67
in our sample yielded estimates too imprecise to be usable. Below, we discuss why this
is the case and how our estimates vary over a range of assumed values for these two
parameters. =R

We observe N;, X, T}, P;, and ¢; x run in the data and estimate V4 ( p;) from the penalty
stage, as described above. The estimation moments are chosen to match features of the
pollution and inspection distributions, in particular the interactions of treatment with
inspections and residual pollution. Appendix C.2 derives the moment conditions, and a
sensitivity analysis in Section 6.2.2 discusses the contribution of different moments to
identification.

A first set of moments is based on the error in the pollution equation, which is orthogo-
nal to treatment assignment in the model. Letting Z; = [1.X;T;], where T is the treatment
assignment, yields

g1(¢p) = Z(log P; — o — d1.X; — 2 Run).
A second set of moments is based on expected inspections and inspections squared,

g\, B) = V(E[Z(uylX;, T;, A, B, p)] — 1),

g3()\7 B) = 1/(]E[Iz(ulj|Xj7 ]}'5 A’ :B’ P)] - 112)7
where the expectation is calculated analytically, in the model, based on the targeting func-
tion (5) and the distribution of u; shocks. Expected squared inspections are meant to cap-
ture regulatory information because dispersion in inspections, conditional on observables,
reflects targeting on unobserved (to the econometrician) pollution shocks.

A third set of moments is based on the probability of running abatement equipment and
the mean cost conditional on running. These moments are intended to target u., the mean
of the unconditional maintenance cost distribution, and ¢,, the efficacy of abatement.

Fourth and last, we form moments based on the variance of pollution shocks and their
covariance with inspections. In the model, if the regulator observes a higher fraction of
pollution variance, then inspections will have a higher covariance with residual pollution.

We fix o, and p outside the estimation. For o, higher-order moments of the truncated
cost distribution could in principle provide identification. In practice, these estimates are
imprecise and sensitive to the choice of higher-order moments. With only around 10% of
plants choosing run, it is difficult to use the observed, truncated costs to infer the shape
of the unconditional maintenance cost distribution. Therefore, we set o, = 0.5, as this is
roughly the midpoint of the estimates we obtained by using different higher-order mo-
ments (albeit with large standard errors). We set the parameter p = 0.25 standard de-
viations of observed pollution. This parameter operates almost like a scaling factor in
the targeting function argument.”® Changes in the freely estimated targeting parameters,
B and A, can therefore closely replicate the effects of varying p on the inspection dis-
tribution in the model (see Appendix D). Section 6.2.2 considers the robustness of the
targeting stage estimates to these assumptions.

5.2.2. Imposing the Constraint of Optimal Targeting

Optimal targeting is defined by maximizing abatement (3) subject to the inspection bud-
get constraint (4). To impose optimality in the regulator’s choice of targeting parameters

BThe parameter p is not purely a scaling factor because u; appears outside the targeting argument, with
known units of pollution, though it is not observed by the econometrician. However, estimation runs with free
p did not reliably converge.
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A, we require that the first-order conditions of the Lagrangian of the regulator’s problem
hold (see Appendix C.3 for the derivation). Under the assumed targeting functional form,
the three first-order conditions impose two independent nonlinear constraints. These
conditions state that the marginal reduction in pollution from increasing either target-
ing parameter must equal the contribution of that parameter to the inspection budget. In
addition, the parameters of an optimal rule must satisfy the inspection budget.

5.2.3. Targeting Stage Objective Function

We stack the moments to form g(6r) =[g] &5 ...&5] and minimize gWg’ as a function

of 67 to estimate the parameter vector 67. In constrained estimation, we conduct this
minimization subject to the optimal targeting constraints. We update the weighting matrix
W to form a two-step optimal estimator. Standard errors are calculated to account for
the nonlinear constraints and their correlation with the moments (Newey and McFadden
(1994)), and to adjust for simulation bias, which is negligible with § = 5000.

6. STRUCTURAL ESTIMATES OF REGULATORY COSTS AND TARGETING
6.1. Penalty Stage
6.1.1. Plant and Regulatory Choice Probabilities in the Penalty Stage

Table IV presents estimates of multinomial logit coefficients for the conditional action
probabilities, for both the regulatory machine and plants. The machine is much more
likely to punish when pollution is high (columns 1-3). Past actions matter for current
actions. The machine is less likely to warn or punish if it has warned before. It is also less
likely to punish if the plant has complied before. Plant compliance drops the likelihood
of any inside action, which would continue the penalty stage, and raises the probability
that the machine accepts to end the stage and the imminent threat of punishment. These
estimates support the trade-off between compliance and future penalties for plants with
high pollution that underlies the model.

6.1.2. Revealed Preference Penalty Estimates

Table V presents the dynamic estimates for the penalty function. These estimates put
a monetary value on mandated plant closings, utility disconnections, and other penalties
that would not be estimable without the structural model.

