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ABSTRACT. Let G be a connected semisimple real algebraic group and
P < G be a minimal parabolic subgroup with Langlands decomposi-
tion P = MAN. Let I' < G be a Zariski dense Anosov subgroup
with respect to P. Since I' is Anosov, the set of conjugacy classes of
primitive elements of I' is in one-to-one correspondence with the set of
(positively oriented) maximal flat cylinders in I'\G /M. We describe the
joint equidistribution of maximal flat cylinders and their holonomies as
their circumferences tend to infinity. This result can be viewed as the
Anosov analogue of the joint equidistribution result of closed geodesics
and holonomies in rank one by Margulis-Mohammadi—Oh [MMO14].
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1. INTRODUCTION

1.1. Background and setup. Let G be a connected semisimple real alge-
braic group. Let P < G be a minimal parabolic subgroup with Langlands
decomposition P = M AN where N is the unipotent radical of P, A =expa
is a maximal real split torus and M is a maximal compact subgroup of P
commuting with A. Let I' < G be a torsion-free discrete subgroup. In this
paper, we study the equidistribution of nontrivial closed A-orbits in I'\G /M,
or equivalently, nontrivial closed AM-orbits in I'\G, and their holonomies
when I is a torsion-free Zariski dense Anosov subgroup with respect to P.
1
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Let F := G/P denote the Furstenberg boundary and F@ denote the
unique open G-orbit in F x F. A Zariski dense discrete subgroup I' < G
is Anosov with respect to P if T' is a finitely generated Gromov hyper-
bolic group and admits a I'-equivariant continuous embedding from the
Gromov boundary OI" of " to F such that if x,y € F are the images of
two distinct points in OT', then (z,y) € F (2). The notion of Anosov sub-
groups (with respect to any parabolic subgroup of G) was first introduced
by Labourie [Lab06] for surface groups and later generalized by Guichard-
Wienhard [GW12] to Gromov hyperbolic groups (cf. [KLP17, GGKWI17,
Wiel8]). Throughout the paper, all Anosov subgroups are Anosov with
respect to P. Anosov subgroups are regarded as natural higher rank gener-
alizations of Zariski dense convex-cocompact subgroups since the two notions
coincide when rank(G) = 1.

Let I' < G be a torsion-free Zariski dense Anosov subgroup. Let a™ C
a be the positive Weyl chamber associated to N and let AT = expat.
Let ¢r : at — {—o00} U[0,00) denote the growth indicator function of T
introduced by Quint [Qui02a| (Definition 3.8). The function #r is a higher
rank generalization of the critical exponent in rank one. We fix a tangent
form 1 € a*, that is,

Y : a — R linear, ¥ > ¢, 1p(v) = ¢r(v) = 1 for some v € inta®™,  (1.1)

where int a®™ denotes the interior of a*. The space of such tangent forms
is homeomorphic to R (&)~1 " Up to multiplicative constant, there exists
a unique (I, 1)-conformal measure on F and it is necessarily supported on
the limit set A of I' as shown by Lee-Oh [LO20b, Theorem 1.3], [LO22,
Theorem 1.2]. Hence, up to multiplicative constant, there exists a unique
Bowen-Margulis—Sullivan (BMS) measure

My
on I'\G/M associated to 1 (Definition 3.19). When rank(G) > 2, my is
an infinite measure (see [Sam15, Theorem 3.5], see also [LO20b, Corollary
4.9]). Using the Hopf parametrization F?) x a = G/M (Definition 3.16),
the support of my, is

Q:=suppmy = I\(A® x a) c T\(FP® x a) 2 \G/M,

where A(?) := (A x A) N F? (Definition 3.19).

For any closed AM-orbit C' = I'gAM < T'\G/M, its group of periods
g 'T'g N AM is either trivial or isomorphic to Z, and in the latter case, C' is
a maximal flat cylinder;

C = (¢7'TgN AM)\AM/M = R#K&)-1 st

We emphasize that the closed AM-orbits being cylinders is a feature of
Anosov subgroups. For instance, if A < G is a torsion-free lattice, then there
exists a closed AM-orbit in A\G whose group of periods is isomorphic to
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Z"7k(G) and hence the closed AM-orbit is a compact torus [PR72, Theorem
2.8].

When ¢g~'T'g N (int AY)M # (), where int A* denotes the interior of AT,
we call TgAM C T'\G/M a positively oriented maximal flat cylinder. Let
[['] denote the set of conjugacy classes in I" and let

[Cprim] == {[y] € [['] : v € " primitive}.
The set of all positively oriented maximal flat cylinders is in one-to-one
correspondence with [Fprim]. We also note that positively oriented maxi-
mal flat cylinders are precisely the maximal flat cylinders contained in 2
(Lemma 4.14). In the rest of the introduction, all maximal flat cylinders

are positively oriented unless stated otherwise. Denote by Cr the set of all
maximal flat cylinders:

Cr = {C C Q: C is a maximal flat cylinder}.

FIGURE 1. Maximal flat cylinders in the vector bundle 7y :
2 — Xy. In this picture, &y is depicted as the unit tangent
bundle of the closed surface shown.

Since I' is Anosov and torsion-free, every nontrivial element of v € T’
is lozodromic, that is, conjugate to some exp(A(y))m € (int AT)M. The
element

A(v) € inta™
is unique and called the Jordan projection of v and m € M is in a unique
conjugacy class
hy = [m] € [M]
called the holonomy of v. If C € Cr corresponds to [y] € [['prim], then we
define the 1 -circumference and holonomy of C as

Ly,(C) :==1P(A(7)) € (0,00) and he = hy € [M],
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respectively (see Theorem 4.3 for the positivity of i-circumferences).

Ivli€w(C)

C =T\TI'gAM/M

FIGURE 2. A closed A-orbit in I'\G /M laid flat. The left and
right boundaries are identified so that g and g are identified.
The -circumference of C' can be seen in the width of the slice
produced by the ker vy hyperplane.

We give a geometric description of i-circumferences. As stated before,
every maximal flat cylinder is contained in €. Another feature of Anosov
subgroups is that € is homeomorphic to a trivial ker y-vector bundle over a
compact metric space Xy, equipped with a finite measure my,, on Xy such
that

dmw‘ﬂ = dew du, (1.2)

for some Lebesgue measure du on ker ¢ (see Subsection 4.2 for details). The
1p-circumference of any maximal flat cylinder is the length of its intersection
curve with &y (Fig. 1). More precisely, &y is equipped with a translation
flow and the intersection curve of a maximal flat cylinder with &y is a
periodic orbit of the translation flow (Lemma 4.18). See Fig. 2 for another
interpretation.

1.2. Statement of the main results. The main result of our paper is the
joint equidistribution of maximal flat cylinders and their holonomies as their
t-circumferences tend to infinity. For T' > 0, let Cy(T") denote the set of all
maximal flat cylinders with -circumference at most T

C¢(T) = {C €Cr: &/,(C) < T}.

We note that Cy(7") is always a finite set (see Lemma 6.1). To formulate the
joint equidistribution statement, denote by V¢ the volume measure on a max-
imal flat cylinder C' induced by the Haar measure on AM. Let C.(I'\G/M)
denote the set of continuous compactly supported functions on I'\G /M and
let C1(M) denote the set of continuous real-valued class functions on M. For
T > 0, we define Radon measures pur and n7 on the product of I'\G/M and
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[M] as follows. For T' > 0, f € C.(I'\G/M) and ¢ € CI(M), let

pr(f@e) = Y Vo(f)elhe);
CECw )

nm(fee) = > E%ééiw(hc)
cecy, (1) ¥

Let Mr < M denote the closed subgroup generated by all holonomies of
elements in I'. Then Mr is a normal subgroup of M containing the identity
component of M [GRO7, Corollary 1.10] so in particular, Mt has finite in-
dex in M. We note that when M is not connected, Mt is not necessarily
equal to M (see Subsection 1.7 for example). We now state our main theo-
rem describing the joint equidistribution of maximal flat cylinders and their
holonomies.

Theorem 1.3 (Joint equidistribution). LetI" < G be a Zariski dense Anosov
subgroup. For any tangent form 1 € a* and for any f € C.(T\G/M) and
¢ € CI(M), we have

_ br(f® ) 1 /

| = dmr;
THheo el |mxw|m¢(f) Mp(p "
_nr(f®e) 1 /

1 = d
T el )T |me|mw(f) MFQO e

where mp denotes the Haar probability measure on Mr.

We note that the right-hand side of Theorem 1.3 is independent of the
normalization of my, by (1.2). We also obtain the following equidistribution
of holonomies from Theorem 1.3. Since my is an infinite measure when
rank(G) > 2, this is not an immediate consequence of Theorem 1.3.

Corollary 1.4 (Equidistribution of holonomies). Using the same notation
as in Theorem 1.3, we have

T

Z cp(hc)we/ odmp asT — oo.
CeCy(T) T Jam
Y

Remark 1.5. As a consequence of Theorem 1.3, the set of holonomies of I' is
dense in Mr, that is,

Mr = {m € M : 3C € Cr such that h¢ = [m]}.

Remark 1.6. Let £ denote the limit cone of I', that is, the smallest closed
cone containing the Jordan projections of all v € I'. Theorem 1.3 and Corol-
lary 1.4 can be adapted for linear forms 1) € a* which are positive on £\ {0}
by using the fact that 41 is tangent to ¢r for some 6, > 0 called the
W-critical exponent of T’ (see Theorem 4.3). In this context, our theorem
implies the -critical exponent is equal to the -topological entropy, that is,
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1
op = lim —log#{y € T': 9(u(v)) <t}
.1 _
= Mim - log#{[7] € [Ppuim] : ¥ (A(Y)) <2}, (L.7)

where p : G — a® denotes the Cartan projection (Definition 3.8). Moreover,
Corollary 1.4 immediately implies

#Cy(T) = #{[7] € [Cprim] : YA (7)) <t} ~ ——
where for f1, fa: (0,00) = R, we write

fi~ fo < lim A(T)

T—o00 fg(T) =1

The above (1.7) and (1.8) were proved by Sambarino [Saml4b, Theorem
7.8], [Sam14a, Corollary 4.4] when T" is the fundamental group of a closed
connected negatively curved Riemannian manifold and in view of [Car21,
Appendix A|, Sambarino’s work extends to Anosov subgroups. We also
mention [BCKM22, Corollary 11.1] which is a counting result analogous to
(1.8) for cusped Anosov representations.

1.3. Joint equidistribution with respect to norm-like functions. Our
proofs also allow us to prove in Section 7 similar results when Cr is ordered
according to a norm-like function. Let N : a* — R be a norm-like function,
that is, N is twice continuously differentiable except possibly at the origin,
convex, homogeneous of degree 1 and positive on £\ {0}. For example, LP
norms are norm-like for 1 < p < oo. The function N determines an ordering
on Cr:

Cn(T) :={C €Cr:N(A(v¢o)) <T}.

We define the N-critical exponent as

= . 1.
ON Nr(?uz;i Yr(w) >0 (1.9)

For simplicity, we only state here the equidistribution of holonomies with
respect to N.

Corollary 1.10 (Equidistribution of holonomies with respect to N). There
exists a constant 0 < ey < 1 such that for any ¢ € CI(M), we have

e5NT
Z cp(hc)ch(S T/ edmpr as T — 0.
Ccecn(T) N- - Mp
Moreover, ey = 1 if and only if the Hessian of N at v is identically zero

where v is the unique vector achieving the maximum in (1.9).
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1.4. Comparison with rank one case. When rank(G) = 1, Anosov sub-
groups coincide with Zariski dense convex cocompact subgroups. Denote
the critical exponent of I" by § and the set of closed geodesics in I'\G /M of
length at most T by

Gr(T) := {primitive closed geodesics of length at most 7'}.

Then using the dictionary in Table 1 and noting that M is connected when
G is rank one and center-free, Corollary 1.4 in those cases says that for all
¢ € CI(M), we have

Z gp(hc)we/ odm asT — co.
0T Jur
cegr(T)

This is a special case of [MMO14, Theorem 1.4|.

rank one higher rank
convex cocompact groups Anosov groups
primitive closed geodesic C' | pos. oriented maximal flat cylinder C
d x (length of C) y-circumference of C'
holonomy of C holonomy of C
finite BMS-measure infinite BMS-measure associated to 1

TABLE 1. A dictionary between the rank one setting and
the higher rank setting.

For rank one groups, the asymptotic for Gp(T') was proved by Margulis
[Mar04] ! when T is a uniform lattice, Gangolli-Warner [GGW80] when T is
a nonuniform lattice, and Roblin [Rob03] when T' is geometrically finite,
and the equidistribution of closed geodesics was independently studied by
Margulis [Mar04] and Bowen [Bow72a, Bow72b] when I' is a uniform lat-
tice and Roblin [Rob03] when T' is geometrically finite. Equidistribution of
holonomies was proved by Parry—Pollicott [PP86] when I is a uniform lattice
in SO(n,1)°. In general rank one groups, equidistribution of holonomies was
proved by Sarnak—Wakayama [SW99| when I is a lattice and joint equidis-
tribution was proved by Margulis-Mohammadi-Oh [MMO14] when T is a
Zariski dense geometrically finite subgroup. A joint equidistribution result
was obtained by Oh—Pan [OP19] for abelian covers of convex cocompact rank

1. [Mar04] contains Margulis’ previously unpublished 1970 thesis. See [Par05] for a
review.
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one groups; in this case, the BMS measure is infinite unlike in [MMO14]. A
key technique in [MMO14] is to use mixing of the frame flow [Winl5], and
this technique goes back to Margulis’ work on the counting and equidis-
tribution of closed geodesics in negatively curved compact manifolds in his
1970 thesis. This mixing is exponential for I' convex cocompact by Chow—
Sarkar [CS22], and for I" geometrically finite with parabolic elements by
Li-Pan-Sarkar [LPS23]. In these cases, the distribution of holonomies can
be determined up to an exponential error term (cf. [MMO14, Theorem 1.2]).

