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ONLINE APPENDIX

1 Log-linearization

1.1 Equilibrium recap

We begin by reviewing all equilibrium conditions in the extended model, with intensive
margins of recruiting and labor supply.

To simplify notation, we define the relative price of an efficiency unit of Service input in
terms of final good:

xt =
ωt
ztPt

and the marginal utility of consumption, with a preference shock Υt

Mt =

(
Ct
Υt

)− 1
σ

We then list all equilibrium conditions:
• Euler equation

βEt
[
Mt+1

Mt

1 +Rt

1 + πt+1

]
= 1

Now let ỹ = y1+Ξ. The the expected flow match output from an unemployed job applicant
equals:

µ0 =
K∑
k=1

ỹk (Γk − Γk−1)
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and the expected flow match output from an employed job applicant be µ1,t−1, where:

µ1,t =
K∑
k=1

k∑
j=1

(ỹk − ỹj)
Lj,t − Lj−1,t

1− ut
(Γk − Γk−1)

Decomposing the sums, we can express I1,t = (1− ut)µ1,t as follows:

I1,t =
K∑
k=1

k∑
j=1

(ỹk − ỹj) (Lj,t − Lj−1,t) (Γk − Γk−1) =
K∑
k=1

(Γk − Γk−1)
k∑
j=1

(ỹk − ỹj) (Lj,t − Lj−1,t)

=
K∑
k=1

Γk

k∑
j=1

(ỹk − ỹj) (Lj,t − Lj−1,t)−
K∑
k=1

Γk−1

k∑
j=1

(ỹk − ỹj) (Lj,t − Lj−1,t)

=
K∑
k=1

Γk

k∑
j=1

(ỹk − ỹj) (Lj,t − Lj−1,t)−
K−1∑
k=1

Γk

k+1∑
j=1

(ỹk+1 − ỹj) (Lj,t − Lj−1,t)

=
K∑
j=1

(ỹK − ỹj) (Lj,t − Lj−1,t) +
K−1∑
k=1

Γk

[
k∑
j=1

(ỹk − ỹj) (Lj,t − Lj−1,t)−
k+1∑
j=1

(ỹk+1 − ỹj) (Lj,t − Lj−1,t)

]

= ỹKLK,t −
K∑
j=1

ỹj(Lj,t − Lj−1,t)+

+
K−1∑
k=1

Γk

[
ỹkLk,t −

k∑
j=1

ỹj(Lj,t − Lj−1,t)− ỹk+1Lk+1,t +
k+1∑
j=1

ỹj(Lj,t − Lj−1,t)

]

= ỹKLK,t −
K∑
j=1

ỹj(Lj,t − Lj−1,t) +
K−1∑
k=1

Γk [ỹkLk,t − ỹk+1Lk+1,t + ỹk+1(Lk+1,t − Lk,t)]

= ỹKLK,t −
K∑
j=1

ỹj(Lj,t − Lj−1,t)−
K−1∑
k=1

Γk (ỹk+1 − ỹk)Lk,t

= ỹKLK,t − ỹK(LK,t − LK−1,t)− ỹK−1(LK−1,t − LK−2,t)− ...ỹ1L1,t −
K−1∑
k=1

Γk (ỹk+1 − ỹk)Lk,t

=
K−1∑
j=1

(ỹj+1 − ỹj)Lj,t −
K−1∑
j=1

Γj (ỹj+1 − ỹj)Lj,t

so finally

I1,t =
K−1∑
j=1

(1− Γj) (ỹj+1 − ỹj)Lj,t

and

µ1,t =
K−1∑
k=1

(1− Γk) (ỹk+1 − ỹk)
Lk,t

1− ut
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• Recruiting efforts.
Apply the additive separable utility specification to the following equations derived in

the paper:

Lt =
b

Mt[1− β(1− δ)]

Et
[
Mt+1

Mt

Lt+1

]
=

βb

Mt[1− β(1− δ)]
= βLt

r∗i,t =

(
PtΩi,t

κsωt

) 1
ι

=

(
Ωi,t

κsxtzt

) 1
ι

Ω0,t = Et
[
Mt+1

Mt

Wt+1

]
µ0 − Et

[
Mt+1

Mt

Lt+1

]
Ω1,t = Et

[
Mt+1

Mt

Wt+1

]
µ1,t−1

Therefore:

r∗0,t =

(
β
µ0Et [Mt+1Wt+1]− b

1−β(1−δ)

κsxtztMt

) 1
ι

and

r∗1,t =

(
β
µ1,t−1Et [Mt+1Wt+1]

κsxtztMt

) 1
ι

• Final good market-clearing:

Qt = ΥtM−σ
t + κvθt [ut−1 + δ(1− ut−1)s0 + (1− δ)(1− ut−1)s1]

• Free entry:

κvθt
ϕtφ(θt)

= κsxtzt
ι

1 + ι

[ut−1 + δ(1− ut−1)s0] r∗0,t
1+ι + (1− δ)(1− ut−1)s1r

∗
1,t

1+ι

ut−1 + δ(1− ut−1)s0 + (1− δ)(1− ut−1)s1

• Employment and unemployment dynamics:

Lk,t = (1− δ)
[
1− s1ϕtφ(θt)r

∗
1,t(1− Γk)

]
Lk,t−1 + ϕtφ(θt)r

∗
0,tΓk [ut−1 + δs0(1− ut−1)]

ut =
(
1− ϕtφ(θt)r

∗
0,t

)
ut−1 + δ

(
1− s0ϕtφ(θt)r

∗
0,t

)
(1− ut−1)

• Recursion for the real MC:

Wt =
(xtzt)

1+Ξ

1 + Ξ

(
Mt

B

)Ξ

+ (1− δ)βEt
[
Mt+1

Mt

Wt+1

]
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• Optimal pricing:

p?t
η
ζ

+1−η =
η

η − 1

1

ζ
·

+∞∑
τ=0

(1− ν)τβτEt
[
Mt+τQ

1
ζ

t+τP
η
ζ

t+τxt+τ

]
+∞∑
τ=0

(1− ν)τβτEt
[
Mt+τQt+τP

η−1
t+τ

]
• Market-clearing in the Service market:

(
xtztMt

B

)Ξ K∑
k=1

y1+Ξ
k (Lk,t−1 − Lk−1,t−1) =

Q
1
ζ

t

zt

(
Pt

P̃t

) η
ζ

+
Qt −ΥtM−σ

t

ιxtzt

Note that the last term on the right, the demand for Service for recruiting activities, is
simplified from its original form

κsϕtφ(θt)

1 + ι

[
(ut−1 + δ(1− ut−1)s0) r∗0,t

1+ι + (1− δ)(1− ut−1)s1r
∗
1,t

1+ι
]
.