In columns 1 and 2, we assume that inspect does not entail any costs for the plant so
that punish is the only regulatory action that is costly. In column 1 we see that when
punishment cost is constant, it costs a plant $54,000 (standard error $25,000; we round
off penalty estimates). In column 2, we allow the cost to vary with pollution. We cannot
reject that the penalty function is flat with respect to pollution (above the threshold),
with estimates ranging from $40,000, when observed pollution is slightly above (1-2p)
the standard, to $54,000 (2-5p) for higher levels.

Columns 3 and 4 consider the case where both punish and inspect are assumed to be
costly to plants. We call this the case “with bribes” for short, though inspections may
impose other costs like disruptions to plant operations. Relative to column 1, the esti-
mated cost of punishment in column 3 declines to $28,000 (standard error $21,000) with
a per inspection cost of $10,000 (standard error $3000). Inspections are less costly than
punishments, but more frequent; reflecting this, the estimated cost of inspection is lower
than that of punishment, and a lower cost of punishment is needed to rationalize plant



THE VALUE OF REGULATORY DISCRETION 2147

TABLE IV
MULTINOMIAL LOGIT MODEL OF ACTION CHOICE CONDITIONAL ON STATE?

Regulatory Machine Plant
Inspect Warn Punish Comply
Party to move: 1) 2) 3) “4)
Lagged regulatory actions
Warn, lag 1 0.33 —2.05"* —2.10%* —0.23
(0.23) (0.32) (0.31) (0.30)
Punish, lag 1 1.80™** —2.22%* —0.53* 1.29+
(0.23) (0.56) (0.30) (0.26)
Lagged plant actions
Firm: Comply, lag 1 —1.80"** —1.03* —0.82** —0.53
(0.32) (0.47) (0.37) (0.66)
Last observed pollution reading
0-1x —0.38 —0.25 0.052 —0.18
(0.23) (0.16) (0.24) (0.38)
1-2x —0.20 0.55** 0.37** 0.39
(0.16) (0.098) (0.18) (0.23)
2-5x —0.17 0.84*= 0.70%* 0.74%
(0.17) (0.10) (0.17) (0.22)
Sx+ 0.27 0.63** 1.15% 0.90**
(0.21) (0.16) (0.21) (0.26)
Period
Constant —4.41% =247 —3.91% —5.71%
(0.13) (0.057) (0.11) (0.21)
t>3 2,91 1.26+ 2.56%* 2.59%
(0.25) (0.28) (0.27) (0.33)
t>5 0.073 —0.35 —0.50 0.18
0.21) (0.32) (0.30) (0.28)
t>17 0.059 —0.55 0.55x% 0.50*
(0.24) 0.37) (0.29) (0.28)
N 8897 8897

4The table reports coefficients from multinomial logit models for the action choice probabilities of the regulatory machine and the
plant conditional on the state within the penalty stage. See Table S.I for action definitions. Plant and regulatory actions are reported in
administrative data by the regulator. The omitted action for the regulator is accept and for the plant is ignore, so the coefficients are
to be interpreted as the effect of each component of the state on the party taking the specified column action relative to the omitted
action. Pollution readings are taken during inspections throughout the treatment period. The omitted pollution reading is null, which
occurs when the regulator inspects but does not take a pollution reading. * p < 0.10; ** p < 0.05; *** p < 0.01.

compliance behavior when inspections are also costly. In column 4, we allow the cost of
inspections to vary by pollution reading. We find, again, that inspections cost plants per-
haps one-third or less of the value of punishment, and that the cost of inspections does
not significantly vary with pollution.

Does the scale of estimated penalties and inspection costs make sense? We compare
the estimates to abatement costs and plant profits as benchmarks. The highest penalties
estimated for punishment are over three times the average equipment capital cost. This
ratio of penalties to costs is reasonable given that penalties must meet or exceed costs
required to induce abatement, and that penalties occur infrequently, even for violating
plants.* On profits, mean plant annual sales in our end-line survey are $2.9 million. The

24 A plant with an extremely high pollution reading has a one-third chance of punishment, implying an ex-
pected value of penalties (= 1/3 x $54, 000) that is about equal to the average abatement capital cost ($17,000).
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TABLE V
ESTIMATES OF PLANT UTILITY PARAMETERS (USD x 10%)*

Whether Bribes Given if No Compliance

No Bribes On Inspection
@ @ 3) “
Parameters of Penalty Function
To 53.54 28.12 36.71
(24.68) (20.88) (22.92)
T 39.57
(28.17)
T 54.11
(27.43)
T3 41.51
(19.15)
Parameters of Bribe Function
2 9.67
(3.07)
121 10.93
(3.48)
12 9.72
(3.99)
V3 5.83
(4.96)
Standard Deviation of Action Shock
o 5.02 5.88 5.11 4.83
(0.46) (0.30) (0.39) (0.43)
Observations 1474 1474 1474 1474