1.5. Some related results in higher rank. For cocompact lattices of
higher rank Lie groups, we mention the thesis of Spatzier [Spa83] where he
describes the exponential growth rate of the total volume of maximal flat
periodic tori as their regular systole tends to infinity and the recent work by
Dang-Li [DL22] on the counting and equidistribution of these maximal flat
periodic tori.

1.6. Example: Self-joinings of convex-cocompact subgroups. For
G = PSLy C x PSLy C, all Anosov subgroups arise as convez-cocompact self-
joinings, which have interesting applications to rigidity as shown by Kim—Oh
[KO22, KO23a, KO23b|. Let A < PSLs C be a Zariski dense convex cocom-
pact subgroup and p : A — PSLs C be a convex cocompact discrete faithful
representation. Then the self-joining A, of A by p is defined as the diagonal
embedding of A in G via p, that is,

Ap = {(’y, p(’}/)) € PSLyC x PSL, C : v e A} < PSLy; C x PSLy C.

Ap\(H? x H?)

Note that A, is Zariski dense in PSLy C x PSLy C if and only if p does not
extend to an automorphism of PSLs C and is hence conjugation (cf. [KO22,
Lemma 4.1]).

For primitive [y] € [A], let C, denote the primitive closed geodesic in
A\H? corresponding to [y] € [A] and £(C) denote the length of C.,. In this
setting, Ma, = M = S! x S' and we have the following result analogous to
[MMO14, Theorem 1.3].
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Corollary 1.11 (Holonomy rigidity for convex cocompact groups). Let A <
PSLs C be a Zariski dense convex cocompact subgroup with critical exponent
da. Let A, be the self-joining of A by a convex-cocompact discrete faithful
representation p : A — PSLyo C. Identify holonomies with pairs of angles.
If p does not extend to PSLy C, then for any 0 < 61 < 02 < 27w and any
0 <3 <y <2m, we have

#{07 : E(Cv) <T and h(’y,p('y)) S (91,02) X (03,94)}

(92 — 91)(94 — 03)€5AT
~ T .
(27T)2(5AT as — 0

We note that when p does extend to PSLs C, the set of holonomies is
contained in the diagonal of S’ x S! and hence, is not even dense in S! x S'.
The representation p does not extend if and only if the set of holonomies
{hiypr)) € St x St 4(C,) < T} is equidistributed in S' x St as T — oo.
Hence, Corollary 1.11 can be viewed as a holonomy rigidity statement for
convex cocompact subgroups.

1.7. Example: Hitchin representations of surface groups. Let p :
T'g — PSLgR be a Hitchin representation, that is, I'g is the fundamental
group of a closed orientable surface of genus at least 2 and p can be contin-
uously deformed to pg o pg, where pg : I'g — PSLa R is some discrete faithful
representation and pg : PSLa R — PSL;R denotes the irreducible represen-
tation which is unique up to conjugation. Suppose I' = p(I'y) < PSLyR is
Zariski dense.

For G = PSLyR, a = {(t1,...,tq) € R?: 3. ¢; = 0}. We choose at =
{(t1,... ta) Rty > - > 14,5 ¢; = 0}. For each i € {1,2,...,d — 1},
let a; € a* denote the simple root given by

ai(t1, ... tqa) = t;i — tiy1.

By Potrie-Sambarino [PS17, Theorem B|, ; is a tangent form. By Labourie
[Lab06, Theorem 1.5],

Mr = {e}.
Denote the eigenvalues of v € T' by A1(y) > -+ > Ag(y) > 0 and denote the
maximal flat cylinder corresponding to [y] by C(7).

Corollary 1.12. Let I' < PSLyR be a Zariski dense image of a Hitchin
representation. Let i € {1,...,d —1}. Then for any compactly supported
continuous function f: T\ PSLyR/M — R, as T — oo, we have

1
% S —
Im,, |

1
> Ve (f)
[v]elr] Xi(y) = i (y) 7Y

Xi(V)=Xip1 (LT

Mo, (f)-
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1.8. Outline of the proof of Theorem 1.3. Our proof follows a similar
line of proof as in [MMOI14]. However, in our higher rank setting, care
is needed to overcome the technical obstructions coming from the higher
dimensional nature of A, the BMS-measure being infinite and the A-action
not being strong mixing. More precisely, let go € G and € > 0. The e-flow
box centered at gg is defined as

B(go,€) := go(NI NN N.NTAM)M_A.,

where N7 is the horospherical subgroup opposite to N and a subgroup with
¢ in the subscript denotes the e-neighborhood of identity in the subgroup.

Let © be a conjugation-invariant Borel subset of Mr. It suffices to under-
stand the asymptotic behavior of

NT(B<907 5) ® 9)7

where B(go,e) denotes the image of B(go,e) under the projection G —
I'\G/M. Let L denote the limit cone of I' (Definition 3.2) and let

L5 = {exp(w) : w € L,(w) <T}.

Lemma 6.3 relates pur(B(go, ) ® ©) to the number of elements of I" in the
set

Wr(go,€,0) = {gamg™" : g € B(go,€),am € L1O}.

We are then led to consider the set
VT(gov g, 6) = 8(907 6);6;@8(90, 6)_17

which can be thought of as a thickening of Wr(go,e,©). We can relate the
asymptotic behavior of #(I' N Wr(go,&,0)) to the asymptotic behavior of
#(T' N Vr(go,e,0)) by using Lemma 2.7 which is an effective closing lemma
for regqular directions. Lemma 2.7 says that if v € ' corresponds to an
AM-orbit in T'\G that almost closes up along some exp(w)m € AM where
w € a is a sufficiently large vector in a regular direction, then there exists a
nearby closed AM-orbit with period approximately exp(w)m. We can apply
Lemma 2.7 because I" being Anosov implies that its limit cone £ is contained
in the interior of a™.

When rank(G) = 1 and the BMS measure is finite, Margulis-Mohammadi—
Oh [MMO14] showed that the asymptotic behavior of #(I'NVr(go, €, ©)) can
be obtained by using strong mixing of the A-action on I'\G. When G has
higher and hence, my, is infinite, the A-action is not strongly mixing on I'\G.
In place of strong mixing, we have local mizing of the one-parameter diago-
nal flow exp(tv) due to Chow—Sarkar [CS23] and Edwards—Lee-Oh [ELO22b],
where v is as in (1.1). In fact, their local mixing theorem applies to the more
general one parameter family exp(tv+ v/tu) with u € ker . Our proof needs
this more refined version along with an accompanying uniformity statement.
Let C.(I'\G) denote the set of continuous compactly supported functions on
I'\G and p denote the half sum of the positive roots with respect to a*.
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Theorem 1.13 (Local mixing, [CS23, Theorem 1.3|, [ELO22b, Theorem
3.4]). There exists ky > 0 such that for any u € kerv and for any ¢1,p2 €
C.(I'\G), we have

lim ¢ 2V tv+vin) ¢1(z exp(tv + Vtu))po(x) do
t—+o00 NG
rye 1w
" ma, | Dm0 g (01) - 4 (62),
Xy Ze3r

where dx denotes the right G-invariant measure on I'\G, I : ker¢p — R is

defined by I(+) = (-, ")« — <<v\\//>>3* for some inner product (-,-). on a, mER and
ng* denote the Burger—Roblin measures associated to ¢ and 3r denotes the
finite set of A-ergodic components of my.

Moreover, there exists constants 1, and T, such that for all ¢1,¢s €
C.(T\G), there exists a constant D\ (¢1,¢2) depending continuously on ¢1
and ¢y such that for all (t,u) € (T, 00) x kerv such that tv + /tu € L, we
have

SEEIL (9 ) (v o1 (w exp(tv + Vtu))po () do
G

< Dy(¢1, do)e™™ W (1.14)

Due to the higher dimensional nature of £, we need to show that the error
term F(¢1, ¢2,t,u) in Theorem 1.13 for some compact family of functions
¢1 and ¢o does not contribute to the asymptotic after integrating on ﬁ;.
We do this by using (1.14) to bound |E(¢1, ¢2,t,u)| and show that

/ 6tE(¢17¢27t5u) dt du = O(eT)7
atv+\/2u6£¥

where we write o(f) = g if f,g: R — R such that lim FI) _ 1. After some
T—o0 9(T)

technical arguments and applying Theorem 1.13, we obtain Proposition 5.12
which is an asymptotic for the number of elements from I' in product sub-
sets Sp = 51£¥®Eg of NYTAMN. From Proposition 5.12, we deduce the
asymptotic

#I'N VT(go, g, @) =

(M : My] o my(B(go,€) ® ©)
|mX¢| be(e)

where [M : M| denotes the index of Mr in M, b,(e) denotes the volume of
the Euclidean e-ball of dimension r and m,, denotes here the BMS measure
associated to ¥ on I'\G (Proposition 5.24). This asymptotic serves as input
to obtain the asymptotic for pr. Using the asymptotic for pr, we deduce
the asymptotic for n7 and Corollary 1.4 follows from this by using a careful
choice of function f in Theorem 1.3.

(1+0(e)) + OT(1)> ,
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Organization. Section 2 begins by fixing notation related to the Lie group
G that we will use throughout the paper. In Subsection 2.1, we define e-flow
boxes. In Subsection 2.2, we present and prove an effective closing lemma
for regular directions (Lemma 2.7).

In Section 3, we recall geometric objects and geometric measures associ-
ated to general Zariski dense discrete subgroups I' < GG. In particular, we
recall the limit set and limit cone in Subsection 3.1, we discuss the holonomy
group of I' in Subsection 3.2 and we recall the constructions of the BMS and
BR measures in Subsection 3.5. We also recall the product structures of the
BR measures in Subsection 3.6.

In Section 4, we specialize to Anosov subgroups. In Subsection 4.1, we
recall ergodic decompositions of the BMS and BR measures and in Sub-
section 4.2 we recall the vector bundle structure of the support of the BMS
measure. In Subsection 4.3, we recall the local mixing theorems we will need.
Maximal flat cylinders are introduced and discussed in Subsection 4.4.

In Subsection 5.1, we use local mixing to prove Proposition 5.12 which
is an asymptotic for the number of elements in I' in product subsets St :=
Elﬁ;GEg of NTAMN . In Subsection 5.2, we use Proposition 5.12 to deduce
an asymptotic for #I' N Vr(go, e, ©) (Proposition 5.24).

In Section 6, we show how the asymptotic for #I' N Vr(go, e, 0) can be
used to deduce an asymptotic for pr(B(go,e) ® ©) (Proposition 6.11) and
prove the main joint equidistribution result Theorem 6.12 and its corollar-
ies. In Section 7, we show how to modify our arguments to prove joint
equidistribution with respect to norm-like functions (Theorem 7.3).

Acknowledgements. The authors are very grateful to their advisor, Hee
Oh, for introducing them to this problem and for many very helpful discus-
sions regarding the problem and the preparation of this paper.

2. EFFECTIVE CLOSING LEMMA FOR REGULAR DIRECTIONS

Let G be a connected semisimple real algebraic group with identity element
e € G. Fix a Cartan involution of the Lie algebra g of G and let g = ¢t @ p be
the associated eigenspace decomposition corresponding to the eigenvalues +1
and —1 respectively. Let K < G be the maximal compact subgroup whose
Lie algebra is €. Let a C p be a maximal abelian subalgebra and choose a
closed positive Weyl chamber a™ C a. Let A = expa, AT = expa™, and
denote a,, = exp(w) for all w € a. Define M := Ck(A) and the contracting
and expanding horospherical subgroups by

N =N := {n € G : lim a_y,nagy, = e for all w € int a+} ;
t—00

Nt .= {h € G : lim apyha_iy = e for all w € int a+} ,
t—o00

respectively, and their Lie algebras n :=n~ :=log N and n™ :=log NT. Let
P:=P~ := MAN and P":= MAN™.
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Then P and P are opposite minimal parabolic subgroups. Let
F:=G/P2K/M

denote the Furstenburg boundary of G, where the isomorphism G/P = K/M
is given by the Iwasawa decomposition G = K x A x N.

Let W := Nk (A)/M denote the Weyl group. Let wy € K be a represen-
tative of the element in W such that Ady,(a*) = —a™.

Definition 2.1 (Opposition involution). The map i : at — a® defined by
i(v) :== — Ady, (v) is called the opposition involution.

