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Abstract. Let G be a connected semisimple real algebraic group and
P < G be a minimal parabolic subgroup with Langlands decomposi-
tion P = MAN . Let Γ < G be a Zariski dense Anosov subgroup
with respect to P . Since Γ is Anosov, the set of conjugacy classes of
primitive elements of Γ is in one-to-one correspondence with the set of
(positively oriented) maximal flat cylinders in Γ\G/M . We describe the
joint equidistribution of maximal flat cylinders and their holonomies as
their circumferences tend to infinity. This result can be viewed as the
Anosov analogue of the joint equidistribution result of closed geodesics
and holonomies in rank one by Margulis–Mohammadi–Oh [MMO14].

Contents

1. Introduction 1
2. Effective closing lemma for regular directions 12
3. Geometric measures 16
4. Anosov subgroups and maximal flat cylinders 21
5. Counting almost cylindrical maximal flats 26
6. Joint equidistribution with respect to ψ-circumferences 40
7. Joint equidistribution with respect to norm-like orderings 47
Appendix A. An identity between κv and I 50
References 53

1. Introduction

1.1. Background and setup. Let G be a connected semisimple real alge-
braic group. Let P < G be a minimal parabolic subgroup with Langlands
decomposition P = MAN where N is the unipotent radical of P , A = exp a
is a maximal real split torus and M is a maximal compact subgroup of P
commuting with A. Let Γ < G be a torsion-free discrete subgroup. In this
paper, we study the equidistribution of nontrivial closed A-orbits in Γ\G/M ,
or equivalently, nontrivial closed AM -orbits in Γ\G, and their holonomies
when Γ is a torsion-free Zariski dense Anosov subgroup with respect to P .
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Let F := G/P denote the Furstenberg boundary and F (2) denote the
unique open G-orbit in F × F . A Zariski dense discrete subgroup Γ < G
is Anosov with respect to P if Γ is a finitely generated Gromov hyper-
bolic group and admits a Γ-equivariant continuous embedding from the
Gromov boundary ∂Γ of Γ to F such that if x, y ∈ F are the images of
two distinct points in ∂Γ, then (x, y) ∈ F (2). The notion of Anosov sub-
groups (with respect to any parabolic subgroup of G) was first introduced
by Labourie [Lab06] for surface groups and later generalized by Guichard–
Wienhard [GW12] to Gromov hyperbolic groups (cf. [KLP17, GGKW17,
Wie18]). Throughout the paper, all Anosov subgroups are Anosov with
respect to P . Anosov subgroups are regarded as natural higher rank gener-
alizations of Zariski dense convex-cocompact subgroups since the two notions
coincide when rank(G) = 1.

Let Γ < G be a torsion-free Zariski dense Anosov subgroup. Let a+ ⊂
a be the positive Weyl chamber associated to N and let A+ = exp a+.
Let ψΓ : a+ → {−∞} ∪ [0,∞) denote the growth indicator function of Γ
introduced by Quint [Qui02a] (Definition 3.8). The function ψΓ is a higher
rank generalization of the critical exponent in rank one. We fix a tangent
form ψ ∈ a∗, that is,

ψ : a→ R linear, ψ ≥ ψΓ, ψ(v) = ψΓ(v) = 1 for some v ∈ int a+, (1.1)

where int a+ denotes the interior of a+. The space of such tangent forms
is homeomorphic to Rrank(G)−1. Up to multiplicative constant, there exists
a unique (Γ, ψ)-conformal measure on F and it is necessarily supported on
the limit set Λ of Γ as shown by Lee–Oh [LO20b, Theorem 1.3], [LO22,
Theorem 1.2]. Hence, up to multiplicative constant, there exists a unique
Bowen–Margulis–Sullivan (BMS) measure

mψ

on Γ\G/M associated to ψ (Definition 3.19). When rank(G) ≥ 2, mψ is
an infinite measure (see [Sam15, Theorem 3.5], see also [LO20b, Corollary
4.9]). Using the Hopf parametrization F (2) × a ∼= G/M (Definition 3.16),
the support of mψ is

Ω := suppmψ = Γ\(Λ(2) × a) ⊂ Γ\(F (2) × a) ∼= Γ\G/M,

where Λ(2) := (Λ× Λ) ∩ F (2) (Definition 3.19).
For any closed AM -orbit C = ΓgAM ⊂ Γ\G/M , its group of periods

g−1Γg ∩AM is either trivial or isomorphic to Z, and in the latter case, C is
a maximal flat cylinder ;

C ∼= (g−1Γg ∩AM)\AM/M ∼= Rrank(G)−1 × S1.

We emphasize that the closed AM -orbits being cylinders is a feature of
Anosov subgroups. For instance, if ∆ < G is a torsion-free lattice, then there
exists a closed AM -orbit in ∆\G whose group of periods is isomorphic to
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Zrank(G) and hence the closed AM -orbit is a compact torus [PR72, Theorem
2.8].

When g−1Γg ∩ (intA+)M 6= ∅, where intA+ denotes the interior of A+,
we call ΓgAM ⊂ Γ\G/M a positively oriented maximal flat cylinder. Let
[Γ] denote the set of conjugacy classes in Γ and let

[Γprim] := {[γ] ∈ [Γ] : γ ∈ Γ primitive}.
The set of all positively oriented maximal flat cylinders is in one-to-one
correspondence with [Γprim]. We also note that positively oriented maxi-
mal flat cylinders are precisely the maximal flat cylinders contained in Ω
(Lemma 4.14). In the rest of the introduction, all maximal flat cylinders
are positively oriented unless stated otherwise. Denote by CΓ the set of all
maximal flat cylinders:

CΓ = {C ⊂ Ω : C is a maximal flat cylinder}.

πψ

Ω ∼= Γ\(Λ(2) × a)

Xψ ∼= Γ\(Λ(2) × R)

πψ(Γ(x, y, v)) = Γ(x, y, ψ(v))

Figure 1. Maximal flat cylinders in the vector bundle πψ :
Ω → Xψ. In this picture, Xψ is depicted as the unit tangent
bundle of the closed surface shown.

Since Γ is Anosov and torsion-free, every nontrivial element of γ ∈ Γ
is loxodromic, that is, conjugate to some exp(λ(γ))m ∈ (intA+)M . The
element

λ(γ) ∈ int a+

is unique and called the Jordan projection of γ and m ∈ M is in a unique
conjugacy class

hγ = [m] ∈ [M ]

called the holonomy of γ. If C ∈ CΓ corresponds to [γ] ∈ [Γprim], then we
define the ψ-circumference and holonomy of C as

`ψ(C) := ψ(λ(γ)) ∈ (0,∞) and hC := hγ ∈ [M ],
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respectively (see Theorem 4.3 for the positivity of ψ-circumferences).

g γg

ga
ke

rψ

C = Γ\ΓgAM/M

‖v‖`ψ(C)

Figure 2. A closed A-orbit in Γ\G/M laid flat. The left and
right boundaries are identified so that g and γg are identified.
The ψ-circumference of C can be seen in the width of the slice
produced by the kerψ hyperplane.

We give a geometric description of ψ-circumferences. As stated before,
every maximal flat cylinder is contained in Ω. Another feature of Anosov
subgroups is that Ω is homeomorphic to a trivial kerψ-vector bundle over a
compact metric space Xψ equipped with a finite measure mXψ on Xψ such
that

dmψ

∣∣
Ω

= dmXψ du, (1.2)

for some Lebesgue measure du on kerψ (see Subsection 4.2 for details). The
ψ-circumference of any maximal flat cylinder is the length of its intersection
curve with Xψ (Fig. 1). More precisely, Xψ is equipped with a translation
flow and the intersection curve of a maximal flat cylinder with Xψ is a
periodic orbit of the translation flow (Lemma 4.18). See Fig. 2 for another
interpretation.

1.2. Statement of the main results. The main result of our paper is the
joint equidistribution of maximal flat cylinders and their holonomies as their
ψ-circumferences tend to infinity. For T > 0, let Cψ(T ) denote the set of all
maximal flat cylinders with ψ-circumference at most T :

Cψ(T ) := {C ∈ CΓ : `ψ(C) ≤ T}.

We note that Cψ(T ) is always a finite set (see Lemma 6.1). To formulate the
joint equidistribution statement, denote by VC the volume measure on a max-
imal flat cylinder C induced by the Haar measure on AM . Let Cc(Γ\G/M)
denote the set of continuous compactly supported functions on Γ\G/M and
let Cl(M) denote the set of continuous real-valued class functions onM . For
T > 0, we define Radon measures µT and ηT on the product of Γ\G/M and
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[M ] as follows. For T > 0, f ∈ Cc(Γ\G/M) and ϕ ∈ Cl(M), let

µT (f ⊗ ϕ) :=
∑

C∈Cψ(T )

VC(f)ϕ(hC);

ηT (f ⊗ ϕ) :=
∑

C∈Cψ(T )

VC(f)

`ψ(C)
ϕ(hC).

Let MΓ < M denote the closed subgroup generated by all holonomies of
elements in Γ. Then MΓ is a normal subgroup of M containing the identity
component of M [GR07, Corollary 1.10] so in particular, MΓ has finite in-
dex in M . We note that when M is not connected, MΓ is not necessarily
equal to M (see Subsection 1.7 for example). We now state our main theo-
rem describing the joint equidistribution of maximal flat cylinders and their
holonomies.

Theorem 1.3 (Joint equidistribution). Let Γ < G be a Zariski dense Anosov
subgroup. For any tangent form ψ ∈ a∗ and for any f ∈ Cc(Γ\G/M) and
ϕ ∈ Cl(M), we have

lim
T→∞

µT (f ⊗ ϕ)

eT
=

1

|mXψ |
mψ(f)

∫
MΓ

ϕdmΓ;

lim
T→∞

ηT (f ⊗ ϕ)

eT /T
=

1

|mXψ |
mψ(f)

∫
MΓ

ϕdmΓ,

where mΓ denotes the Haar probability measure on MΓ.

We note that the right-hand side of Theorem 1.3 is independent of the
normalization of mψ by (1.2). We also obtain the following equidistribution
of holonomies from Theorem 1.3. Since mψ is an infinite measure when
rank(G) ≥ 2, this is not an immediate consequence of Theorem 1.3.

Corollary 1.4 (Equidistribution of holonomies). Using the same notation
as in Theorem 1.3, we have∑

C∈Cψ(T )

ϕ(hC) ∼ eT

T

∫
MΓ

ϕdmΓ as T →∞.

Remark 1.5. As a consequence of Theorem 1.3, the set of holonomies of Γ is
dense in MΓ, that is,

MΓ = {m ∈M : ∃C ∈ CΓ such that hC = [m]}.

Remark 1.6. Let L denote the limit cone of Γ, that is, the smallest closed
cone containing the Jordan projections of all γ ∈ Γ. Theorem 1.3 and Corol-
lary 1.4 can be adapted for linear forms ψ ∈ a∗ which are positive on L\{0}
by using the fact that δψψ is tangent to ψΓ for some δψ > 0 called the
ψ-critical exponent of Γ (see Theorem 4.3). In this context, our theorem
implies the ψ-critical exponent is equal to the ψ-topological entropy, that is,
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δψ = lim
t→+∞

1

t
log #{γ ∈ Γ : ψ(µ(γ)) ≤ t}

= lim
t→+∞

1

t
log #{[γ] ∈ [Γprim] : ψ(λ(γ)) ≤ t}, (1.7)

where µ : G→ a+ denotes the Cartan projection (Definition 3.8). Moreover,
Corollary 1.4 immediately implies

#Cψ(T ) = #{[γ] ∈ [Γprim] : ψ(λ(γ)) ≤ t} ∼ eδψT

δψT
, (1.8)

where for f1, f2 : (0,∞)→ R, we write

f1 ∼ f2 ⇐⇒ lim
T→∞

f1(T )

f2(T )
= 1.

The above (1.7) and (1.8) were proved by Sambarino [Sam14b, Theorem
7.8], [Sam14a, Corollary 4.4] when Γ is the fundamental group of a closed
connected negatively curved Riemannian manifold and in view of [Car21,
Appendix A], Sambarino’s work extends to Anosov subgroups. We also
mention [BCKM22, Corollary 11.1] which is a counting result analogous to
(1.8) for cusped Anosov representations.

1.3. Joint equidistribution with respect to norm-like functions. Our
proofs also allow us to prove in Section 7 similar results when CΓ is ordered
according to a norm-like function. Let N : a+ → R be a norm-like function,
that is, N is twice continuously differentiable except possibly at the origin,
convex, homogeneous of degree 1 and positive on L \ {0}. For example, Lp
norms are norm-like for 1 ≤ p <∞. The function N determines an ordering
on CΓ:

CN(T ) := {C ∈ CΓ : N(λ(γC)) ≤ T}.

We define the N-critical exponent as

δN := max
N(w)=1

ψΓ(w) > 0. (1.9)

For simplicity, we only state here the equidistribution of holonomies with
respect to N.

Corollary 1.10 (Equidistribution of holonomies with respect to N). There
exists a constant 0 < cN ≤ 1 such that for any ϕ ∈ Cl(M), we have∑

C∈CN(T )

ϕ(hC) ∼ cN
eδNT

δNT

∫
MΓ

ϕdmΓ as T →∞.

Moreover, cN = 1 if and only if the Hessian of N at v is identically zero
where v is the unique vector achieving the maximum in (1.9).
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1.4. Comparison with rank one case. When rank(G) = 1, Anosov sub-
groups coincide with Zariski dense convex cocompact subgroups. Denote
the critical exponent of Γ by δ and the set of closed geodesics in Γ\G/M of
length at most T by

GΓ(T ) := {primitive closed geodesics of length at most T}.
Then using the dictionary in Table 1 and noting thatM is connected when

G is rank one and center-free, Corollary 1.4 in those cases says that for all
ϕ ∈ Cl(M), we have∑

C∈GΓ(T )

ϕ(hC) ∼ eδT

δT

∫
M
ϕdm as T →∞.

This is a special case of [MMO14, Theorem 1.4].

rank one higher rank
convex cocompact groups Anosov groups
primitive closed geodesic C pos. oriented maximal flat cylinder C

δ × (length of C) ψ-circumference of C
holonomy of C holonomy of C

finite BMS-measure infinite BMS-measure associated to ψ

Table 1. A dictionary between the rank one setting and
the higher rank setting.

For rank one groups, the asymptotic for GΓ(T ) was proved by Margulis
[Mar04] 1 when Γ is a uniform lattice, Gangolli–Warner [GW80] when Γ is
a nonuniform lattice, and Roblin [Rob03] when Γ is geometrically finite,
and the equidistribution of closed geodesics was independently studied by
Margulis [Mar04] and Bowen [Bow72a, Bow72b] when Γ is a uniform lat-
tice and Roblin [Rob03] when Γ is geometrically finite. Equidistribution of
holonomies was proved by Parry–Pollicott [PP86] when Γ is a uniform lattice
in SO(n, 1)◦. In general rank one groups, equidistribution of holonomies was
proved by Sarnak–Wakayama [SW99] when Γ is a lattice and joint equidis-
tribution was proved by Margulis–Mohammadi–Oh [MMO14] when Γ is a
Zariski dense geometrically finite subgroup. A joint equidistribution result
was obtained by Oh–Pan [OP19] for abelian covers of convex cocompact rank

1. [Mar04] contains Margulis’ previously unpublished 1970 thesis. See [Par05] for a
review.
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one groups; in this case, the BMS measure is infinite unlike in [MMO14]. A
key technique in [MMO14] is to use mixing of the frame flow [Win15], and
this technique goes back to Margulis’ work on the counting and equidis-
tribution of closed geodesics in negatively curved compact manifolds in his
1970 thesis. This mixing is exponential for Γ convex cocompact by Chow–
Sarkar [CS22], and for Γ geometrically finite with parabolic elements by
Li–Pan–Sarkar [LPS23]. In these cases, the distribution of holonomies can
be determined up to an exponential error term (cf. [MMO14, Theorem 1.2]).

1.5. Some related results in higher rank. For cocompact lattices of
higher rank Lie groups, we mention the thesis of Spatzier [Spa83] where he
describes the exponential growth rate of the total volume of maximal flat
periodic tori as their regular systole tends to infinity and the recent work by
Dang–Li [DL22] on the counting and equidistribution of these maximal flat
periodic tori.

1.6. Example: Self-joinings of convex-cocompact subgroups. For
G = PSL2 C×PSL2 C, all Anosov subgroups arise as convex-cocompact self-
joinings, which have interesting applications to rigidity as shown by Kim–Oh
[KO22, KO23a, KO23b]. Let ∆ < PSL2 C be a Zariski dense convex cocom-
pact subgroup and ρ : ∆→ PSL2 C be a convex cocompact discrete faithful
representation. Then the self-joining ∆ρ of ∆ by ρ is defined as the diagonal
embedding of ∆ in G via ρ, that is,

∆ρ := {(γ, ρ(γ)) ∈ PSL2 C× PSL2 C : γ ∈ ∆} < PSL2 C× PSL2 C.

∆\H3 ρ(∆)\H3

∆ρ\(H3 ×H3)

Note that ∆ρ is Zariski dense in PSL2 C×PSL2 C if and only if ρ does not
extend to an automorphism of PSL2 C and is hence conjugation (cf. [KO22,
Lemma 4.1]).

For primitive [γ] ∈ [∆], let Cγ denote the primitive closed geodesic in
∆\H3 corresponding to [γ] ∈ [∆] and `(Cγ) denote the length of Cγ . In this
setting, M∆ρ = M ∼= S1 × S1 and we have the following result analogous to
[MMO14, Theorem 1.3].
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Corollary 1.11 (Holonomy rigidity for convex cocompact groups). Let ∆ <
PSL2 C be a Zariski dense convex cocompact subgroup with critical exponent
δ∆. Let ∆ρ be the self-joining of ∆ by a convex-cocompact discrete faithful
representation ρ : ∆ → PSL2 C. Identify holonomies with pairs of angles.
If ρ does not extend to PSL2 C, then for any 0 < θ1 < θ2 < 2π and any
0 < θ3 < θ4 < 2π, we have

#{Cγ : `(Cγ) ≤ T and h(γ,ρ(γ)) ∈ (θ1, θ2)× (θ3, θ4)}

∼ (θ2 − θ1)(θ4 − θ3)eδ∆T

(2π)2δ∆T
as T →∞.