aThe table presents pseudo-maximume-likelihood estimates of the parameters of the plant profit function from the estimation of
the plant’s dynamic problem in the penalty stage. The four columns represent different specifications for the penalties and bribes the
plant must pay. The parameters 7 give the value of penalties applied by the regulator, by choosing the action punish, conditional on the
pollution component of the state being between the standard and twice the standard (7(), between twice and five times the standard
(1), and above five times the standard (7). The column 3 and 4 estimates also include estimates of bribes in addition to formal
penalties. The parameters v, for which estimates are reported in columns 3 and 4, give the value of bribes given by the plant in penalty
specifications where the plant is assumed to give bribes, if it has not already complied in the stage, at the second inspection, and later
inspections. The final parameter o is the standard deviation of the plant’s action-specific payoff shock. Observations are those at which
the plant moves in rounds ¢ = 4 and onward; ¢ = 2 is omitted because a large number of actions in that round are imputed (see text).
Inference is by the bootstrap over 100 samples with replacement, where samples are taken at the level of the plant chain (i.c., series
of interactions) stratified on the maximum pollution reading observed in the chain. Standard errors equal to the standard deviation of
bootstrap estimates are given in parentheses.

typical penalty for severe pollution is plant closure, with a median duration of 24.5 days.
For each 10 percentage point profit margin for plants, and assuming profit is proportional
to closure (i.e., no substitution across periods), this duration of closure implies a loss in
profits of $20,000. Variable profit margins would then have to be in the range of 20-30%
to match the column 1 model estimates, which is arguably on the higher side, but not
unreasonable.

6.1.3. The Value of Environmental Regulation to Plants

The value of the penalty stage to a plant summarizes all costs of environmental regu-
lation. Figure 5 shows this value, at a variety of states, as calculated through backward
induction given the estimated costs of regulatory penalties from Table V, column 2. At
each state, values are divided between expected discounted future abatement costs (light
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FIGURE 5.—Value of environmental regulation for plants. The figure shows the cost of regulation to plants
in thousands of U.S. dollars as measured by the expected discounted value of different states in the penalty
stage. Values are divided between expected discounted future abatement costs (light grey) and expected dis-
counted future regulatory penalties (dark grey), both of which, as costs to the plant, have negative value. The
figure shows three different dimensions of the state along which plant value varies. First, the panels show the
time dimension evaluated when it is the plant’s turn to move (A) at ¢t = 6, and (B) at ¢ = 2. Second, the five
clusters of bars on the horizontal axis show different maximum lagged pollutant readings observed during the
prior inspection. Third, within each group, the letters I, W, and P show how the value to the plant changed if
the regulatory machine’s lagged action was inspect, warn, or punish, respectively.

grey) and expected discounted future regulatory penalties (dark grey). The figure shows
three different dimensions of the state: the time dimension is shown across panels, the
pollution dimension is shown across clusters of bars within a panel, and the dimension of
regulatory action is shown across bars within a cluster.

States late in the penalty stage, when the machine is more likely to punish the plant,
have sharply lower valuations for plants. Figure 5(A) shows the plant value at t = 6. The
value to the plant is sharply decreasing in pollution for readings above the standard, re-
flecting the higher risk of punishment, costly plant compliance and continuation of the
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penalty stage associated with high pollution. The share of value due to penalties is also
increasing in pollution.

Figure 5(B) shows the expected discounted value for the plant when it can first act
(t = 2). The value is shown only for the machine’s lagged action inspect, which, by con-
struction, is the only action that the machine can take in # = 1. The values are much less
negative than in ¢ = 6, since the probabilities of punishment, compliance, and continua-
tion are all sharply lower in the early going. There remains a steep gradient of penalties
in pollution: the value ranges from negative $1160, if the machine did not take a pollution
reading, down to negative $6240, if the inspection found a pollution reading more than
five times the standard, a more than fivefold difference. The share of the expected value
due to penalties is also increasing.

Overall, using the distribution of pollution on first inspection, the expected discounted
value of regulation on first inspection is —$2131, of which 40% is expected future penal-
ties and 60% is expected future abatement capital expenditures. Thus, a measure of reg-
ulatory costs that does not account for the monetary value of penalties would be greatly
understated and differentially understated for more polluting plants.

Using these expected discounted values, at discrete levels of pollution, we form the
value of an initial inspection to the plant as a function of any level of pollution, V;(p). To
approximate values for all pollution levels, we fit a piecewise-cubic Hermite interpolating
polynomial function to the discrete Figure 5(B) bars to obtain a smooth V;( p) (Appendix
Figure S.1 plots the resulting function). The resulting value function determines plant
incentives for preemptory abatement in the targeting stage.

6.2. Targeting Stage

We now turn to the targeting stage, which includes the pollution equation (1), the tar-
geting function (5), and the distributions of pollution and cost shocks. Plants’ decisions to
run abatement equipment (2) link pollution to inspection policy.

6.2.1. Estimates

Columns 1 and 2 of Table VI present coefficient estimates where regulatory targeting
is constrained to be optimal, conditional on the other parameter estimates. Columns 3
and 4 present unconstrained estimates. For each column pair, panel A gives estimates of
select parameters S—the effects of observables on targeting—in the inspection equation
and ¢—the efficacy of abatement—in the pollution equation. Panel B gives estimates of
targeting parameters A and distributional parameters.