by using the free entry condition.
• Taylor rule:

ln(1 +Rt) = ρR ln (1 +Rt−1) + (1− ρR)
[
ψπ ln (1 + πt) + ψu ln

ut
u
− ln β

]
+ ln ςt

• Structural shocks:
For ø ∈ {z,Υ, ϕ, ς}

ln øt = ρø ln øt−1 + σøε
ø
t

1.2 Steady state

In the absence of shocks, we obtain a steady state equilibrium. Normalize to one the steady
price level P (measured in dollars). Solve for steady W and replace this expression in the
optimal stationary recruiting efforts, so that W no longer appears. Then, steady state
equilibrium solves the following set of algebraic equations:

z = ϕ = Υ = 1, R =
1

β
, P = P̃ = p∗ = 1

ω = x =
η − 1

η
ζQ

ζ−1
ζ

u =
δ[1− s0φ(θ)r∗0]

δ[1− s0φ(θ)r∗0] + φ(θ)r∗0
, Lk =

φ(θ)r∗0Γk [u+ δ(1− u)s0]

δ + (1− δ)s1φ(θ)r∗1(1− Γk)

µ0 =
K∑
k=1

(Γk − Γk−1) y1+Ξ
k , µ1 =

K−1∑
k=1

(1− Γk)
(
y1+Ξ
k+1 − y

1+Ξ
k

) Lk
1− u

4



r∗0 =

{
β

1− β(1− δ)

[
µ0

κs

1

1 + Ξ

(
xM
B

)Ξ

− b

κsxM

]} 1
ι

r∗1 =

[
β

1− β(1− δ)
µ1

κs

1

1 + Ξ

(
xM
B

)Ξ
] 1
ι

(
xM
B

)Ξ K∑
k=1

y1+Ξ
k (Lk − Lk−1) = Q

1
ζ +

Q−M−σ

ιx

Q =M−σ + κvθ [u+ δ(1− u)s0 + (1− δ)(1− u)s1]

Finally, to write the free entry condition in steady state, solve for κvθ from the previous
equation and replace it:

Q−M−σ

φ(θ)

1 + ι

ιxκs
= [u+ δs0 (1− u)] r∗0

1+ι + (1− δ)(1− u)s1r
∗
1

1+ι

1.3 Log-linear approximation and matrix representation of the lin-
earized model

We use hats to denote log deviations from the steady state with zero inflation, such as
θ̂t = ln θt − ln θ. For inflation, since we cannot take logs of π = 0, we use a linearization in
levels: π̂t = πt−π = πt = lnPt− lnPt−1. Moreover, in steady state, from the Euler equation
R = − ln β and we define R̂t = Rt + ln β. We use the first-order approximation rules

xt = a+ byt + cytzt ⇒ xx̂t = byŷt + cyz(ŷt + ẑt)⇒ x̂t =
byŷt + cyz(ŷt + ẑt)

a+ by + cyz

xt =
a+ byt + cytzt
d+ ewt + fwtht

⇒ x̂t =
byŷt + cyz(ŷt + ẑt)

a+ by + cyz
− ewŵt + fwh(ŵt + ĥt)

d+ ew + fwh

xt = a+ bEt[yt+1zt+1] = a+ bEt[eln yt+1+ln zt+1 ] = a+ byzEt[1 + ŷt+1 + ẑt+1]

⇒ xt − x = xx̂t = byzEt[ŷt+1 + ẑt+1]

yt = f(x1,t, .., xn,t)⇒ ŷt = y−1

n∑
i=1

∂f(x1, ...xn)

∂xi
xix̂i,t

The resulting system of approximated equilibrium conditions comprises 13 + K linear
stochastic difference equations, boxed and labeled [M,R,W, SC0, SC1, Q, FEC, {Lk}k=1,··· ,K−1,
u, PC, MC, z, Υ, ϕ, MP] in the 13 +K variables, stacked in a column vector χ̂t, where:

χ>t =

r∗0,t, r∗1,t, Qt, θt, xt︸ ︷︷ ︸
5 static variables Y>t

πt,Wt,Mt︸ ︷︷ ︸
3 jump variables X>t

zt, ϕt,Υt, ςt,︸ ︷︷ ︸
4 exogenous states Z>t

Rt, ut, L1,t, · · · , LK−1,t︸ ︷︷ ︸
1+K endogenous states S>t


where Yt,Xt,Zt,St are column vectors, recalling that ut = 1− LK,t and K ≥ 1 is the finite
cardinality of the support of match quality. Here “static” variables are endogenous variables
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that appear in the system only dated at time t; “jump” variables are endogenous variables
that appear in the system only dated at time t and (in expectation) t+ 1. Static and jump
variables do not appear dated at t− 1, so, unlike states, they have no predetermined values.
States can be exogenous or endogenous. Price indices Pt and P̃t no longer appear, because
only their growth rate πt is relevant to equilibrium.1

The linearized system has the matrix representation:

Aχ̂t + Bχ̂t−1 + CEtχ̂t+1 + Dεt = 0(13+K)×1 (1)

where A,B,C are (13 +K)× (13 +K) coefficient matrices, D is (13 +K)× 4. Equations are
on the rows of these matrices, and variables are on the columns. Matrices A,B,C,D have all
zero entries, except the following. Given our labeling of equations and variables, rather than
numbering rows and columns, we denote each row with the corresponding equation label,
and each column with the corresponding variable.

Consumption Euler Equation [M]

EtM̂t+1 − M̂t + R̂t − Etπt+1 = 0

So

AM,M = −1

AM,R = 1

and

CM,M = 1

CM,π = −1

Present value of Service relative price [W]

WŴt =
x1+Ξ

1 + Ξ

(
M
B

)Ξ [
(1 + Ξ) (x̂t + ẑt) + ΞM̂t

]
+ β(1− δ)WEt

[
M̂t+1 − M̂t + Ŵt+1

]
Dividing through by W and using its s.s. expression:

Ŵt − [1− β(1− δ)]
[
(1 + Ξ) (x̂t + ẑt) + ΞM̂t

]
− β(1− δ)

[
EtM̂t+1 − M̂t + EtŴt+1

]
= 0

So

AW,x = −[1− β(1− δ)](1 + Ξ)

AW,M = AW,x + 1

AW,W = 1

AW,z = AW,x

1Note that, if we solve the Euler equation [C] for EtM̂t+1 = M̂t − R̂t + Etπt+1, and replace everywhere
in the other equations, we eliminate the Euler equation andMt becomes a static variable, which no longer
appears in expectation.
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and