We note that when ρ does extend to PSL2 C, the set of holonomies is
contained in the diagonal of S1× S1 and hence, is not even dense in S1× S1.
The representation ρ does not extend if and only if the set of holonomies
{h(γ,ρ(γ)) ∈ S1 × S1 : `(Cγ) ≤ T} is equidistributed in S1 × S1 as T → ∞.
Hence, Corollary 1.11 can be viewed as a holonomy rigidity statement for
convex cocompact subgroups.

1.7. Example: Hitchin representations of surface groups. Let ρ :
Γ0 → PSLdR be a Hitchin representation, that is, Γ0 is the fundamental
group of a closed orientable surface of genus at least 2 and ρ can be contin-
uously deformed to ρd ◦ ρ0, where ρ0 : Γ0 → PSL2 R is some discrete faithful
representation and ρd : PSL2 R → PSLdR denotes the irreducible represen-
tation which is unique up to conjugation. Suppose Γ = ρ(Γ0) < PSLdR is
Zariski dense.

For G = PSLdR, a ∼= {(t1, . . . , td) ∈ Rd :
∑

i ti = 0}. We choose a+ =

{(t1, . . . , td) ∈ Rd : t1 ≥ · · · ≥ td,
∑

i ti = 0}. For each i ∈ {1, 2, . . . , d − 1},
let αi ∈ a∗ denote the simple root given by

αi(t1, . . . , td) = ti − ti+1.

By Potrie–Sambarino [PS17, Theorem B], αi is a tangent form. By Labourie
[Lab06, Theorem 1.5],

MΓ = {e}.

Denote the eigenvalues of γ ∈ Γ by λ1(γ) > · · · > λd(γ) > 0 and denote the
maximal flat cylinder corresponding to [γ] by C(γ).

Corollary 1.12. Let Γ < PSLdR be a Zariski dense image of a Hitchin
representation. Let i ∈ {1, . . . , d − 1}. Then for any compactly supported
continuous function f : Γ\PSLdR/M → R, as T →∞, we have

e−T
∑

[γ]∈[Γ]
λi(γ)−λi+1(γ)≤T

1

λi(γ)− λi+1(γ)
VC(γ)(f)→ 1

|mXαi |
mαi(f).
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1.8. Outline of the proof of Theorem 1.3. Our proof follows a similar
line of proof as in [MMO14]. However, in our higher rank setting, care
is needed to overcome the technical obstructions coming from the higher
dimensional nature of A, the BMS-measure being infinite and the A-action
not being strong mixing. More precisely, let g0 ∈ G and ε > 0. The ε-flow
box centered at g0 is defined as

B(g0, ε) := g0(N+
ε N ∩NεN

+AM)MεAε,

where N+ is the horospherical subgroup opposite to N and a subgroup with
ε in the subscript denotes the ε-neighborhood of identity in the subgroup.

Let Θ be a conjugation-invariant Borel subset of MΓ. It suffices to under-
stand the asymptotic behavior of

µT (B̃(g0, ε)⊗Θ),

where B̃(g0, ε) denotes the image of B(g0, ε) under the projection G →
Γ\G/M . Let L denote the limit cone of Γ (Definition 3.2) and let

L+
T := {exp(w) : w ∈ L, ψ(w) ≤ T}.

Lemma 6.3 relates µT (B̃(g0, ε) ⊗ Θ) to the number of elements of Γ in the
set

WT (g0, ε,Θ) := {gamg−1 : g ∈ B(g0, ε), am ∈ L+
T Θ}.

We are then led to consider the set

VT (g0, ε,Θ) := B(g0, ε)L+
T ΘB(g0, ε)

−1,

which can be thought of as a thickening of WT (g0, ε,Θ). We can relate the
asymptotic behavior of #(Γ ∩ WT (g0, ε,Θ)) to the asymptotic behavior of
#(Γ∩ VT (g0, ε,Θ)) by using Lemma 2.7 which is an effective closing lemma
for regular directions. Lemma 2.7 says that if γ ∈ Γ corresponds to an
AM -orbit in Γ\G that almost closes up along some exp(w)m ∈ AM where
w ∈ a is a sufficiently large vector in a regular direction, then there exists a
nearby closed AM -orbit with period approximately exp(w)m. We can apply
Lemma 2.7 because Γ being Anosov implies that its limit cone L is contained
in the interior of a+.

When rank(G) = 1 and the BMSmeasure is finite, Margulis–Mohammadi–
Oh [MMO14] showed that the asymptotic behavior of #(Γ∩VT (g0, ε,Θ)) can
be obtained by using strong mixing of the A-action on Γ\G. When G has
higher and hence, mψ is infinite, the A-action is not strongly mixing on Γ\G.
In place of strong mixing, we have local mixing of the one-parameter diago-
nal flow exp(tv) due to Chow–Sarkar [CS23] and Edwards–Lee–Oh [ELO22b],
where v is as in (1.1). In fact, their local mixing theorem applies to the more
general one parameter family exp(tv+

√
tu) with u ∈ kerψ. Our proof needs

this more refined version along with an accompanying uniformity statement.
Let Cc(Γ\G) denote the set of continuous compactly supported functions on
Γ\G and ρ denote the half sum of the positive roots with respect to a+.
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Theorem 1.13 (Local mixing, [CS23, Theorem 1.3], [ELO22b, Theorem
3.4]). There exists κv > 0 such that for any u ∈ kerψ and for any φ1, φ2 ∈
Cc(Γ\G), we have

lim
t→+∞

t
rank(G)−1

2 e(2ρ−ψ)(tv+
√
tu)

∫
Γ\G

φ1(x exp(tv +
√
tu))φ2(x) dx

=
κve
−I(u)

|mXψ |
∑
Z∈ZΓ

mBR
ψ

∣∣
ZN+(φ1) ·mBR?

ψ

∣∣
ZN

(φ2),

where dx denotes the right G-invariant measure on Γ\G, I : kerψ → R is
defined by I(·) = 〈·, ·〉∗ − 〈·,v〉

2
∗

〈v,v〉∗ for some inner product 〈·, ·〉∗ on a, mBR
ψ and

mBR?
ψ denote the Burger–Roblin measures associated to ψ and ZΓ denotes the

finite set of A-ergodic components of mψ.
Moreover, there exists constants ηv and Tv such that for all φ1, φ2 ∈

Cc(Γ\G), there exists a constant Dv(φ1, φ2) depending continuously on φ1

and φ2 such that for all (t, u) ∈ (Tv,∞)× kerψ such that tv +
√
tu ∈ L, we

have∣∣∣∣∣t rank(G)−1
2 e(2ρ−ψ)(tv+

√
tu)

∫
Γ\G

φ1(x exp(tv +
√
tu))φ2(x) dx

∣∣∣∣∣
≤ Dv(φ1, φ2)e−ηvI(u). (1.14)

Due to the higher dimensional nature of L+
T , we need to show that the error

term E(φ1, φ2, t, u) in Theorem 1.13 for some compact family of functions
φ1 and φ2 does not contribute to the asymptotic after integrating on L+

T .
We do this by using (1.14) to bound |E(φ1, φ2, t, u)| and show that∫

atv+
√
tu∈L

+
T

etE(φ1, φ2, t, u) dt du = o(eT ),

where we write o(f) = g if f, g : R→ R such that lim
T→∞

f(T )
g(T ) = 1. After some

technical arguments and applying Theorem 1.13, we obtain Proposition 5.12
which is an asymptotic for the number of elements from Γ in product sub-
sets ST := Ξ1L+

T ΘΞ2 of N+AMN . From Proposition 5.12, we deduce the
asymptotic

#Γ ∩ VT (g0, ε,Θ) =
[M : MΓ]

|mXψ |
eT

(
mψ(B̃(g0, ε)⊗Θ)

br(ε)
(1 +O(ε)) + oT (1)

)
,

where [M : MΓ] denotes the index of MΓ in M , br(ε) denotes the volume of
the Euclidean ε-ball of dimension r and mψ denotes here the BMS measure
associated to ψ on Γ\G (Proposition 5.24). This asymptotic serves as input
to obtain the asymptotic for µT . Using the asymptotic for µT , we deduce
the asymptotic for ηT and Corollary 1.4 follows from this by using a careful
choice of function f in Theorem 1.3.
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Organization. Section 2 begins by fixing notation related to the Lie group
G that we will use throughout the paper. In Subsection 2.1, we define ε-flow
boxes. In Subsection 2.2, we present and prove an effective closing lemma
for regular directions (Lemma 2.7).

In Section 3, we recall geometric objects and geometric measures associ-
ated to general Zariski dense discrete subgroups Γ < G. In particular, we
recall the limit set and limit cone in Subsection 3.1, we discuss the holonomy
group of Γ in Subsection 3.2 and we recall the constructions of the BMS and
BR measures in Subsection 3.5. We also recall the product structures of the
BR measures in Subsection 3.6.

In Section 4, we specialize to Anosov subgroups. In Subsection 4.1, we
recall ergodic decompositions of the BMS and BR measures and in Sub-
section 4.2 we recall the vector bundle structure of the support of the BMS
measure. In Subsection 4.3, we recall the local mixing theorems we will need.
Maximal flat cylinders are introduced and discussed in Subsection 4.4.

In Subsection 5.1, we use local mixing to prove Proposition 5.12 which
is an asymptotic for the number of elements in Γ in product subsets ST :=
Ξ1L+

T ΘΞ2 of N+AMN . In Subsection 5.2, we use Proposition 5.12 to deduce
an asymptotic for #Γ ∩ VT (g0, ε,Θ) (Proposition 5.24).

In Section 6, we show how the asymptotic for #Γ ∩ VT (g0, ε,Θ) can be
used to deduce an asymptotic for µT (B̃(g0, ε) ⊗ Θ) (Proposition 6.11) and
prove the main joint equidistribution result Theorem 6.12 and its corollar-
ies. In Section 7, we show how to modify our arguments to prove joint
equidistribution with respect to norm-like functions (Theorem 7.3).

Acknowledgements. The authors are very grateful to their advisor, Hee
Oh, for introducing them to this problem and for many very helpful discus-
sions regarding the problem and the preparation of this paper.

2. Effective closing lemma for regular directions

LetG be a connected semisimple real algebraic group with identity element
e ∈ G. Fix a Cartan involution of the Lie algebra g of G and let g = k⊕p be
the associated eigenspace decomposition corresponding to the eigenvalues +1
and −1 respectively. Let K < G be the maximal compact subgroup whose
Lie algebra is k. Let a ⊂ p be a maximal abelian subalgebra and choose a
closed positive Weyl chamber a+ ⊂ a. Let A = exp a, A+ = exp a+, and
denote aw = exp(w) for all w ∈ a. Define M := CK(A) and the contracting
and expanding horospherical subgroups by

N := N− :=
{
n ∈ G : lim

t→∞
a−twnatw = e for all w ∈ int a+

}
;

N+ :=
{
h ∈ G : lim

t→∞
atwha−tw = e for all w ∈ int a+

}
,

respectively, and their Lie algebras n := n− := logN and n+ := logN+. Let

P := P− := MAN and P+ := MAN+.
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Then P and P+ are opposite minimal parabolic subgroups. Let

F := G/P ∼= K/M

denote the Furstenburg boundary of G, where the isomorphism G/P ∼= K/M
is given by the Iwasawa decomposition G ∼= K ×A×N .

Let W := NK(A)/M denote the Weyl group. Let w0 ∈ K be a represen-
tative of the element in W such that Adw0(a+) = −a+.

Definition 2.1 (Opposition involution). The map i : a+ → a+ defined by
i(v) := −Adw0(v) is called the opposition involution.

For all g ∈ G, let

g+ := gP ∈ F ; g− := gw0P ∈ F . (2.2)

Fix a left G-invariant and right K-invariant Riemannian metric d on G
and denote the corresponding inner product and norm on any of its tangent
spaces by 〈·, ·〉 and ‖ · ‖ respectively. The Riemannian metric on G also
induces an inner product and norm on a, which are invariant under W and
we denote by 〈·, ·〉 and ‖ · ‖ respectively. Using the inner product on a,
we identify a with Rrank(G) and equip it with the Lebesgue measure which
induces a Haar measure on A. Fix AdM -invariant metrics ‖ · ‖ on n±. For
ε > 0, we denote several ε-neighborhoods by

Gε := {g ∈ G : dG(e, g) < ε}; Gε(g0) := g0Gε;

Nε := {nx := expx : x ∈ n, ‖x‖ < ε}; Aε := A ∩Gε;
N+
ε := {hx := expx : x ∈ n+, ‖x‖ < ε}; Mε := M ∩Gε.

Throughout the paper, if f1, f2 are functions of ε > 0 and T > 0, then we
use big-O notation to write

f1 = O(f2) ⇐⇒ lim sup
ε→0
T→∞

∣∣∣∣f1(ε, T )

f2(ε, T )

∣∣∣∣ <∞. (2.3)

2.1. Flow boxes. In this subsection, we define flow boxes following [Mar04]
and [MMO14]. Flow boxes will be used in our effective closing lemma for
regular directions (Lemma 2.7) to describe almost closed AM -orbits in Γ\G.

To motivate the definition of flow boxes, we first recall that the product
maps N × N+ × A ×M → G and N+ × N × A ×M → G are diffeomor-
phisms onto Zariski open neighborhoods of e ∈ G. Consequently, we have
the following lemma.

Lemma 2.4. Let ε > 0 be sufficiently small. For any 0 < ε1, ε2 < ε, h ∈ N+
ε1

and n ∈ Nε2 , we have hn = n1h1am for some unique h1 ∈ N+, n1 ∈ N ,
a ∈ A and m ∈ M . Moreover, h1 ∈ N+

O(ε1), n1 ∈ NO(ε2), a ∈ AO(ε), and
m ∈MO(ε). The corresponding statement if we swap the roles of N and N+

holds as well.
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Definition 2.5 (ε-flow box at g0). Given g0 ∈ G and ε > 0, the ε-flow box
at g0 is defined by

B(g0, ε) := g0(N+
ε N ∩NεN

+AM)MεAε = g0B(e, ε).

The set of all ε-flow boxes forms a basis for the topology on G. The next
lemma records elementary properties of the flow boxes.

Lemma 2.6. Let g0 ∈ G and ε > 0.

(1) For any g ∈ B(g0, ε), {w ∈ a : g exp(w) ∈ B(g0, ε)} is a Euclidean
ball of radius ε.

(2) B(g0, ε)e
± = g0N

±
ε e
± (where e± are defined by (2.2)).

(3) For sufficiently small ε > 0, the following holds. For any h ∈ N+
ε

and n ∈ Nε, hN ∩ nN+AM consists of a single element g ∈ B(ε).
Moreover, by Lemma 2.4,

B(g0, ε) = g0(N+
ε NO(ε) ∩NεN

+
O(ε)AO(ε)MO(ε))MεAε.

2.2. Effective closing lemma for regular directions. Let a∗ denote the
space of real linear forms on a. Let Φ ⊂ a∗ denote the restricted root system
of a and let Φ+ ⊂ Φ denote the set of positive roots corresponding to a+. A
direction w ∈ a is called regular if

∀α ∈ Φ+, α(w) 6= 0.

Lemma 2.7 is an effective closing lemma for regular directions, which is
an adaptation of [MMO14, Lemma 3.1] which we will be able to use in our
Anosov setting later. The proof is similar to that of [MMO14, Lemma 3.1],
but we include it for completeness. For g1, g2 ∈ G, we write

g1 ∼O(ε) g2 ⇐⇒ d(g1, g2) = O(ε)

and we use the same notation for subgroups of G and their lie algebras,
relying on context.

Lemma 2.7 (Effective closing lemma for regular directions). There exists
T0 > 0, depending only on G, for which the following holds. Let ε > 0 be
sufficiently small and g0 ∈ G. Suppose there exists g1, g2 ∈ B(g0, ε) and
γ ∈ G such that

g1ãγm̃γ = γg2 (2.8)

for some m̃γ ∈M and ãγ ∈ A with

T := min
α∈Φ+

α(log ãγ) ≥ T0. (2.9)

Then there exists g ∈ B(g0, ε+O(εe−T )), aγ ∈ A and mγ ∈M such that

γ = gaγmγg
−1.

Moreover, aγ ∼O(ε) ãγ and mγ ∼O(ε) m̃γ.
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Proof. Let ε > 0 be sufficiently small so that each instance that Lemma 2.4
and Lemma 2.6(3) are used in the proof is valid. By Lemma 2.6(3), we have

g1 = g0h1n1a1m1 and g2 = g0n2h2a2m2

for some h1 ∈ N+
ε , n1 ∈ NO(ε), a1 ∈ Aε, m1 ∈Mε, n2 ∈ Nε, h2 ∈ NO(ε), a3 ∈

AO(ε) and m3 ∈MO(ε). Lemma 2.6(3) also tells us that h1N ∩ n2N
+AM =

{g3}, where g3 ∈ B(ε) and

g3 = h1n3 = n2h3a3m3

for some n3 ∈ NO(ε), h3 ∈ N+
O(ε), a3 ∈ AO(ε) and m3 ∈ MO(ε). Set g4 =

g0g3 ∈ B(g0, ε). Then

g1 = g4n4a1m1 and g2 = g4h4a4m4,

where n4 = n−1
3 n1 ∈ NO(ε), h4 = (a3m3)−1h−1

3 h2(a3m3) ∈ N+
O(ε), a4 =

a−1
3 a2 ∈ AO(ε) and m4 = m−1

3 m2 ∈MO(ε).
The hypothesis (2.8) becomes g4n4a1m1ãγm̃γ = γg4h4a4m4. Then

g−1
4 γg4 = n4a

′
γm
′
γ(h4)−1 = a′γm

′
γn5(h4)−1,

where a′γ = ãγa1a
−1
4 ∼O(ε) ãγ , m′γ = m1m̃γm

−1
4 ∼O(ε) m̃γ and n5 =

(a′γm
′
γ)−1n4(a′γm

′
γ) ∈ NO(εe−T ) since minα∈Φ+ α(log ãγ) = T .