For all g € G, let
gt :=gP € F; g :=gwoP € F. (2.2)

Fix a left G-invariant and right K-invariant Riemannian metric d on G
and denote the corresponding inner product and norm on any of its tangent

spaces by (-,-) and || - || respectively. The Riemannian metric on G also
induces an inner product and norm on a, which are invariant under W and
we denote by (-,-) and || - || respectively. Using the inner product on a,
we identify a with Rra1k(G) and equip it with the Lebesgue measure which
induces a Haar measure on A. Fix Adj-invariant metrics || - || on n*. For
€ > 0, we denote several e-neighborhoods by

Ge:={g€G:dale,g) <e}; Ge(90) = goGe;

Ne:={ny :==expx:x €n,|z|| <c}; A = ANGg;

NI = {h, =expx:x cnt |z] <e}; M. := M NQG..

Throughout the paper, if f1, fo are functions of € > 0 and T' > 0, then we
use big-O notation to write

f1=0(f2) — li;?jélp 2%3;;‘ < 0. (2.3)

2.1. Flow boxes. In this subsection, we define flow bozes following [Mar(04|
and [MMO14]|. Flow boxes will be used in our effective closing lemma for
regular directions (Lemma 2.7) to describe almost closed AM-orbits in I'\G.

To motivate the definition of flow boxes, we first recall that the product
maps N X Nt x Ax M — G and NT x N x Ax M — G are diffeomor-
phisms onto Zariski open neighborhoods of e € G. Consequently, we have
the following lemma.

Lemma 2.4. Lete > 0 be sufficiently small. For any0 < e1,e9 <&, h € N;g
and n € N,, we have hn = nihiam for some unique hy € N*, ny € N,
a € A and m € M. Moreover, hy € Ng(sl), n1 € No(e,), a € Ao(e), and

m € Mo(). The corresponding statement if we swap the roles of N and Nt
holds as well.
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Definition 2.5 (e-flow box at gg). Given gy € G and € > 0, the e-flow boz
at go is defined by

B(go,€) := go(NT NN N.NTAM)M_ A, = goB(e, ).

The set of all e-flow boxes forms a basis for the topology on G. The next
lemma records elementary properties of the flow boxes.

Lemma 2.6. Let g9 € G and € > 0.

(1) For any g € B(go,¢), {w € a: gexp(w) € B(go,e)} is a Euclidean
ball of radius €.

(2) B(go,e)et = goNEeT (where et are defined by (2.2)).
(3) For sufficiently small € > 0, the following holds. For any h € NI

and n € N., hN NnNTAM consists of a single element g € B(e).
Moreover, by Lemma 2./,

B(g0,¢) = go(N No(e) N NeNgy oy Ao(e) Mo(e) ) Me Ae.

2.2. Effective closing lemma for regular directions. Let a* denote the
space of real linear forms on a. Let ® C a* denote the restricted root system
of a and let ®+ C ® denote the set of positive roots corresponding to a™. A
direction w € a is called regular if

Yo € &1, a(w) # 0.

Lemma 2.7 is an effective closing lemma for regular directions, which is
an adaptation of [MMO14, Lemma 3.1 which we will be able to use in our
Anosov setting later. The proof is similar to that of [MMO14, Lemma 3.1],
but we include it for completeness. For g1, g2 € G, we write

g1 ~o() 92 = d(g1,92) = O(e)

and we use the same notation for subgroups of G and their lie algebras,
relying on context.

Lemma 2.7 (Effective closing lemma for regular directions). There exists
To > 0, depending only on G, for which the following holds. Let € > 0 be
sufficiently small and gy € G. Suppose there exists g1,g92 € B(go,€) and
v € G such that

glé'ym'y =792 (28)

for some m, € M and a, € A with
T := mi loga~) > Ty. 2.9
Jnin a(logay) = Ty (2.9)

Then there exists g € B(go,e + O(ee™ 1)), ay € A and m+ € M such that

Y= ga,ym,yg_l.

Moreover, ay ~o(e) Gy and my ~g(o) My .
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Proof. Let € > 0 be sufficiently small so that each instance that Lemma 2.4
and Lemma 2.6(3) are used in the proof is valid. By Lemma 2.6(3), we have

g1 = gohiniaymy and  go = gonghaazmsy

for some hy € N, n1 € No(e), a1 € Ac, my € M., ng € Ne, hg € No(y), az €
Ao(ey and m3 € Mp(.). Lemma 2.6(3) also tells us that hy N N noNtTAM =
{93}, where g3 € B(e) and

93 = hing = nahgazms

for some n3 € No), hs € Nj.), as € Ao and mg € Mo(.). Set gy =
9093 € B(go,€). Then

g1 = gangaimy  and  ga = gahgagmy,
where ny = nglnl S NO(E), hy = (agmg)_lhglhg(agmg) S Ng(e)’ ay =

aglag € AO(&) and my = mglmg S MO(E)‘
The hypothesis (2.8) becomes gsnqaimia,m~ = ygahaasmy. Then

91 v91 = nadyml (ha) ™' = amlns(ha) Y,

~ -1 ~ ~ -1 ~
where aﬁ,l = Aya1ay ~o(e) Gy, ML = mamamy - ~oE) ey and ny =
/ !/ \— / / : : ~
(alml) ™ na(aiml) € No(-ry since min,cep+ a(loga,) = T.
Using Lemma 2.4, we write n5(hs) ™! = agmshsng for some hs € NS(E),

ne € NO(se*T)v as € AO(E) and ms € MO(&)- Then
93 'vg1 = a’;m’asmshsne = healm.ne,
where al = ala; 1N0(5)+CL{Y ~O(e) Gy, M)
1 " " "\ — : : ~
(afml)ns(aimi)~" € N§ ooy since T = mingeq+ a(loga.).
To complete the proof, it suffices to show

— = _
= myms5 ~o() My and hg =

healmng € (hany)al Aoyml Mo (hany) ™

for some h, € NS(EQ_T)

For each h, € NI, there is a unique element hgy € N, 3_(5) such that

and ny € Np(.-1), as we then take g = gahgny.

(nﬁ)hz S hﬁ(x)NO(ae*T)AsMs' (2.10)

Moreover, since the product map N* x N x Ax M — G is a diffeomorphism
onto its image, 8 : nT — nT is a smooth function. Consider the map

[ NS_ - NE+O(56—T)
given by
-1 -1
hy — hm(af;mz)(hﬁ(x)) (azmz) = hmhAdaﬁy’ml;(fB(l’))'

Assuming Ty is sufficiently large, af; ~0(e) @y and hypothesis (2.9) implies
that ||[Df — I|sp < 1 pointwise on N. Then f is injective, and therefore a
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diffeomorphism onto its image. Since f is a diffeomorphism onto its image,

there exists h, € Ng(ee*T) such that

hx(axmz)(hﬁ(aj))_l(agm@_l = hg.

Recalling (2.10), we write (hﬁ(z))*lnﬁ = agmgnrh; ! for some ag € A,
m € M. and n7 € No(..-7). Then

h6Gngn6 = hw(agmg)(hﬁ(g&))_lnﬁ = hx(ax,mz/)TL?h;l,

" "

where al' = ai;aﬁ and m. = mgmﬁ. By similar reasoning to the above,

Y gl
there exists ny, € Noz-r) such that ny = (aZ'm!’) " n,(aZ'm2)n, ! and this
completes the proof. |

3. GEOMETRIC MEASURES

Henceforth, let I' < G be a Zariski dense discrete subgroup.

3.1. Limit set and limit cone. Recall that F := G/P = K/M. Let mr
denote the unique K-invariant probability measure on F.

Definition 3.1 (Limit set). The limit set A C F of T' is defined by
A= {g €F: H{PYN}HEN - F7 <7n)*mf 7H_oo> (55},

where ¢ denotes the Dirac measure at £. The limit set is the unique minimal
nonempty closed I'-invariant subset of F [Ben97] and A is Zariski dense in
F [Ben97, Section 3.6|.

An element v € G is called loxodromic if

v =gexpA(y)mg™!

for some g € G, A\(y) € intat and m € M. In that case,
A(v) € inta™

is unique and called the Jordan projection of v and m belongs to a unique
conjugacy class

hy = [m] € [M]
called the holonomy of ~. In addition, g™ and g~ defined by (2.2) are the

unique attracting and repelling fixed points of -, respectively. Moreover, if
v €T, then g*,g~ € A.

Definition 3.2 (Limit cone). The limit cone £ C at of T is the smallest
closed cone containing all Jordan projections of loxodromic elements in I’
[Ben97, Sections 4 and 4.3]. We denote the interior of £ by int L.

Remark 3.3. Recall the opposition involution i (Definition 2.1). We have
Ag™!) =i(A(g)) and hence, £ =i(L).

Theorem 3.4 (Ben97). The limit cone L is convex and int £ # ().
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3.2. The holonomy group. Let M° denote the identity component of M.
Then the identity component of P is P° = M°AN.

Definition 3.5 (Holonomy group of I'). The holonomy group of T is the
closed subgroup Mt < M generated by all of the holonomies in I', that is,

My = ({m : 3y € I such that h, = [m]}).
By [GRO7, Corollary 1.10], Mt is a normal subgroup of M containing M?°

so in particular, Mt has finite index in M.
By [GRO7], we have another characterization of Mr. Let

F°:=G/P°.
Fix a I'minimal subset Ag C F°. Then
MF:{TTLEM:A()TTL:A()}<M. (3.6)

See also [BQ)14, Proposition 4.9] for another characterization of Mr.

3.3. Busemann function. The [wasawa cocycle o : G X F — a is the map
which assigns to each (g, kM) € G x F the unique element o(g, kM) € a
such that gk € Kagge)N. It satisfies the cocycle relation o(g192,§) =
o(g1,928) +0(g2,€) for all g1,92 € G and € € F.

Definition 3.7 (Busemann function). The a-valued Busemann function (3 :
F X G x G — a is defined by

Bﬁ(gla 92) = 0(91_17 5) - 0(92_17 5)
for all g1,g2 € G and £ € F. The properties of the Iwasawa cocycle imply
that the Busemann function satisfies

(1) Bele,g) = —a(g71,6);
(2) Bge(gg1,992) = Be(g1, 92);

(3) Be(g1,92) = Be(g1,9) + Be(g, g2)
for all g,g1,92 € G and £ € F.

3.4. Conformal measures. In this subsection, we recall facts about I'-
conformal measures. Patterson [Pat76] and Sullivan [Sul79] were the first to
introduce I'-conformal measures in rank one groups. Their work has been
extended to higher rank groups by Albuquerque [A1b99] and Quint [Qui02b].
Generalizing the notion of critical exponent in rank one, Quint introduced
the growth indicator function of I [Qui02a].

For g € G, let u(g) denote the Cartan projection of g, that is, u(g) € a™t
is the unique element in a™ such that ¢ € Kexp(u(g))K. We note that
p(g™") =i(u(g)) for all g € G.

Definition 3.8 (Growth indicator function). The growth indicator function
Yr:at — RU{—oc} of I' is the degree 1 homogeneous function defined by

Yr(w) = [Jw]| inf Te for all w € a™,
open cones Eow
—tllu)]l

where 7¢ is the abscissa of convergence of ¢ — Zwer p(y)ee €
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We note that ¢r oi = r.

Theorem 3.9 (Qui02a, Theorem 4.2.2). The growth indicator function is
concave, upper semicontinuous, and satisfies 1/}p|a+\L = —00, Yr|c >0, and

Yrlntc > 0.
Definition 3.10 (Conformal measures). Given a closed subgroup A < G, a
Borel probability measure v on F is called a A-conformal measure if, there
exists ¢ € a* such that for any v € A and £ € F,
dry.v
dv

where v,2(Q) := v(y71Q) for any Borel subset @ C F. In that case, we call
v a (A, v)-conformal measure.

(&) = ¥Bele)

The measure m r is a conformal measure. More precisely, let p € a* denote
the half sum of the positive roots of a™,

1
pi=ry > a (3.11)
acdt
We have the following lemma.

Lemma 3.12 (Qui06, Proposition 3.3). The measure mg is a (G,2p)-
conformal measure.

The following theorem on the existence of I'-conformal measures is due to
Quint. A linear form v € a* is said to be a tangent form if
Y > 9r and ¥ (v) = ¢r(v) for some v € inta™ N L. (3.13)

Note that if ) € a* is a tangent form, then v oi is also a tangent form.

Theorem 3.14 (Qui02b, Theorems 8.1 and 8.4). Let ¢ € a*.
(1) If there exists a (T, 1)-conformal measure, then v > .
(2) If ¥ is a tangent form, then there exists a (I',4)-conformal measure

vy, supported on A.

3.5. Geometric measures. In this subsection, we recall the definitions of
the Bowen—Margulis—Sullivan and Burger—Roblin measures.