Panel A, column 1 replicates the reduced-form finding that treatment plants receive
significantly more inspections. To put coefficient estimates in terms of inspections, we
need to calculate marginal effects, which equate to about two inspections per year de-
pending on the values of other plant covariates. In column 2, plants that run their abate-
ment equipment are estimated to reduce pollution by —1.90 (standard error 0.16) logged
standardized pollution points. A coefficient in logs of —1.90 is equivalent to an 85% re-
duction in pollution, which is similar to estimates of the efficacy of air pollution control
equipment.

The estimates of the pollution shock distributions in panel B suggest that the regulator
observes only a small part of plant pollution, but uses this information to target plants
with higher pollution signals. The standard deviation of the unobserved pollution shock
is 1.03 (standard error 0.047) logged pollution points, as compared to 0.069 (0.003) for
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TABLE VI
ESTIMATES OF TARGETING STAGE PARAMETERS?

2151

Constrained Unconstrained
Initial Inspections Log Pollution Initial Inspections Log Pollution
O (@] ©) “)
Panel A. Targeting and Pollution Equations
Inspection treatment 0.095 0.162
(0.009) (0.025)
Run equipment (=1) —1.902 —0.711
(0.160) (0.308)

Inspection targeting shift —0.395 —0.220

parameter (A;) (0.003) (0.066)
Inspection targeting level 33.022 10.064

parameter (Az) (1.876) (3.137)
Constant 0.212 —0.009

(0.109) (0.102)
Panel B. Distributions of Pollution and Maintenance Cost Shocks

Standard deviation of observed 0.069 0.111

pollution shock (o) (0.003) (0.022)
Standard deviation of unobserved 1.033 0.864

pollution shock (o) (0.047) (0.042)
Mean of log maintenance cost 2.388 1.833

(me) (0.061) (0.334)

Panel C. Test of Targeting Optimality Constraints

Distance metric test statistic x3 16.1039
Test p-value 0.0003

aThe table reports parameters of the targeting stage of the model. The first two columns 1 and 2 report estimates from the
constrained model where the regulator is constrained to target optimally based on observed pollution shocks, and columns 3 and 4
report estimates from the unconstrained model. Within each pair of columns, the first column (columns 1 and 3, respectively) reports
the coefficients on the inspection equation and the second column (columns 2 and 4) reports coefficients on the pollution equation.
Panel B reports estimates of the distributional parameters for pollution and cost shocks under each model. Panel C reports the results
of a test of the constraints that require optimal targeting ((16)-(18) in Appendix C.3). The data set is a cross section of all sample
plants. Inspections are calculated as the number of initial inspections per year for each plant over the course of the approximately
2-year experiment, and pollution is the maximum (over pollutants) logged standardized end-line survey pollution reading, where the
standardization is in units of the regulatory standard for each pollutant (e.g., twice the pollutant-specific standard is a value of log(2)).
Both the inspection and the pollution models additionally include the observable characteristics of audit treatment assignment, audit x
inspection assignment, an audit sample dummy, and region dummies (not reported). The parameters are estimated via generalized
method of moments using a mix of analytic and simulated moments as described in Section 5. Standard errors are bootstrapped with
B =100 and S = 5000.

the observed component of pollution. Thus, while less than 1% of the variance of pol-
lution (= o}/(0of + 07)) is observable, the regulator targets aggressively. The maximum

inspection coefficient is A, = 33 and the shift parameter is A; = —0.395. These parame-
ters imply large differences in inspections across plants for which the regulator observes
different shocks, despite the fact that this observation is only a small part of overall pollu-
tion. For example, an audit-eligible, inspection control plant in Ahmedabad would expect
to receive 0.56 inspections, with a shock at the 5th percentile of the observable part of
pollution and 3.48 inspections with a shock at the 95th percentile.

In columns 3 and 4 of Table VI, we remove the optimal targeting constraints, and a
few changes in the model estimates are notable. First, the inspection targeting parame-
ters decline: 5\2 falls from 33 to 10 and 5\1 becomes less negative (—0.22, standard error
0.066, versus —0.395, standard error 0.003). Thus, targeting is slightly less aggressive in
concentrating inspections in the dirtiest plants. At the same time, the share of the variance
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in pollution that is observable to the regulator increases substantially and, consequently,
more variation in inspections is attributed to observable variance in pollution. Finally, the
estimated effect of running equipment on abatement is smaller: —0.71 (0.308) log points
instead of —1.90 (0.16). Thus optimal targeting, which is very aggressive, is justified in the
constrained model if the amount of abatement achieved by running equipment is large.
Otherwise, plants that are high inspection but also high cost will not abate, and the regu-
lator does better spreading inspections around.

Given that optimal targeting is so aggressive, is it reasonable to assume that the regu-
lator is targeting optimally? In Table VI, panel C we report a distance metric test for the
two independent constraints in the system. Under the null that the constraints are valid,
the product of the sample size and the difference in the minimized value of the criterion
for the constrained and unconstrained estimators is distributed x3 (Newey and McFadden
(1994)). We reject the constrained estimates ( p-value = 0.0003), implying that the reg-
ulator’s targeting parameters (A, A;) are not set optimally given the other parameters.
However, Section 6.2.3 argues that the fit of the constrained model is still quite good.