Using Lemma 2.4, we write n5(h4)−1 = a5m5h5n6 for some h5 ∈ N+
O(ε),

n6 ∈ NO(εe−T ), a5 ∈ AO(ε) and m5 ∈MO(ε). Then

g−1
4 γg4 = a′γm

′
γa5m5h5n6 = h6a

′′
γm
′′
γn6,

where a′′γ = a′γa5 ∼O(ε) a
′
γ ∼O(ε) ãγ , m′′γ = m′γm5 ∼O(ε) m̃γ and h6 =

(a′′γm
′′
γ)n5(a′′γm

′′
γ)−1 ∈ N+

O(εe−T )
since T = minα∈Φ+ α(log ãγ).

To complete the proof, it suffices to show

h6a
′′
γm
′′
γn6 ∈ (hxny)a

′′
γAO(ε)m

′′
γMO(ε)(hxny)

−1

for some hx ∈ N+
O(εe−T )

and ny ∈ NO(εe−T ), as we then take g = g4hxny.
For each hx ∈ N+

ε , there is a unique element hβ(x) ∈ N+
O(ε) such that

(n6)hx ∈ hβ(x)NO(εe−T )AεMε. (2.10)

Moreover, since the product map N+×N×A×M → G is a diffeomorphism
onto its image, β : n+ → n+ is a smooth function. Consider the map

f : N+
ε → Nε+O(εe−T )

given by

hx 7→ hx(a′′γm
′′
γ)(hβ(x))

−1(a′′γm
′′
γ)−1 = hxhAda′′γm′′γ

(β(x)).

Assuming T0 is sufficiently large, a′′γ ∼O(ε) ãγ and hypothesis (2.9) implies
that ‖Df − I‖op < 1 pointwise on N+

ε . Then f is injective, and therefore a
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diffeomorphism onto its image. Since f is a diffeomorphism onto its image,
there exists hx ∈ N+

O(εe−T )
such that

hx(a′′γm
′′
γ)(hβ(x))

−1(a′′γm
′′
γ)−1 = h6.

Recalling (2.10), we write (hβ(x))
−1n6 = a6m6n7h

−1
x for some a6 ∈ Aε,

m ∈Mε and n7 ∈ NO(εe−T ). Then

h6a
′′
γm
′′
γn6 = hx(a′′γm

′′
γ)(hβ(x))

−1n6 = hx(a′′′γ m
′′′
γ )n7h

−1
x ,

where a′′′γ = a′′γa6 and m′′′γ = m′′γm6. By similar reasoning to the above,
there exists ny ∈ NO(εe−T ) such that n7 = (a′′′γ m

′′′
γ )−1ny(a

′′′
γ m

′′′
γ )n−1

y and this
completes the proof. �

3. Geometric measures

Henceforth, let Γ < G be a Zariski dense discrete subgroup.

3.1. Limit set and limit cone. Recall that F := G/P ∼= K/M . Let mF
denote the unique K-invariant probability measure on F .

Definition 3.1 (Limit set). The limit set Λ ⊂ F of Γ is defined by

Λ := {ξ ∈ F : ∃{γn}n∈N ⊂ Γ, (γn)∗mF
n→∞−−−→ δξ},

where δξ denotes the Dirac measure at ξ. The limit set is the unique minimal
nonempty closed Γ-invariant subset of F [Ben97] and Λ is Zariski dense in
F [Ben97, Section 3.6].

An element γ ∈ G is called loxodromic if

γ = g expλ(γ)mg−1

for some g ∈ G, λ(γ) ∈ int a+ and m ∈M . In that case,

λ(γ) ∈ int a+

is unique and called the Jordan projection of γ and m belongs to a unique
conjugacy class

hγ = [m] ∈ [M ]

called the holonomy of γ. In addition, g+ and g− defined by (2.2) are the
unique attracting and repelling fixed points of γ, respectively. Moreover, if
γ ∈ Γ, then g+, g− ∈ Λ.

Definition 3.2 (Limit cone). The limit cone L ⊂ a+ of Γ is the smallest
closed cone containing all Jordan projections of loxodromic elements in Γ
[Ben97, Sections 4 and 4.3]. We denote the interior of L by intL.

Remark 3.3. Recall the opposition involution i (Definition 2.1). We have
λ(g−1) = i(λ(g)) and hence, L = i(L).

Theorem 3.4 (Ben97). The limit cone L is convex and intL 6= ∅.
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3.2. The holonomy group. Let M◦ denote the identity component of M .
Then the identity component of P is P ◦ = M◦AN .

Definition 3.5 (Holonomy group of Γ). The holonomy group of Γ is the
closed subgroup MΓ < M generated by all of the holonomies in Γ, that is,

MΓ := 〈{m : ∃γ ∈ Γ such that hγ = [m]}〉.
By [GR07, Corollary 1.10], MΓ is a normal subgroup of M containing M◦

so in particular, MΓ has finite index in M .
By [GR07], we have another characterization of MΓ. Let

F◦ := G/P ◦.

Fix a Γ-minimal subset Λ0 ⊂ F◦. Then
MΓ = {m ∈M : Λ0m = Λ0} < M. (3.6)

See also [BQ14, Proposition 4.9] for another characterization of MΓ.

3.3. Busemann function. The Iwasawa cocycle σ : G×F → a is the map
which assigns to each (g, kM) ∈ G × F the unique element σ(g, kM) ∈ a
such that gk ∈ Kaσ(g,ξ)N . It satisfies the cocycle relation σ(g1g2, ξ) =
σ(g1, g2ξ) + σ(g2, ξ) for all g1, g2 ∈ G and ξ ∈ F .
Definition 3.7 (Busemann function). The a-valued Busemann function β :
F ×G×G→ a is defined by

βξ(g1, g2) := σ(g−1
1 , ξ)− σ(g−1

2 , ξ)

for all g1, g2 ∈ G and ξ ∈ F . The properties of the Iwasawa cocycle imply
that the Busemann function satisfies

(1) βξ(e, g) = −σ(g−1, ξ);
(2) βgξ(gg1, gg2) = βξ(g1, g2);
(3) βξ(g1, g2) = βξ(g1, g) + βξ(g, g2)

for all g, g1, g2 ∈ G and ξ ∈ F .
3.4. Conformal measures. In this subsection, we recall facts about Γ-
conformal measures. Patterson [Pat76] and Sullivan [Sul79] were the first to
introduce Γ-conformal measures in rank one groups. Their work has been
extended to higher rank groups by Albuquerque [Alb99] and Quint [Qui02b].
Generalizing the notion of critical exponent in rank one, Quint introduced
the growth indicator function of Γ [Qui02a].

For g ∈ G, let µ(g) denote the Cartan projection of g, that is, µ(g) ∈ a+

is the unique element in a+ such that g ∈ K exp(µ(g))K. We note that
µ(g−1) = i(µ(g)) for all g ∈ G.

Definition 3.8 (Growth indicator function). The growth indicator function
ψΓ : a+ → R ∪ {−∞} of Γ is the degree 1 homogeneous function defined by

ψΓ(w) := ‖w‖ inf
open cones C3w

τC for all w ∈ a+,

where τC is the abscissa of convergence of t 7→
∑

γ∈Γ,µ(γ)∈C e
−t‖µ(γ)‖.
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We note that ψΓ ◦ i = ψΓ.

Theorem 3.9 (Qui02a, Theorem 4.2.2). The growth indicator function is
concave, upper semicontinuous, and satisfies ψΓ|a+\L = −∞, ψΓ|L ≥ 0, and
ψΓ|intL > 0.

Definition 3.10 (Conformal measures). Given a closed subgroup ∆ < G, a
Borel probability measure ν on F is called a ∆-conformal measure if, there
exists ψ ∈ a∗ such that for any γ ∈ ∆ and ξ ∈ F ,

dγ∗ν

dν
(ξ) = eψ(βξ(e,γ)),

where γ∗ν(Q) := ν(γ−1Q) for any Borel subset Q ⊂ F . In that case, we call
ν a (∆, ψ)-conformal measure.

The measuremF is a conformal measure. More precisely, let ρ ∈ a∗ denote
the half sum of the positive roots of a+,

ρ :=
1

2

∑
α∈Φ+

α. (3.11)

We have the following lemma.

Lemma 3.12 (Qui06, Proposition 3.3). The measure mF is a (G, 2ρ)-
conformal measure.

The following theorem on the existence of Γ-conformal measures is due to
Quint. A linear form ψ ∈ a∗ is said to be a tangent form if

ψ ≥ ψΓ and ψ(v) = ψΓ(v) for some v ∈ int a+ ∩ L. (3.13)

Note that if ψ ∈ a∗ is a tangent form, then ψ ◦ i is also a tangent form.

Theorem 3.14 (Qui02b, Theorems 8.1 and 8.4). Let ψ ∈ a∗.
(1) If there exists a (Γ, ψ)-conformal measure, then ψ ≥ ψΓ.
(2) If ψ is a tangent form, then there exists a (Γ, ψ)-conformal measure

νψ supported on Λ.

3.5. Geometric measures. In this subsection, we recall the definitions of
the Bowen–Margulis–Sullivan and Burger–Roblin measures.

We first recall the Hopf parametrization of G/M which will be used to
define these measures. There is a unique open G-orbit in F × F given by

F (2) := G · (e+, e−) = (F × F) \
⋃

wM /∈W\{w0M}

G · (e+, we+), (3.15)

where the Weyl group W and the element w0 ∈ K were defined in Section 2.
If (x, y) ∈ F (2), then we say that x and y are in general position.

Define a left G-action on F (2) × a by

g · (x, y, v) := (gx, gy, v + βx(g−1, e)) = (gx, gy, v + σ(g, x))

for all g ∈ G and (x, y, v) ∈ F (2) × a. Note that StabG(e+, e−, 0) = M .



JOINT EQUIDISTRIBUTION OF CYLINDERS AND HOLONOMIES 19

Definition 3.16 (Hopf parametrization). The Hopf parametrization is a left
G-equivariant diffeomorphism G/M → F (2) × a defined by

gM 7→ (g+, g−, βg+(e, g)) = (g+, g−, σ(g, e+)).

For the remainder of Section 3, we fix a

tangent form ψ ∈ a∗. (3.17)

Recall that ψ ◦ i is also a tangent form. Using Theorem 3.14, we fix

(Γ, ψ)-and (Γ, ψ ◦ i)-conformal measures νψ and νψ◦i, (3.18)

respectively. Let
Λ(2) := (Λ× Λ) ∩ F (2)

and let dw denote the Lebesgue measure on a.

Definition 3.19 (Bowen–Margulis–Sullivan measure). Using the Hopf para-
metrization, the (νψ, νψ◦i)-Bowen–Margulis–Sullivan (BMS) measure mψ :=

mBMS
νψ ,νψ◦i

is defined on G/M ∼= F (2) × a by

dmBMS
νψ ,νψ◦i

(gM) := eψ(βg+ (e,g))+(ψ◦i)(βg− (e,g)) dνψ(g+) dνψ◦i(g
−) dw. (3.20)

It is clear from (3.20) that mψ has support

suppmψ = Λ(2) × a. (3.21)

The BMS measure is left Γ-invariant and right A-invariant so it descends to
a measure on Γ\G/M and by lifting using the Haar probability measure on
M we also obtain a measure on Γ\G. Abusing notation, we call also this
measure BMS measure and denote it by mψ as well, relying on context for
the domain. The supports of the BMS measures on these domains are given
by

Ω̃ := {Γg : g± ∈ Λ} ⊂ Γ\G; Ω := Ω̃/M ⊂ Γ\G/M. (3.22)

Definition 3.23 (Burger–Roblin measures). Following [ELO20, Section 3],
the (mF , νψ)- and (νψ◦i,mF )-Burger–Roblin (BR) measures

mBR
ψ := mBR

mF ,νψ◦i
and mBR?

ψ := mBR∗
νψ ,mF

,

respectively, are defined on G/M in a similar fashion as mψ by

dmBR
mF ,νψ◦i

(gM) := e2ρ(βg+ (e,g))+(ψ◦i)(βg− (e,g)) dmF (g+) dνψ◦i(g
−) dw;

(3.24)

dmBR∗
νψ ,mF

(gM) := eψ(βg+ (e,g))+2ρ(βg− (e,g)) dνψ(g+) dmF (g−) dw. (3.25)

Then mBR
ψ is a left Γ-invariant and right N+-invariant measure and mBR?

ψ

is a left Γ-invariant and right N -invariant measure and they induce measures
on Γ\G/M , Γ\G and G that we use the same name and notation for. The
supports of the BR measures on Γ\G are given by

E := suppmBR
ψ = {Γg : g− ∈ Λ}; E∗ := suppmBR?

ψ = {Γg : g+ ∈ Λ}.
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Definition 3.26. The right Haar measure dg on G that we use can be
written as

dg = e2ρ(βg+ (e,g)+βg− (e,g)) dmF (g+) dmF (g−) dw dm,

where dm is the probability Haar measure on M [ELO20, Section 3].

3.6. Product structure of the BR measures. In this subsection, we
recall a product structure of the BR measures (see [ELO20, Section 4.3] for
details) and define some related measures that will be useful in Section 5.
We retain the notations in (3.17) and (3.18).

Let dm denote the probability Haar measure on M . We define measures
ν̃ψ and νψ◦i on K ∼= F ×M using the M -invariant lifts of the conformal
measures by

dνKψ (k) := dνψ(k+) dm; dνKψ◦i(k) := dνψ◦i(k
−) dm. (3.27)

The following lemma gives the decompositions ofmBR
ψ andmBR?

ψ inKAN -
coordinates.

Lemma 3.28 (ELO20, Lemma 4.9). For all k1, k2 ∈ K, w1, w2 ∈ a, h ∈ N+

and n ∈ N , we have

dmBR
ψ (k1 exp(w1)h) = e−ψ(w1) dνKψ◦i(k1) dw1 dh;

dmBR?
ψ (k2 exp(w2)n) = eψ(w2) dνKψ (k2) dw2 dn,

where dh and dn are some Haar measures on N+ and N , respectively.

Remark 3.29. Recalling that the product mapsM×A×N×N+ →MANN+,
A×N+×M×N → AN+MN andN+×M×A×N → G are homeomorphisms
onto Zariski open subsets of G, using the notation in Lemma 3.28, we have
the decomposition

dg = dmdw dndh = dw dh dmdn = e2ρ(w) dh dw dmdn. (3.30)

For g ∈ G, we define the measures νgψ and νgψ◦i on F by

dνgψ(ξ) := eψ(βgξ(e,g)) dνψ(gξ); dνgψ◦i(ξ) := e(ψ◦i)(βgξ(e,g)) dνψ◦i(gξ). (3.31)

Note that νgψ and νgψ◦i are (g−1Γg, ψ)- and (g−1Γg, ψ◦ i)-conformal measures,
respectively.

In addition, identifying N+ with N+e+ ⊂ F , for all g ∈ G, we define the
measures ν̃gψ and ν̃gψ|B on N+ by

dν̃gψ(h) := eψ(βh+ (e,h)) dνgψ(h+); dν̃gψ|B(h) := 1B(h)dν̃gψ(h), (3.32)

where B is a measurable subset of G.
Identifying NM with Ne− ×M ⊂ F ×M , for all g ∈ G, we also define

the measures ν̃gψ◦i and ν̃
g
ψ◦i|B on NM by

dν̃gψ◦i(nm) := e(ψ◦i)(βn− (e,n)) dνgψ◦i(n
−) dm; (3.33)

dν̃gψ◦i|B(nm) := 1B(nm)dν̃gψ◦i(nm). (3.34)
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4. Anosov subgroups and maximal flat cylinders

The Anosov property (with respect to any parabolic subgroup of G) was
first introduced by Labourie [Lab06] for surface groups and later generalized
by Guichard–Wienhard [GW12] for Gromov hyperbolic groups (cf. [KLP17,
GGKW17, Wie18]). For Zariski dense Anosov subgroups with respect to P ,
[GW12, Corollary 4.16] gives an equivalent characterization of being Anosov
which we take as the definition of Anosov we use throughout the paper.

Definition 4.1 (Anosov subgroup). Let Γ < G be a Zariski dense discrete
subgroup. We say that Γ is Anosov if it is a finitely generated Gromov hyper-
bolic group and it admits a continuous Γ-equivariant continuous embedding
from the Gromov boundary of Γ to F such that for any two distinct points
in the Gromov boundary, their images in F are in general position.

For the rest of the paper, let Γ be a torsion-free Zariski dense Anosov
subgroup. It follows from Definition 4.1 that

Λ(2) := (Λ× Λ) ∩ F (2) = {(x, y) ∈ Λ× Λ : x 6= y}. (4.2)

The following theorem was proved by [Qui03, Proposition 3.2 and Theo-
rem 4.7] when Γ is a Schottky subgroup. In general, Theorem 4.3 follows from
[GW12, Lemma 3.1], [Sam14a, Corollaries 3.12, 3.13, and 4.9] and [Sam15,
Theorem 4.20] in light of [BCLS15] using the Plücker representation (see also
[PS17, Propositions 4.6 and 4.11]).