CW,M = −β(1− δ)
CW,W = CW,M

Recruiting intensity (Screening) of unemployed job applicants [SC0] Using

r∗ι0,tκsxtztMt =
µ0

µ1,t−1

r∗ι1,tκsxtztMt −
βb

1− β(1− δ)

and log linearizing

r∗ι0

(
ιr̂∗0,t + x̂t + ẑt + M̂t

)
=
µ0

µ1

r∗ι1

(
ιr̂∗1,t + x̂t + ẑt + M̂t − µ̂1,t−1

)
and replacing from above(

r∗0
r∗1

)ι (
ιr̂∗0,t + x̂t + ẑt + M̂t

)
− µ0

µ1

(
EtŴt+1 + EtM̂t+1

)
= 0

So,

ASC0,x =

(
r∗0
r∗1

)ι
ASC0,M = ASC0,x

ASC0,z = ASC0,x

ASC0,r∗0
= ASC0,xι

and

CSC0,M = −µ0

µ1

CSC0,W = CSC0,M

Recruiting intensity (Screening) of employed job applicants [SC1] Let

µ̂1,t−1 =
u

1− u
ût−1 +

K−1∑
k=1

(1− Γk)
(
y1+Ξ
k+1 − y

1+Ξ
k

)
Lk∑K−1

j=1 (1− Γj)
(
y1+Ξ
j+1 − y1+Ξ

j

)
Lj
L̂k,t−1

Then

ιr̂∗1,t + x̂t + ẑt − EtŴt+1 − EtM̂t+1 + M̂t − µ̂1,t−1 = 0

So

ASC1,x = 1

ASC1,M = 1

ASC1,z = 1

ASC1,r∗1
= ι
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and

BSC1,u = − u

1− u

BSC1,Lk = −
(1− Γk)

(
y1+Ξ
k+1 − y

1+Ξ
k

)
Lk∑K−1

j=1 (1− Γj)
(
y1+Ξ
j+1 − y1+Ξ

j

)
Lj

and

CSC1,M = −1

CSC1,W = −1

Final good market-clearing [Q]

QQ̂t +M−σ(σM̂t − Υ̂t)− κvθ [u+ δ(1− u)s0 + (1− δ)(1− u)s1] θ̂t

−κvθu [1− δs0 − (1− δ)s1] ût−1 = 0

So

AQ,Q = Q

AQ,Υ = −M−σ

AQ,M = −σAQ,Υ
AQ,θ = −κvθ [u+ δ(1− u)s0 + (1− δ)(1− u)s1]

and

BQ,u = −κvθu [1− δs0 − (1− δ)s1]

Price Indices. As is standard, the law of motion of the final good price:

P 1−η
t = νp∗t

1−η + (1− ν)P 1−η
t−1

log-linearizes as:
P̂t = νp̂?t + (1− ν)P̂t−1

where we used the fact that in steady state, Pt = p∗t = Pt−1 = P .
Similarly, the dynamics of P̃t can be written as

P̃−ηt = νp∗t
−η + (1− ν)P̃−ηt−1

log-linearize as: ̂̃Pt = νp̂∗t + (1− ν) ̂̃P t−1

independently of the value of η. Combining the two log-linear equations,
(
P̂t − ̂̃P t

)
=

(1− ν)
(
P̂t−1 − ̂̃P t−1

)
. Thus ̂̃P t − P̂t converges to zero deterministically. Near steady state,

prices are close to their steady-state benchmark, there is little price dispersion. This implies

that ̂̃P t and P̂t are approximately the same:̂̃P t ' P̂t
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Employment distribution [Lk] For k = 1, 2, · · · , K − 1, K ≥ 2:

L̂k,t − (1− δ) [1− s1φ(θ)r∗1(1− Γk)] L̂k,t−1 + (1− δ)s1φ(θ)r∗1(1− Γk)r̂
∗
1,t −

u+ δ(1− u)s0

Lk
φ(θ)r∗0Γkr̂

∗
0,t

−(1− δs0)φ(θ)r∗0Γk
Lk

uût−1 +

[
(1− δ)s1r

∗
1(1− Γk)−

u+ δ(1− u)s0

Lk
r∗0Γk

]
φ(θ)

(
αθ̂t + ϕ̂t

)
= 0

So

ALk,r∗0 = −φ(θ)r∗0
u+ δ(1− u)s0

Lk
Γk

ALk,r∗1 = (1− δ)s1φ(θ)r∗1(1− Γk)

ALk,ϕ = ALk,r∗0 + ALk,r∗1
ALk,θ = αALk,θ

AL,Lk = 1

and

BLk,u = −(1− δs0)φ(θ)r∗0Γk
Lk

u

BLk,Lk = −(1− δ) + ALk,r∗1

Note that we stop these equations at k = K − 1 because the equation at k = K is
redundant from the identity LK,t = 1− ut and:

Unemployment [u]

ût − [1− δ − (1− δs0)φ(θ)r∗0] ût−1 +

(
1− δs0 +

δs0

u

)
φ(θ)r∗0

(
αθ̂t + ϕ̂t + r̂∗0,t

)
= 0

So

Au,ϕ =
u+ δ(1− u)s0

u
φ(θ)r∗0

Au,θ = αAu,ϕ

Au,r∗0 = Au,ϕ

Au,u = 1

and

Bu,u = −1 + δ + (1− δs0)φ(θ)r∗0
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Optimal reset price and Phillips Curve [PC]. Next, we log-linearize the optimal reset
pricing equation. The l.h.s. log-linearizes as:(

η

ζ
+ 1− η

)
p̂?t

The numerator in the r.h.s. log-linearizes as:

[1− β(1− ν)]Et
+∞∑
τ=0

(1− ν)τβτ
(

1

ζ
Q̂t+τ +

η

ζ
P̂t+τ + x̂t+τ + M̂t+τ

)
while the (inverse of the) denominator log-linearizes as:

− [1− β(1− ν)]Et
+∞∑
τ=0

(1− ν)τβτ
[
Q̂t+τ + (η − 1)P̂t+τ + M̂t+τ

]
Putting everything together:

(
η

ζ
+ 1− η

)
p̂?t = [1− β(1− ν)]Et

+∞∑
τ=0

(1−ν)τβτ

[
1− ζ
ζ

Q̂t+τ+

(
η

ζ
+ 1− η

)
P̂t+τ+x̂t+τ

]

This latter equation can be rewritten in recursive form:(
η

ζ
+ 1− η

)
p̂?t = [1− β(1− ν)]

[
1− ζ
ζ

Q̂t+

(
η

ζ
+ 1− η

)
P̂t+x̂t

]
+β(1−ν)

(
η

ζ
+ 1− η

)
Etp̂?t+1

Now remember that p̂?t solves:

P̂t = νp̂∗t + (1− ν)P̂t−1 ⇐⇒ p̂∗t = P̂t−1 +
1

ν
πt

Substituting:(
η

ζ
+ 1− η

)(
P̂t−1 +

1

ν
πt

)
= [1− β(1− ν)]