6.2.2. Sensitivity Analysis and Robustness Checks

To develop intuition for how features of our data affect parameter estimates, we use
the measure introduced by Andrews, Gentzkow, and Shapiro (2017) to provide a sensi-
tivity analysis. This sensitivity measures how a parameter estimate would change at the
margin, given a change in one moment, holding fixed all other moments that underlie
the estimation. Since our structural estimates rely on experimental variation, this method
is appealing to build intuition for how the estimates would change if the experimental
results had been different.

Figure 6 reports the sensitivity of select parameter estimates (across panels) to select
moments (row headers within the panel). The length of each bar is the increase (solid

Sensitivity of Parameter 21 )
At A oi/(of + 03) P2

Pollution Resid. xT' -:l

Pollution Resid.

Inspection MeanxT'

Inspection Mean
Insp. Squared MeanxT

Insp. Squared Mean 1

Selected Moments

Prob(Run) b
Elcj|Run] E

Var(Pollution

J 1
LI LI

)
)

Cov(Pollution, Insp.

0 2 4 0 100 200 0.00 0.25 0.50 0 4 8

FIGURE 6.—Sensitivity of targeting parameters to moments. The figure shows the Andrews, Gentzkow, and
Shapiro (2017) sensitivity measure of selected targeting model parameter estimates with respect to selected
moments used to estimate the model. The panels, left to right, show the sensitivity of the parameters or func-
tions of parameters Ay, Ay, and o7/(o? + o3), with respect to moments indicated by the row headers. The
length of each bar is the local sensitivity of the parameter with respect to the row moment, measured in units
of the parameter value per 1 standard deviation change in the moment. From the rows, we omit the products
of pollution residuals and inspection means with observable plant characteristics other than treatment status.
Black filled bars indicate positive sensitivity and hollow bars indicate negative sensitivity.
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bar) or decrease (hollow bar) in each parameter that would result from increasing the
row moment by 1 standard deviation, ceferis paribus. Appendix D reports the full sensi-
tivity matrix of parameters with respect to moments; here we highlight the sensitivity of
targeting parameters A, regulatory information /(o + 03), and abatement efficacy ¢,
to the experimental variation. All inspection moments refer to initial inspections and not
followups.

The differences in inspection moments between the treatment and the control groups
play a key role in estimating the targeting equation parameters. The targeting param-
eter A, is most sensitive, among all moments, to the mean products of the treatment
with inspections and inspections squared (Figure 6, panels A; and A,; see also Appendix
Table S.XV). These sensitivities imply that if the observed mean inspections of treated
plants increased by one inspection per year, from 2.93 to 3.93, with a corresponding in-
crease in squared inspections, the estimated maximal inspections parameter would rise
from 5\2 = 10.06 to 5\2 = 26.23 and A; would decline from 5\1 = —0.22 to 5\1 = —0.58,
showing more aggressive targeting in the status quo. Plainly, if the treatment increased
initial inspections a lot beyond the control level, it must have been because the targeting
function was steep.

The share of pollution variance observed by the regulator (hereafter, information)
is sensitive to the dispersion of inspections (mean inspections squared, conditional on
mean inspections) and the interaction of inspections with treatment (Figure 6, panel
ot /(at+ d})). For example, a 1 standard deviation increase in mean inspections squared,
from 7.53 to 17.12, conditional on mean inspections, would increase the estimated ob-
servable share of the pollution shock by approximately 0.31 on a small base of 0.02. As
information improves, the regulator inspects plants more on the basis of pollution shocks
observable to the regulator, but not to the econometrician, increasing dispersion in in-
spections. Information is also increasing in the covariance between pollution and inspec-
tions because, in the model, if the regulator is more informed, he/she will assign more
inspections to plants with high pollution.

The efficacy of pollution abatement ¢, is sensitive to both pollution and cost moments.
We find that ¢, is increasing in the pollution residual in the treatment. If treatment pol-
lution were higher by 1 standard deviation, then ¢, would increase from —0.71 to —0.51
(Figure 6, panel ¢,, moment Pollution Resid. x T'), indicating a decline in abatement effi-
cacy. The interpretation is that if the treatment had reduced pollution less than observed,
conditional on abatement decisions, the model would infer that abatement was less effec-
tive. The efficacy of abatement depends not just on the pollution equation, as it would in
a single-equation model, but also, with a high sensitivity, on the cost of maintenance. If
the mean maintenance cost conditional on running increased by $100, the (2)2 coefficient
would increase from —0.71 to —0.53 (panel ¢,, moment E[c;|run]).