Theorem 4.3. The following holds.
(1) Every nontrivial element in Γ is loxodromic.
(2) The limit cone of Γ is contained in int a+ ∪ {0}.
(3) On intL, ψΓ is analytic and strictly concave except along rays ema-

nating from the origin.
(4) If ψ ∈ a∗ is tangent to ψΓ at v ∈ int a+ ∩ L, then v ∈ intL and ψ is

positive on L \ {0}.
(5) If ψ ∈ a∗ is positive on L \ {0}, then δψψ is tangent to ψΓ at some

v ∈ intL, where δψ > 0 is the ψ-critical exponent, that is, the abscissa
of convergence of the ψ-Poincaré series t 7→

∑
γ∈Γ e

−tψ(µ(γ)).

Remark 4.4. Except for the requirement that v ∈ intL, Theorem 4.3(5)
holds for any Zariski dense discrete subgroup as shown by Kim–Minsky–Oh
[KMO21, Section 2].

We fix some notation for the rest of the paper. Fix a linear form ψ tangent
to ψΓ at a normalized direction v ∈ intL, that is,

ψ ∈ a∗, ψ ≥ ψΓ, v ∈ intL and ψ(v) = ψΓ(v) = 1.

By Theorem 4.3, there is a unique such v for each tangent form ψ. Using
Theorem 3.14, we fix

(Γ, ψ)-and (Γ, ψ ◦ i)-conformal measures νψ and νψ◦i,
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respectively. We remark that νψ and νψ◦i are unique by [LO22, Theorem 1.2],
but we do not need to use this uniqueness in this paper. Let mψ, mBR

ψ , mBR?
ψ

denote the (νψ, νψ◦i)-BMS measure, (mF , νψ)- and (νψ◦i,mF )-BR measures,
respectively, as defined in Subsection 3.5. We will use the related notation
from Subsection 3.5.

4.1. Ergodic decompositions of mψ, mBR
ψ and mBR?

ψ . In this subsection,
we recall the A-, N -, and N+-ergodic decompositions of mψ, mBR

ψ andmBR?
ψ ,

respectively, due to Lee–Oh [LO20a, Theorem 1.1].
Recall that P ◦ denotes the connected component of the identity in P .

Denote the set of P ◦-minimal subsets of Γ\G by YΓ. Every Y ∈ YΓ satisfies
Y = (Y ∩ Ω̃)N . Let ZΓ denote the set of all intersections of P ◦-minimal
subsets of Γ\G with Ω̃, that is,

ZΓ := {Y ∩ Ω̃ : Y ∈ YΓ}. (4.5)

Theorem 4.6 (LO20a, Theorem 1.1). Consider the measures mψ,m
BR
ψ and

mBR?
ψ on Γ\G. We have

(1) the A-ergodic decomposition

mψ =
∑
Z∈ZΓ

mψ|Z =
∑
Z∈ZΓ

mψ|Z ;

(2) the N -ergodic decomposition mBR?
ψ =

∑
Z∈ZΓ

mBR?
ψ |ZN ;

(3) the N+-ergodic decomposition mBR
ψ =

∑
Z∈ZΓ

mBR
ψ |ZN+.

4.2. The support Ω of mψ as a vector bundle. For this subsection, we
refer the reader to [LO20b, Section 4] and [Car21, Appendix A] for more
details. The map πψ : Λ(2) × a→ Λ(2) × R defined by

πψ(x, y, w) = (x, y, ψ(w)) for all (x, y, w) ∈ Λ(2) × a

is a vector bundle with typical fiber kerψ. Note that Γ acts on Λ(2) × a on
the left, via the Hopf parametrization. Note also that Γ acts on Λ(2) ×R on
the left by

γ · (x, y, t) = (γx, γy, t+ ψ(βx(γ−1, e)))

for all γ ∈ Γ, (x, y, t) ∈ Λ(2) × R.

Theorem 4.7 ([Car21, Proposition A.1], see also [CS23, Theorem 4.15]).
The left Γ-action on Λ(2) × R is properly discontinuous and cocompact.

Let
Xψ := Γ\(Λ(2) × R).

By Theorem 4.7, Xψ is a compact Hausdorff topological space. The map
πψ is Γ-equivariant and descends to a map πψ : Ω → Xψ which is in fact, a
trivial kerψ-vector bundle. We embed

Xψ ∼= Xψ × {0} ⊂ Xψ × kerψ ∼= Ω. (4.8)
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Define the locally finite Borel measure mΛ(2)×R on Λ(2) × R by

dmΛ(2)×R(ξ, η, t) := eψ(βξ(e,g))+ψ(i(βη(e,g))) dνψ(ξ) dνψ◦i(η) dt,

where g ∈ G is any element with g+ = ξ and g− = η and dt denotes the
Lebesgue measure on R. Note that mΛ(2)×R is left Γ-invariant, so mΛ(2)×R
descends to a finite measure mXψ on Xψ. We have

dmψ

∣∣
Ω

= dmXψ du, (4.9)

where du denotes the Lebesgue measure on kerψ which satisfies dw = dt du,
where w = tv+u, u ∈ kerψ, dw and dt are the Lebesgue measures on a and
R, respectively.

The set Λ(2) × R is also equipped with a natural flow Φt : Λ(2) × R →
Λ(2) × R defined by

Φt(x, y, s) = (x, y, s+ t)

for all (x, y, s) ∈ Λ(2) × R. The flow Φ descends to a flow on Xψ which we
call the translation flow and we also denote by Φ.

4.3. Local mixing. We recall the local mixing theorem for the Haar mea-
sure on Γ\G which will be used in Section 5. Let dx denote the right G-
invariant measure on Γ\G induced by the Haar measure on G. Given an
inner product 〈·, ·〉∗ on a, let I : kerψ → R be defined by

I(u) = 〈u, u〉∗ −
〈u, v〉2∗
〈v, v〉∗

for all u ∈ kerψ. (4.10)

Theorem 4.11 ([CS23, Theorem 1.3], [ELO22b, Theorem 3.4]). There exists
κv > 0 and an inner product 〈·, ·〉∗ on a such that for any u ∈ kerψ and
φ1, φ2 ∈ Cc(Γ\G), we have

lim
t→+∞

t
rank(G)−1

2 e(2ρ−ψ)(tv+
√
tu)

∫
Γ\G

φ1(x exp(tv +
√
tu))φ2(x) dx

=
κve
−I(u)

|mXψ |
∑
Z∈ZΓ

mBR
ψ

∣∣
ZN+(φ1) ·mBR?

ψ

∣∣
ZN

(φ2),

where ρ is given by (3.11) and ZΓ is given by (4.5).
Moreover, there exist positive constants ηv and Tv such that for all φ1, φ2 ∈

Cc(Γ\G), there exists a constant Dv(φ1, φ2) depending continuously on φ1

and φ2 such that for all (t, u) ∈ (Tv,∞)× kerψ such that tv +
√
tu ∈ L, we

have∣∣∣∣∣t rank(G)−1
2 e(2ρ−ψ)(tv+

√
tu)

∫
Γ\G

φ1(x exp(tv +
√
tu))φ2(x) dx

∣∣∣∣∣
≤ Dv(φ1, φ2)e−ηvI(u).



24 MICHAEL CHOW AND ELIJAH FROMM

4.4. Maximal flat cylinders.

Definition 4.12 (Maximal flat cylinder). Let C = ΓgAM ⊂ Γ\G/M be
a closed AM -orbit. We say C is nontrivial if its stabilizer g−1Γg ∩ AM is
nontrivial. We say C is a maximal flat cylinder if

g−1Γg ∩AM ∼= Z. (4.13)

If in addition to (4.13) we have

g−1Γg ∩ int(A+)M 6= {e},
then we say C is positively oriented.

Denote by CΓ the set of all positively oriented maximal flat cylinders:

CΓ := {C ⊂ Γ\G/M : C is a positively oriented maximal flat cylinder}.
Let Γprim denote the set of primitive elements of Γ and [Γprim] denote the
set of Γ-conjugacy classes in Γprim. The following lemma justifies Defini-
tion 4.12 and shows why we will consider only positively oriented maximal
flat cylinders and not all maximal flat cylinders in subsequent sections.

Lemma 4.14. Let C = ΓgAM ⊂ Γ\G/M be a nontrivial closed AM -orbit
in Γ\G/M . Then the following holds.

(1) The stabilizer g−1Γg ∩ AM of C is isomorphic to Z. Hence, C is a
maximal flat cylinder and homeomorphic to S1 × kerψ.

(2) If C is not positively oriented, then C is disjoint from Ω.
(3) If C is positively oriented, then C is contained in Ω.
(4) If C is positively oriented, then the semigroup Γ∩ gA+Mg−1 is gen-

erated by a single element γC,g. In particular, the semigroup

(g−1Γg ∩ int(A+)M)/M ∼= {a ∈ int(A+) : ΓgM = ΓgaM}
is generated by a single element exp(vC) which depends only on C
and satisfies λ(γC,g) = vC .

(5) The map
C 7→ {γC,g : C = ΓgAM}

is a bijection between CΓ and [Γprim].

Proof. For (1), suppose for the sake of contradiction that g−1Γg ∩AM con-
tains two elements g−1γig = awimi, i = 1, 2 that are not generated by a
single element in g−1Γg ∩AM . Since A and M commute, we have

γ1γ2γ
−1
1 γ−1

2 = gm1m2m
−1
1 m−1

2 g−1 ∈ Γ.

Since Γ is discrete and torsion free, γ1γ2γ
−1
1 γ−1

2 must be identity. It follows
that Γ contains a subgroup isomorphic to Z2, which is impossible since Γ is
a hyperbolic group.

(Alternatively, we observe that w1 and w2 cannot be rational multiples
of each other, γj1γ

k
2 ∈ gajw1+kw2Mg−1 for j, k ∈ Z, and hence {λ(γj1γ

k
2 ) :
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j, k ∈ Z} contains directions arbitrarily close to a wall of a+, contradicting
L ⊂ int a+.)

Hence, g−1Γg ∩AM ∼= Z and

C ∼= (g−1Γg ∩AM)\AM/M ∼= Z\Rrank(G) ∼= S1 × Rrank(G)−1.

We highlight a more insightful way to see C as a cylinder S1×kerψ. Observe
that under the vector bundle isomorphism Ω ∼= Xψ × kerψ, C = ΓgAM is
identified with

{Γ(g+, g−, t) : t ∈ R} × kerψ.

Since C is closed, so is {Γ(g+, g−, t) : t ∈ R}. Since the flow Φ is given by an
R-action on a compact space (e.g. geodesic flow on the unit tangent bundle
of a compact surface rather than the geodesic flow on the surface itself) it
follows that the closed Φ-orbit {Γ(g+, g−, t) : t ∈ R} is homeomorphic to S1.

For (2) and (3), we have Ω ∼= Γ\(Λ(2) × a) (3.22) and by the Hopf
parametrization (Definition 3.16), C = ΓgAM is identified with

{Γ(g+, g−, v) : v ∈ a}.

Then C is contained in Ω if and only if g+ ∈ Λ. If C is positively oriented,
then there exists γ ∈ g int(A+)Mg−1 and g+ is the attracting fixed point of
γ so g+ ∈ Λ. On the other hand, if C is not positively oriented, then there
exists a representative w of a Weyl element in W \ {M,w0M} such that
there exists γ ∈ gw int(A+)Mw−1g−1. Then the attracting fixed point of γ
is (gw)+ ∈ Λ. Then g+ 6∈ Λ otherwise by (4.2), (g+, (gw)+) ∈ Λ(2) ⊂ F (2),
which contradicts the definition of F (2) (3.15).

Now (4) is immediate from the definitions. For (5), surjectivity of the map
C 7→ {γC,g : C = ΓgAM} is clear and injectivity follows from the fact that
NG(A+M) = AM . �

In view of Lemma 4.14(4),(5), for each C ∈ CΓ, we fix some

γC ∈ {γC,g : C = ΓgAM} (4.15)

and define the ψ-circumference of C to be

`ψ(C) := ψ(λ(γC)) (4.16)

which is positive by Theorem 4.3. Let mC,g ∈ M be the unique element
satisfying γC,g = g exp(λ(γC))mC,gg

−1. The set

hC := {mC,g : g ∈ G} ∈ [M ]

is a conjugacy class called the holonomy of C.

Remark 4.17. The notion of ψ-circumference cannot be well-defined for all
maximal flat cylinders simultaneously. Indeed, consider a maximal flat cylin-
der C = ΓgAM such that neither generator am nor (am)−1 of g−1Γg∩AM ∼=
Z lies in (intA+)M . Since Theorem 4.3 only guarantees that ψ is positive
on L \ {0}, to define the ψ-circumference, we would need to extract from a
and a−1 an intrinsic element in L. The natural candidates are the Jordan
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projections of one of the generators γ or γ−1 of Γ∩gAMg−1. However, when
G is higher rank, the opposition involution i may be nontrivial and

ψ(λ(γ−1)) = ψ(i(λ(γ))) 6= ψ(λ(γ))

in general.

The next lemma gives a geometric description of ψ-circumferences.

Lemma 4.18. The map

C = ΓgAM ∈ CΓ → πψ(C) = {Γ(g+, g−, t) : t ∈ R} ⊂ Xψ
is a bijection between the set of positively oriented maximal flat cylinders
and the set of periodic orbits of the translation flow Φ on Xψ. Using the
embedding of Xψ in Ω (4.8), the intersection of C = ΓgAM ∈ CΓ with Xψ
is the corresponding periodic orbit πψ(C) of the translation flow and the ψ-
circumference of C is the period of πψ(C).

Proof. Observe that the Φ-orbit {Γ(g+, g−, t) : t ∈ R} is periodic if and only
if there exists γ ∈ Γ such that x and y are fixed points of some γ ∈ Γ.
By the same reasoning as in the proof of Lemma 4.14(3), x and y must be
the attracting and repelling fixed points of γ and this establishes a bijection
between the set of periodic orbits of the translation flow and the set of
conjugacy classes in Γ. In view of Lemma 4.14(5), this establishes the desired
bijection.

For the last assertion, let C = ΓgAM ∈ CΓ. Using the embedding of Xψ
in Ω (4.8), we have

C ∩ (Xψ × {0}) = {Γ(g+, g−, t) : t ∈ R} × {0}

and the period of {Γ(g+, g−, t) : t ∈ R} is precisely

ψ(βg+(γ−1
C,g, e)) = ψ(λ(γC,g)) = `ψ(C).

�

For the rest of the paper, we will only consider positively oriented maximal
flat cylinders and we will omit the phrase "positively oriented".

5. Counting almost cylindrical maximal flats

The main result of this section is Proposition 5.24. Proposition 5.24 can
be thought of as an asymptotic for the number elements in Γ correspond-
ing to maximal flats in Γ\G/M which pass through and return to a given
flow box in Ω and are almost positively oriented maximal flat cylinders with
ψ-circumference at most T (Proposition 5.24). In Section 6, we then relate
Proposition 5.24 to the number of maximal flat cylinders of ψ-circumference
at most T which pass through B̃(g0, ε) by applying the effective closing
lemma for regular directions (Lemma 2.7), and we prove the main joint
equidistribution result Theorem 6.12.
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Recall that we have fixed a tangent form ψ tangent to ψΓ at a normalized
direction v ∈ intL, that is,

ψ ∈ a∗, ψ ≥ ψΓ, v ∈ intL and ψ(v) = ψΓ(v) = 1.

We fix a cone
C ⊂ L with v ∈ intC.

For T > 0, let
CT := {exp(w) : w ∈ C, ψ(w) ≤ T}

which is a bounded subset of LΓ since C ⊂ L and ψ > 0 on L \ {0}.
Recall the definition of flow boxes (Definition 2.5). Let g0 ∈ G, T, ε > 0,

and Θ be a Borel subset of M . We denote

VT (g0, ε,C,Θ) := B(g0, ε)CTΘB(g0, ε)
−1 = g0VT (e, ε,C,Θ)g−1

0 . (5.1)

Each γ ∈ Γ ∩ VT (g0, ε,C,Θ) corresponds to a family of AM -orbits in G
which pass through the flow box B(g0, ε) and then passes through γB(g0, ε)
after translation by an element in CTΘ. In this sense, the elements of
Γ∩VT (g0, ε,C,Θ) correspond to almost cylindrical maximal flats. In this sec-
tion, we prove an asymptotic (Proposition 5.24) for the number of elements
in Γ ∩ VT (g0, ε,C,Θ).

5.1. Counting in N+AMN-coordinates. In this subsection, we will prove
an asymptotic for the number of elements in Γ contained product subsets
of N+AMN of a certain form. Throughout this subsection, we fix bounded
Borel sets Ξ1 ⊂ N+, Ξ2 ⊂ N and Θ ⊂M . For T > 0 and ε > 0, we denote

ST := ST (Ξ1,Ξ2,C,Θ) := Ξ1CTΘΞ2. (5.2)

Let g0 ∈ G. We prove using local mixing of the Haar measure (Theorem 4.11)
an asymptotic for #(Γ∩g0ST g

−1
0 ) (Proposition 5.12) which is the main input

in the proof of Proposition 5.24.
Given a bounded Borel subset B of G, define the counting function FB :

G×G→ N by

FB(g, h) :=
∑
γ∈Γ

1B(g−1γh) = #(g−1Γh ∩B) = #(Γh ∩ gB).

The function FB is Γ-invariant in both arguments so it descends to a function
on Γ\G× Γ\G which we still denote by FB. Note that

FST (e, e) = #(Γ ∩ ST ).

For F1, F2 : Γ\G× Γ\G→ R, let

〈F1, F2〉 :=

∫
Γ\G×Γ\G

F1(x1, x2)F2(x1, x2) dx1 dx2

when the integral makes sense, where dx1, dx2 are both the Haar measure
on Γ\G.
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For ε > 0, we denote

S−T,ε :=
⋂

g1,g2∈Gε

g1ST g2; S+
T,ε :=

⋃
g1,g2∈Gε

g1ST g2.

The sets S±T,ε can be used to approximate #(Γ ∩ ST ) as in the following
lemma. For ε > 0 less than the injectivity radius of Γ, we fix a nonnegative
function ψε ∈ C∞(G) with suppψε ⊂ Gε and

∫
G ψε dg = 1. Let Ψε ∈

C∞(Γ\G) be defined by Ψε(Γg) :=
∑

γ∈Γ ψε(γg) for all g ∈ G.