We first recall the Hopf parametrization of G/M which will be used to
define these measures. There is a unique open G-orbit in F X F given by

F@ =@ (et,e7) = (FxF)\ U G- (eT,wet),  (3.15)
wMéW\{wo M}
where the Weyl group W and the element wy € K were defined in Section 2.
If (z,y) € F @) then we say that = and y are in general position.
Define a left G-action on F?) x a by
g+ (,9,0) = (92, 9y, v+ Bu(g ™" €)) = (92, 9y, v + o (g, 7))
for all g € G and (x,y,v) € F? x a. Note that Stabg(et,e™,0) = M.
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Definition 3.16 (Hopf parametrization). The Hopf parametrization is a left
G-equivariant diffeomorphism G/M — F (2) % a defined by

gM = (97,97, Bgr(e,9)) = (97,97, 0(g,¢T)).
For the remainder of Section 3, we fix a
tangent form 1 € a™. (3.17)
Recall that ¢ oi is also a tangent form. Using Theorem 3.14, we fix
(I, 9)-and (I', 9 o i)-conformal measures vy and vy, (3.18)

respectively. Let
A® = (Ax AN FD

and let dw denote the Lebesgue measure on a.

Definition 3.19 (Bowen-Margulis-Sullivan measure). Using the Hopf para-
metrization, the (v, Vyoi)-Bowen—Margulis—Sullivan (BMS) measure my, :=

m]liivv[VSwoi is defined on G/M = F@ x a by

]Ezzlz\/ylllswoi (QM) = ew(ﬁng (e’g))—’_(w)i)(ﬁg* (e,g))

It is clear from (3.20) that my, has support

dm dvy(97) dvyei(9™) dw.  (3.20)

supp my, = A®) x a. (3.21)

The BMS measure is left I-invariant and right A-invariant so it descends to
a measure on I'\G/M and by lifting using the Haar probability measure on
M we also obtain a measure on I'\G. Abusing notation, we call also this
measure BMS measure and denote it by my, as well, relying on context for
the domain. The supports of the BMS measures on these domains are given
by

Q:={lg:g* € A} CT\G; Q:=Q/M c T\G/M. (3.22)

Definition 3.23 (Burger—Roblin measures). Following [ELO20, Section 3],
the (mz, vy)- and (vyoi, mr)-Burger—-Roblin (BR) measures

BR ._ . BR BR. ._ . BR.
Moy 2= My o A0 M =y, 5,

respectively, are defined on G/M in a similar fashion as my by

dmii Vijoi (gM) := e2p(ﬁg+ (e,g))+(¢oi)(5g—(e,g)) dm;(g"') dl/woi(g_) dw:
(3.24)
amER,  (gM) = e/ P 200 O) (6 dmir (g7) duo. (3.25)

Then mER is a left I-invariant and right N T-invariant measure and mER*

is a left [-invariant and right N-invariant measure and they induce measures
on "\G/M, T'\G and G that we use the same name and notation for. The
supports of the BR measures on I'\G are given by

& :=supp ng ={Tg:9 € A}; &.:=supp mER* ={Tg:g"t € A}.
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Definition 3.26. The right Haar measure dg on G that we use can be
written as

20(By+ (e.9)+8,- (e.9))

dg =e dmz(g*) dmz(g™) dwdm,

where dm is the probability Haar measure on M [ELO20, Section 3].

3.6. Product structure of the BR measures. In this subsection, we
recall a product structure of the BR measures (see [ELO20, Section 4.3] for

details) and define some related measures that will be useful in Section 5.

We retain the notations in (3.17) and (3.18).

Let dm denote the probability Haar measure on M. We define measures
Uy and vy on K = F x M using the M-invariant lifts of the conformal
measures by

dvjy (k) := dvy (k™) dm; vy (k) == dvyei(k™) dm. (3.27)

The following lemma gives the decompositions of ng and mi’R* in KAN-
coordinates.

Lemma 3.28 (ELO20, Lemma 4.9). For all k1,ks € K, wi,wy € a, h € NT
and n € N, we have

dmf(ky exp(wi)h) = eV dy i (k) duwy db;
dm)" (kg exp(wa)n) = e dvf (ky) dws dn,
where dh and dn are some Haar measures on NT and N, respectively.

Remark 3.29. Recalling that the product maps M x AXNxNT — MANNT,
AXNTXMxN — ANTMN and NTx M xAx N — G are homeomorphisms
onto Zariski open subsets of G, using the notation in Lemma 3.28, we have
the decomposition

dg = dm dw dn dh = dw dh dm dn = €**™) dh dw dm dn. (3.30)

For g € G, we define the measures I/lgp and I/ioi on F by

v (&) = eV Po(9) duy () v ;i (6) := W Pocle) duyyi(ge).  (3.31)

Ppoi
Note that Vfi and l/ioi are (g~ 'T'g,v)- and (g~ 'T'g, 1 oi)-conformal measures,
respectively.

In addition, identifying N* with N*et C F, for all g € G, we define the
measures 171% and ﬁi\ g on NT by

v (h) = e M) g (nt); dird|p(h) == 1p(h)dg(h),  (3.32)

where B is a measurable subset of G.

Identifying NM with Ne™ x M C F x M, for all g € G, we also define

the measures sz}oi and D{Zoi‘B on NM by

di)’i}oi (nm) = e(d’oi)(ﬁnf (6,7’1)) dl/,lgpoi(n_) dm, (333)
vy, p(nm) = Lg(nm)diy, (nm). (3.34)
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4. ANOSOV SUBGROUPS AND MAXIMAL FLAT CYLINDERS

The Anosov property (with respect to any parabolic subgroup of G) was
first introduced by Labourie [Lab06]| for surface groups and later generalized
by Guichard-Wienhard [GW 12| for Gromov hyperbolic groups (cf. [KLP17,
GGKW17, Wiel8]). For Zariski dense Anosov subgroups with respect to P,
[GW12, Corollary 4.16] gives an equivalent characterization of being Anosov
which we take as the definition of Anosov we use throughout the paper.

Definition 4.1 (Anosov subgroup). Let I' < G be a Zariski dense discrete
subgroup. We say that I" is Anosowv if it is a finitely generated Gromov hyper-
bolic group and it admits a continuous I'-equivariant continuous embedding
from the Gromov boundary of I' to F such that for any two distinct points
in the Gromov boundary, their images in F are in general position.

For the rest of the paper, let I" be a torsion-free Zariski dense Anosov
subgroup. It follows from Definition 4.1 that

AP = (Ax ANNFP = {(z,y) e Ax A:z #y}. (4.2)

The following theorem was proved by [Qui03, Proposition 3.2 and Theo-
rem 4.7] when I is a Schottky subgroup. In general, Theorem 4.3 follows from
[GW12, Lemma 3.1], [Sam14a, Corollaries 3.12, 3.13, and 4.9] and [Sam15,
Theorem 4.20] in light of [BCLS15] using the Pliicker representation (see also
[PS17, Propositions 4.6 and 4.11]).

Theorem 4.3. The following holds.

(1) Every nontrivial element in T is loxodromic.

(2) The limit cone of T is contained in intat U {0}.

(8) On int L, ¢r is analytic and strictly concave except along rays ema-
nating from the origin.

(4) If ¢ € a* is tangent to Yr at v € inta™ N L, then v € int L and v is
positive on L\ {0}.

(5) If ¢ € a* is positive on L\ {0}, then dy1b is tangent to r at some
v € int £, where oy, > 0 is the -critical exponent, that is, the abscissa
of convergence of the y-Poincaré series t — ZWEF e W),

Remark 4.4. Except for the requirement that v € int £, Theorem 4.3(5)

holds for any Zariski dense discrete subgroup as shown by Kim—Minsky—Oh
[KMO21, Section 2].

We fix some notation for the rest of the paper. Fix a linear form v tangent
to ¢Yr at a normalized direction v € int £, that is,

Y ea* P >yp,veint L and ¥(v) = Yp(v) = 1.

By Theorem 4.3, there is a unique such v for each tangent form . Using
Theorem 3.14, we fix

(I, 9)-and (I', 1 o i)-conformal measures vy, and vy,
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respectively. We remark that vy, and vy are unique by [LO22, Theorem 1.2],
but we do not need to use this uniqueness in this paper. Let my, mER, ng*
denote the (v, Vyoi)-BMS measure, (mz, vy)- and (vyoi, mr)-BR measures,
respectively, as defined in Subsection 3.5. We will use the related notation
from Subsection 3.5.

4.1. Ergodic decompositions of m, ng and ng*. In this subsection,

we recall the A-, N-, and N T-ergodic decompositions of My, mg’R and ng*,

respectively, due to Lee-Oh [LO20a, Theorem 1.1].

Recall that P° denotes the connected component of the identity in P.
Denote the set of P°-minimal subsets of I'\G by Qr. Every Y € Qr satisfies
Y = (Y NQ)N. Let 3r denote the set of all intersections of P°-minimal
subsets of I'\G with Q, that is,

3r={YNnQ:Y ePYr}. (4.5)

R

Theorem 4.6 (LO20a, Theorem 1.1). Consider the measures m¢,m5 and

mER* on T\G. We have
(1) the A-ergodic decomposition

my, = Z my|z = Z My |2;

ZE3r Ze3r
(2) the N-ergodic decomposition ng* = ZZ€3F mER*|ZN;
(3) the NT-ergodic decomposition ng = ZZ€3F mBR]ZN+.

4.2. The support ) of m;, as a vector bundle. For this subsection, we
refer the reader to [LO20b, Section 4| and [Car2l, Appendix A] for more
details. The map 7y, : A® x a— A® x R defined by

mo(@, g, w) = (@,y,(w)) for all (z,y,w) € A?) x a

is a vector bundle with typical fiber ker¢. Note that T acts on A® X a on
the left, via the Hopf parametrization. Note also that T’ acts on A® x R on
the left by

v (@,y,t) = (v, vyt + Y(B(v ' €)))
forall v € T, (z,y,t) € A® x R.

Theorem 4.7 ([Car2l, Proposition A.1], see also [C523, Theorem 4.15]).
The left T-action on A x R is properly discontinuous and cocompact.

Let
Xy :=T\(A® x R).
By Theorem 4.7, Xy, is a compact Hausdorff topological space. The map

my is I'-equivariant and descends to a map my, : 2 — Xy, which is in fact, a
trivial ker 1-vector bundle. We embed

X¢ = Xw X {O} C Xw x ker vy = Q). (48)
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Define the locally finite Borel measure m (2, on A® xR by
dm @) g (6,1, 1) := eV Pele:a) T ((Bn(e,9)) vy (€) dvyei(n) dt,

where g € G is any element with ¢ = £ and g~ = 1 and dt denotes the
Lebesgue measure on R. Note that m () g is left I'-invariant, so m, @) p
descends to a finite measure my ., Ol Xy. We have

dmw‘ﬂ = dmy, du, (4.9)

where du denotes the Lebesgue measure on ker v which satisfies dw = dt du,
where w = tv+u, u € ker vy, dw and dt are the Lebesgue measures on a and
R, respectively.

The set A® x R is also equipped with a natural flow ®; : A® x R —
A x R defined by

q)t(x7y7 S) = (‘T?yvs +t)

for all (z,y,s) € A® x R. The flow ® descends to a flow on X, which we
call the translation flow and we also denote by ®.

4.3. Local mixing. We recall the local mixing theorem for the Haar mea-
sure on I'\G which will be used in Section 5. Let dz denote the right G-
invariant measure on I'\G induced by the Haar measure on G. Given an
inner product (-, ), on a, let I : kert¢p — R be defined by

I(w) = (u,u)s — (V)2 gl e ker 1. (4.10)

(v, V)

Theorem 4.11 (|CS23, Theorem 1.3|, [ELO22b, Theorem 3.4|). There exists
ky > 0 and an inner product (-,-), on a such that for any u € kert and
¢1, 92 € Ce(I\G), we have

lim ¢5 0 o= (tvviu) ¢1(z exp(tv + Vtu))po(z) da

t—+00 F\G
K/Ve_l(u)
= Tmae | Z Mg | s (91) - ng*}ZN(QSQ)’
|mX¢|

ZE3r

where p is given by (3.11) and 3r is given by (4.5).

Moreover, there exist positive constants n, and T, such that for all ¢1, P2 €
C.(T\G), there exists a constant D\ (¢1,¢2) depending continuously on ¢1
and ¢o such that for all (t,u) € (T, 00) x keryp such that tv + v/tu € L, we
have

trank(QG)*l e(2p—w)(tv+\/iu) b (l’ exp(tv + ﬁu))¢2 (ZE) dr
NG

< Dy(1, ho)e MW,
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4.4. Maximal flat cylinders.

Definition 4.12 (Maximal flat cylinder). Let C = I'gAM C T'\G/M be
a closed AM-orbit. We say C is nontrivial if its stabilizer g~'T'g N AM is
nontrivial. We say C' is a maximal flat cylinder if
g 'Tgn AM = 7. (4.13)
If in addition to (4.13) we have
g~ 'Tg Nint(AT)M # {e},
then we say C' is positively oriented.

Denote by Cr the set of all positively oriented maximal flat cylinders:
Cr :={C Cc I'\G/M : C is a positively oriented maximal flat cylinder}.

Let I'prim denote the set of primitive elements of I' and [I'pyim]| denote the
set of I'-conjugacy classes in I'pim. The following lemma justifies Defini-
tion 4.12 and shows why we will consider only positively oriented maximal
flat cylinders and not all maximal flat cylinders in subsequent sections.

Lemma 4.14. Let C = TgAM C I'\G/M be a nontrivial closed AM -orbit
in T\G/M. Then the following holds.