Finally, we have fixed values for two parameters, o, and p, and here we check the
robustness of our estimates to these assumptions. Appendix D shows estimates of the
unconstrained targeting model for different values of o, and p. Changing the value of
o, has very little impact on estimation of the targeting parameters. It has a larger effect
on the estimated effect of abatement: moving from o, = 0.25 to o, = 1.00 increases the
estimated ¢, from —0.60 to —1.07. Both the lowest and highest estimate are within 1 stan-
dard deviation of the estimate we report for o. = 0.50. Changing the value of p changes
the estimated 8 and A vectors in the targeting function. The changes in 8 are roughly,
but not exactly, proportional to changes in p, since p scales the argument of the targeting
function. Because the parameters 8 and A that are estimated adjust to offset changes in
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p, varying p does not have a large effect on the fit of the model to the inspection moments
(Appendix Table S.XIII).

6.2.3. Model Fit

There are several ways to assess the model’s fit. Figure 7 compares the optimal target-
ing function with the unconstrained targeting function. The x-axis reports the observed
component of pollution in standard deviations and the tick marks above the axis show
the distribution of the observed component of pollution.” The y-axis reports the number

of inspections for a control plant with an average value of X B; thus the figure shows the
effect of the observable component of pollution on the number of inspections. The uncon-
strained targeting function is depicted with the solid black line; the dashed line represents
the constrained optimal targeting function with current information. It is striking that the
unconstrained and constrained targeting functions lie nearly atop one another through-
out most of the distribution of the observed component of pollution; the exception is that
the optimal function allocates more inspections to the plants with the highest observed
pollution shocks. So although we statistically reject the constraints that require targeting
be optimal, the constrained estimates fit the data well, as they describe a targeting rule
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FIGURE 7.—Observed and optimal targeting rules. The figure shows several inspection targeting rules that
assign plants an annual rate of inspection as a function of the component of pollution observed by the regu-
lator. Two of the targeting rules are based on the estimates of Table VI: the dashed line gives the estimated
optimal targeting function from the constrained estimates in the table, and the solid line gives the estimated
targeting function from the unconstrained estimates. The dotted line gives the optimal targeting rule under
an alternative regime where the regulator observes all the variance in pollution. The vertical spikes on the
horizontal axis represent a normal distribution of pollution shocks, centered around the mean value of the
observable characteristics X8 on which inspections are targeted.

»Because the estimated &, differs between the constrained and unconstrained estimates, each is plotted in
different units, corresponding to the standard deviation of observed pollution in that set of estimates.
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that is very similar to that derived from the unconstrained estimates. As a basis of com-
parison, the full information optimal targeting function is shown as the dotted line. For
the estimated parameters, full information would lead the regulator to target somewhat
more aggressively at plants with observed pollution shocks above the median.

To get a sense of the model fit, it helps to compare the distributions of inspections
and pollution in the data to those generated by the model. We generate data using the
estimated model parameters and a single simulation draw of the three model shocks.
Figure 2(C) and (D) shows the modeled distributions of inspections in the control and
treatment groups, respectively, and can be compared to the true distribution in (A) and
(B). The model and data distributions of inspections in the control are nearly identical,
and show a similar truncation of the distribution at low levels. The treatment distribution
in the model shows an upward shift in the mass of inspections and fits well, though the
distribution of treatment inspections in the model is somewhat more skewed than in the
data. Figure 2(E) shows the distribution of pollution in the data and Figure 2(F) shows
the model. The model was fitted only to moments based on the mean and variance of
pollution, but the fit throughout the distribution is good, with a similar modal value, in
[0.5P, P], and right-skewness. Overall, we conclude that our distributional assumptions
provide parsimonious fits to the inspection and pollution data.

A more stringent test of the constrained model fit is the extent to which it matches
the observed treatment effect on pollution compliance. Recall, from Figure 1(A) that the
experimental estimates show a narrow response to the treatment, with larger increases
in pollution readings below the regulatory standard and decreases in readings spread out
above the standard. Figure 1(B) reports coefficients from the same set of regressions
for pollution bin dummies on treatment in the model-generated data, where the input
data are plant characteristics, treatment assignments, and draws from the distributions
of pollution and cost shocks. It is striking that the model and the experimental results
produce a similar pattern of abatement: the largest estimated increase in mass is beneath
the regulatory standard, and the largest decrease in mass is just above, with only modest
decreases in mass in the higher parts of the pollution distribution. At the same time, the
fit is not perfect, as the model predicts a large increase in mass in the treatment that lies
further beneath the regulatory standard than is seen in the data. This suggests that treated
plants are able to control pollution down to the standard, but no more, whereas in the
model, abatement is assumed to be a discrete action and so may undershoot the standard.
Nonetheless, the fit of the predicted and actual responses to treatment appears good.

7. COUNTERFACTUAL INSPECTION TARGETING

The value of the full structural estimation of the model is that it allows us to predict the
effect of alternative policies that we did not experimentally evaluate. We use the model
estimates to evaluate counterfactuals on optimal inspection targeting and pollution abate-
ment that vary in regulatory budgets, discretion, and information.