Lemma 5.3. For any T > 0 and ε > 0, we have

〈FS−T,ε ,Ψε ⊗Ψε〉 ≤ FT (e, e) ≤ 〈FS+
T,ε
,Ψε ⊗Ψε〉.

Our goal is to now estimate 〈FS±T,ε ,Ψε⊗Ψε〉. We begin with Lemmas 5.4,
5.5, 5.7, and 5.8 which are computations relating to 〈FB,Ψ1⊗Ψ2〉 for general
bounded Borel subset B of G.

A standard folding and unfolding argument gives the following lemma.

Lemma 5.4. For any bounded Borel subset B of G and for all Ψ1,Ψ2 ∈
Cc(Γ\G), we have

〈FB,Ψ1 ⊗Ψ2〉 =

∫
B
〈Ψ1, gΨ2〉L2(Γ\G) dg,

where gΨ2(x) := Ψ2(xg).

In view of the matrix coefficient of L2(Γ\G) in Lemma 5.4, we now ex-
press the matrix coefficient in a way that lends itself to using local mixing
(Theorem 4.11). For convenience, we denote

r := rank(G) and aw := exp(w) for w ∈ a.

Lemma 5.5. For any bounded Borel subset B of G and for all Ψ1,Ψ2 ∈
Cc(Γ\G), we have

〈FB,Ψ1 ⊗Ψ2〉

=
κv
|mXψ |

∫
h−1atv+

√
tumn∈B

ete−I(u)
∑
Z∈ZΓ

mBR?
ψ

∣∣
ZN

(hΨ1)mBR
ψ

∣∣
ZN+(mnΨ2)

+ etE(t, u, h,mn) dt du dh dmdn,

where h ∈ N+,m ∈M,n ∈ N , t ∈ R, u ∈ kerψ and

E(t, u, h,mn) = t
r−1
2 e2ρ(tv+

√
tu)−t

∫
Γ\G

Ψ1(xh)Ψ2(xatv+
√
tumn) dx

− κve
−I(u)

|mXψ |
∑
Z∈ZΓ

mBR?
ψ

∣∣
ZN

(hΨ1)mBR
ψ

∣∣
ZN+(mnΨ2) (5.6)

is the associated error term in Theorem 4.11 (note that ψ(tv +
√
tu) = t).
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Proof. By Lemma 5.4, we have

〈FB,Ψ1 ⊗Ψ2〉 =

∫
B

∫
Γ\G

Ψ1(x)Ψ2(xg) dx dg.

Using the fact that the product map N+ ×M ×A×N → G is a diffeomor-
phism onto a dense and open subset of G, we write g = h−1 exp(w)mn ∈
N+MAN , so dg = e2ρ(w) dh dw dmdn. Then∫

B

∫
Γ\G

Ψ1(x)Ψ2(xg) dx dg

=

∫
h−1 exp(w)mn∈B

∫
Γ\G

Ψ1(x)Ψ2(xh−1awmn)e2ρ(w) dx dh dw dmdn

=

∫
h−1awmn∈B

e2ρ(w)

∫
Γ\G

Ψ1(xh)Ψ2(xawmn) dx dw dh dmdn.

We write w = tv +
√
tu, where t ∈ R and u ∈ kerψ. Recall r := rank(G).

Then dw = t
r−1
2 dt du, where dt is the Lebesgue measure on R and du is the

Lebesgue measure on kerψ from Subsection 4.2. Then∫
h−1awmn∈B

e2ρ(w)

∫
Γ\G

Ψ1(xh)Ψ2(xawmn) dx dw dh dmdn

=

∫
h−1atv+

√
tumn∈B

t
r−1
2 e2ρ(tv+

√
tu)

∫
Γ\G

Ψ1(xh)Ψ2(xatv+
√
tumn)

dx dt du dh dmdn

=
κv
|mXψ |

∫
h−1atv+

√
tumn∈B

ete−I(u)
∑
Z∈ZΓ

mBR?
ψ

∣∣
ZN

(hΨ1)mBR
ψ

∣∣
ZN+(mnΨ2)

+ etE(t, u, h,mn) dt du dh dmdn.

�

We now specialize to the case when Ψ1 = Ψ2 = Ψε in Lemma 5.5. Let
Eε(t, u, h,mn) denote the associated error term in (5.6) and denote

QB,ε := 〈FB,Ψε ⊗Ψε〉 −
∫
h−1atv+

√
tumn∈B

etEε(t, u, h,mn) dt du dh dmdn.

In the next lemma, we use the Iwasawa decompositions to decompose the
BR-measures appearing in Lemma 5.5 into a form that will be useful in the
proof of Proposition 5.12.

Recall ZΓ from (4.5). For Z ∈ ZΓ, let Z̃ denote the preimage of Z in G,
that is,

Z̃ := {g ∈ G : Γg ∈ Z}.

Lemma 5.7. Let ε > 0 be sufficiently small. Let Z ∈ ZΓ, h ∈ N+,m ∈ M
and n ∈ N . Then we have

mBR?
ψ

∣∣
ZN

(hΨε)m
BR
ψ

∣∣
ZN+(mnΨε)
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=

∫
KAN×KAN+

ψε(k1aw1n1h)1Z̃N (k1)ψε(k2aw2h1mn)1Z̃N+(k2)

· eψ(w1−w2) dνKψ (k1) dw1 dn1 dν
K
ψ◦i(k2) dw2 dh1,

where νKψ and νKψ◦i are defined by (3.27).

Proof. For g1, g2 ∈ G, write g1 = k1aw1n1 ∈ KAN and g2 = k2aw2h1 ∈
KAN+. Using Lemma 3.28, we have

mBR?
ψ

∣∣
ZN

(hΨε)m
BR
ψ

∣∣
ZN+(mnΨε)

=

∫
G×G

ψε(g1h)1Z̃N (g1)ψε(g2mn)1Z̃N+(g2) dmBR?
ψ (g1) dmBR

ψ (g2)

=

∫
KAN×KAN+

ψε(k1aw1n1h)1Z̃N (k1aw1n1)ψε(k2aw2h1mn)

· 1Z̃N+(k2aw2h1)eψ(w1−w2) dνKψ (k1) dw1 dn1 dν
K
ψ◦i(k2) dw2 dh1

=

∫
KAN×KAN+

ψε(k1aw1n1h)1Z̃N (k1)ψε(k2aw2h1mn)1Z̃N+(k2)

· eψ(w1−w2) dνKψ (k1) dw1 dn1 dν
K
ψ◦i(k2) dw2 dh1.

�

To state the next lemma, it will be convenient for us to define some nota-
tion. We define fB : N+ ×MN → R by

fB(h,mn) :=
κv
|mXψ |

∫
h−1matv+

√
tun∈B

ete−I(u) dt du.

Let
Z̃Γ := {Z̃ : Z ∈ ZΓ}.

Define the natural projection maps

H1 : MANN+ →M,

I1 : MANN+ → a,

J1 : MANN+ → N+,

I2 : AN+MN → a,

J2 : AN+MN →MN.

For each kM ∈ K/M ∼= F , fix a representative k∗ ∈ K. In the next
lemma, we use these projections and a change of variables to write QB,ε
using integrals over Gε.

Lemma 5.8. For any bounded Borel subset B of G, we have

QB,ε =
∑
Z̃∈Z̃Γ

∫
(K/M)×K

∫
Gε×Gε

fB(J1((k∗1)−1g′), J2(k−1
2 g′′))

· ψε(g′)1Z̃N (k∗1H1((k∗1)−1g′))ψε(g
′′)1Z̃N+(k2)
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· eψ(I1((k∗1)−1g′)−I2(k−1
2 g′′)) dg′ dg′′ dνψ(k+

1 ) dνKψ◦i(k2).

Proof. By Lemma 5.5 and Lemma 5.7, we have

QB,ε =
κv
|mXψ |

∑
Z∈ZΓ

∫
KAN×KAN+

∫
h−1atv+

√
tumn∈B

ete−I(u)ψε(k1aw1n1h)

· 1Z̃N (k1)ψε(k2aw2h1mn)1Z̃N+(k2)eψ(w1−w2)

dνKψ (k1) dw1 dn1 dν
K
ψ◦i(k2) dw2 dh1 dt du dh dmdn.

Let m1 ∈ M such that k1 = k∗1m1. Let g3 = m1aw1n1h and g4 = aw2h1mn.
Then we have dg3 = dm1 dw1 dn1 dh and dg4 = dw2 dh2 dmdn as in Subsec-
tion 3.5. Using these change of variables, we have

QB,ε =
∑
Z̃∈Z̃Γ

∫
(K/M)×K

∫
G×G

fB(J1(g3), J2(g4))ψε(k
∗
1g3)1Z̃N (k∗1H1(g3))

· ψε(k2g4)1Z̃N+(k2)eψ(I1(g3)−I2(g4)) dg3 dg4 dνψ(k+
1 ) dνKψ◦i(k2)

=
∑
Z̃∈Z̃Γ

∫
(K/M)×K

∫
Gε×Gε

fB(J1((k∗1)−1g′), J2(k−1
2 g′′))

· ψε(g′)1Z̃N (k∗1H1((k∗1)−1g′))ψε(g
′′)1Z̃N+(k2)

· eψ(I1((k∗1)−1g′)−I2(k−1
2 g′′)) dg′ dg′′ dνψ(k+

1 ) dνKψ◦i(k2),

where g′ = k∗1g3 and g′′ = k2g4. �

We now specialize to B = S±T,ε and estimateQS±T,ε,ε. In view of Lemma 5.8,
to estimate QS±T,ε,ε, we need to show that for k ∈ K that contribute to
QS±T,ε,ε

, the images of kGε under the projections H1, I1, J1, I2, J2 are close

to the image of k. This can be done because Ξ1 ⊂ N+ and Ξ2 ⊂ N are
bounded.

Lemma 5.9. Fix bounded sets U1 ⊂ N+ and U2 ⊂ N . For sufficiently small
ε > 0, the following holds. If g1 ∈ G with g−1

1 = manh ∈ MANN+ and
g+

1 ∈ U
+
1 , then

g−1
1 Gε ⊂ mMO(ε)aAO(ε)nNO(ε)hN

+
O(ε).

If g2 ∈ K with g−1
2 = ahmn ∈ AN+MN and g−2 ∈ U

−
2 , then

g−1
2 Gε ⊂ aAO(ε)hN

+
O(ε)mMO(ε)nNO(ε).

Proof. We prove the first statement; the proof of the second is similar. The
product map M × A×N ×N+ → G is a diffeomorphism onto an open set
containing the identity. In particular,

Gε ⊂MO(ε)AO(ε)NO(ε)N
+
O(ε).
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Let gε ∈ Gε with gε = m1a1n1h1 ∈ MO(ε)AO(ε)NO(ε)N
+
O(ε). Under the

hypotheses, h−1 is an element in the bounded set U1 and

g−1
1 gε = manhm1a1n1h1

= mm1aa1((m1a1)−1n(m1a1))((m1a1)−1h(m1a1))n1h1

= mm1m2aa1a2((m2a2)−1(m1a1)−1n(m1a1)(m2a2))n2h2h1,

where ((m1a1)−1h(m1a1))n1 = m2a2n2h2 and we note that the assumption
that h is bounded and n1 ∈ NO(ε) imply that m2 ∈ MO(ε), a2 ∈ AO(ε) and
h2 ∈ hN+

O(ε). �

We will also need the following lemma which says that bounds the sets
S±T,ε by product subsets of N+AMN that approximate ST .

Lemma 5.10. Assume that νψ(∂Ξ+
1 ), νψ◦i(∂(Ξ−1

2 )−) and
∫
∂Θ dm are all 0.

For all sufficiently small ε > 0, there exists Borel sets C′T,ε ⊂ CT , Ξ′1,ε ⊂ Ξ1,
Ξ′2,ε ⊂ Ξ2 and Θ′ε ⊂ Θ such that

N+
O(ε)Ξ

′
1,εC

′
T,εMO(ε)Θ

′
εΞ
′
2,εNO(ε) ⊂ S−T,ε,

where an O(ε)-neighborhood of C′T,ε contains CT and νψ((Ξ′1,ε)
+)→ νψ(Ξ+

1 ),
νψ◦i((Ξ

′
2,ε)
−)→ νψ◦i(Ξ

−
2 ) and

∫
Θ′ε

dm→
∫

Θ dm as ε→ 0.
Similarly, there exists Borel sets C′′T,ε ⊃ CT , Ξ′′1,ε ⊃ Ξ1, Ξ′′2,ε ⊃ Ξ2 and

Θ′′ε ⊃ Θ such that

N+
O(ε)Ξ

′′
1,εC

′′
T,εMO(ε)Θ

′′
εΞ
′′
2,εNO(ε) ⊃ S+

T,ε,

where an O(ε)-neighborhood of CT contains C′′T,ε and νψ((Ξ′′1,ε)
+)→ νψ(Ξ+

1 ),
νψ◦i((Ξ

′′
2,ε)
−)→ νψ◦i(Ξ

−
2 ) and

∫
Θ′′ε

dm→
∫

Θ dm as ε→ 0.

Proof. In view of the hypotheses on the boundaries, we may assume Ξ1, Ξ2

and Θ are open subsets. Using reasoning similar to that used in Lemma 5.9,
we see that for all g1, g2 ∈ Gε and for all g = hamn ∈ N+MAN with h and
n bounded, we have

g1gg2 ∈ N+
O(ε)hAO(ε)aMO(ε)mnNO(ε).

Then we can take C′T,ε to be the intersection of CT and the complement of
the closed O(ε)-neighborhood of the exterior of CT . Similarly for Ξ′1,ε ⊂ Ξ1,
Ξ′′2,ε ⊂ Ξ2 and Θ′ε ⊂ Θ. It is clear that these sets have the desired properties.

The proof of the second assertion of the lemma is similar. �

We will use the following asymptotic notation. For real-valued functions
f1, f2 of T , we write

f1 ∼ f2 ⇐⇒ lim
T→∞

f1(T )

f2(T )
= 1.
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For a real-valued function f of ε, we write

f = oε(1) ⇐⇒ lim
ε→0

f(ε) = 0. (5.11)

We use local mixing (Theorem 4.11) to prove the following asymptotic for
#(Γ ∩ g0ST g

−1
0 ) for g0 ∈ G.

Proposition 5.12. Let g0 ∈ G. Assume that νψ(∂Ξ+
1 ), νψ◦i(∂(Ξ−1

2 )−) and∫
∂Θ dm are all 0. Then

#(Γ ∩ g0ST g
−1
0 ) ∼ [M : MΓ]

|mXψ |
eT
∑
Z̃∈Z̃Γ

ν̃g0

ψ |g−1
0 Z̃N (Ξ1)ν̃g0

ψ◦i|g−1
0 Z̃N+(Ξ−1

2 Θ−1),

(5.13)
where ν̃g0

ψ |g−1
0 Z̃N and ν̃g0

ψ◦i|g−1
0 Z̃N+ are defined by (3.32) and (3.34).

Remark 5.14. We note that the right hand side of (5.13) does not depend on
the choice of C as long as v ∈ intC. This reflects the fact that the maximum
of ψΓ on {w ∈ L : ψ(w) = T} occurs in the v direction.

Proof. It suffices to prove the theorem for g0 = e. For general g0 ∈ G, we
apply the same argument to g0Γg−1

0 , replacing νψ and νψ◦i with ν
g0

ψ and νg0

ψ◦i
(3.31) throughout.

By Lemmas 5.4, 5.5, 5.7, and 5.8, we have

〈FS±T,ε ,Ψε ⊗Ψε〉

= QS±T,ε,ε
+

∫
h−1atv+

√
tumn∈S

±
T,ε

etEε(t, u, h,mn) dt du dh dmdn

and

QS±T,ε,ε
=
∑
Z̃∈Z̃Γ

∫
(K/M)×K

∫
Gε×Gε

fS±T,ε
(J1((k∗1)−1g′), J2(k−1

2 g′′))

· ψε(g′)1Z̃N (k∗1H1((k∗1)−1g′))ψε(g
′′)1Z̃N+(k2)

· eψ(I1((k∗1)−1g′)−I2(k−1
2 g′′)) dg′ dg′′ dνψ(k+

1 ) dνKψ◦i(k2).

We now do the proof in 2 steps.
Step 1: We estimate QS±T,ε,ε in terms of ST .
Recall from Subsection 4.1 that ZN is a P ◦-minimal subset of Γ\G. Then

using the correspondence between P ◦-minimal subsets of Γ\G and Γ-minimal
subsets of G/P ◦, we have Z̃N = {x ∈ G : xP ◦ ∈ Λ1} for some Γ-minimal
subset Λ1 ⊂ G/P ◦. Recall the holonomy groupMΓ of Γ (Definition 3.5). For
fixed k1M ∈ Λ, by (3.6), there exists m′ ∈M such that {m ∈M : k∗1mP

◦ ∈
Λ1} = MΓm

′. Then

1Z̃N (k∗1H1((k∗1)−1g′)) = 1MΓm′(H1((k∗1)−1g′)).

Since M◦ < MΓ, if ε is sufficiently small, then 1MΓm′(H1((k∗1)−1g′)) is con-
stant on Gε.
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It follows from Lemma 5.9 and Lemma 5.10 that

ψ(I1((k∗1)−1g′)) = ψ(I1((k∗1)−1)) +O(ε);

ψ(I2(k−1
2 g′′)) = ψ(I2(k−1

2 )) +O(ε)

and

J1((k∗1)−1g′)−1 ∈ N+
O(ε)J1((k∗1)−1)−1;

J2(k−1
2 g′′) ∈MO(ε)J2(k−1

2 )NO(ε).

