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ABSTRACT 

 
Phonological neighborhood density (PND) has been 
shown to have apparently inconsistent effects on 
speech production: facilitation, inhibition, 
hypoarticulation, hyperarticulation, or no effect. We 
propose that this variety of results is due to the 
coarseness of the PND measure. We present a neural 
dynamic model of word pronunciation planning in 
which phonological neighbors influence phonetic 
target planning via a combination of excitatory and 
inhibitory interactions. We demonstrate through 
simulations how the model predicts different effects 
of PND depending on the identities of the phonetic 
dimensions differentiating neighbors. We outline 
novel predictions of the model that can help guide 
future empirical work. 
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1. INTRODUCTION 

A number of studies have investigated the effect of 
phonological neighborhood density (PND) on speech 
production, finding mixed results, e.g. facilitation [1], 
[2], inhibition [3], [4], hypoarticulation [5], 
hyperarticulation [6]–[11], or no effect [12]. The 
PND of a word is defined in these studies as the 
number of phonological neighbors in the lexicon, 
where a phonological neighbor is any word that 
differs by the addition, deletion, or substitution of a 
single phoneme [13]. Recently proposed models of 
phonetic planning based on Dynamic Field Theory 
(DFT) [14] have derived effects of lexical 
competitors on speech production, like minimal-pair-
induced “contrastive hyperarticulation” [15] and 
“phonetic trace effects” in speech errors [16]. These 
lexical competition effects are similar to those that 
have been reported to be conditioned by PND. To 
probe PND effects, we present a new model that 
explicitly couples lexical planning to phonetic target 
planning within the framework of DFT. In doing so, 
we shed light on the existing diversity of results 
regarding PND effects in speech production, and 
generate new testable predictions. 

2. MODEL STRUCTURE 

A supplemental document with model equations and 
descriptions, as well as MATLAB scripts for running 
the simulations reported below, are available on OSF 
at https://osf.io/kc7bp/. In the model, neural 
populations governing the activation of lexical items 
are dynamically coupled to neural populations 
governing phonetic planning. Patterns of activation 
within each population unfold over time according to 
differential equations defined in DFT [14]. We focus 
on the planning of three phonetic dimensions relevant 
to the initial consonant: voice onset time (VOT; 
voicing), constriction location (CL; place of 
articulation), and constriction degree (CD; manner of 
articulation). Following [17], we define CL as a 
single dimension, distinct from the articulator(s) used 
to make the constriction. The dynamics of phonetic 
planning—modeled with dynamic neural fields 
(DNFs)—are described in [15], [16]. The novel 
mechanisms introduced in this paper allow dynamic 
coupling of lexical items to phonetic DNFs. Quite 
straightforwardly, a target lexical item excites its 
corresponding phonetic DNFs. Our proposal is that 
neighbors inhibit just those phonetic DNFs that 
differentiate them from the target. We implement this 
proposal with a novel mechanism for lexical-phonetic 
interaction that dictates the polarity of competitor 
activation based on the current state of phonetic 
DNFs.  

Like antecedent DFT models [15], [16], [18]–[20], 
the coupling between a lexical item and a phonetic 
DNF is defined as a distribution, such that an active 
lexical item beginning with, e.g., a voiceless 
consonant, projects a distribution of activation to the 
VOT DNF centered on higher VOT values. Each 
coupling is defined as a normal distribution with 
position p (mean) and width w (standard deviation). 

Lexical items are modeled as dynamic nodes (no 
internal feature gradience) with linear activation 
dynamics (no internal interaction). The rate of change 
of lexical activation is negatively related to current 
activation, defining point attractor dynamics. The 
location of the point attractor is determined by input 
to the lexical node (e.g., from conceptual-intentional 
planning, or from feedback from phonetic planning, 
as discussed below) and noise.  



Lexical items receive feedback from phonetic 
DNFs to which they are coupled. This feedback 
causes phonological neighbors to become somewhat 
active during planning of a target word, and also 
facilitates activation of the target word. The 
magnitude of input from each DNF neuron to a 
coupled lexical item is a sigmoidal function of the 
neuron’s current activation, such that relatively 
inactive neurons contribute virtually no input to 
coupled lexical nodes, while neurons with activation 
exceeding a threshold contribute substantially. Input 
from phonetic DNF neurons to coupled lexical nodes 
is modulated by the metric distance between the 
neuron’s position in the DNF and the center of the 
coupling distribution p. Active neurons with a metric 
position close to the center of the coupling 
distribution (within one w of p) contribute 
substantially, while neurons with a position that 
exceeds one w from p contribute exponentially less. 
Crucially, the threshold for phonetic-to-lexical input 
is lower than the threshold for within-DNF lateral 
interaction (and therefore, activation peak 
stabilization), allowing phonological neighbors to 
become active before phonetic target planning is 
complete.  