[
1− ζ
ζ

Q̂t +

(
η

ζ
+ 1− η

)
P̂t + x̂t

]
+ β(1− ν)

(
η

ζ
+ 1− η

)
Et
(
P̂t +

1

ν
πt+1

)
simplifying terms in P̂t(

η

ζ
+ 1− η

)(
P̂t−1 +

1

ν
πt

)
=

(
η

ζ
+ 1− η

)
P̂t

+ [1− β(1− ν)]

[
1− ζ
ζ

Q̂t + x̂t

]
+ β

1− ν
ν

(
η

ζ
+ 1− η

)
Et (πt+1)
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Finally, replace P̂t−1 = P̂t − πt, collate terms and rearrange:

πt −
ν

1− ν
1− β(1− ν)

1 + η
ζ
− η

[
1− ζ
ζ

Q̂t + x̂t

]
− βEtπt+1 = 0

So, let

APC = − ν

1− ν
1− β(1− ν)

1 + η 1−ζ
ζ

Then

APC,π = 1

APC,Q = APC
1− ζ
ζ

APC,x = APC

APC,M = APC − APC,x

and

CPC,π = −β

With constant returns to scale, ζ = 1, it reduces to the standard NKPC.

πt = ν
1− β(1− ν)

1− ν
x̂t + βEtπt+1

where x̂t is the marginal cost. The more decreasing are returns to scale (smaller ζ), the more
sensitive is inflation to final output, given marginal cost.

Free-entry condition [FEC] Rewrite it as:

κv
κs

1 + ι

ι

1

ztxt

θt
ϕtφ(θt)

=
[ut−1 + δ(1− ut)s0] r∗0,t

1+ι + (1− δ)(1− ut−1)s1r
∗
1,t

1+ι

ut−1 + [δs0 + (1− δ)s1](1− ut−1)

The LHS log-linearizes as −ẑt− x̂t− ϕ̂t+(1−α)θ̂t, where α is the elasticity of φ(·) evaluated
at the s.s. θ.

The denominator on the RHS log-linearizes as:

− 1− [δs0 + (1− δ) s1]

u+ [δs0 + (1− δ) s1] (1− u)
uût−1

The numerator on the RHS log-linearizes as follows:

(1 + ι)
[u+ δ(1− u)s0] r∗0

1+ιr̂∗0,t + (1− δ)(1− u)s1r
∗
1

1+ιr̂∗1,t
[u+ δ(1− u)s0] r∗0

1+ι + (1− δ)(1− u)s1r∗1
1+ι

+
(1− δs0)r∗0

1+ι − (1− δ)s1r
∗
1

1+ι

[u+ δ(1− u)s0] r∗0
1+ι + (1− δ)(1− u)s1r∗1

1+ιuût
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Collecting all terms:

(1− α)θ̂t − ϕ̂t − x̂t − ẑt − (1 + ι)
[u+ δ(1− u)s0]

(
r∗0
r∗1

)1+ι

r̂∗0,t + (1− δ)(1− u)s1r̂
∗
1,t

[u+ δ(1− u)s0]
(
r∗0
r∗1

)1+ι

+ (1− δ)(1− u)s1

+

 1− δs0 − (1− δ) s1

u+ [δs0 + (1− δ) s1] (1− u)
−

(1− δs0)
(
r∗0
r∗1

)1+ι

− (1− δ)s1

[u+ δ(1− u)s0]
(
r∗0
r∗1

)1+ι

+ (1− δ)(1− u)s1

uût−1 = 0

So, let

Den = [u+ δ(1− u)s0]

(
r∗0
r∗1

)1+ι

+ (1− δ)(1− u)s1

Then:

AFEC,θ = 1− α
AFEC,x = −1

AFEC,r∗0
= −(1 + ι)

u+ δ(1− u)s0

Den

(
r∗0
r∗1

)1+ι

AFEC,r∗1
= −(1 + ι)

(1− δ)(1− u)s1

Den
AFEC,z = −1

AFEC,ϕ = −1

and

BFEC,u =

 1− δs0 − (1− δ)s1

u+ (δs0 + (1− δ)s1)(1− u)
−

(1− δs0)
(
r∗0
r∗1

)1+ι

− (1− δ)s1

Den

u
Market-clearing in the Service market [MC] First, note that we can sum by parts
and use LK,t = 1− ut:

K∑
k=1

y1+Ξ
k (Lk,t−1 − Lk−1,t−1) = y1+Ξ

K (1− ut−1)−
K−1∑
k=1

(
y1+Ξ
k+1 − y

1+Ξ
k

)
Lk,t−1 (2)

Therefore:(
xM
B

)Ξ
[

Ξ
K∑
k=1

y1+Ξ
k (Lk − Lk−1)

(
M̂t + x̂t + ẑt

)
− y1+Ξ

K uût−1 −
K−1∑
k=1

(
y1+Ξ
k+1 − y

1+Ξ
k

)
LkL̂k,t−1

]
+

−Q
1
ζ

(
1

ζ
Q̂t − ẑt

)
− QQ̂t +M−σ(σM̂t − Υ̂t)

ιx
− Q−M−σ

ιx
(ẑt + x̂t)
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So, let

AMC,1 =

(
xM
B

)Ξ

Ξ
K∑
k=1

y1+Ξ
k (Lk − Lk−1)

Then

AMC,M = AMC,1 −
σM−σ

ιx

AMC,x = AMC,1 +
M−σ −Q

ιx

AMC,z = AMC,x +Q
1
ζ

AMC,Q = −Q
1
ζ

ζ
− Q

ιx

AMC,Υ =
M−σ

ιx

and

BMC,u = −
(
xM
B

)Ξ

y1+Ξ
K u

BMC,Lk = −
(
xM
B

)Ξ (
y1+Ξ
k+1 − y

1+Ξ
k

)
Lk

Monetary Policy nominal interest rate rule [R]

R̂t − ρRR̂t−1 − (1− ρR) (ψππt + ψuuût)− ς̂t = 0

For the last “exogenous” dynamic equations, which are already log linear and require no
approximation, we report matrix coefficients all together:

Structural shock dynamics [z], [Υ], [ϕ], [MP] .

For ø ∈ {z,Υ, ϕ, ς}
ø̂t − ρøø̂t−1 − σøε

ø
t = 0

so,

AR,π = −(1− ρR)ψπ

AR,R = 1

AR,ς = −1

AR,u = −(1− ρR)ψuu

Aø,ø = 1

Bø,ø = −ρø

Dø,ø = −σø

13



2 Solution: Rational Expectations Equilibrium

2.1 Elimination of static variables

We can solve out for the static variables Yt and reduce the system to equations in dynamic
(jump and state) variables only, where, with an abuse of notation, χ now denotes the column
vector stacking only these other variables, X ,Z,S. We can choose any five equations where
the five static variables Yt appear, for example [SC0], [SC1], [MC], [FEC], [PC], collect them
in a block denoted by “ST” (for “static”), and build a square submatrix AST,Y with the A•,•
coefficients on each element of Y in those equations. The rest of the equations are denoted
by “DY ” (for “dynamic”): ADY,•,BDY,•,CDY,•,DDY,•.