The basic framework is the regulator’s problem of maximizing abatement (3) subject
to the budget constraint (4). We take as given regulatory penalties and thus the outcome
of the penalty stage, and examine the effect of cross-sectional changes in targeting on
plants’ abatement decisions. We consider these medium-run counterfactuals, matched to
the horizon of the experiment, since they change inspection targeting but neither the
penalty function nor the abatement capital available to plants. If the targeting policies
were changed permanently, the penalty function might be adjusted in response.

Within this framework, we consider several targeting regimes. Within each regime, we
vary the budget constraint / and measure the reduction in pollution achieved. The first
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regime is a uniform targeting rule that gives every plant the same number of inspections,
regardless of the observed pollution shock. This regime requires no information on pollu-
tion. The second regime is a targeting regime with discretion, where the regulator solves
(3), but where the regulator has only the sparse information in observed pollution. The
third regime is a targeting regime with discretion, where the regulator has full informa-
tion. This regime is not feasible with currently installed technology, but would be feasi-
ble with the installation of continuous emissions monitoring systems like those used in
other countries for some pollutants (e.g., sulfur dioxide and nitrogen oxides in the United
States). The fourth regime is a hybrid regime like in the experimental treatment, where
an initial 1.47 inspections (the control mean) are allocated with discretion and additional
inspections beyond that are allocated uniformly across plants.

Figure 8 traces out the abatement achieved by the alternative targeting regimes. Each
line shows the total pollution abatement in units of the regulatory standard, relative to
the latent pollution level P (vertical axis) as a function of the total inspection budget
per plant per year (horizontal axis) under a different regime. The dashed-and-dotted line
shows abatement under the uniform rule that requires all plants to be inspected the same

067 Control mean Treatment mean

o I o
w > o
‘ ‘ ‘

Average reduction in pollution
o
N

0.1r

0 0.5 1 1.5 2 25 3 3.5 4
Number of inspections per plant

— — Discretion: Full information
— Discretion: Partial information

Treatment: Partial information, plus random inspections
—-=-Uniform

FIGURE 8.—Value of discretion: Abatement by information regime and budget constraint. The figure shows
the amount of pollution abatement achieved, in units of regulatory standards of abatement per plant, under
different counterfactual inspection regimes. Regimes vary in the information used by the regulator and the
inspection budget available per plant. Each line shows average abatement per plant against the total inspec-
tion budget per plant per year (horizontal axis) under a different regime. The dashed and dotted line shows
abatement under a minimum threshold rule that requires all plants to be inspected the same number of times.
The solid line shows abatement under the optimal targeting rule where targeting is based on the observed
component of pollution. The dashed line shows abatement under the same optimal targeting rule where the
regulator is assumed to observe all variation in pollution. The dotted line is a hybrid regime, meant to reflect
the experimental treatment, where inspections up to the control level of inspection (1.5 inspections per plant
per year) are allocated with discretion, according to the optimal rule, and additional inspections beyond that
level are allocated evenly across all plants.
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number of times. The solid line shows abatement under the optimal targeting rule where
targeting is based on observed pollution only. The dashed line shows abatement under the
optimal targeting rule where the regulator is assumed to observe all variation in pollution.
The horizontal range of the figure extends from zero inspections per plant per year to
four, which is the prescribed regulatory minimum for large-scale, high-polluting plants.

There are several notable findings. First, a uniform inspection rule does very poorly at
low levels of the budget constraint. At one inspection per plant, the average abatement
is negligible, and at the observed control inspection level of about 1.5 annual inspections
per plant (i.e., the first vertical line), mean abatement is 0.06 standard deviations. The
reason for this poor performance is that few plants have trivial maintenance costs, and so
spreading inspections out over all plants causes the regulator to be spread quite thin; the
result is that plants, which know the targeting rule, generally find the cost of preemptive
abatement to exceed its benefit.

Second, at any given budget constraint, regulatory discretion increases the abatement
the regulator achieves. At the observed level of 1.5 annual inspections per plant in the
control, shown by the first vertical line, the total abatement is about three times greater
(0.17 standards vs. the prior 0.06) when the regulator allocates inspections with its infor-
mation (solid line) as compared to a constant rule (dashed-and-dotted line). Put another
way, to achieve the same level of abatement with uniformly allocated inspections would
require a budget of about 2.2 inspections per plant. The value of discretion using partial
information is especially strong, in relative terms, at low budget constraints, but tapers
off as the uniform rule eventually allocates enough inspections for expected penalties to
cover the maintenance costs of many plants.

Third, our simulation of the treatment regime, combining discretionary inspections
with additional random inspections, shows a weakened marginal response to treatment
inspections. The treatment, adding roughly 1.5 additional uniform inspections per year,
moves along the dotted line from the left-hand to the right-hand dotted vertical line,
increasing average abatement by 0.14 standard deviations. The marginal effect on abate-
ment of adding random inspections to discretionary inspections allocated by the regula-
tor, as was done in the experiment, is small. This is because inframarginal plants, which
were not targeted by the regulator, do not receive enough random inspections to induce
abatement. Had the inspections in the treatment been allocated according to the regula-
tor’s optimal rule (along the solid line), we estimate abatement would have been about
15% greater. In other words, doubling inspection while keeping the same level of discre-
tion would have decreased pollution by 0.16 standard deviations. This increase in abate-
ment is equivalent to an arc elasticity of pollution with respect to additional discretionary
inspections of —0.27, relative to the control mean level of inspections and pollution.