(1) The stabilizer g~ 'TgN AM of C is isomorphic to Z. Hence, C is a
mazimal flat cylinder and homeomorphic to St x ker ).
(2) If C is not positively oriented, then C is disjoint from ).
(8) If C is positively oriented, then C is contained in €.
(4) If C is positively oriented, then the semigroup I N gATMg=! is gen-
erated by a single element yc 4. In particular, the semigroup
(g7 'TgNint(AT)M)/M = {a € int(A") : TgM = T'gaM}
is generated by a single element exp(ve) which depends only on C
and satisfies XN(yc,g) = ve-
(5) The map
C—{vcy:C=TgAM}
is a bijection between Cr and [Fprim].
Proof. For (1), suppose for the sake of contradiction that g~'I'g N AM con-
tains two elements g~ 1y;g = au,m;, i = 1,2 that are not generated by a
single element in g~ 'I'g N AM. Since A and M commute, we have
M2 e = gmamamy tmy g7t €T

Since I is discrete and torsion free, y1y27y; 172_ ! must be identity. It follows
that I' contains a subgroup isomorphic to Z2, which is impossible since T is
a hyperbolic group.

(Alternatively, we observe that w; and ws cannot be rational multiples
of each other, 'y{"yé“ € gajw1+kw2Mg_1 for j,k € Z, and hence {)\(7{75) :
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Jj,k € Z} contains directions arbitrarily close to a wall of a™, contradicting
L Cinta™.)
Hence, g7 'TgN AM = Z and

C = (g 'TgNAM)\AM/M = Z\R™"KE) = gl Rrank(@) =1,

We highlight a more insightful way to see C' as a cylinder S! x ker . Observe
that under the vector bundle isomorphism €2 = &, x kerv), C' = I'gAM is
identified with
{T(gt,g7,t) : t € R} x ker .

Since C is closed, so is {I'(g",g7,t) : t € R}. Since the flow @ is given by an
R-action on a compact space (e.g. geodesic flow on the unit tangent bundle
of a compact surface rather than the geodesic flow on the surface itself) it
follows that the closed ®-orbit {T'(g",g7,t) : t € R} is homeomorphic to S!.

For (2) and (3), we have Q = T'\(A® x a) (3.22) and by the Hopf
parametrization (Definition 3.16), C' = T'gAM is identified with

{T(g". 9" v) v e}

Then C is contained in € if and only if g* € A. If C is positively oriented,
then there exists v € gint(AT)Mg~! and g* is the attracting fixed point of
v so g € A. On the other hand, if C' is not positively oriented, then there
exists a representative w of a Weyl element in W \ {M,woM} such that
there exists v € gwint(A+T)Mw=1g~!. Then the attracting fixed point of
is (gw)T € A. Then g & A otherwise by (4.2), (g%, (qw)*) € A® c F@),
which contradicts the definition of F) (3.15).

Now (4) is immediate from the definitions. For (5), surjectivity of the map
Cw— {ycy: C =TgAM} is clear and injectivity follows from the fact that

Ne(A+M) = AM. n
In view of Lemma 4.14(4),(5), for each C € Cr, we fix some
10 €{cy: C=TgAM} (4.15)
and define the ¥ -circumference of C' to be
y(C) == P(A(v0)) (4.16)

which is positive by Theorem 4.3. Let mcy, € M be the unique element
satisfying vc,y = gexp(A(7¢))me,gg~t. The set

ho = {mag g c G} S [M]
is a conjugacy class called the holonomy of C.

Remark 4.17. The notion of -circumference cannot be well-defined for all
maximal flat cylinders simultaneously. Indeed, consider a maximal flat cylin-
der C' = I'gAM such that neither generator am nor (am)~! of g7 'T'gNAM =
Z lies in (int AT)M. Since Theorem 4.3 only guarantees that ¢ is positive
on L\ {0}, to define the t)-circumference, we would need to extract from a
and a~! an intrinsic element in £. The natural candidates are the Jordan
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projections of one of the generators v or y~! of T'NgAMg~'. However, when
G is higher rank, the opposition involution i may be nontrivial and

YA ) = »EAM))) # Y(A())

in general.
The next lemma gives a geometric description of t-circumferences.

Lemma 4.18. The map
C =TgAM € Cr — mp(C) ={T'(g",97,t) : t e R} C Xy

is a bijection between the set of positively oriented maximal flat cylinders
and the set of periodic orbits of the translation flow ® on X. Using the
embedding of Xy in Q0 (4.8), the intersection of C' = I'gAM € Cr with Xy
is the corresponding periodic orbit w,(C') of the translation flow and the 1-
circumference of C is the period of my(C).

Proof. Observe that the ®-orbit {I'(g%,g7,t) : t € R} is periodic if and only
if there exists v € T' such that « and y are fixed points of some ~v € T
By the same reasoning as in the proof of Lemma 4.14(3), x and y must be
the attracting and repelling fixed points of v and this establishes a bijection
between the set of periodic orbits of the translation flow and the set of
conjugacy classes in I'. In view of Lemma 4.14(5), this establishes the desired
bijection.

For the last assertion, let ' = I'9gAM € Cr. Using the embedding of A,
in Q (4.8), we have

CN(Xy x{0}) ={T(g*,97,t) : t € R} x {0}
and the period of {T'(g",¢~,t) : t € R} is precisely

D (Bg+ (voy: ) = ¥(A(veyg)) = £y (C).
|

For the rest of the paper, we will only consider positively oriented maximal
flat cylinders and we will omit the phrase "positively oriented".

5. COUNTING ALMOST CYLINDRICAL MAXIMAL FLATS

The main result of this section is Proposition 5.24. Proposition 5.24 can
be thought of as an asymptotic for the number elements in I" correspond-
ing to maximal flats in T'\G/M which pass through and return to a given
flow box in €2 and are almost positively oriented maximal flat cylinders with
-circumference at most T' (Proposition 5.24). In Section 6, we then relate
Proposition 5.24 to the number of maximal flat cylinders of 1-circumference
at most T which pass through B(go,c) by applying the effective closing
lemma for regular directions (Lemma 2.7), and we prove the main joint
equidistribution result Theorem 6.12.
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Recall that we have fixed a tangent form v tangent to ¢r at a normalized
direction v € int £, that is,

Y ea* >y, veint L and ¢Y(v) = ¢Yr(v) = 1.

We fix a cone
CC LwithveintC.

For T > 0, let
Cr = {exp(w) : w € €, ¢Y(w) < T}
which is a bounded subset of Lr since € C £ and ¢ > 0 on £\ {0}.

Recall the definition of flow boxes (Definition 2.5). Let g9 € G, T,e > 0,
and © be a Borel subset of M. We denote

VT(907 g, Qtv @) = B(g(]’ E)Q:T@B(g(b 5)_1 = gOVT(67 €, €7 @)gal (51)

Each v € T N Vr(go,¢,€,0) corresponds to a family of AM-orbits in G
which pass through the flow box B(go, ) and then passes through vB(go, €)
after translation by an element in €r0. In this sense, the elements of
'nVr(go, €, €, O) correspond to almost cylindrical maximal flats. In this sec-
tion, we prove an asymptotic (Proposition 5.24) for the number of elements

mI'nN VT(gg,E, ¢, @).

5.1. Counting in N* AM N-coordinates. In this subsection, we will prove
an asymptotic for the number of elements in I' contained product subsets
of NTAMN of a certain form. Throughout this subsection, we fix bounded
Borel sets 21 C N7, 25 C N and © C M. For T > 0 and ¢ > 0, we denote

ST = ST(Ela 525 Qta @) = ElQ:T@EQ' (52)

Let go € G. We prove using local mixing of the Haar measure (Theorem 4.11)
an asymptotic for #(FﬂgosTgal) (Proposition 5.12) which is the main input
in the proof of Proposition 5.24.

Given a bounded Borel subset B of GG, define the counting function Fp :
G x G — N by

Fp(g.h):== Y 1p(g "vh) = #(g"'ThN B) = #(Th N gB).
~vel

The function Fp is [-invariant in both arguments so it descends to a function
on I'\G x I'\G which we still denote by Fp. Note that

Fsp(e,e) = #(I' 1 Sp).
For Fl,FQ : F\G X F\G — R, let

(Fl,F2> = / F1($1,$2)F2($1,$2) da;l daﬁz
N\GxI'\G

when the integral makes sense, where dz1,dzrs are both the Haar measure

on "\G.
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For € > 0, we denote
Ste = ﬂ 915792; S;ig = U 915792.
91,92€G< 91,92€Ge

The sets S%E can be used to approximate #(I' N S7) as in the following

lemma. For € > 0 less than the injectivity radius of I', we fix a nonnegative
function . € C*(G) with suppt. C G. and [,1pdg = 1. Let U, €
C°(I'\G) be defined by Vc(I'g) := . o ¢=(7g) for all g € G.

Lemma 5.3. For any T > 0 and € > 0, we have
<F5£57 v, ® \Ila> < FT(B, 6) < <F57f’57 ¥ ® \I]8>'

Our goal is to now estimate <FS§E , U, ®@W,). We begin with Lemmas 5.4,

5.5, 5.7, and 5.8 which are computations relating to (Fg, V1 ®@W,) for general

bounded Borel subset B of G.
A standard folding and unfolding argument gives the following lemma.

Lemma 5.4. For any bounded Borel subset B of G and for all V1, Vs €
C.(I'\G), we have

(Fp,¥1 ® Wg) = / (W1, 992) 12(n\) 49,
B
where gWq(x) := Wa(xg).

In view of the matrix coefficient of L?(I'\G) in Lemma 5.4, we now ex-
press the matrix coefficient in a way that lends itself to using local mixing
(Theorem 4.11). For convenience, we denote

r:= rank(G) and a,, := exp(w) for w € a.

Lemma 5.5. For any bounded Borel subset B of G and for all W1, ¥y €
C.(I'\G), we have

<FB,‘1’1 ® Uq)

eI Z ng*

|szp| ta,,, rumnEB ZE3r
+ €' E(t,u, h, mn) dt du dh dm dn,
where he N",me M,ne N, t€R, u € kerty and

o (WPD)m o (mnl)

E(t,u,h,mn) = t'7 e2p(tviviu)—t /F\G Ui (zh) o (zay, q,mn)de

—1I(u)
BN B (hU)mBR| L (W) (5.6)
‘me‘ ZE3r

is the associated error term in Theorem /.11 (note that ¥(tv + /tu) =t).
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Proof. By Lemma 5.4, we have
(Fp, U1 @ Wy) :/ / Uy (2)¥2(zg) dz dg.
BJn\a

Using the fact that the product map N* x M x A x N — G is a diffeomor-
phism onto a dense and open subset of G, we write g = h~!exp(w)mn €

NTMAN, so dg = e2’) dh dw dm dn. Then

/B /F\G Uy (2)Wa(zg) du dg

= / / Wy (2)Wa(zh ™ aymn)e? ™) dz dh dw dm dn
h~lexp(w)mneB JT\G

= / e2r(w) / Uy (zh)Va(zaywmn) dz dw dh dm dn.
h—la,mneB NG

We write w = tv + v/tu, where t € R and u € kert. Recall r := rank(G).

Then dw = t7 dt du, where dt is the Lebesgue measure on R and du is the
Lebesgue measure on ker ¢ from Subsection 4.2. Then

/ e2r(w) / Uy (zh)¥y(za,mn) dz dwdh dm dn
h—la,mneB NG

— / 5 e2p(tv+vtu) ‘I’l(ﬂfh)\l’?(xamr\/ium”)
h—latv+ﬁumn€B NG
dzx dt du dh dm dn
Ry —1I(u *
— ele ! Z ng o (PO)mE| . (mnly)

a |mé\f¢| h=ta, . 7, mnEB ZE3r
+ e'E(t,u, h,mn) dt du dh dm dn.
[ |

We now specialize to the case when ¥; = ¥y = U, in Lemma 5.5. Let

E.(t,u,h,mn) denote the associated error term in (5.6) and denote

QBe = (Fp,¥. ® ¥,) — / e E.(t,u, h,mn) dt du dh dm dn.
h=ta,, . ;,mneB

In the next lemma, we use the Iwasawa decompositions to decompose the
BR-measures appearing in Lemma 5.5 into a form that will be useful in the
proof of Proposition 5.12.

Recall 3r from (4.5). For Z € 3, let Z denote the preimage of Z in G,
that is,

Z:={geG:Tge Z}.

Lemma 5.7. Let ¢ > 0 be sufficiently small. Let Z € 3r, h€ NT,m &€ M
and n € N. Then we have

BR«
My,

ZN(h\Il5>mER‘ZN+ (mn¥,)
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:/KAN s Ve (k1aw,n1h)1 ;5 (k1)ve (baaw, himn) 1 5y (k2)
X

ceVtrw2) gyl (k) dwy dny dvl;(ke) dws dha,
where ug and I/{Z(Oi are defined by (3.27).