Active lexical nodes project input to phonetic DNFs 
to which they are coupled. The shape of this input is 
defined by the coupling distribution (p and w). The 
magnitude of this input is a positive linear function of 
lexical activation, such that more active lexical items 
project stronger input to coupled phonetic DNFs 
compared to less active lexical items. The polarity of 
this input (excitatory or inhibitory) is modulated by δ: 
the difference between the current state of the DNF 
and the lexical item’s “preferred” state of the DNF, 
i.e., the state that would be induced by excitatory 
projection from the lexical item to the DNF. Polarity 
is a sigmoidal function of δ. When δ is relatively 
small (i.e., the DNF does not differ substantially from 
the lexical item’s “preferred” state), input is 
excitatory. When δ exceeds a threshold (i.e., the DNF 
is in a “dispreferred” state for the lexical item), input 
from the lexical item becomes inhibitory. Crucially, 
the polarity of input is independent of the magnitude 
of input. A very active lexical item will project strong 
input to coupled DNFs; whether this input is 
excitatory or inhibitory is determined by the state of 
the DNF at any given time, as indexed by δ. This 
innovation derives the inhibitory effect of neighbors 
on phonetic dimensions that differ from the target.  

3. SIMULATION RESULTS 

We simulate initial consonant planning for a target 
word beginning with /t/ in three conditions, 
summarized in Table 1.  

 Target  Comp. 1 Comp. 2 
Cond. 1 
“2-voiced” 

/t…/ 
‘teen’ 

/d…/ 
‘dean’ 

/b…/ 
‘bean’ 

Cond. 2  
“1-voiced” 

/t…/ 
‘ten’ 

/d…/ 
‘den’ 

/p…/ 
‘pen’ 

Cond. 3  
“0-voiced” 

/t…/ 
‘tin’ 

/p…/ 
‘pin’ 

/k…/ 
‘kin’ 

Table 1: Initial consonant of the target word and each 
competitor in each simulation condition. Example 
words are given in quotes.  
 
In each condition, the target word has two 
phonological neighbors differing only in the initial 
consonant. Thus, PND is the same in all three 
conditions. However, the conditions differ with 
respect to the phonetic dimensions differentiating the 
neighbors. In the 2-voiced condition, both neighbors 
differ from the target in initial consonant voicing 
(beginning with /d/ or /b/). In the 1-voiced condition, 
one neighbor differs from the target in initial 
consonant voicing (beginning with /d/), but the other 
neighbor overlaps with the target on initial consonant 
voicing (beginning with /p/). In the 0-voiced 
condition, both neighbors overlap with the target on 
initial consonant voicing (beginning with /p/ or /k/). 
In all three conditions, all neighbors begin with stops, 
so they all overlap on the CD dimension. The CD 
DNF thus serves as a proxy for the dimensions that 
are shared between all neighbors, allowing some 
activation to spread to all neighbors.  

In all simulations, the target lexical item receives 
positive input, representing an intention to say that 
word. No other lexical item, and no phonetic DNF, 
receives direct input; rather, they receive activation 
only via interactions within the system. Figure 1 
shows the timecourse of activation of the three lexical 
items (top) and the VOT DNF (bottom) for a single 
run in each condition. In all conditions, the two 
phonological neighbors become active via feedback 
from phonetic dimensions on which they overlap with 
the target. In the 2-voiced condition (left), both 
neighbors project inhibitory input to the voiced side 
of the VOT DNF, because by the time the neighbors 
start receiving activation, the state of the VOT DNF 
is more consistent with a voiceless consonant than a 
voiced consonant, resulting in a high value of δ for 
the neighbors. Inhibitory input to the voiced side of 
the DNF causes a rightward shift in the location of the 
activation peak, i.e., a hyperarticulated voiceless 
target. In the 1-voiced condition (center), only the 
neighbor beginning with /d/ projects inhibitory input 
to the voiced side of the DNF, so the rightward peak 
shift is smaller (hyperarticulation is decreased). 
Finally, in the 0-voiced condition, there is no 
inhibitory input to the VOT DNF, and thus no 
hyperarticulation. By-condition differences in the 



 
 
 

 
 
Figure 1. Lexical node (top) and VOT DNF (bottom) activation over time, single run. Left: two inhibitory 
competitors (2-voiced). Center: One inhibitory, one excitatory competitor (1-voiced). Right: two excitatory 
competitors (0-voiced). 

 
Figure 2. VOT target (left) and time to plan VOT target (right) in 500 simulated utterances in each condition. 

 
time until an activation peak stabilizes can also be 
seen: slowest in the 2-voiced condition, followed by 
1-voiced, followed by 0-voiced. 

To investigate the systematicity of these patterns, 
we simulated 500 productions in each of the three 
conditions and recorded the VOT target (metric 
position of the VOT DNF neuron with maximum 
activation at the final timestep) and response time 
(peak of the first derivative of total lateral 
interaction) for each simulation. The target word 
always projected input to the VOT DNF centered at 
p = 70. As seen in Figure 2, a cline of VOT 
hyperarticulation was observed, with the most 

 
hyperarticulation in the 2-voiced condition, followed 
by 1-voiced, followed by 0-voiced. An analogous 
pattern was observed in response time. 