Fourth, there is a substantial benefit to better information in a discretionary regime.
The dashed line gives the share of plants abating under an optimal targeting regime where
the regulator observes all variation in pollution (o, = 0) as would be the case where the
regulator has access to a perfectly functioning monitoring technology. The difference in
abatement under an optimal targeting regime with full (dashed line) versus estimated
(solid line) information is 30% of baseline abatement (on average across budgets), and
the amount of abatement from better information is increasing in the inspection budget
(the gap between the dashed and solid line increases). Full information in a discretionary
regime, at the control budget, is as valuable as doubling inspections in a nondiscretionary
regime. It is apparent that full information allows the regulator to target its inspections
more precisely and this substantially increases abatement.
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Full information can, in principle, be achieved by the use of continuous emissions moni-
toring systems (CEMS), devices that report real-time pollution readings. The Indian Cen-
tral Pollution Control Board has developed standards for continuous emissions monitor-
ing systems for particulate matter, the most severe air pollution problem in India, and has
recently mandated their use for hundreds of large factories around the country (Central
Pollution Control Board (2013, 2014)). CEMS have much higher fixed costs but fairly low
variable costs relative to inspections. We estimate that CEMS monitoring of particulate
matter in Gujarat today costs about $1800(U.S.) per plant-year, on an amortized basis,
whereas a single in-person inspection with air pollution sampling costs $70, including the
costs of staff, travel, and lab analysis. The efficacy of CEMS as a substitute for in-person
inspections will depend on the evolution of costs, as devices are installed and used more
widely, and whether a monitoring regime with CEMS provides incentives for accurate
data reporting, rather than only the installation of monitoring devices.

These results help reconcile a number of facts about the effect of the inspection treat-
ment and the constraints on regulation. The inspection budget, given the present penalty
structure, would induce practically no abatement if inspections were allocated evenly
across plants. Discretion has value because it allows the regulator to concentrate inspec-
tions in the plants with high observable signals of pollution and this greatly increases
abatement, even though half of the plants are left alone. This targeting would grow more
valuable if information were improved.

8. CONCLUSION

We conducted an experiment on environmental regulation of industrial plants in Gu-
jarat, India. The treatment bundled increased inspection resources with a removal of dis-
cretion over which plants to inspect. The striking finding is that the treatment had little
effect on plants’ pollution emissions.

We unbundle the experimental results with exhaustive data and a structural model. Our
data set on the regulatory process, pollution readings, and penalties opens the black box
of interactions between the GPCB and regulated plants; we are not aware of a compara-
ble data set from any country on regulatory process and outcomes. We set out a structural
model of the interactions between the regulator and plants to separate the roles of re-
sources and discretion in regulatory enforcement. At the GPCB’s current level of inspec-
tions, we find that removing discretion would be damaging: the inspections chosen by the
regulator induce three times more abatement than would the same number of randomly
assigned inspections. With respect to the experiment, the abatement achieved by the in-
tervention’s increase in inspection resources was somewhat undercut by the removal in
discretion in targeting the extra inspections.

The structural analysis also uncovered that poor information on plant emissions hinders
enforcement when the regulator has discretion. A technology that provided the regulator
with perfect information on plant emissions would increase total abatement by roughly
30% at the status quo inspection rate, the same reduction as would be achieved by a
one-third increase in the inspection budget if the added inspections were allocated with
discretion. The importance of reliable information in discretionary regimes has not been
widely appreciated in the literature or in policy debates.

Our analysis underscores that strict environmental standards and high levels of pollu-
tion co-exist as long as regulators have weak enforcement tools. The study contrasts three
prominent policy levers. First, the impact of adding resources alone is likely positive but,
at least in settings similar to Gujarat, modest. Second, reducing regulatory discretion can
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undercut enforcement, even in settings with weak institutions. This result on discretion
stands in contrast to the conventional wisdom in policy circles and the academic literature
that removing discretion is the best safeguard against corruption. Third, improved mon-
itoring of plant emissions can strengthen enforcement, as regulators have poor informa-
tion on which plants are deserving of sanction. We saw a similar result in our parallel study
of environmental audits, which found that plants reduce emissions when third-party au-
ditors report their emissions to the regulator more truthfully (Duflo et al. (2013)). While
achieving perfect information with continuous emissions monitoring systems may be pos-
sible in principle, further research is needed to address whether, in a setting with weak
institutional capacity, these devices are in fact a reliable and cost-effective substitute for
in-person monitoring.

Regulators and governments generally consider reforms on many different dimensions.
A randomized experiment along each dimension will often be infeasible and so many pol-
icy interventions that are tested experimentally are bundled in the manner of resources
and reduced discretion in our experiment. This paper has combined an experiment and
structural analysis to unbundle several aspects of regulatory enforcement in a critical pol-
icy domain.
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