Proof. For g1,92 € G, write g1 = kiayw,n1 € KAN and gy = kaay,h1 €
KANT. Using Lemma 3.28, we have

BR«
My,

o (W )mg | ,  (mn¥e)

=/ be(g1h)1 25 (91) Y= (gamn) 1 551 (g2) dmy ™ (g1) dmig™ (ga)

Ve (k1aw, n1h)1 5 5y (k1aw, n1) Ve (kaaw, himn)

/KANXKAN“'
1y (h2auyha ) =) dull (ky ) dwy dny dvjy;(ka) dws dhy

Z/ VYe(kraw,n1h) 1 ;5 (k1) (kaaw,himn)1 5 5 (ka)
KANXKAN+

sevtermva) gyl (k) dwy dng dv (ko) dws dhy.
]

To state the next lemma, it will be convenient for us to define some nota-
tion. We define fg: N* x MN — R by

f(h,mn) := L

= ete W) gt du.
’m-)%’ h=tma,, ., s,nEB

Let ~ B
3r:={Z:Z¢€3r}
Define the natural projection maps
Hy: MANN'T — M,
I, : MANNT — a,
J : MANNT = Nt
I,: ANTMN — a,
Jy: ANTMN — MN.

For each kM € K/M = F, fix a representative k* € K. In the next
lemma, we use these projections and a change of variables to write Qg
using integrals over G..

Lemma 5.8. For any bounded Borel subset B of G, we have
=Y | [ ) ). 2k "9")
53, /i JGexa

(gL (KT HL ()71 ) e(9") 550+ (k)
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PN =Rk9") qg! dg" dvy (k) dv i (ka).

Proof. By Lemma 5.5 and Lemma 5.7, we have

> / e T (ky 1)
KANXKAN* Jh-1a,,, ; mneB

Z€E3r
15 5 (k1 )the (ko hymn) 1z 4 (k) (417 %2)

dvys (ky) dwy dny dv o (ka) dws dhy dt du dh dm dn.

Ry

QB,& =

’mX¢|

Let m; € M such that ky = kim;. Let g3 = miay,nih and g4 = ay,himn.
Then we have dgs = dm1 dwy dny dh and dgs = dws dho dm dn as in Subsec-
tion 3.5. Using these change of variables, we have

Qe = 223 / o /G - IpCan). ol (ki) L (L 9)

e (kaga) Lz s (2)e Y(I1(g3)—1I2(g4)) dgs dgs qup(kf) deoi(ké)

x\—1 1
Z%: /K/M)XK /GEXGgf (A((kD) ), J2(ky "))

(91 zn (R HU((RD) ™ 9))e(9")1 g+ (R2)
Uik g —T2(ky ' g")) dg' dg” dvy (k) dez;(oi(@)a
where ¢’ = kigs and ¢” = koga. [ |

We now specialize to B = S% and estimate Q¢+ _. In view of Lemma 5.8,
Te’

to estimate Qsi ., we need to show that for k € K that contribute to

QS% the images of kG, under the projections Hy, I, Jy, I2, Jo are close

to the image of k. This can be done because Z; C N* and Z5 C N are
bounded.

Lemma 5.9. Fiz bounded sets Uy C NT and Uy C N. For sufficiently small
e > 0, the following holds. If g1 € G with gfl = manh € MANN™ and
g € U, then

If g € K with g5* = ahmn € ANYMN and g, € Uy, then
g;lGE - aAO( )hNo(a)mMO(s)nNO(a)-

Proof. We prove the first statement; the proof of the second is similar. The
product map M x A x N x NT — @ is a diffeomorphism onto an open set
containing the identity. In particular,

Ge C Mo(e)Ao(e)No@) N -
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Let g. € G. with g = miainihy € MO(S)AO(a)NO(a)N(J)r(E)- Under the
hypotheses, h™! is an element in the bounded set U; and

gflgE = manhmiainihy
= mmlaal((mlal)_ln(mlal))((mlal)_lh(mlal))nlhl

= mmlmgaalag((mgag)_l(m1a1)_1n(m1a1)(m2a2))n2h2h1,

where ((mya1)~th(mia1))n1 = maasnohs and we note that the assumption
that h is bounded and ny € No(.) imply that ma € Mo(.), a2 € Ap() and

hy € hNG . ]

We will also need the following lemma which says that bounds the sets
S’% . by product subsets of Nt AMN that approximate St.

Lemma 5.10. Assume that vy (0Z]), vpei(0(E51)7) and J5e dm are all 0.
For all sufficiently small € > 0, there exists Borel sets Q’Tﬁ C Cp, E’LE C Zq,
=5 C E2 and ©L C © such that

N+(s):/1 EQ:TEMO( )@25’2751\70(5) - Sif’

where an O(e)-neighborhood of €, _ contains Cr and vy((E7)") — vy (E7),
vgoi((E5.)7) = vgei(Z3) and [, dm — [o dm as e — 0.
= =1

Similarly, there exists Borel sets € D €p, E{_. D Ey, By D Ep and
©” > © such that

NGB €1 e Mo () O7E; :Noge) O 57,

where an O(e)-neighborhood of €1 contains € _ and vy ((E7.)7) — vy (),
vyoi((E5.)7) = vgoi(Z3) and [g, dm — [ dm as e — 0.

Proof. In view of the hypotheses on the boundaries, we may assume =, =
and © are open subsets. Using reasoning similar to that used in Lemma 5.9,
we see that for all g1, g2 € G, and for all ¢ = hamn € NTMAN with h and
n bounded, we have

91992 € Ng(e)hAO(s)aMO(s)mnNO(e)-

Then we can take Q:’Tﬂ_: to be the intersection of € and the complement of
the closed O(g)-neighborhood of the exterior of €r. Similarly for = . C Zy,
=/

=5, C Ez and © C ©. It is clear that these sets have the desired properties.
The proof of the second assertion of the lemma, is similar. |

We will use the following asymptotic notation. For real-valued functions
f1, fo of T, we write

. fl(T)
oo f2(T)

fi~ fo = =1.
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For a real-valued function f of €, we write

f=o0(1) ii_r)r(l)f(s) =0. (5.11)

We use local mixing (Theorem 4.11) to prove the following asymptotic for
#(I' N goSrgy ") for go € G.

Proposition 5.12. Let go € G. Assume that vy (=), vyei((E51)7) and
Jse dm are all 0. Then

_ [M : Mrp] _ o 1
#(I' N g0Sry, D~ et Z V{[ZO’gglzN(il)Vi%i’gglzN+(:2 o),

(5.13)
where ﬁio|gngN and ﬁg%i\galzN+ are defined by (3.32) and (3.34).

Remark 5.14. We note that the right hand side of (5.13) does not depend on
the choice of € as long as v € int €. This reflects the fact that the maximum
of yr on {w € L : ¢(w) =T} occurs in the v direction.

Proof. 1t suffices to prove the theorem for gy = e. For general gy € G, we
apply the same argument to goI'g; ', replacing vy and vye; with l/io and I/fj)%i
(3.31) throughout.

By Lemmas 5.4, 5.5, 5.7, and 5.8, we have

(FS;L:Ea\I]{-: ® \Il€>

=Qgx .+ e'E.(t,u, h, mn) dt dudh dm dn

T,e’ /_1 +
h atv+ﬂumn€ST’E

and
Qe .= / / fox (Ji((K) '), Ja(ky 'g”
et z%s: ey Joxa, 1559 2l 6
r

~e(9") L (KT HL((KD) 71 9))We(g") L g+ (R2)
(Y LSNP I dvy (k) dv i (k).

We now do the proof in 2 steps.
Step 1: We estimate QQg= _ in terms of St.

T,e’

Recall from Subsection 4.1 that ZN is a P°-minimal subset of I'\G. Then
using the correspondence between P°-minimal subsets of I'\G and I'-minimal
subsets of G/P°, we have ZN = {x € G : P° € A,} for some T-minimal
subset A C G/P°. Recall the holonomy group Mt of I' (Definition 3.5). For
fixed k1 M € A, by (3.6), there exists m’ € M such that {m € M : kimP° €
A1} = Mprm!. Then

Ly (KT H L ((K)7'9) = Lot (H1 (KD ™1 9))-

Since M° < M, if ¢ is sufficiently small, then 1z, (H1((k7)"tg)) is con-
stant on Ge.
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It follows from Lemma 5.9 and Lemma 5.10 that
$(L((K) 1)) = w(IL((k) ™) + O(e);
U(Ia(ky'g")) = ¥(Ia(ky ")) + O(e)

and
(kD)) T e NS (k)™ 7Y
Ja(k3'g") € Mooy J2(ky ) Noe)-

We first prove a lower bound for Q¢- _. Let &,  C &p, B, C Ey,
T,e> ) )

=1

B9 CEz and ©.L C © be as in Lemma 5.10. For convenience, let
Sé’,s = E/I,EQ/T,s@f-:Eé,s'

Then for all ¢/, ¢” € G-, we have

Fs= (KN, Ty 9") = fo (I((RD)TH), Ja(ky )

It now follows that

*\—1 —1 B * *\—1
QST7€,€>Z§F /(K/M)XKfS/T,E<J1<<k1> ), Jaky )Ly (KT HL (KD ™)

s () (1 + O(2)) e ED™D=E05) (k) dw (k).
(5.15)
Using Lemma 5.10, we observe that

[ s = T )R, Talhy ) ) df)
(K/M)x K

- eT o *\—1\—1
_O< /(K/M)XK Ispe;, (AR

oz, 0.2, (2 ) () )

=70 (v (SH\ EL)Y) + et (E7)7 V(20 7)7) +m (01 67))
=e’o(1),

(5.16)
where o. notation is defined by (5.11). Combining (5.15) and (5.16) yields

U = S Z%F /(K/M)XK(l + 0D for (T (7)™, Jaky 1))

A (RTHL((R5) ™)) L s (ko) T EDTH =R ) gy (1) vy (k2).
A similar argument shows that
Qs o <To)+ 3 [ (1 O (D) el )

G5 /M)XK
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=1y _ 7. (1—1
L (kT H ((6) ™)1 gy () D™D s (k) drfl (k)

and we conclude that

Qs =0+ 3 [ (1O i (D)) el )
a = J(K/M)xK
Z€3r
* *\ — )~y o1
N T HL((k]) ™)L gy () D020 ) s () (k).
Step 2: We conclude by appropriately decomposing k] and k» and ap-

plying the asymptotic in Lemma 5.17.
1l e MANNT, we have

Considering k1 € K such that (k¥)~! = ma,nh
J(R) ™) =k
ht = ki M;
KL ((K)™Y) = hn~la_y

L((k])™) = w = By (e, h)

and hence,

/ (RO B i )
(Ji((R1)~1)"1€Er

| L e e i (16%) = 5y (),
[SEX]

Similarly, considering ky ! ¢ K such that ky V= aphm™n"' € ANTMN,

we have
Jo(kyty =m™'n"t € MN;
y=n
Iy(ky ") = w = —i(B,- (e, )
and

/ pere Lzns (k2)e P02 Dl (ko)
Ja( 21)€@~2

[ L om0 )
nmes, 01

=1
= Uyoil g+ (25 O )
Hence, we obtain
<FS%:57 \I]€ ® \Il€>
v ele 1 qt du
’me | atv+\/ZuEQ:T

=(14+0(e))
" Bl (BTl gy (B5107Y

2631“
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t T
+/ €' Ec(t,u, h,mn) dt dudhdmdn + e" o.(1).
h— atv+ﬂumn65%:,€

Using Lemma 5.17 and Lemma 5.3, taking T" — oo and then ¢ — 0, we
conclude that

R — ~ —_\~ ——1A—
#( N Sy) ~ el e W du Y oyl (E)Ppeil gy (E2107Y)
|qu/)| ker ¢ L =
Z€3r
and we note that sy fkew e 1) du = [M : My] by Proposition A.1. [

Lemma 5.17. We have

lim eT/ ete™ W dt du = / e 1 gy (5.18)
T—o0 Qs V10 €CT ker ¢
and for all sufficiently small € > 0,

lim e~

T/ e B (t,u, h,mn) dt dudhdmdn = 0. (5.19)
T—o0 h—latv_‘_\/{umnes%ye

Proof. First, we show (5.18). For u € ker and T > 0, let

RT(u):{t>0:atv+\/,;uECT}:{O<t§T:tv+\/7Eu€€}.

Then we have

e_T/ ele= 1w dtdu:/ €_I(u)€_T/ et dt du.
@yt i €CT ker 1) Rr(u)

Observe that e~ [(We=T fRT(u) et dt < e 1™ and by definition of I(u) (4.10),
e~ 1w ¢ L'(kerv). Then by the Lebesgue dominated convergence theorem,

Tlim eT/ ete™1W) qt du,
—00 atv_'_\/%uGQT

:/ e~ 1 1im e_T/ e dtdu:/ e 1 qu,
ker ¢ T—o0 Rr(u) ker 1)

where the last equality uses the observation that for fixed u, t € Rp(u) for
all sufficiently large ¢t < T

Now we show (5.19). Since Z; C Nt and Z3 C N are bounded, by
Theorem 4.11, there exists positive constants n,, D, and T, such that

’Eg(t7 u’ h7 mn)‘ S Dve_nvl(u)

for all (t,u) € (Ty,0) x kert, and h, mn such that h_latv+ﬁumn € S%’s.