In this new notation, the original system (1), can be written as(
AST,Y AST,χ
ADY,Y ADY,χ

)(
Ŷt
χ̂t

)
+

(
BST,χ
BDY,χ

)
χ̂t−1 +

(
CST,χ
CDY,χ

)
Etχ̂t+1 +

(
DST

DDY

)
εt = 0

By inspection, AST,Y is generically non singular for many choices of the equations in ST . So,
we can solve the upper block

AST,YŶt + AST,χχ̂t + BST,χχ̂t−1 + CST,χEtχ̂t+1 + DST εt = 0

for the static variables

Ŷt = −A−1
ST,Y (AST,χχ̂t + BST,χχ̂t−1 + CST,χEtχ̂t+1 + DST εt) (3)

The lower block becomes(
ADY,Y ADY,χ

)(A−1
ST,Y (AST,χχ̂t + BST,χχ̂t−1 + CST,χEtχ̂t+1 + DST εt)

χ̂t

)
+

BDY,χχ̂t−1 + CDY,χEtχ̂t+1 + DDY εt = 0

After rearranging, we can rewrite this lower block in terms of dynamic variables χt only,(
−ADY,YA−1

ST,YAST,χ + ADY,χ
)
χ̂t +

(
−ADY,YA−1

ST,YBST,χ + BDY,χ
)
χ̂t−1 +(

−ADY,YA−1
ST,YCST,χ + CDY,χ

)
Etχ̂t+1 +

(
−ADY,YA−1

ST,YDST, + DDY

)
εt = 0

and re-define the A,B,C,D matrices appropriately. Once we find a solution in terms of χt,
we recover Yt from (3).

2.2 Fundamental solution

We look for the fundamental solution to the system, where expectation errors are only a
function of the stochastic realizations of the structural innovations ε. That is, we rule out
endogenous expectations errors that give rise to indeterminacy. After estimating parameters,
we can check whether the conditions for such determinacy are satisfied.

Because the system of equations (1), which describes equilibrium whether or not we solve
out for static variables, is linear, we guess and verify an AR(1) linear solution

χ̂t = Ψχ̂t−1 + Λεt (4)
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Using this guess, which implies Etχ̂t+1 = Ψχ̂t = Ψ2χ̂t−1 + ΨΛεt, (1) becomes:

AΨχ̂t−1 + AΛεt + Bχ̂t−1 + CΨ2χ̂t−1 + CΨΛεt + Dεt = 0

Thereforem, Ψ solves the quadratic equation:

AΨ + B + CΨ2 = 0

Since this quadratic equation may have multiple solutions, but the conjectured REE process
has exogenous innovations, we need to select a solution Ψ that guarantees stability of REE,
i.e. has eigenvalues within the unit circle.

Note that generically A is invertible, as it contains non zero elements in every row and in
every column. Therefore, one possible solution method is iterative, whether or not we solve
out for static variables. Guess Ψ0 = 0 and for n = 1, 2 · · · iterate

Ψn = −A−1(B + CΨ2
n−1)

If this recursion converges, we have a solution. Uhlig (1999) proposes an alternative solution
method that picks the stable solution, if it exists.

If at the solution Ψ the square matrix (A + CΨ) is non-singular, we can compute

Λ = −(A + CΨ)−1D

and further characterize the solution. Since

(A + CΨ)Ψ = −B

and, by inspection, the first six columns of B are all zero, then a non-singular (A + CΨ)
implies that the first six columns of Ψ are also all zero. We also note that the first six
rows of D are all zero. Therefore, the six “jump” variables Ĉt, θ̂t, π̂t, x̂t, Ŵt are only a linear,
deterministic function of the other, predetermined, state variables lagged, a function that we
can think of as a policy function, while the 5+K state variables are only a linear function of
themselves lagged and structural innovations ε, which immediately yields the first component
of the model state-space representation, the “state” or “transition” equations. We now show
a method to derive this representation in general, even when the matrix (A + CΨ) is not
invertible.

3 State-space representation

We now express the model dynamics in a state-space representation. This representation
allows to estimate the model either by Maximum Likelihood, using the Kalman Filter, or by
Bayesian methods, or by a method of moments, simulating data and computing moments to
be matched to empirical ones. Once we have estimated/calibrated the parameter values, we
can use the state-space representation also to simulate the equilibrium dynamics from any
initial condition and for any draw of innovations, for example IRFs starting from s.s. and
introducing once-and-for-all structural innovations, as well as policy experiments.
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Recall that we denoted by X ,Z,S the three column vectors of (resp.) non-predetermined
(jump) variables, exogenous states and endogenous states, after solving out for the static
variables. The state-space representation is a “transition” or “state” equation, a linear map
from lagged states and structural innovations to current states, where this map should not
include jump endogenous variables Xt, and a “measurement” equation, a linear map from
states and noise, which could include fundamental innovations as well as measurement error,
to observables Yt, which can include some of the states themselves (in which case the map is
the identity), some of the jump endogenous variables Xt, and other variables that the model
generates and are observable in the data.

Given the structure of our model, and the available data that determine observables, the
natural state-space representation is the following. We can stack the 5 +K states Zt,St into
a vector St, and the NY observables into a vector Yt, so that transition and measurement
equations read

St = QSt−1 + Vεt

Yt = NSt + NSt−1 + Rεt
(5)

where Q is a square matrix of dimension 5+K, V is (5+K)×5, each N,N is NY ×(5+K), R is
a square matrix of dimension NY , εt ∼ N(0, INY ) is a column vector of multivariate Gaussian
white noise measurement error, which may be required to make sure the log likelihood of
the sample is finite. Q,V,N,N,R are either known from above or can be written in terms of
structural parameters. We now show their expressions.