4. DISCUSSION 

Our model of the neural dynamics of lexical and 
phonetic planning demonstrated that different kinds 
of phonological neighborhoods are predicted to have 
different effects on articulation and planning time, 
even when PND is equal. The model thus offers a 
possible explanation underlying the existing 
diversity of results regarding the effects of PND on 



speech production, and offers testable predictions to 
guide future empirical work. As a first step, we 
expect that a better predictor than PND would be the 
ratio of inhibitory to excitatory neighbors on a given 
dimension. This ratio is predicted to positively 
correlate with the magnitude of hyperarticulation on 
that dimension, and the time it takes to plan 
articulation on that dimension.  Another prediction 
relates to the lexical-phonetic coupling widths w. In 
the simulations, VOT was hyperarticulated due to 
overlap from wide inputs w = 30 ms. We assume that 
input widths transparently reflect the distribution of 
the phonetic cue in the listener’s environment. This 
assumption is based on the finding that a VOT input 
width of 30 ms—the approximate standard deviation 
of VOT in American English stops [21]—derives 
contrastive hyperarticulation in non-errors [15] and 
trace effects in errors [16] of empirically observed 
magnitudes. We thus predict that overlap of phonetic 
cues in corpus distributions will correlate with the 
magnitude of neighborhood-induced 
hyperarticulation.  

A third prediction relates to the feedback 
mechanism which activates phonological neighbors. 
It can be seen in Figure 1 (top, center) that the 
competitor beginning with /p/ received slightly more 
activation than the competitor beginning with /d/, 
even though both /d/ and /p/ differ from /t/ in only a 
single feature. This is because the VOT distribution 
(which /t/ and /p/ share) is wider (w = 30 ms) than 
the CL distribution (w = 10 mm), which /t/ and /d/ 
share. Since phonetic-to-lexical input is sensitive to 
w, the VOT DNF ends up contributing more 
activation to coupled lexical items than the CL DNF. 
This predicts that corpus variability on a phonetic 
dimension will correlate with the degree of 
excitatory lexical interaction between neighbors that 
overlap on that dimension, measurable via, e.g., 
priming or error rate. Broadly, this suggests that not 
only the number of overlapping phonetic 
dimensions, but also the way that neighbors are 
coupled to those dimensions, shapes the outcome of 
lexical interaction (cf. [22], [23]). The last prediction 
that we point out is related to the width of the 
activation peaks. It can be seen in Figure 1 (bottom) 
that activation peaks tend to be wider when there are 
more excitatory than inhibitory neighbors. The 
model thus predicts that words with more 
phonological neighbors overlapping on a particular 
phonetic dimension will tend to be more variable on 
that dimension.  

Before concluding, we briefly discuss a few ways 
that this model should continue to be expanded. In 
our simulations, we took the time for an activation 
peak to stabilize in the VOT DNF as a proxy for time 
to speech initiation. However, all dimensions 

relevant to a consonant, or perhaps the whole 
syllable or set of upcoming syllables, likely interact 
in determining the time it takes to begin speaking 
[24]. While we expect that VOT planning time 
should correlate with response time, a more 
complete model would incorporate additional 
phonetic dimensions when relating model behavior 
to human response times. This relates to a second 
avenue for model development. In the current model, 
the neural processes governing lexical and phonetic 
planning unfold over time. However, the temporal 
coordination of phonetic dimensions is not planned. 
Like other models of PND in speech production 
(e.g., [25]), all phonetic dimensions are planned 
simultaneously, with no mechanism to sequence 
their articulation. This is likely insufficient, since the 
position in the word at which phonological 
neighbors differ has been found to influence lexical 
interaction [7]. The model should be elaborated to 
include planning of temporal coordination, while 
capturing these empirical effects. 

5. CONCLUSION 

We presented a neural dynamic model of word 
pronunciation planning based on Dynamic Field 
Theory (DFT). The model expands on previous 
related models by adding lexical items, and  
formalizing dynamic coupling mechanisms between 
lexical items and dimensions of phonetic planning. 
These coupling mechanisms account for activation 
of phonological neighbors during target word 
planning, as well as the influence (inhibitory or 
excitatory) of phonological neighbors on phonetic 
planning. We demonstrated through simulations that 
the ratio of phonological neighbors that differ on a 
phonetic dimension (“inhibitory” neighbors) to 
neighbors that overlap on a phonetic dimension 
(“excitatory” neighbors) is expected to be a better 
predictor of hyperarticulation on that dimension than 
global phonological neighborhood density (PND), 
offering a possible explanation of the existing 
diversity of results, as well as predictions to guide 
future empirical work. 

As a final point, the flow of activation in the model 
(both laterally within DNFs, and between lexical 
items and DNFs) is highly non-linear, allowing 
stabilization over time on a particular word’s 
pronunciation plan. However, the primitive features 
of the model are all continuous, allowing the 
generation of gradient shifts in pronunciation and 
planning time, even in the face of the categoricity 
generated by the non-linearities. A general strength 
of this kind of modeling approach is that gradience 
and categoricity co-exist in the same dimensions. 
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