Then (5.19) follows by using similar reasoning as before and the fact that
for fixed u € ker, tlim E.(t,u,h,mn) = 0. [ |
— 00
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5.2. Counting in B(gg,e)€rOB(go,c)~!. In this subsection, we relate re-
late Vr(go,¢,€,0) (5.1) and goSr (NI, N1 €, @)ga1 (5.2) and then apply
Proposition 5.12 to get an asymptotic for #(I' N Vr(go, e, €, 0)) (Proposi-
tion 5.24).

For Borel maps f1 : I\G/M — R, fo : M — R and Borel sets B} C
I'"\G/M and By C M, we define

my(fi ® fa) (/ fldm¢) </Mfzdm>;

m¢(Bl & Bz) = m¢(]lBI & ILBQ).
Denote the projection of B(go,¢) to I'\G/M by
B(go,e) :=TB(go,e)M C T'\G/M.

Recall r = rank(G). Let be(¢) denote the volume of the Euclidean r-ball of
radius e. We have the following formula for my(B(go,€) ® ©).

Lemma 5.20. For any go € G, € > 0 and Borel subset © of M, we have
my (B(go,€) ® ©) = (1 + O(e))br ()75 (N )7, (N=©),

~90

where v, and v I/wo are defined by (3.32) and (3.33).

Proof. We assume that gg = e. The proof for general gy € G is similar. By
Lemma 2.6(2) and (3), we have B(e,e)et™ = Ntet, B(e,e)e” = N.e~ and
the projection of B(e,e)M € G/M = F? x a into F® is NFet x N.e™.
Fix g € B(e,e) and write w = B,+(e,9), g = hiniaymi € N NA. M, and
g = nghsagmy € N:N*tAp Mp(). Using (3.20) and properties of the
Busemann function (Definition 3.7), the lemma follows immediately from
the following computation:

my (B(e, e) M)
_ / 6w(ﬂg+(€7g))+(¢01)(5g7(679)) dv, (g™) dvyoi(g™) duw
g€B(e)

e,hia oi _(e,n2a
/ €¢(5h1+( 1 1))+(¢ )<5<n2> (e;m2 2)) dl/w(h )dV¢O|(ﬂ2)d
gEB(es)

/ K (B, temn)+How(an) ) +(woi (5, _ (em)—ilog(a2))
g€B(ee)

dvy (hT) dvyei(ng ) dw

_ / ¥ (log(a1)—log(az)) dygo(h1> qupo.(n?M) dw
geB(e 8)

= (14 0(e))be(e) 7 (NI T (NeM).
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The next lemma relates Vr(e,e,€,0) and Sp(NS, N1, €,0). To state
the lemma, we fix a constant C' > 0 such that

a—yNeay C N, —cyw) and awNFa_y, C N:e—cww) forallwe £. (5.21)
This is possible since £ C inta™.
Lemma 5.22. For all T > T' > 1 and sufficiently small € > 0,
ST(NE_‘—, Ne_l, ¢, @) C VT(G, g, ¢, @)

and we have

Vr(e,e,€,0)\ V(e e, &, 0)

71 o A
C ST+O(€) (N;O(Ee_CT/)y (Ne—i-O(Ee_CT/)) y Q:O(E)) @O(s))
—1 ol A
\ ST’—O(S)(Ngo(Eech’V (NEJFO(EefCTI)) ) Q:O(e)a @O(s))v

where @5 = Um”meME m1©Omsy and @5 is the smallest closed cone in a
containing the e-neighborhood of €p \ €+ for all T > T' > 1.

Proof. Since N C B(e, ¢), the first inclusion is clear from the definitions.
For the second inclusion, consider

g €Vr(e,e,€,0)\ Vr(ee, € 0).
There exists g1,92 € B(e,e), a € €p \ € and m € © such that g =
glmaggl. By Lemma 2.6(3), we have g1 = hynymia; € NQ‘NO(E)MEAE and
g2 = nohomaasy € NSNg(a)MO(s)AO(e)- Then

131, -1
g = hinimiaima(maas)™ hy ny .

“Ipym/a’. Then d €
(Q:O(a))T—i-O(E) \ (Q:O(E))T’—O(a)v ng € NO(ee*CT') and g = hlm’a'nghglng_l.

Using our choice of constant C' in (5.21), by Lemma 2.4, we have

Let o/ = aalagl, m = mlmmz_1 and ng = (m'd’)

n3h2_1 = mgaghqny € MO(E)AO(E)Ng(E)No(Ee—CT’)-
Then

g= hlm’a'm3a3h4n4nz_1 = hsm” a"ns,

where a” = a’az, m" = m'ms, hs = h1(m"a”)ha(m”a”)~" and ns = ngny*.

Note that a” € (€o(2))r+0(e)\ (€o(e))T—0(), M" € Oo(e), hs € N;O(EG,CT,)
and ns € Ne+0(se—CT’) which completes the proof. |

To state the next proposition, we will use the following asymptotic nota-
tion. For a real-valued function f of € and T, we write
f=o0r(1) < lim f(¢,7)=0 (5.23)
T—o0
Recall the holonomy group Mt of I' (Definition 3.5). By Lemma 5.22

and Proposition 5.12, we obtain the following asymptotic for the number of
elements in I' N Vr(go, €, €, ©).
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Proposition 5.24. Let go € G and © C My be a Borel set with [, dm = 0.
For all sufficiently small € > 0, we have

#(T' N Vr(g0,¢, ¢, 0))
_ (M My <mw(l’5’(go,s) ® 0)

[ma, | bi(e)

Proof. Again, we give a proof for gg = € and the general case is similar. Note
that ONZ are proper real algebraic subvarieties of F and hence vy (ONZ) =
Vyoi(ONe) = 0 by [KO23c¢| (this was proved in [ELO22a| for the case ¢ =
Poi.)

By Lemma 5.22 and Proposition 5.12, we have
#(F N VT<g(), g, ¢, @))

] Y Tl an (N ogeil 7+ (N0 1) +or(1) | (5.25)
v ZGSF

(14+0()) + oT(1)> .

We claim that for sufficiently small € > 0, we have

> Tl an (N yeil 7+ (NeOT') = 0y (N ) Do (N-O). (5.26)
2631“
To see why the claim is true, observe that

Tp(NS) = > 7yl (NF) and 7i(Ne©) = > Tyeil 5y (N0,

A Z&3r

where in the second equality we use the fact that ZN is right Mp-invariant
for each Z € 3p. If et & A or e” ¢ A, then for sufficiently small ¢, either
NANZN =0 forall Z € 3ror N.NZNt =0 for all Z € 31 and the claim
is clear since both sides of the equation would be 0. Otherwise, e, e~ € A,
so for sufficiently small e, NEjE NA C Z for a single Z € 3r and hence, the
claim.

Combining (5.25) and (5.26) and using Lemma 5.20, we obtain

#(F N (VT(ea €, Q:, @)))
]

[M : MF eT m¢(l§(€,6) ® @)
Imax, | be(e)

It remains to establish the reverse inequality. By Lemma 5.22, we know

Vr(e,e,€,0)\ Vrs(e, e, €, 0) is contained in

(14+0()) + oT(l)) .

— —1 4 A
ST+O(5) (N;_O(EQ—CT/Q), (NE+O(66—CT/2))

and
Vr)a(e,€,€,0) C 5T/2+0(€)(N§(5), (No@) ™ €o(e): Oo(e))-
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Assuming ¢ is sufficiently small so that Moy C M° C Mr, similar reasoning
as above yields

#(F a VT(E, g, ¢, @)) - #(F N VT/Q(ea g, ¢, 6))
< M Mr] ri0)
|mX¢|
(mw(l’;’(e, e+ 0(ee CT?) @ 60(5))
br(e + O(ee=CT/2))

(14 O0(e +ee /%)) + oT(1)>;
(5.27)
4T N V(e e, €,0))

< M Mr] 7240 my(B(e, 0(¢)) @ Ops))
ma, | b (O(e))

(1+0(e)) + OT(1)> )

(5.28)
Combining (5.27) and (5.28) and taking 7" large, we obtain the desired in-
equality. |

6. JOINT EQUIDISTRIBUTION WITH RESPECT TO w—CIRCUMFERENCES

In this section, we prove the main theorem of this paper, Theorem 1.3,
and Corollary 1.4. In fact, the results we prove here are slightly more gen-
eral as we allow ourselves to consider only maximal flat cylinders C' with
corresponding Jordan projections A\(7¢) lying in a fixed cone € C L, where
Yo is as in (4.15).

As in Section 5, for this section, we fix

¥ € a* tangent to ¢r at v € int £ with ¥(v) = ¢p(v) =1

and we fix
cone € C L with v € int €.

6.1. Preparatory lemmas. Throughout this subsection, we fix
— go with I'go M € supp my;
— ¢ > 0 sufficiently small as in Proposition 5.24;
— a conjugation-invariant Borel set © C Mp (Definition 3.5).
For T' > 0, we set
Wr(go, e, €,0) = {gamg™" : g € B(go,€),am € C7O}.

Recall that Cr is the set of all (positively oriented) maximal flat cylinders in
I'\G/M. For C € Cr, choose a lift C C G/M. Its stabilizer I' 5 is generated
by some element in [y¢], and C can be identified with Fé\é . Let

I(C) = {Tzo € TE\I': (6B(go,e) M) N C # 0}.
Note that #I(C) is independent of the choice of C.
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For T' > 0, let Cy(T) denote the set of all maximal flat cylinders with
y-circumference (4.16) at most 7"

Cq/,(T) = {C €Cr: €¢(C) < T}.

We will also consider the set of maximal flat cylinders C' with corresponding
Jordan projections A(y¢) lying in the cone €:

Cy(T,C) ={C € Cy(T) : Me) € ¢}
Lemma 6.1. (1) The set Cy(T) is finite for any T > 0.
(2) For any C =T'gAM € Cr, I(C) is finite.

Proof. By discreteness of I', for any g9 € G and € > 0, there are finitely
many elements of T in Wyp(go, e, £, M). On the other hand,

#I' N Wr(go,e, L, M) = #{v = gawmg™" : g € B(go, ), ¥(w) < T}
=#{C : CNB(go,e)M # 0, £,(T\T'C) < T}

:Z#[

CECw )

From this, (2) immediately follows, and we see that

#{C € Cy(T) : C N B(go,e) # D} < 0.

Then (1) follows, using the fact that every maximal flat cylinder intersects
the embedded compact set Xy, C € (Subsection 4.2). |

Denote by Vo the measure on C' induced by the Haar measure on A. Let
CIl(M) denote the set of continuous real-valued class functions on M and [M]
denote the set of conjugacy classes in M. For each T' > 0, we define a Radon
measure pig 7 on I'\G /M x [M] as follows. For T' > 0, f € C.(I'\G/M) and
p € Cl(M), let

per(f@e) =Y Valfelho),

CeCy(T,0)
pr(f@e)=pco(fee)= > Vo(e(ho).

CeCy(T)

We record several appropriately adapted lemmas from [MMO14, Section
5]. Lemma 6.2 and Lemma 6.3 relates the pep-measure of B(go,e) ® [O]
to the number of elements in I' M Wr(go, e, €, ©). The proofs are similar to
those in [MMO14], but we provide them here for the sake of completeness.
Lemma 6.2.

(1) For any C € Cr, we have
Ve (B(go, ) = bele) - #1(C).
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(2) For any T > 0 and , we have

per(Blgo,e) @ [O]) =be(e) - > #I(C)- Ligy(he).
CeCy(T)e)

Proof. 1t is clear from the definition of pe r that (2) follows from (1). Let
C =TgAM, and choose C' = gAM. Then we have

Ve (B(go, ) —/ 15(g0.c) L9 exp(w) M) dw
a mod A(v¢)

= 2 / Lo]B(go.c) (9 exp(w) M) dw
[O’]EF@\F a mod )\(’yc)

= be(e) - #1(C),
where dw denotes the Lebesgue measure on a, the integral is over a funda-

mental domain in a for the Z-action given by translation by A(vy¢) and the
last equality uses Lemma 2.6(1). |

Recall that I'yrip denotes the set of primitive elements of I'.

Lemma 6.3. For all sufficiently large T', we have

pe,r(B(go, €) @ [0]) = be(e) - #(Tprim N Wr (g0, €, €, 0)).
Proof. Let C = T'gAM € Cy(T,€) and wihtout loss of generality, assume
that C' = gAM. By Lemma 6.2(1), it suffices to show that
#1(C) - Lig)(hc) = #([vc] " Wr(go, &, €, ©)). (6.4)
If ho ¢ [©], then (6.4) is clear. We assume that ho € [0]. If Tzo € I(C),
then o~ 1g € B(go,e)AM and
o g0 = 0 tgexp(A(v0))me g~ o € [ye] N Wr(go, €, €, ©).
Conversely, if ¢ € T such that o~ vc 40 € Wr(go,e, €, 0), then we have
Yo, = og'am(g’)"to! where ¢’ € B(go,e) and am € €10, but on the other
hand, o, = gexp(A(yc))me,gg~t, so og’ € gAM, and hence, oB(go, <) N
gAM # 0, that is, I's0 € I(C).
og € aB(go,e) N gAM.
Noting that the map F'zo € T\ = 0 1y 40 € [y¢] is bijective since

the centralizer of yc4 in I' is (yc4) = 'z, we have thus given a bijection
between I(C') and [yc] N Wr(go, €, €, O). [ |

In the next lemma, we use the effective closing lemma for regular directions
(Lemma 2.7) to relate I' N Wr(go, €, €, 0) with I' N Vr(go, €, €, O).