3.1 Transition (state) equations

We first reformulate the system of equilibrium conditions for each of the three subvectors.
To that end, we introduce the following notation:

A =

AXX AXZ AXS
AZX AZZ AZS
ASX ASZ ASS


where the matrix AXX collects the coefficients in the three remaining equations of the three
remaining forward-looking (jump) variables Xt = (Ĉt, π̂t, Ŵt), the matrix AXZ the coefficients

in the same three equations of the four exogenous state variables Zt = (ẑt, ς̂t, Υ̂t, ϕ̂t), and
so on. Similarly for B, C, and Ψ In this notation, by inspection (each with the appropriate
dimensions):

A =

AXX AXZ AXS
0 I 0

ASX ASZ ASS

 , B =

0 0 BXS
0 BZZ 0
0 0 BSS


and

C =

CXX 0 0
0 0 0
0 0 0

 , Ψ =

ΨXX ΨXZ ΨXS
0 ΨZZ 0

ΨSX ΨSZ ΨSS
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Moreover:

ΨZZ = −BZZ =


ρz 0 0 0
0 ρς 0 0
0 0 ρϕ 0
0 0 0 ρΥ


We finally define the following “standard deviation” matrix:

D =


−σz 0 0 0

0 −σς 0 0
0 0 −σϕ 0
0 0 0 −σΥ


We then start with the simplest set of subvectors, namely exogenous states:

Zt = ΨZZZt−1 − Dεt (6)

Next, the dynamics of the endogenous states S in our model are governed by:

ASSSt = −ASXXt − ASZZt − BSSSt−1 (7)

Finally, for the jump variables

AXXXt + AXZZt + AXSSt + BXSSt−1 + CXXEt [Xt+1] = 0 (8)

To find the transition equation(s), we need to “solve out” the jump variables. Under the
fundamental solution, we have:

Et [Xt+1] = ΨXXXt + ΨXZZt + ΨXSSt

Replacing in Eq. (8), we can collect terms and, assuming invertibility of the 5 × 5 matrix
AXX +CXXΨXX , solve for the “policy functions”, i.e. for Xt as a function of the states alone,
without stochastic innovations:

Xt = − (AXX + CXXΨXX )−1 [(AXZ + CXXΨXZ)Zt + (AXS + CXXΨXS)St + BXSSt−1] (9)

Replacing in Eq. (7) and rearranging[
ASS − ASX (AXX + CXXΨXX )−1 (AXS + CXXΨXS)

]
St

=
[
ASX (AXX + CXXΨXX )−1 (AXZ + CXXΨXZ)− ASZ

]
Zt

+
[
ASX (AXX + CXXΨXX )−1 BXS − BSS

]
St−1

Further substituting (6):[
ASS − ASX (AXX + CXXΨXX )−1 (AXS + CXXΨXS)

]︸ ︷︷ ︸
QS

St

=
[
ASX (AXX + CXXΨXX )−1 (AXZ + CXXΨXZ)− ASZ

]︸ ︷︷ ︸
QSZ

(ΨZZZt−1 − Dεt)

+
[
ASX (AXX + CXXΨXX )−1 BXS − BSS

]︸ ︷︷ ︸
QSS

St−1
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Thus, if the (K + 1) × (K + 1) matrix QS is invertible, the model admits a state-space
representation as in (5), with:

Q =

(
I 04×(K+1)

QSZ QSS

)(
ΨZZ
I

)
and V = −

(
I

QSZ

)
D (10)

where:

QSZ = Q−1
S
[
ASX (AXX + CXXΨXX )−1 (AXZ + CXXΨXZ)− ASZ

]
QSS = Q−1

S
[
ASX (AXX + CXXΨXX )−1 BXS − BSS

]
In that representation, St = (Zt,St)> only depend on St−1 = (Zt−1,St−1)> and orthogonal
innovations, with coefficient matrices that we know in terms of structural parameters.

3.2 Measurement equations

We have data on seven statistics that directly correspond to model objects:

1. Personal Consumption Expenditure Ct;

2. monthly PCE inflation πt, which can be turned into total inflation over the past 12
months π̄t =

∑11
τ=0 πt−τ by keeping track of the past 11 lags of monthly PCE inflation,

which enters the Taylor rule;

3. Federal Funds Rate Rt;

4. unemployment rate ut;

5. UE probability ϕtθ
α
t r
∗
0,t, log-linearized αθ̂t + ϕ̂t + r̂∗0,t;

6. vacancies vt = θt × [ut−1 + [δs0 + (1− δ)s1](1− ut−1)], log-linearized

v̂t = θ̂t +
1− (1− δ)s1 − δs0

u+ [δs0 + (1− δ)s1](1− u)
uût−1

7. time-aggregated EE probability

EEt = δs0ϕtφ(θt)r
∗
0,t + (1− δ)s1ϕtφ(θt)r

∗
1,t

K∑
k=1

Γk
Lk,t−1 − Lk−1,t−1

1− ut−1

log-linearized:

ϕ̂t + α̂θ̂t +
δs0φ(θ)r∗0

EE
r̂∗0,t +

(
1− δs0φ(θ)r∗0

EE

)(
r̂∗1,t +

u

1− u
ût−1

)
+

(1− δ)s1φ(θ)r∗1
EE

K∑
k=1

Γk
LkL̂k,t−1 − Lk−1L̂k−1,t−1

1− u

18



8. average hours per employee

Ht =
K∑
k=1

(
Mt

B
xtztyk

)Ξ
Lk,t−1 − Lk−1,t−1

1− ut−1

=

(
Mt

B
xtzt

)Ξ
1

1− ut−1

K∑
k=1

yΞ
k (Lk,t−1 − Lk−1,t−1)

This is the same expression as the supply of Service good, in units of the numeraire,
except that y is raised to the power Ξ rather than 1+Ξ. Therefore, following the same
steps, and summing by parts as in (2), we obtain:

Ĥt = Ξ
(
M̂t + x̂t + ẑt

)
+ u

1−u ût−1 −
yΞ
Kuût−1+

∑K−1
k=1 (yΞ

k+1−y
Ξ
k )LkL̂k,t−1

yΞ
K(1−u)+

∑K−1
k=1 (yΞ

k+1−y
Ξ
k )Lk

It is harder to map total output Qt of Final goods into data, because in the model Qt

only includes private consumption and vacancy costs (the only form of investment), while
empirical GDP includes other forms of investment, as well as Government spending and
exports.

The model generates log deviations from steady state. Accordingly, in the data, we
consider HP-filtered log time series.

This leaves us with seven variables independently generated by the model, with direct
empirical counterparts, so that the dimension of the measurement vector Yt is NY = 7. All
eight of them can be written as deterministic functions of state variables. To derive N,N,
we can just use the policy functions and state equations found before.