We first prove a lower bound for QS−T,ε,ε. Let C′T,ε ⊂ CT , Ξ′1,ε ⊂ Ξ1,
Ξ′′2,ε ⊂ Ξ2 and Θ′ε ⊂ Θ be as in Lemma 5.10. For convenience, let

S′T,ε := Ξ′1,εC
′
T,εΘ

′
εΞ
′
2,ε.

Then for all g′, g′′ ∈ Gε, we have

fS−T,ε
(J1((k∗1)−1g′), J2(k−1

2 g′′)) ≥ fS′T,ε(J1((k∗1)−1), J2(k−1
2 )).

It now follows that

QS−T,ε,ε
≥
∑
Z̃∈Z̃Γ

∫
(K/M)×K

fS′T,ε(J1((k∗1)−1), J2(k−1
2 ))1Z̃N (k∗1H1((k∗1)−1))

· 1Z̃N+(k2)(1 +O(ε))eψ(I1((k∗1)−1)−I2(k−1
2 )) dνψ(k+

1 ) dνKψ◦i(k2).
(5.15)

Using Lemma 5.10, we observe that∫
(K/M)×K

(fST − fS−T )(J1((k∗1)−1), J2(k−1
2 )) dνψ(k+

1 ) dνKψ◦i(k2)

= O

(
eT
∫

(K/M)×K
1Ξ1\Ξ−1,ε

(J1((k∗1)−1)−1)

+ 1ΘΞ2\ΘεΞ−2,ε
(J2(k−1

2 )) dνψ(k+
1 ) dνKψ◦i(k2)

)
= eTO

(
νψ

(
Ξ+

1 \ (Ξ−1,ε)
+
)

+ νψ◦i

(
(Ξ−1

2 )− \ ((Ξ−2,ε)
−1)−

)
+m

(
Θ \Θ−ε

))
= eT oε(1),

(5.16)
where oε notation is defined by (5.11). Combining (5.15) and (5.16) yields

QS−T,ε,ε
≥ eT oε(1) +

∑
Z̃∈Z̃Γ

∫
(K/M)×K

(1 +O(ε))fST (J1((k∗1)−1), J2(k−1
2 ))

· 1Z̃N (k∗1H1((k∗1)−1))1Z̃N+(k2)eψ(I1((k∗1)−1)−I2(k−1
2 )) dνψ(k+

1 ) dνKψ◦i(k2).

A similar argument shows that

QS+
T,ε,ε
≤ eT oε(1) +

∑
Z̃∈Z̃Γ

∫
(K/M)×K

(1 +O(ε))fST (J1((k∗1)−1), J2(k−1
2 ))
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· 1Z̃N (k∗1H1((k∗1)−1))1Z̃N+(k2)eψ(I1((k∗1)−1)−I2(k−1
2 )) dνψ(k+

1 ) dνKψ◦i(k2)

and we conclude that

QS±T,ε,ε
= eT oε(1) +

∑
Z̃∈Z̃Γ

∫
(K/M)×K

(1 +O(ε))fST (J1((k∗1)−1), J2(k−1
2 ))

· 1Z̃N (k∗1H1((k∗1)−1))1Z̃N+(k2)eψ(I1((k∗1)−1)−I2(k−1
2 )) dνψ(k+

1 ) dνKψ◦i(k2).

Step 2: We conclude by appropriately decomposing k∗1 and k2 and ap-
plying the asymptotic in Lemma 5.17.

Considering k1 ∈ K such that (k∗1)−1 = mawnh
−1 ∈MANN+, we have

J1((k∗1)−1))−1 = h;

h+ = k1M ;

k∗1H1((k∗1)−1) = hn−1a−w;

I1((k∗1)−1) = w = βh+(e, h)

and hence,∫
(J1((k∗1)−1))−1∈Ξ1

1Z̃N (k∗1H1((k∗1)−1))eψ(I1((k∗1)−1)) dνψ(k+
1 )

=

∫
h∈Ξ1

1Z̃N (h)eψ(βh+ (e,h)) dνψ(h+) = ν̃ψ|Z̃N (Ξ1).

Similarly, considering k−1
2 ∈ K such that k−1

2 = awhm
−1n−1 ∈ AN+MN,

we have

J2(k−1
2 ) = m−1n−1 ∈MN ;

k−2 = n−;

I2(k−1
2 ) = w = −i(βn−(e, n))

and ∫
k2∈K

J2(k−1
2 )∈ΘΞ2

1Z̃N+(k2)e−ψ(I2(k−1
2 ))dνKψ◦i(k2)

=

∫
nm∈Ξ−1

2 Θ−1

1Z̃N+(nm)e(ψ◦i)(βn− (e,n)) dνψ◦i(n
−) dm

= ν̃ψ◦i|Z̃N+(Ξ−1
2 Θ−1).

Hence, we obtain

〈FS±T,ε ,Ψε ⊗Ψε〉

= (1 +O(ε))
κv
|mXψ |

∫
atv+

√
tu∈CT

ete−I(u) dt du

·
∑
Z̃∈Z̃Γ

ν̃ψ|Z̃N (Ξ1)ν̃ψ◦i|Z̃N+(Ξ−1
2 Θ−1)
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+

∫
h−1atv+

√
tumn∈S

±
T,ε

etEε(t, u, h,mn) dt du dh dmdn+ eT oε(1).

Using Lemma 5.17 and Lemma 5.3, taking T → ∞ and then ε → 0, we
conclude that

#(Γ ∩ ST ) ∼ eT κv
|mXψ |

∫
kerψ

e−I(u) du
∑
Z̃∈Z̃Γ

ν̃ψ|Z̃N (Ξ1)ν̃ψ◦i|Z̃N+(Ξ−1
2 Θ−1)

and we note that κv
∫

kerψ e
−I(u) du = [M : MΓ] by Proposition A.1. �

Lemma 5.17. We have

lim
T→∞

e−T
∫
atv+

√
tu∈CT

ete−I(u) dt du =

∫
kerψ

e−I(u) du (5.18)

and for all sufficiently small ε > 0,

lim
T→∞

e−T
∫
h−1atv+

√
tumn∈S

±
T,ε

etEε(t, u, h,mn) dt du dh dmdn = 0. (5.19)

Proof. First, we show (5.18). For u ∈ kerψ and T > 0, let

RT (u) = {t > 0 : atv+
√
tu ∈ CT } = {0 < t ≤ T : tv +

√
tu ∈ C}.

Then we have

e−T
∫
atv+

√
tu∈CT

ete−I(u) dt du =

∫
kerψ

e−I(u)e−T
∫
RT (u)

et dt du.

Observe that e−I(u)e−T
∫
RT (u) e

t dt ≤ e−I(u) and by definition of I(u) (4.10),
e−I(u) ∈ L1(kerψ). Then by the Lebesgue dominated convergence theorem,

lim
T→∞

e−T
∫
atv+

√
tu∈CT

ete−I(u) dt du

=

∫
kerψ

e−I(u) lim
T→∞

e−T
∫
RT (u)

et dt du =

∫
kerψ

e−I(u) du,

where the last equality uses the observation that for fixed u, t ∈ RT (u) for
all sufficiently large t ≤ T .

Now we show (5.19). Since Ξ1 ⊂ N+ and Ξ2 ⊂ N are bounded, by
Theorem 4.11, there exists positive constants ηv, Dv and Tv such that

|Eε(t, u, h,mn)| ≤ Dve
−ηvI(u)

for all (t, u) ∈ (Tv,∞) × kerψv and h,mn such that h−1atv+
√
tumn ∈ S

±
T,ε.

Then (5.19) follows by using similar reasoning as before and the fact that
for fixed u ∈ kerψ, lim

t→∞
Eε(t, u, h,mn) = 0. �
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5.2. Counting in B(g0, ε)CTΘB(g0, ε)
−1. In this subsection, we relate re-

late VT (g0, ε,C,Θ) (5.1) and g0ST (N+
ε , N

−1
ε ,C,Θ)g−1

0 (5.2) and then apply
Proposition 5.12 to get an asymptotic for #(Γ ∩ VT (g0, ε,C,Θ)) (Proposi-
tion 5.24).

For Borel maps f1 : Γ\G/M → R, f2 : M → R and Borel sets B1 ⊂
Γ\G/M and B2 ⊂M , we define

mψ(f1 ⊗ f2) :=

(∫
X
f1 dmψ

)(∫
M
f2 dm

)
;

mψ(B1 ⊗B2) := mψ(1B1 ⊗ 1B2).

Denote the projection of B(g0, ε) to Γ\G/M by

B̃(g0, ε) := ΓB(g0, ε)M ⊂ Γ\G/M.

Recall r = rank(G). Let br(ε) denote the volume of the Euclidean r-ball of
radius ε. We have the following formula for mψ(B̃(g0, ε)⊗Θ).

Lemma 5.20. For any g0 ∈ G, ε > 0 and Borel subset Θ of M , we have

mψ(B̃(g0, ε)⊗Θ) = (1 +O(ε))br(ε)ν̃
g0

ψ (N+
ε )ν̃g0

ψ◦i(NεΘ),

where ν̃g0

ψ and ν̃g0

ψ◦i are defined by (3.32) and (3.33).

Proof. We assume that g0 = e. The proof for general g0 ∈ G is similar. By
Lemma 2.6(2) and (3), we have B(e, ε)e+ = N+

ε e
+, B(e, ε)e− = Nεe

− and
the projection of B(e, ε)M ⊂ G/M ∼= F (2) × a into F (2) is N+

ε e
+ × Nεe

−.
Fix g ∈ B(e, ε) and write w = βg+(e, g), g = h1n1a1m1 ∈ N+

ε NAεMε and
g = n2h2a2m2 ∈ NεN

+AO(ε)MO(ε). Using (3.20) and properties of the
Busemann function (Definition 3.7), the lemma follows immediately from
the following computation:

mψ(B(e, ε)M)

=

∫
g∈B(e,ε)

eψ(βg+ (e,g))+(ψ◦i)(βg− (e,g)) dνψ(g+) dνψ◦i(g
−) dw

=

∫
g∈B(e,ε)

e
ψ

(
β
h+

1
(e,h1a1)

)
+(ψ◦i)

(
β(n2)− (e,n2a2)

)
dνψ(h+

1 ) dνψ◦i(n
−
2 ) dw

=

∫
g∈B(e,ε)

e
ψ

(
β
h+

1
(e,h1)+log(a1)

)
+(ψ◦i)

(
β
n−2

(e,n2)−i(log(a2))

)

dνψ(h+
1 ) dνψ◦i(n

−
2 ) dw

=

∫
g∈B(e,ε)

eψ(log(a1)−log(a2)) dν̃g0

ψ (h1) dν̃g0

ψ◦i(n2M) dw

= (1 +O(ε))br(ε)ν̃
g0

ψ (N+
ε )ν̃g0

ψ◦i(NεM).

�
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The next lemma relates VT (e, ε,C,Θ) and ST (N+
ε , N

−1
ε ,C,Θ). To state

the lemma, we fix a constant C > 0 such that

a−wNεaw ⊂ Nεe−Cψ(w) and awN+
ε a−w ⊂ N+

εe−Cψ(w) for all w ∈ L. (5.21)

This is possible since L ⊂ int a+.

Lemma 5.22. For all T > T ′ > 1 and sufficiently small ε > 0,

ST (N+
ε , N

−1
ε ,C,Θ) ⊂ VT (e, ε,C,Θ)

and we have

VT (e, ε,C,Θ) \ VT ′(e, ε,C,Θ)

⊂ ST+O(ε)(N
+
ε+O(εe−CT ′ )

, (Nε+O(εe−CT ′ ))
−1, ĈO(ε), Θ̂O(ε))

\ ST ′−O(ε)(N
+
ε+O(εe−CT ′ )

, (Nε+O(εe−CT ′ ))
−1, ĈO(ε), Θ̂O(ε)),

where Θ̂ε :=
⋃
m1,m2∈Mε

m1Θm2 and Ĉε is the smallest closed cone in a

containing the ε-neighborhood of CT \ CT ′ for all T > T ′ > 1.

Proof. Since N±ε ⊂ B(e, ε), the first inclusion is clear from the definitions.
For the second inclusion, consider

g ∈ VT (e, ε,C,Θ) \ VT ′(e, ε,C,Θ).

There exists g1, g2 ∈ B(e, ε), a ∈ CT \ CT ′ and m ∈ Θ such that g =
g1mag

−1
2 . By Lemma 2.6(3), we have g1 = h1n1m1a1 ∈ N+

ε NO(ε)MεAε and
g2 = n2h2m2a2 ∈ NεN

+
O(ε)MO(ε)AO(ε). Then

g = h1n1m1a1ma(m2a2)−1h−1
2 n−1

2 .

Let a′ = aa1a
−1
2 , m′ = m1mm

−1
2 and n3 = (m′a′)−1n1m

′a′. Then a′ ∈
(ĈO(ε))T+O(ε) \ (ĈO(ε))T ′−O(ε), n3 ∈ NO(εe−CT ′ ) and g = h1m

′a′n3h
−1
2 n−1

2 .
Using our choice of constant C in (5.21), by Lemma 2.4, we have

n3h
−1
2 = m3a3h4n4 ∈MO(ε)AO(ε)N

+
O(ε)NO(εe−CT ′ ).

Then
g = h1m

′a′m3a3h4n4n
−1
2 = h5m

′′a′′n5,

where a′′ = a′a3, m′′ = m′m3, h5 = h1(m′′a′′)h4(m′′a′′)−1 and n5 = n4n
−1
2 .

Note that a′′ ∈ (ĈO(ε))T+O(ε)\(ĈO(ε))T ′−O(ε),m′′ ∈ Θ̂O(ε), h5 ∈ N+
ε+O(εe−CT ′ )

and n5 ∈ Nε+O(εe−CT ′ ) which completes the proof. �

To state the next proposition, we will use the following asymptotic nota-
tion. For a real-valued function f of ε and T , we write

f = oT (1) ⇐⇒ lim
T→∞

f(ε, T ) = 0 (5.23)

Recall the holonomy group MΓ of Γ (Definition 3.5). By Lemma 5.22
and Proposition 5.12, we obtain the following asymptotic for the number of
elements in Γ ∩ VT (g0, ε,C,Θ).
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Proposition 5.24. Let g0 ∈ G and Θ ⊂MΓ be a Borel set with
∫
∂Θ dm = 0.

For all sufficiently small ε > 0, we have

#(Γ ∩ VT (g0, ε,C,Θ))

=
[M : MΓ]

|mXψ |
eT

(
mψ(B̃(g0, ε)⊗Θ)

br(ε)
(1 +O(ε)) + oT (1)

)
.

Proof. Again, we give a proof for g0 = e and the general case is similar. Note
that ∂N±ε are proper real algebraic subvarieties of F and hence νψ(∂N+

ε ) =
νψ◦i(∂Nε) = 0 by [KO23c] (this was proved in [ELO22a] for the case ψ =
ψ ◦ i.)

By Lemma 5.22 and Proposition 5.12, we have

#(Γ ∩ VT (g0, ε,C,Θ))

≥ [M : MΓ]

|mXψ |
eT

∑
Z̃∈Z̃Γ

ν̃ψ|Z̃N (N+
ε )ν̃ψ◦i|Z̃N+(NεΘ

−1) + oT (1)

 . (5.25)

We claim that for sufficiently small ε > 0, we have∑
Z̃∈Z̃Γ

ν̃ψ|Z̃N (N+
ε )ν̃ψ◦i|Z̃N+(NεΘ

−1) = ν̃ψ(N+
ε )ν̃ψ◦i(NεΘ). (5.26)

To see why the claim is true, observe that

ν̃ψ(N+
ε ) =

∑
Z̃∈Z̃Γ

ν̃ψ|Z̃N (N+
ε ) and ν̃ψ◦i(NεΘ) =

∑
Z̃∈Z̃Γ

ν̃ψ◦i|Z̃N+(NεΘ
−1),

where in the second equality we use the fact that Z̃N is right MΓ-invariant
for each Z̃ ∈ Z̃Γ. If e+ /∈ Λ or e− /∈ Λ, then for sufficiently small ε, either
N+
ε ∩ Z̃N = ∅ for all Z̃ ∈ Z̃Γ or Nε ∩ Z̃N+ = ∅ for all Z̃ ∈ Z̃Γ and the claim

is clear since both sides of the equation would be 0. Otherwise, e+, e− ∈ Λ,
so for sufficiently small ε, N±ε ∩ Λ ⊂ Z̃ for a single Z̃ ∈ Z̃Γ and hence, the
claim.

Combining (5.25) and (5.26) and using Lemma 5.20, we obtain

#(Γ ∩ (VT (e, ε,C,Θ)))

≥ [M : MΓ]

|mXψ |
eT

(
mψ(B̃(e, ε)⊗Θ)

br(ε)
(1 +O(ε)) + oT (1)

)
.

It remains to establish the reverse inequality. By Lemma 5.22, we know
VT (e, ε,C,Θ) \ VT/2(e, ε,C,Θ) is contained in

ST+O(ε)(N
+
ε+O(εe−CT/2)

, (N−
ε+O(εe−CT/2)

)−1, ĈO(ε), Θ̂O(ε))

and
VT/2(e, ε,C,Θ) ⊂ ST/2+O(ε)(N

+
O(ε), (NO(ε))

−1, ĈO(ε), Θ̂O(ε)).
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Assuming ε is sufficiently small so thatMO(ε) ⊂M◦ ⊂MΓ, similar reasoning
as above yields

#(Γ ∩ VT (e, ε,C,Θ))−#(Γ ∩ VT/2(e, ε,C,Θ))

≤ [M : MΓ]

|mXψ |
e(T+O(ε))

·
(
mψ(B̃(e, ε+O(εe−CT/2))⊗ Θ̂O(ε))

br(ε+O(εe−CT/2))
(1 +O(ε+ εe−CT/2)) + oT (1)

)
;

(5.27)
#(Γ ∩ VT/2(e, ε,C,Θ))

≤ [M : MΓ]

|mXψ |
e(T/2+O(ε))

(
mψ(B̃(e,O(ε))⊗ Θ̂O(ε))

br(O(ε))
(1 +O(ε)) + oT (1)

)
.