3.3 State-space representation in canonical form

In the canonical state-space representation, the lagged state does not appear in the mea-
surement equation. To convert our system to the traditional formulation, it is customary to
extend the state space, namely stack the state and its lag into an (extended) state

St =

(
St
St−1

)
so that

St =

(
Q 0
I 0

)
︸ ︷︷ ︸

Q

St−1 +

(
V
0

)
︸ ︷︷ ︸

V

εt

the extended state St has 2 · (5 +K) = 10 + 2K elements, and

Yt =
(
N N

)︸ ︷︷ ︸
N

St + Rεt

so that the state space representation (5) is in canonical form:

St = QSt−1 + Vεt

Yt = NSt + Rεt (11)
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4 Estimation

We illustrate the estimations steps, and then provide details. We write the Rational Expec-
tations Equilibrium in State-Space canonical form, with 11 lags of inflation as part of the
(endogenous component of the) state vector, to keep track of annual inflation. The scale of
vacancies is not identified, so we set θ = 1. Then:

1. We pre-calibrate values of β and η.

2. We estimate by GMM the parameters of the Taylor rule ρR, ψπ, ψu, ρς , σς .

3. Given parameters of the match distribution Γk, a truncated Pareto on {y1, ...yK}
(namely, λ and the upper bound yK , because the lower bound of the support can
be normalized to y1 = 1 WLOG), we use steady state equation and a few moment
conditions to estimate δ, s0.

4. Given values of the following parameters: λ, yK , ι, σ, α, ζ, s1,Ξ,B, we can compute all
steady state endogenous values and the parameters b, κv, κs. An optional step and new
empirical moment allows to estimate also s1 in steady state.

5. We estimate λ, yK , ι, σ, α, ζ, s1, ν,Ξ,B, and the six parameters of the other shock pro-
cesses ρø, σø for ø ∈ {z,Υ, ϕ}, by a Simulated Method of Moments. Using their values,
we go through the previous steps to compute the other parameters and steady state,
thus the State-Space representation. We then simulate a time series of the Rational
Expectations Equilibrium and finally use the seven measurement equations to estimate
the variances, correlations, and first-order autocorrelation of the seven model-generated
time series illustrated above. This is a total of 35 moments. We seek values of the 16-17
(depending on the model) parameters which minimize the squared distance between
log deviations of model-generated and empirical moments.

We now provide details on the main steps.

4.1 Steady State

4.1.1 Moment conditions

As shown in Appendix B to the paper, by imposing steady state moment conditions, we
can estimate (“calibrate”) the turnover parameters δ, s0, and possibly s1. With a discrete
distribution of match quality, the argument goes as follows. The probability of acceptance
equals

K∑
k=1

(1− Γk)
Lk − Lk−1

1− u
=

LK
1− u

−
K∑
k=1

Γk
Lk − Lk−1

1− u

= 1−
K−1∑
k=1

Lk
Γk − Γk+1

1− u
− LK

1− u
=

K−1∑
k=1

Lk
Γk+1 − Γk

1− u
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Using the expression for Lk

=
K−1∑
k=1

u+ δ(1− u)s0

δ + (1− δ)s1r∗1φ(θ)(1− Γk)
φ(θ)r∗0

Γk
1− u

(Γk+1 − Γk)

=
u+ δ(1− u)s0

1− u
φ(θ)r∗0

K−1∑
k=1

Γk
δ + (1− δ)s1r∗1φ(θ)(1− Γk)

(Γk+1 − Γk)

= δ

K−1∑
k=1

Γk (Γk+1 − Γk)

δ + (1− δ)s1r∗1φ(θ)(1− Γk)

Recall:

(1− δ)s1φ(θ)r∗1 =
EE− δ + EU

AC
=

EE− δs0UE

AC
(12)

Then we can define

A(δ) = δ
K−1∑
k=1

Γk (Γk+1 − Γk)

δ + (1− δ)s1r∗1φ(θ)(1− Γk)

Replace u = UR and the expression for (1− δ)s1φ(θ)r∗1 from (12). Then

A(δ) = δAC
K−1∑
k=1

Γk (Γk+1 − Γk)

δAC + (EE− δ + EU) (1− Γk)
(13)

which can be used to estimate δ. Although this expression appears to depend on the sampling
distribution Γk, we know from the general case in Appendix B that it does not. For example,
we can fix Γk = k/K to be uniform quantiles and choose the discrete grid {yk} so that the
discrete distribution approximates any desired one. Because A(δ) does not depend on the
grid {yk}, it can be evaluated independently of the underlying distribution.

The parameters B, b enter the steady state equations and the coefficients of the log
linearized system only through a “modified” MRS between leisure and consumption on the
Hours (intensive) and (un)employment (extensive) margins:

B =
1

1 + Ξ

(
xM
B

)Ξ

and b =
b

xM

Then

κsr
∗ι
0 =

β

1− β(1− δ)
(
Bµ0 − b

)
(14)

and

κsr
∗ι
1 =

β

1− β(1− δ)
Bµ1 (15)

Dividing, solve for the ratio of recruiting efforts:

r∗ :=
r∗0
r∗1

=

(
Bµ0 − b
Bµ1

) 1
ι
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Then using Eq. (12):

r∗ :=
r∗0
r∗1

=
(1− δ)φ(θ)r∗0
(1− δ)φ(θ)r∗1

=
s1AC(1− δ)UE
EE− δ + EU

(16)

Equating the last two expressions for r∗ allows to find another expression for the surplus

Bµ0 − b = Bµ1

[
s1AC(1− δ)UE
EE− δ + EU

]ι
(17)

Using again (14) and the last expression, and then (15)

φκsr
∗
0

1+ι = φr∗0κsr
∗ι
0 = UE

β

1− β(1− δ)
(
Bµ0 − b

)
= UE

β

1− β(1− δ)

[
s1AC(1− δ)UE
EE− δ + EU

]ι
Bµ1

φκs(1− δ)s1r
∗
1

1+ι = (1− δ)s1φr
∗
1κsr

∗
1
ι =

EE− δs0UE

AC

β

1− β(1− δ)
Bµ1

The combined free entry and market-clearing condition can then be written as:

Q−M−σ = φ
ιxκs
1 + ι

{
[UR + δs0 (1− UR)] r∗0

1+ι + (1− δ)(1− UR)s1r
∗
1

1+ι
}

(18)

=
β

1− β(1− δ)
ιx

1 + ι
Bµ1

{
[UR + δs0 (1− UR)]UE

[
s1AC(1− δ)UE
EE− δ + EU

]ι
+ (1− UR)

EE− δs0UE

AC

}
The final equation we can rewrite in this new notation is Service market-clearing:

B(1 + Ξ)
K∑
k=1

y1+Ξ
k (Lk − Lk−1) = Q

1
ζ +

Q−M−σ

ιx
(19)

4.1.2 Moment estimation

Armed with these expressions, proceed as follows:

1. find the root of A(δ) = AC in (13) to estimate the value of δ.