(5.28)
Combining (5.27) and (5.28) and taking T large, we obtain the desired in-
equality. �

6. Joint equidistribution with respect to ψ-circumferences

In this section, we prove the main theorem of this paper, Theorem 1.3,
and Corollary 1.4. In fact, the results we prove here are slightly more gen-
eral as we allow ourselves to consider only maximal flat cylinders C with
corresponding Jordan projections λ(γC) lying in a fixed cone C ⊂ L, where
γC is as in (4.15).

As in Section 5, for this section, we fix

ψ ∈ a∗ tangent to ψΓ at v ∈ intL with ψ(v) = ψΓ(v) = 1

and we fix
cone C ⊂ L with v ∈ intC.

6.1. Preparatory lemmas. Throughout this subsection, we fix

— g0 with Γg0M ∈ suppmψ;

— ε > 0 sufficiently small as in Proposition 5.24;

— a conjugation-invariant Borel set Θ ⊂MΓ (Definition 3.5).

For T > 0, we set

WT (g0, ε,C,Θ) = {gamg−1 : g ∈ B(g0, ε), am ∈ CTΘ}.

Recall that CΓ is the set of all (positively oriented) maximal flat cylinders in
Γ\G/M . For C ∈ CΓ, choose a lift C̃ ⊂ G/M . Its stabilizer ΓC̃ is generated
by some element in [γC ], and C can be identified with ΓC̃\C̃. Let

I(C) := {ΓC̃σ ∈ ΓC̃\Γ : (σB(g0, ε)M) ∩ C̃ 6= ∅}.

Note that #I(C) is independent of the choice of C̃.
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For T > 0, let Cψ(T ) denote the set of all maximal flat cylinders with
ψ-circumference (4.16) at most T :

Cψ(T ) := {C ∈ CΓ : `ψ(C) ≤ T}.

We will also consider the set of maximal flat cylinders C with corresponding
Jordan projections λ(γC) lying in the cone C:

Cψ(T,C) = {C ∈ Cψ(T ) : λ(γC) ∈ C}.

Lemma 6.1. (1) The set Cψ(T ) is finite for any T > 0.

(2) For any C = ΓgAM ∈ CΓ, I(C) is finite.

Proof. By discreteness of Γ, for any g0 ∈ G and ε > 0, there are finitely
many elements of Γ in WT (g0, ε,L,M). On the other hand,

#Γ ∩WT (g0, ε,L,M) = #{γ = gawmg
−1 : g ∈ B(g0, ε), ψ(w) ≤ T}

= #{C̃ : C̃ ∩ B(g0, ε)M 6= ∅, `ψ(Γ\ΓC̃) < T}

=
∑

C∈Cψ(T )

#I(C).

From this, (2) immediately follows, and we see that

#{C ∈ Cψ(T ) : C ∩ B̃(g0, ε) 6= ∅} <∞.

Then (1) follows, using the fact that every maximal flat cylinder intersects
the embedded compact set Xψ ⊂ Ω (Subsection 4.2). �

Denote by VC the measure on C induced by the Haar measure on A. Let
Cl(M) denote the set of continuous real-valued class functions onM and [M ]
denote the set of conjugacy classes inM . For each T > 0, we define a Radon
measure µC,T on Γ\G/M × [M ] as follows. For T > 0, f ∈ Cc(Γ\G/M) and
ϕ ∈ Cl(M), let

µC,T (f ⊗ ϕ) :=
∑

C∈Cψ(T,C)

VC(f)ϕ(hC),

µT (f ⊗ ϕ) := µL,T (f ⊗ ϕ) =
∑

C∈Cψ(T )

VC(f)ϕ(hC).

We record several appropriately adapted lemmas from [MMO14, Section
5]. Lemma 6.2 and Lemma 6.3 relates the µC,T -measure of B̃(g0, ε) ⊗ [Θ]
to the number of elements in Γ ∩WT (g0, ε,C,Θ). The proofs are similar to
those in [MMO14], but we provide them here for the sake of completeness.

Lemma 6.2.

(1) For any C ∈ CΓ, we have

VC(B̃(g0, ε)) = br(ε) ·#I(C).
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(2) For any T > 0 and , we have

µC,T (B̃(g0, ε)⊗ [Θ]) = br(ε) ·
∑

C∈Cψ(T,C)

#I(C) · 1[Θ](hC).

Proof. It is clear from the definition of µC,T that (2) follows from (1). Let
C = ΓgAM , and choose C̃ = gAM . Then we have

VC(B̃(g0, ε)) =

∫
a mod λ(γC)

1B̃(g0,ε)
(Γg exp(w)M) dw

=
∑

[σ]∈ΓC̃\Γ

∫
a mod λ(γC)

1[σ]B(g0,ε)(g exp(w)M) dw

= br(ε) ·#I(C),

where dw denotes the Lebesgue measure on a, the integral is over a funda-
mental domain in a for the Z-action given by translation by λ(γC) and the
last equality uses Lemma 2.6(1). �

Recall that Γprim denotes the set of primitive elements of Γ.

Lemma 6.3. For all sufficiently large T , we have

µC,T (B̃(g0, ε)⊗ [Θ]) = br(ε) ·#(Γprim ∩WT (g0, ε,C,Θ)).

Proof. Let C = ΓgAM ∈ Cψ(T,C) and wihtout loss of generality, assume
that C̃ = gAM . By Lemma 6.2(1), it suffices to show that

#I(C) · 1[Θ](hC) = #([γC ] ∩WT (g0, ε,C,Θ)). (6.4)

If hC /∈ [Θ], then (6.4) is clear. We assume that hC ∈ [Θ]. If ΓC̃σ ∈ I(C),
then σ−1g ∈ B(g0, ε)AM and

σ−1γC,gσ = σ−1g exp(λ(γC))mC,gg
−1σ ∈ [γC ] ∩WT (g0, ε,C,Θ).

Conversely, if σ ∈ Γ such that σ−1γC,gσ ∈ WT (g0, ε,C,Θ), then we have
γC,g = σg′am(g′)−1σ−1 where g′ ∈ B(g0, ε) and am ∈ CTΘ, but on the other
hand, γC,g = g exp(λ(γC))mC,gg

−1, so σg′ ∈ gAM , and hence, σB(g0, ε) ∩
gAM 6= ∅, that is, ΓC̃σ ∈ I(C).

σg′ ∈ σB(g0, ε) ∩ gAM.

Noting that the map ΓC̃σ ∈ ΓC̃\Γ 7→ σ−1γC,gσ ∈ [γC ] is bijective since
the centralizer of γC,g in Γ is 〈γC,g〉 = ΓC̃ , we have thus given a bijection
between I(C) and [γC ] ∩WT (g0, ε,C,Θ). �

In the next lemma, we use the effective closing lemma for regular directions
(Lemma 2.7) to relate Γ ∩WT (g0, ε,C,Θ) with Γ ∩ VT (g0, ε,C,Θ).

Lemma 6.5. There exists T1 > 0, depending only on Γ and ψ, such that for
all sufficiently large T , we have

Γ ∩
(
VT−O(ε)(g0, ε(1−O(e−T )), ČO(ε), Θ̌O(ε)) \ VT1(g0, ε,C,Θ)

)
⊂ Γ ∩WT (g0, ε,C,Θ),
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where Θ̌ε :=
⋂
g1,g2∈Gε g1Θg2 and Čε is any cone containing Rv such that the

ε-neighborhood of Čε \ (Čε)T1 is contained in C.

Proof. Fix T1 > 0 such that if w ∈ L and ψ(w) ≥ T1, then minα∈Φ+ α(w) ≥
T0, where T0 is as in Lemma 2.7. Suppose

γ ∈ Γ ∩
(
VT−O(ε)(g0, ε(1−O(e−T )), ČO(ε), Θ̌O(ε)) \ VT1(g0, ε,C,Θ)

)
.

Then γ = g1 exp(w)mg2, where g1, g2 ∈ B(g0, ε(1 − O(e−T )), w ∈ ČO(ε)

with T1 < ψ(w) ≤ T − O(ε), and m ∈ Θ̌O(ε). By Lemma 2.7, we have
γ = g exp(w′)m′g−1 for some g ∈ B(g0, ε), w′ ∼O(ε) w and m ∼O(ε) m

′. It
follows that w ∈ C, ψ(w′) ≤ T and m′ ∈ Θ, so γ ∈ Γ ∩WT (g0, ε,C,Θ). �

LetmΓ denote the Haar probability measure onMΓ. The following lemma
gives a lower bound for #Γprim ∩WT (g0, ε,C,Θ).

Lemma 6.6. Suppose that mΓ(Θ) > 0 and mΓ(∂Θ) = 0. Then for all
sufficiently large T , we have

#Γ ∩ (WT (g0, ε,Θ) \W2T/3(g0, ε,Θ)) ≤ #Γprim ∩WT (g0, ε,Θ).

Proof. Let Γprimk = {σk : σ ∈ Γprim}. We observe that

#Γprim ∩WT (g0, ε,C,Θ)

= # (Γ ∩WT (g0, ε,C,Θ))−#

⋃
k≥2

Γprimk ∩WT (g0, ε,C,Θ)


≥ # (Γ ∩WT (g0, ε,C,Θ))−#

⋃
k≥2

Γ ∩WT/k(g0, ε,C,
k
√

Θ)

 ,

where k
√

Θ := {m ∈M : mk ∈ Θ}. It suffices to show that for all sufficiently
large T , we have

#

⋃
k≥2

Γ ∩WT/k(g0, ε,C,
k
√

Θ)

 ≤ #Γ ∩W2T/3(g0, ε,C,Θ). (6.7)

Since WT/k(g0, ε,C,
k
√

Θ) ⊂ VT/k(g0, ε,C,
k
√

Θ) and Γ∩WT/k(g0, ε,C,
k
√

Θ) is
empty when T/k is sufficiently small, using Proposition 5.24, it follows that

#

⋃
k≥2

Γ ∩WT/k(g0, ε,C,
k
√

Θ)

 = O(TeT/2). (6.8)

On the other hand, using Lemma 6.5, Proposition 5.24 and the assumption
that mΓ(Θ) > 0, we have

#Γ ∩W2T/3(g0, ε,Θ) ≥ O(e2T/3). (6.9)

The inequality (6.7) now follows from (6.8) and (6.9). �

Lemmas 6.3, 6.5, and 6.6 imply the following lemma.
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Lemma 6.10 (Comparison Lemma). Suppose that mΓ(Θ) > 0 and mΓ(∂Θ)
= 0. For all sufficiently large T , we have

br(ε) ·#Γ ∩
(
VT−O(ε)(g0, ε(1−O(e−T )), ČO(ε), Θ̌O(ε)) \ V2T/3(g0, ε,C,Θ)

)
≤ µC,T (B̃(g0, ε)⊗Θ) ≤ br(ε) ·#Γ ∩ VT (g0, ε,C,Θ).

Proof. The upper bound follows directly from Lemma 6.3 and the trivial
inclusion Γ ∩WT (g0, ε,C,Θ) ⊂ Γ ∩ VT (g0, ε,C,Θ). The lower bound follows
by using Lemma 6.3, Lemma 6.6, and Lemma 6.5:

µC,T (B̃(g0, ε)⊗Θ)

= br(ε)#(Γprim ∩WT (g0, ε,C,Θ))

≥ br(ε)#Γ ∩ (WT (g0, ε,C,Θ) \W2T/3(g0, ε,C,Θ))

≥ br(ε)#Γ ∩
(
VT−O(ε)(g0, ε(1−O(e−T )), ČO(ε), Θ̌O(ε)) \ V2T/3(g0, ε,C,Θ)

)
.

�

Combining Proposition 5.24 and Lemma 6.10, we obtain the following
asymptotic for µC,T (B̃(g0, ε)⊗Θ).

Proposition 6.11. For all g0 ∈ suppmψ, for all conjugation-invariant Borel
subsets Θ ⊂ MΓ with

∫
Θ dmΓ > 0 and

∫
∂Θ dm = 0 and for all sufficiently

small ε > 0, we have

µC,T (B̃(g0, ε)⊗Θ) =
[M : MΓ]

|mXψ |
eT
(
mψ(B̃(g0, ε)⊗Θ)(1 +O(ε)) + oT (1)

)
.

Proof. Inputting Proposition 5.24 into Lemma 6.10 yields

µC,T (B̃(g0, ε)⊗Θ) ≤ [M : MΓ]

|mXψ |
eT
(
mψ(B̃(g0, ε)⊗Θ)(1 +O(ε)) + oT (1)

)
and

µC,T (B̃(g0, ε)⊗Θ)

≥ [M : MΓ]

|mXψ |
eT−O(ε)

·

(
br(ε)mψ(B̃(g0, ε(1−O(e−T )))⊗ Θ̌O(ε))

br(ε(1−O(e−T )))
(1 +O(ε)) + oT (1)

)

− [M : MΓ]

|mXψ |
e2T/3

(
mψ(B̃(g0, ε)⊗Θ)(1 +O(ε)) + oT (1)

)
=

[M : MΓ]

|mXψ |
eT
(
mψ(B̃(g0, ε)⊗Θ)(1 +O(ε)) + oT (1)

)
.

�
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6.2. Proofs of the main results. We are now ready to prove our main
joint equidistribution theorem and its corollaries. We note that Theorem 1.3
and Corollary 1.4 are special cases of the following statements when C = L.

Theorem 6.12 (Joint equidistribution). For any f ∈ Cc(Γ\G/M), ϕ ∈
Cl(M) and cone C ⊂ L with v ∈ intC, we have

lim
T→∞

µC,T (f ⊗ ϕ)

eT
=

mψ(f)

|mXψ |

∫
MΓ

ϕdmΓ.

Proof. The theorem is clear if suppϕ ∩MΓ = ∅. We first prove the theorem
when ϕ = 1Θ for some conjugation-invariant Borel subset Θ ⊂ MΓ with∫

Θ dmΓ > 0 and
∫
∂Θ dm = 0. By using a partition of unity, we may assume

without loss of generality that f is supported on B̃(g0, ε) for some g0 ∈
suppmψ and a ε > 0 as in Proposition 5.24. Then we can approximate f
arbitrarily well by a linear combination of characteristic functions on boxes
of the form B̃(h, ρ), with h ∈ B̃(g0, ε) and arbitrarily small ρ > 0. Then by
applying Proposition 6.11 to each 1B̃(h,ρ) ⊗ 1Θ, we obtain

(1−O(ρ))
[M : MΓ]

|mXψ |
mψ(f ⊗ 1Θ) ≤ lim inf

T
e−TµC,T (f ⊗ 1Θ)

≤ lim sup
T

e−TµC,T (f ⊗ 1Θ)

≤ (1 +O(ρ))
[M : MΓ]

|mXψ |
mψ(f ⊗ 1Θ)

and hence
lim
T
e−TµC,T (f ⊗ 1Θ) =

[M : MΓ]

|mXψ |
mψ(f ⊗ 1Θ)

=
mψ(f)

|mXψ |

∫
MΓ

1Θ dmΓ.

After identifyingM with the quotient of the Lie algebra of its maximal torus
by the Weyl group relative to its maximal torus, a similar approximation
argument can be used for general ϕ ∈ Cl(M). �

For each T > 0, we define the Radon measure ηC,T on Γ\G/M × [M ] in
a similar fashion as µC,T , but normalizing the Haar measure on maximal
flat cylinders by their ψ-circumferences. For T > 0, f ∈ Cc(Γ\G/M) and
ϕ ∈ Cl(M), let

ηC,T (f ⊗ ϕ) :=
∑

C∈Cψ(T,C)

VC(f)

`ψ(C)
ϕ(hC).

Corollary 6.13. For any f ∈ Cc(Γ\G/M), ϕ ∈ Cl(M) and cone C ⊂ L
with v ∈ intC, we have

lim
T→∞

ηC,T (f ⊗ ϕ)

eT /T
=

mψ(f)

|mXψ |

∫
MΓ

ϕdmΓ.
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Proof. We observe that TηC,T ≥ µC,T , and for any ε > 0,

Te−T ηC,T (f ⊗ ϕ)

= Te−T

 ∑
Cψ((1−ε)T,C)

VC(f)

`ψ(C)
ϕ(hC) +

∑
Cψ(T,C)\Cψ((1−ε)T,C)

VC(f)

`ψ(C)
ϕ(hC)


≤ Te−T

O
 ∑
Cψ((1−ε)T,C)

VC(f)ϕ(hC)


+

∑
Cψ(T,C)\Cψ((1−ε)T,C)

VC(f)

(1− ε)T
ϕ(hC)


= Te−T

(
O(µC,(1−ε)T (f ⊗ ϕ))

+
1

(1− ε)T
(
µC,T (f ⊗ ϕ)− µC,(1−ε)T (f ⊗ ϕ)

))
= O(Te−εT ) +

1

1− ε
e−TµC,T (f ⊗ ϕ).

Using Theorem 6.12 and ε > 0 being arbitrary completes the proof. �

Corollary 6.14 (Equidistribution of holonomies). For any ϕ ∈ Cl(M) and
cone C ⊂ L with v ∈ intC, we have∑

C∈Cψ(T,C)

ϕ(hC) ∼ eT

T

∫
MΓ

ϕdmΓ as T →∞.

Proof. Recall from Subsection 4.2 that Ω ∼= Xψ × kerψ, dmψ

∣∣
Ω

= dmXψ du
and the Lebesgue measures we use satisfy dw = dt du, where w = tv +
u. Choose f ∈ Cc(Ω) such that f = 1Xψ ⊗ b, where b ∈ Cc(kerψ) with∫

kerψ b(u) du = 1. Then mψ(f) = |mXψ | and for every C ∈ CΓ,

VC(f) =

∫
a mod λ(γC)

f(ΓgawM) dw

=

∫
kerψ

∫ `ψ(C)

0
b(u) dt du = `ψ(C),

since λ(γC) = `ψ(C)v + u for some u ∈ kerψ.
Applying Corollary 6.13 to this choice of f , we obtain

lim
T→∞

1

eT /T

∑
C∈Cψ(T,C)

ϕ(hC) =

∫
MΓ

ϕdmΓ.

�
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Recall that Lemma 4.18 gives a bijection between the maximal flat cylin-
ders and periodic orbits of the translation flow Φ on Xψ. Let

GXψ(T ) := {Φ-periodic orbits of length at most T}.

For C ∈ GXψ(T ), denote by LC the length measure on C and associate to C
the ψ-circumference `ψ(C) and holonomy hC of the corresponding maximal
flat cylinder. Holonomies also jointly equidistribute with the periodic orbits
in Xψ.

Corollary 6.15 (Joint equidistribution in Xψ). For any f ∈ Cc(Xψ) and
ϕ ∈ Cl(M), we have

lim
T→∞

1

eT

∑
C∈GXψ (T )

LC(f)ϕ(hC) =
mXψ(f)

|mXψ |

∫
MΓ

ϕdm;

lim
T→∞

1

eT /T

∑
C∈GXψ (T )

LC(f)

`ψ(C)
ϕ(hC) =

mXψ(f)

|mXψ |

∫
MΓ

ϕdm;

Proof. Apply Theorem 6.12 with C = L to the function f ⊗ b, where b ∈
Cc(kerψ) with

∫
kerψ b(u) du = 1. �

7. Joint equidistribution with respect to norm-like orderings

Let N : a→ R be twice continuously differentiable except possibly at the
origin, convex, homogeneous of degree 1 and positive on L\{0}. For example,
any Lp-norm on a has these properties when 1 ≤ p <∞. In this section, we
give a slight modification of the arguments in the previous sections to prove
joint equidistribution with respect to the ordering on CΓ determined by N:

CN(T ) := {C ∈ CΓ : N(λ(γC)) ≤ T}.

We define the N-critical exponent as

δN := max
N(w)=1

ψΓ(w). (7.1)

By convexity of N and strict concavity of ψΓ, there exists a unique

v ∈ intL

such that the maximum in (7.1) is achieved at w = δNv. We note that when
N is the Euclidean norm on a, v is simply the maximal growth direction of
ψΓ. We also let ψ denote the tangent form such that

ψ is tangent to ψΓ at v.

We note that N(δNv) = 1 = 1
δN
ψΓ(δNv) so by convexity of N, we have 1

δN
ψ ≤ N

and equality holds along the v direction. In particular, the differential of N
along the v direction is 1

δN
ψ. Fix a cone

C ⊂ L with v ∈ intC. (7.2)
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Define
CN(T,C) := {C ∈ CN(T ) : λ(γC) ∈ C}.

Then we define the measures µNC,T and ηNC,T on Γ\G/M × [M ] as follows. For
T > 0, f ∈ Cc(Γ\G/M), ϕ ∈ Cl(M), and C ⊂ a+, let

µNC,T (f ⊗ ϕ) :=
∑

C∈CN(T,C)

VC(f)ϕ(hC);

ηNC,T (f ⊗ ϕ) :=
∑

C∈CN(T,C)

VC(f)

`ψ(C)
ϕ(hC).

Note that for ηNC,T , we still normalize by using the ψ-circumferences, or in
other words, the engths of the periodic orbits in Xψ because this is useful to
deduce equidistribution of holonomies from joint equidistribution. We now
state the joint equidistribution theorem with respect to N.

Theorem 7.3 (Joint equidistribution with respect to N). There exists a
constant cN > 0 such that for any f ∈ Cc(Γ\G/M), ϕ ∈ Cl(M), and any
cone C ⊂ L with v ∈ intC, we have

lim
T→∞

µNC,T (f ⊗ ϕ)

eδNT
= cN

mψ(f)

|mXψ |

∫
MΓ

ϕdmΓ; (7.4)

lim
T→∞

ηNC,TT (f ⊗ ϕ)

eδNT /δNT
= cN

mψ(f)

|mXψ |

∫
MΓ

ϕdmΓ. (7.5)

The constant cN is given by the formula

cN :=
κv

[M : MΓ]

∫
kerψ

e−I(u)− δ
2
N
2
u>(Hess(N)(δNv))u du ≤ 1,

where Hess(N) denotes the Hessian of N, I and κv are as in Theorem 4.11
and du is as in (4.9).

Remark 7.6. If the norm-like function N is in fact a norm induced by an
inner product, then u> (Hess(N)(δNv))u = N(u)2.

Corollary 7.7 (Equidistribution of holonomies with respect to N). For any
ϕ ∈ Cl(M) and cone C ⊂ L with v ∈ intC, we have∑

C∈CN(T,C)

ϕ(hC) ∼ cN
eδNT

δNT

∫
MΓ

ϕdmΓ as T →∞.

Corollary 7.8. For any cone C ⊂ L with v ∈ intC, we have as T →∞,

#{[γ] ∈ [Γprim] : N(λ(γ)) ≤ T, λ(γ) ∈ C} ∼ cN
eδNT

δNT
.

The arguments in Sections 5 and 6 are easily adapted to the current setting
with the only points of interest being the replacement of Lemma 5.17 and
deducing the asymptotic for ηNC,T from the asymptotic for µNC,T .



JOINT EQUIDISTRIBUTION OF CYLINDERS AND HOLONOMIES 49

Let
CN
T := {exp(w) : w ∈ C,N(w) ≤ T}.

The following lemma is the appropriate replacement of the first statement
in Lemma 5.17.

Lemma 7.9. We have

lim
T→∞

e−δNT
∫
atv+

√
tu∈C

N
T

ete−I(u) dt du =

∫
kerψ

e−I(u)− δ
2
N
2
u>(Hess(N)(δNv))u du.

Proof. For u ∈ kerψ and T > 0, let

RT (u) = {t > 0 : atv+
√
tu ∈ CN

T },

so that we have

e−δNT
∫
atv+

√
tu∈C

N
T

ete−I(u) dt du =

∫
kerψ

e−I(u)e−δNT
∫
RT (u)

et dt du.

Using the second order Tylor approximation of N at δNv we have

N(tv +
√
tu)

=
t

δN
N

(
δNv +

δN√
t
u

)
=

t

δN

(
1 +

1

δN
ψ

(
δN√
t
u

)
+
δ2
N

2t
u> (Hess(N)(δNv))u+O

(
‖u‖3

t3/2

))
=

t

δN

(
1 +

δ2
N

2t
u> (Hess(N)(δNv))u+O

(
‖u‖3

t3/2

))
and hence for fixed u,

RT (u) =

[
O(1), δNT −

δ2
N

2
u> (Hess(N)(δNv))u+O

(
‖u‖3√
T

)]
.

Observe that e−I(u)e−δNT
∫
RT (u) e

t dt ≤ e−I(u) and by the formula for I from
Theorem 4.11, e−I(u) ∈ L1(kerψ). Then by the Lebesgue dominated conver-
gence theorem,

lim
T→∞

e−δNT
∫
atv+

√
tu∈CT

ete−I(u) dt du

=

∫
kerψ

e−I(u) lim
T→∞

e−δNT
∫
RT (u)

et dt du

=

∫
kerψ

e−I(u) lim
T→∞

e−δNT

(
e
δNT−

δ2N
2
u>(Hess(N)(δNv))u+O

(
‖u‖3√
T

))
du

=

∫
kerψ

e−I(u)− δ
2
N
2
u>(Hess(N)(δNv))u du.

�
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Proof of Theorem 7.3. After replacing Lemma 5.17 with Lemma 7.9, the re-
mainder of the proof for the asymptotic (7.4) of µNC,T is almost identical to
the proof of Theorem 6.12.

We present the proof of the asymptotic (7.5) for ηNC,T . Some care must be
taken since in the definition of ηNC,T , the volume measures on maximal flat
cylinders C are normalized using their ψ-circumference `ψ(C), rather than
N(λ(γC)).

Note that for C ∈ CN(T,C), we have `ψ(C) = ψ(λ(γC) ≤ N(λ(γC)) ≤ T
and hence we have

T−1µNC,T ≤ ηNC,T . (7.10)

Next, we show an upper bound for ηNC,T . Fix ϑ > 0 such that ψ(w)
N(w) > ϑ

for all w ∈ L \ {0}. Fix ε > 0 and choose a cone C′ ⊂ C such that v ∈ intC′

and ψ(w)
δNN(w) > 1− ε for all w ∈ C′. Then we have

ηNC,T (f ⊗ ϕ)

≤ O

 ∑
CN((1−ε)T,C)

VC(f)ϕ(hC)


+

∑
CN(T,C)\(CN(T,C′)∪CN((1−ε)T,C))

VC(f)

(1− ε)ϑT
ϕ(hC)

+
∑

C(T,C′)−C((1−ε)T )

VC(f)

(1− ε)2δNT
ϕ(hC)

= O
(
µNC,(1−ε)T

)
+

1

(1− ε)ϑT

((
µNC,T − µNC′,T

)
−
(
µNC,(1−ε)T − µ

N
C′,(1−ε)T

))
+

1

(1− ε)2δNT

(
µNC′,T − µNC′,(1−ε)T

)
.

(7.11)
Using the asymptotic (7.4) for µNC,T in (7.10) and (7.11), we obtain

cN
mψ(f)

|mXψ |

∫
MΓ

ϕdm ≤ lim
T→∞

ηNC,T (f ⊗ ϕ)

eδNT /δNT
≤ 1

(1− ε)2
cN

mψ(f)

|mXψ |

∫
MΓ

ϕdm.

Since ε > 0 is arbitrary, this completes the proof. �

Remark 7.12. We remark that in the above proof of the asymptotic for ηNC,T
for a given cone C as in (7.2), it was crucial that the asymptotic for µNC′,T is
the same for any smaller C′ ⊂ C satisfying (7.2).

Appendix A. An identity between κv and I

Let Γ < G be a Zariski dense Anosov subgroup (Definition 4.1). Let
ψ ∈ a∗ be a tangent form (3.13) tangent to ψΓ at some v in the interior
of the limitcone L of Γ (Definition 3.2). We take v normalized so that
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ψ(v) = 1. The purpose of this appendix is to prove the following identity
between the constant κv and function I : kerψ → R appearing in the local
mixing theorem (Theorem 4.11 or Theorem A.2) and the index [M : MΓ] of
the holonomy group MΓ of Γ (Definition 3.5). This identity was required in
Sections 5–7 to determine the constants in the asymptotics we proved.

Proposition A.1. Using the same notation as in Theorem 4.11 or Theo-
rem A.2, we have

κv

∫
kerψ

e−I(u) du = [M : MΓ],

where du denotes the Lebesgue measure on kerψ as in (4.9).

We will in fact deduce Proposition A.1 from local mixing with respect to
the BMS measure mψ and an accompanying uniformity statement.

Theorem A.2 (Local mixing, [CS23, Theorem 1.3]). There exists κv > 0

and function I : kerψ → R is defined by I(·) = 〈·, ·〉∗ − 〈·,v〉
2
∗

〈v,v〉∗ for some inner
product 〈·, ·〉∗ on a such that for any u ∈ kerψ and for any φ1, φ2 ∈ Cc(Γ\G),
we have

lim
t→+∞

t
r−1
2

∫
Γ\G

φ1(x exp(tv +
√
tu))φ2(x) dmψ(x)

=
κve
−I(u)

|mXψ |
∑
Z∈ZΓ

mψ

∣∣
Z

(φ1) ·mψ

∣∣
Z

(φ2),

where r = rank(G), ZΓ denotes the finite set of A-ergodic components of mψ

and mXψ is as in Subsection 4.2.
Moreover, for all φ1, φ2 ∈ Cc(Γ\G), there exists a constant Dv(φ1, φ2)

depending on φ1 and φ2 such that for all (t, u) ∈ [0,∞)× kerψ, we have∣∣∣∣∣t r−1
2

∫
Γ\G

φ1(x exp(tv +
√
tu))φ2(x) dmψ(x)

∣∣∣∣∣
≤ Dv(φ1, φ2)e−2(‖tv+

√
tu‖∗‖v‖∗−〈tv+

√
tu,v〉∗),

where ‖ · ‖∗ denotes the norm induced by 〈·, ·〉∗.

Proof of Proposition A.1. We refer the reader to Subsection 4.2 for the nota-
tion used in this proof. Let S : Xψ → Ω be a continuous section of the trivial
kerψ-vector bundle πψ : Ω → Xψ. Then we have a continuous function
s : Λ(2) × R→ a such that for all (x, y, r) ∈ Λ(2) × R,

S(Γ(x, y, r)) = Γ(x, y, s(x, y, r)) and ψ(s(x, y, r)) = r.

Then we have a homeomorphism Xψ × kerψ ∼= Ω given by

(Γ(x, y, r), u′) 7→ Γ(x, y, s(x, y, r) + u′).

Observe that for T > 0 and u ∈ kerψ, the a-coordinate of

Γ(x, y, s(x, y, r) + u′) exp(tv +
√
tu) ∈ Γ\(Λ(2) × a)
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is given by

s(x, y, r) + u′ + tv +
√
tu = s(x, y, r + t) + (u′ +

√
tu)− ŝ(x, y, r, t), (A.3)

where ŝ(x, y, r, t) := s(x, y, r + t)− s(x, y, r)− tv ∈ kerψ.
Fix a compactly supported continuous function b : kerψ → [0,∞) such

that
∫

kerψ b(u
′) du′ = 1, where du′ is the Lebesgue measure on kerψ sat-

isfying dmXψ du
′ = dmψ

∣∣
Ω
. Let φ ∈ Cc(Ω̃) be the function given by the

M -invariant lift of the function 1Xψ ⊗ b on Xψ × kerψ ∼= Ω. Note that

mψ

∣∣
Z

(φ) =
1

#ZΓ
mψ(φ) =

|mXψ |
[M : MΓ]

, (A.4)

where the last equality uses #ZΓ = [M : MΓ] [LO20a, Theorem 1.1]. Using
Theorem A.2 applied to the functions φ1 = φ2 = φ and using (A.4), we have

lim
t→+∞

t
r−1
2

∫
Xψ×kerψ

b((u′ +
√
tu)− ŝ(x, y, r, t))b(u′) dmXψ(Γ(x, y, r)) du′

=
κve
−I(u)

|mXψ |
∑
Z∈ZΓ

(
mψ

∣∣
Z

(φ)
)2

=
κve
−I(u)|mXψ |

[M : MΓ]
. (A.5)

Rearranging and integrating (A.5) with respect to u ∈ kerψ, we obtain

κv

∫
kerψ

e−I(u) du

=
[M : MΓ]

|mXψ |

∫
kerψ

lim
t→+∞

t
r−1
2

∫
kerψ

∫
Xψ
b((u′ +

√
tu)− ŝ(x, y, r, t))

b(u′) dmXψ(Γ(x, y, r)) du′ du
(A.6)

Next, we explain how to move the limit in (A.6) outside of the integral. By
Theorem A.2, there exists a constant D := Dv(φ, φ) > 0 such that for all
(t, u) ∈ [1,∞)× kerψ, we have

t
r−1
2

∫
kerψ

∫
Xψ
b((u′ +

√
tu)− ŝ(x, y, r, t))b(u′) dmXψ(Γ(x, y, r)) du′ du

≤ De−2(‖tv+
√
tu‖∗‖v‖∗−〈tv+

√
tu,v〉∗). (A.7)

Note that for t ≥ 1,

‖tv +
√
tu‖∗‖v‖∗ − 〈tv +

√
tu, v〉∗ =

‖u‖2∗‖v‖2∗ − 〈u, v〉2∗
‖v + u/

√
t‖∗‖v‖∗ + 〈v + u/

√
t, v〉∗

≥ ‖u‖2∗‖v‖2∗ − 〈u, v〉2∗
2‖v‖2∗ + (‖u‖∗‖v‖∗ + 〈u, v〉∗)

.

(A.8)
Define the function f : kerψ → [0,∞) by

f(u) =
‖u‖2∗‖v‖2∗ − 〈u, v〉2∗

2‖v‖2∗ + ‖u‖∗‖v‖∗ + 〈u, v〉∗
.
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Then combining (A.7) and (A.8), for all (t, u) ∈ [1,∞)× kerψ, we have

t
r−1
2

∫
kerψ

∫
Xψ
b((u′ +

√
tu)− ŝ(x, y, r, t))b(u′) dmXψ(Γ(x, y, r)) du′ du

≤ De−2f(u). (A.9)

Moreover, we observe that e−2f(u) ∈ L1(kerψ) since for all u ∈ kerψ \ {0},
we have

lim
λ→∞

f(λu)

λ
=
‖u‖2∗‖v‖2∗ − 〈u, v〉2∗
‖u‖∗‖v‖∗ + 〈u, v〉∗

> 0.

Then by (A.9), we can apply the Lebesgue dominated convergence theorem
in (A.7), followed by the change of variables ũ =

√
tu, Fubini’s theorem and

integrating using
∫

kerψ b(u
′) du′ = 1 twice to conclude that

κv

∫
kerψ

e−I(u) du

=
[M : MΓ]

|mXψ |
lim

t→+∞
t
r−1
2

∫
kerψ

∫
kerψ

∫
Xψ
b((u′ +

√
tu)− ŝ(x, y, r, t))

b(u′) dmXψ(Γ(x, y, r)) du′ du,

=
[M : MΓ]

|mXψ |
lim

t→+∞

∫
kerψ

∫
Xψ

∫
kerψ

b((u′ + ũ)− ŝ(x, y, r, t))

b(u′) dũ dmXψ(Γ(x, y, r)) du′

=
[M : MΓ]

|mXψ |
lim

t→+∞

∫
kerψ

∫
Xψ
b(u′) dmXψ(Γ(x, y, r)) du′

= [M : MΓ].

�
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