2. Compute the value of s0 = (1− EU/δ)/UE.

3. OPTIONAL: this step exploits an empirical observation of a reallocation shock inci-
dence GF to estimate the value s1 once and for all from GF = δs0/[δs0 + (1− δ)s1];

4. From (16), compute the value of r∗.

5. Using the fact that φ(θ)r∗0 [u+ δ(1− u)s0] is the total flow of hires from unemployment,
which must equal separations δ(1−u) in steady state, and replacing the expression for
(1− δ)s1φ(θ)r∗1 from Eq. (12), compute the values of the employment distribution:

Lk =
φ(θ)r∗0Γk [u+ δ(1− u)s0]

δ + (1− δ)s1φ(θ)r∗1(1− Γk)
=

δ(1− UR)Γk

δ + EE−δs0UE
AC

(1− Γk)
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6. Compute the values of:

µ0 =
K∑
k=1

(Γk − Γk−1) y1+Ξ
k

µ1 =
K−1∑
k=1

(1− Γk)
(
y1+Ξ
k+1 − y

1+Ξ
k

) Lk
1− UR

7. We now have three equations, (18), (19) and the steady state equation

x =
η − 1

η
ζQ

ζ−1
ζ

where b and κs no longer appear. Given parameter values β, δ, s0, µ0, µ1, Lk,Ξ,B, ι, ζ,
and possibly s1 calculated before, we can solve these three equations for the values of
x,Q,M. Recall that B also contains x and M.

8. From (17), compute the value of b and then of b.

9. Using again (14) and (15), compute the values of κsr
∗ι
0 and κsr

∗ι
1 .

10. From free entry, compute the “composite parameter”

κvθ =
Q−M−σ

UR + [δs0 + (1− δ)s1](1− UR)

To summarize: given values of the parameters λ, yK of Γk, as well as ι, σ, α, ζ and, if
we skip Step 3, s1, we can compute all steady state values and the parameter b, κvθ. The
parameters ν, κs do not enter steady state equations, while κv and θ are not separately
identified. Similarly, the s.s. contact rate φ(θ) does not appear in these equations.

4.2 Dynamics

Using φ(θ)r∗0 = UE, u = UR, (1 − δ)s1φ(θ)r∗1 from Eq. (12), the values of κvθ, r
∗ = r∗0/r

∗
1

estimated above, we can compute the coefficients of the linearized system.
We start with the “labor market block”, namely free entry conditions and dynamics of

the employment distribution (including unemployment). These coefficients only depend on
values of: Γk, which allow to estimate δ and then s0; of s1, which allows to estimate Lk and
r∗; and ι, α.

AFEC,θ = 1− α

AFEC,r∗0
= −(1 + ι)

UR + δ(1− UR)s0

[UR + δ(1− UR)s0] r∗1+ι + (1− δ)(1− UR)s1

r∗1+ι

AFEC,r∗1
= −(1 + ι)

(1− δ)(1− UR)s1

[UR + δ(1− UR)s0] r∗1+ι + (1− δ)(1− UR)s1

BFEC,u =

[
1− δs0 − (1− δ)s1

UR + (δs0 + (1− δ)s1)(1− UR)
− (1− δs0)r∗1+ι − (1− δ)s1

[UR + δ(1− UR)s0] r∗1+ι + (1− δ)(1− UR)s1

]
UR
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ALk,r∗0 = −UEUR + δ(1− UR)s0

Lk
Γk

ALk,r∗1 =
EE− δ + EU

AC
=

EE− δs0UE

AC
(1− Γk)

BLk,u = −UE(1− δs0)Γk
Lk

UR

BLk,Lk = −(1− δ) + ALk,r∗1

Au,ϕ =
UR + δ(1− UR)s0

UR
UE

Au,θ = αAu,ϕ

Bu,u = −1 + δ + (1− δs0)UE

The remaining equations also depend on the rest of the parameters: pre-calibrated β, η,
then Ξ, σ, ν, ζ,B, κvθ:

AW,x = −[1− β(1− δ)](1 + Ξ)

CW,M = −β(1− δ)
ASC0,x = r∗ι

ASC0,r∗0
= ASC0,xι

CSC0,M = −µ0

µ1

CSC0,W = CSC0,M

ASC1,r∗1
= ι

BSC1,u = − UR

1− UR

BSC1,Lk = −
(1− Γk)

(
y1+Ξ
k+1 − y

1+Ξ
k

)
Lk∑K−1

j=1 (1− Γj)
(
y1+Ξ
j+1 − y1+Ξ

j

)
Lj

AQ,Q = Q

AQ,M = σM−σ

AQ,Υ = −M−σ

AQ,θ = −Q+M−σ

BQ,u = AQ,θ
1− δs0 − (1− δ)s1

UR + δ(1− UR)s0 + (1− δ)(1− UR)s1
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APC = − ν

1− ν
1− β(1− ν)

1 + η 1−ζ
ζ

APC,Q = APC
1− ζ
ζ

APC,x = APC

AMC,M =

(
xM
B

)Ξ

Ξ
K∑
k=1

y1+Ξ
k (Lk − Lk−1)− σM−σ

ιx

AMC,x =

(
xM
B

)Ξ

Ξ
K∑
k=1

y1+Ξ
k (Lk − Lk−1) +

M−σ −Q
ιx

AMC,z = AMC,x +Q
1
ζ

AMC,Q = −Q
1
ζ

ζ
− Q

ιx

AMC,Υ =
M−σ

ιx

and

BMC,u = −
(
xM
B

)Ξ

y1+Ξ
K u

BMC,Lk = −
(
xM
B

)Ξ (
y1+Ξ
k+1 − y

1+Ξ
k

)
Lk

AM,M = −1

AM,R = 1

CM,M = 1

CM,π = −1

4.3 Identification

By inspection, the coefficients of the dynamical system, reported above (excluding the ex-
ogenous shock processes and the Taylor rule), depend on r∗0, r

∗
1 only through their ratio r∗.

Furthermore, κs, φ, κvθ do not appear anywhere in these coefficients and, as we saw, κvθ
enters only as a composite parameter in steady state. Therefore, steady state equations and
dynamic moments do not identify the scale of hiring costs κs, κv separately from the scale
of vacancies, thus of θ. WLOG, we can set θ = 1, thus φ = 1, compute in steady state κv
instead of κvθ and κs from Step 7 and r∗0 = UE.

To summarize: given some empirical moments, we can estimate δ, s0; given also values of
the parameters λ, yK of Γk, as well as ι, σ, α, ζ,Ξ and, if we skip Step 3, s1, we can compute
all steady state values and estimate the parameters b, κv, κs. Dynamic equations identify the
remaining parameters.

25


	Log-linearization
	Equilibrium recap
	Steady state
	Log-linear approximation and matrix representation of the linearized model

	Solution: Rational Expectations Equilibrium
	Elimination of static variables
	Fundamental solution

	State-space representation
	Transition (state) equations
	Measurement equations
	State-space representation in canonical form

	Estimation
	Steady State 
	Moment conditions
	Moment estimation

	Dynamics
	Identification