Lemma 6.5. There exists T1 > 0, depending only on I' and v, such that for
all sufficiently large T, we have

I'N (Vr—o()(90,e(1 = 0(e™")),€o(:), O0(s)) \ V1 (90, €, €, 0))
cI'n WT(go, g, ¢, @),
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where O, = Moy .00
e-neighborhood of €.\ (€.)7, is contained in €.

Proof. Fix T1 > 0 such that if w € £ and ¥ (w) > T, then min,ce+ o(w) >
Ty, where Ty is as in Lemma 2.7. Suppose

v €T N (Vo) (90,6(1 = 0(e™7)), o), Oo(e) \ Vi (90, €, €, ©)) -
Then v = g1 exp(w)mga, where g1,g2 € B(go,e(1 — O(e™ 1)), w € Cp(y
with 71 < ¢¥(w) < T — O(e), and m € éo(g). By Lemma 2.7, we have

v = gexp(w)m’g™! for some g € B(go,€), w' ~po() w and m ~g) m'. It
follows that w € €, ¥(w') < T and m' € ©,s0 vy € T N Wr(go,¢,¢,0). R

ca. 91992 and €. is any cone containing Rv such that the

Let mp denote the Haar probability measure on Mr. The following lemma
gives a lower bound for #I'prim N Wr(go, ¢, €, ©).

Lemma 6.6. Suppose that mpr(©) > 0 and mp(0©) = 0. Then for all
sufficiently large T', we have

#F N (WT(gﬂa g, 6) \ WQT/S(gﬂa g, 6)) S #Fprim N WT(g(]a g, @)
Proof. Let Fprimk = {ak :0 € I'prim }. We observe that
#Fprim N WT(g()v g, Q:7 6)

= #(FQWT(QOﬂgvea @)) _# U Fprimk mWT(go,E,@, 6)

k>2

> # (DN Wr(go.e,€,0)) —# | TN Wrylgoe,€,V0) |,
k>2

where v/© := {m € M : m* € ©}. It suffices to show that for all sufficiently
large T', we have

# | UTnWri(goe,€,V0) | < #T0Warys(g0,e,€,0).  (6.7)
E>2

Since WT/k(g()a g, ¢, \k/@) - VT/k(.gO’ g, ¢, \k/@) and I'N WT/]C(QO? g, ¢, \k/@) is
empty when T'/k is sufficiently small, using Proposition 5.24, it follows that

# | UTnWryilgo e, €, VO) | =0(Te™?). (6.8)

k>2

On the other hand, using Lemma 6.5, Proposition 5.24 and the assumption
that mr(©) > 0, we have

#T' N Wary3(g0,€,0) = O(*T/?). (6.9)
The inequality (6.7) now follows from (6.8) and (6.9). [ |

Lemmas 6.3, 6.5, and 6.6 imply the following lemma.
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Lemma 6.10 (Comparison Lemma). Suppose that mp(0) > 0 and mp(00)
= 0. For all sufficiently large T, we have

be(e) - #0 N (Vr_o(e)(90,£(1 = O(e™™)), €oe), Oo(e)) \ Varyz (90, €, €, ©))
< M@,T(B(g()? 6) ® @) < b,—(E) : #P N VT(QO? &, €7 @)

Proof. The upper bound follows directly from Lemma 6.3 and the trivial
inclusion I' " Wr(go, &,€,0) C I'NVr(go, e, €, ). The lower bound follows
by using Lemma 6.3, Lemma 6.6, and Lemma 6.5:

per(B(go,) ©©)

br(g)#(rprim N WT(9075 Q: @))

> be(e)#I N (Wr (g0, €,€,0) \ War/3(90, €, €, 0))

> be(e)#T N (Vr—o(e) (90,61 = O(e™ ")), €0, O0(e)) \ Varys(90, €, €, 0)) .

Combining Proposition 5.24 and Lemma 6.10, we obtain the following
asymptotic for pe7(B(g0,€) ® ©).

Proposition 6.11. For all gy € supp my,, for all conjugation-invariant Borel
subsets © C My with [g dmr > 0 and [, dm = 0 and for all sufficiently
small € > 0, we have

[M . MF] T

M@,T(B(goa 6) ® @) = |m/Y |
P

<m¢(l§(go, e) ®0)(1 + 0(e)) + OT(1)) .

Proof. Inputting Proposition 5.24 into Lemma 6.10 yields

[M : Mr| p

3 <
per(B(go, ) ® ©) < o,

(mu(Blgo,2) @ ©)(1 + O()) + 0r(1))
and

pie.7(B(go, ) ® ©)
[M : MF]eT—O(a)

>
N ‘szp’
br(e)my(B(go,e(1 — O(e™1))) @ Op(c))
. < NEEIE=) (14+0(e)) + OT(1)>
DL s (mu(Blgo, £) @ ©)(1 + 0(e)) + or (1))
|me|
_ WJ (mu(Blan. &) @ ©)(1 + 0(e)) + or (1)) .
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6.2. Proofs of the main results. We are now ready to prove our main
joint equidistribution theorem and its corollaries. We note that Theorem 1.3
and Corollary 1.4 are special cases of the following statements when € = L.

Theorem 6.12 (Joint equidistribution). For any f € C.(I'\G/M), ¢ €
CI(M) and cone € C L with v € int €, we have

i Her(f @) mw(f)/ o dmp.
Mr

T 00 el - Ima, |

Proof. The theorem is clear if supp ¢ N M = (). We first prove the theorem
when ¢ = 1g for some conjugation-invariant Borel subset © C Mt with
fe dmp > 0 and [, 90 dm = 0. By using a partition of~unity, we may assume
without loss of generality that f is supported on B(gp,e) for some gy €
suppmy and a € > 0 as in Proposition 5.24. Then we can approximate f
arbitrarily well by a linear combination of characteristic functions on boxes
of the form B(h, p), with h € B(go,e) and arbitrarily small p > 0. Then by
applying Proposition 6.11 to each 1 Blhp) ® lg, we obtain

(1— 0 2L M 9 16) < limint e e r(/ ® o)
’mX¢| T
< lim sup G_TNQ,T(f ® le)
T
<+ 02N (r o 16)
‘me‘
and hence VY
lim e Tuer(f®le) = me(f ® le)
~ my(f)

= / 1o dmr.
|mX'¢)| Mr‘

After identifying M with the quotient of the Lie algebra of its maximal torus
by the Weyl group relative to its maximal torus, a similar approximation
argument can be used for general ¢ € Cl(M). [ ]

For each T > 0, we define the Radon measure ne 7 on I'\G/M x [M] in
a similar fashion as pe 7, but normalizing the Haar measure on maximal
flat cylinders by their i-circumferences. For T' > 0, f € C.(I'\G/M) and
p € Cl(M), let

neafo9)= 3 el
cecy(Te) ¥

Corollary 6.13. For any f € C.(I'\G/M), ¢ € Cl(M) and cone € C L
with v € int €, we have

lim UQ,T;f®@) _ m¢(f)/ o dmp.
T—oo el/T |m;\g$| My
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Proof. We observe that Tne¢ 7 > e, 7, and for any € > 0,

Te "ner(f @)

TeT( > Xc(ggsO(hc)wL > ZC((ggso(hc))
Co((l—a)Te) ¥ v

<Te " |O > Velfelhe)

Cy((1—€)T,C)

Ve(f)

+ Z W@(hc))
Cy(T,E)\Cy ((1—-2)T,€)

~ 7 (Oluea-or(7 &)

+ (1—15)T (Her(f ® @) = pea—ar(f @ ¢)) )

= O(Te ) e Tuer(f ® ).

1—
Using Theorem 6.12 and € > 0 being arbitrary completes the proof. |
Corollary 6.14 (Equidistribution of holonomies). For any ¢ € CI(M) and
cone € C L with v € int €, we have
T

Z go(hc)we/ edmp as T — oc.
T Juy

Cecd, (T,Qf)

Proof. Recall from Subsection 4.2 that Q0 = X, X ker ), dm1/,|Q = dmy, du
and the Lebesgue measures we use satisfy dw = dtdu, where w = tv +
u. Choose f € C.(Q2) such that f = lx, ® b, where b € Cc(ker ) with

Jcery 0(w) du = 1. Then my(f) = [mx,| and for every C' € Cr,

Volf) = / o [Tt
a mo ’yc

Ly(C
/ / dt du = 61/)(0)
ker

since A(y¢) = £y(C)v + u for some u € ker ).
Applying Corollary 6.13 to this choice of f, we obtain

1
2 T IT el'/T 2, wlhe) = /MF pmr-

CeCy(T\e)
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Recall that Lemma 4.18 gives a bijection between the maximal flat cylin-
ders and periodic orbits of the translation flow ® on &y,. Let
Gx, (T) := {®-periodic orbits of length at most T'}.
For C € Gx,, (T'), denote by L the length measure on C and associate to C'
the 9-circumference £,,(C') and holonomy hc of the corresponding maximal

flat cylinder. Holonomies also jointly equidistribute with the periodic orbits
in Xy.

Corollary 6.15 (Joint equidistribution in Xy). For any f € C.(Xy) and
¢ € CI(M), we have

lim — > Lo(helhe) = nm(f)/M p dm;

0o el
T—o0 € Ot (1) \mxw\
. Lc(f) mx, (f)
lim ——— E o(he) = / pdm;
T ’
T—oo € /T Cegxw () fw(C) |m;\(w| Mrp

Proof. Apply Theorem 6.12 with € = L to the function f ® b, where b €
Cc(ker) with fkerw b(u)du = 1. [ |

7. JOINT EQUIDISTRIBUTION WITH RESPECT TO NORM-LIKE ORDERINGS

Let N : a — R be twice continuously differentiable except possibly at the
origin, convex, homogeneous of degree 1 and positive on £\{0}. For example,
any LP-norm on a has these properties when 1 < p < oo. In this section, we
give a slight modification of the arguments in the previous sections to prove
joint equidistribution with respect to the ordering on Cr determined by N:

Cn(T) :={C €Cr :NA\(v)) <T}.
We define the N-critical exponent as

oN = NI(Illuz;El Yr(w). (7.1)

By convexity of N and strict concavity of ¥r, there exists a unique
v €int L

such that the maximum in (7.1) is achieved at w = dyv. We note that when
N is the Euclidean norm on a, v is simply the maximal growth direction of
Yr. We also let v denote the tangent form such that

1) is tangent to ¢r at v.

We note that N(dyv) = 1 = iqﬁp(cmv) so by convexity of N, we have %@ZJ <N
and equality holds along the v direction. In particular, the differential of N
along the v direction is iw. Fix a cone

¢ C L withv eint€. (7.2)
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Define

CN(T, Q:) = {C S CN(T) : )\(’}/0) S Q:}.
Then we define the measures NQ,T and UQI,T on I'\G/M x [M] as follows. For
T >0, feC(I\G/M), ¢ € Cl(M), and € C a™, let

per(fee)= > Vol(f)elhe);

CeCn(T,e)

delfoo= ¥ S8t
cecy(T,e) ¥

Note that for T]&IT, we still normalize by using the i-circumferences, or in
other words, the eﬁgths of the periodic orbits in X, because this is useful to
deduce equidistribution of holonomies from joint equidistribution. We now
state the joint equidistribution theorem with respect to N.

Theorem 7.3 (Joint equidistribution with respect to N). There exists a
constant cy > 0 such that for any f € C.(I'\G/M), ¢ € CI(M), and any
cone € C L with v € int &, we have

lim M =N mw(f)/ pdmr; (7.4)
T 00 enT ima, | Sy
N
. Ne rT(f ® ) my (f) /
lim —————— = dmr. 7.5
o e /T Nma, | Ja T (7:5)
The constant cy is given by the formula
2
__ Kv —I(u)—é—NuT(Hess(N)(ENv))u
N = e 2 du <1,
[M : MF] /kerzj)

where Hess(N) denotes the Hessian of N, I and ky are as in Theorem /.11
and du is as in (4.9).

Remark 7.6. If the norm-like function N is in fact a norm induced by an
inner product, then u' (Hess(N)(dnv)) v = N(u)?.

Corollary 7.7 (Equidistribution of holonomies with respect to N). For any

v € CI(M) and cone € C L with v € int €, we have
65NT

Z <P(hC)NCN(S T/ odmr asT — co.
CeCn(T,2) NS My

Corollary 7.8. For any cone € C L with v € int €, we have as T — o0,

oONT

ONT
The arguments in Sections 5 and 6 are easily adapted to the current setting

with the only points of interest being the replacement of Lemma 5.17 and
deducing the asymptotic for ?72'7T from the asymptotic for ,uy’T.

#{[] € [Corim] : N(A(Y)) < T, Aly) € €} ~ en
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Let
e = {exp(w) : w € ¢,N(w) < T}.

The following lemma is the appropriate replacement of the first statement
in Lemma 5.17.

Lemma 7.9. We have

Tlim e ONT /
= a‘tv-&-\/?uEQ”;l"

Proof. For u € kery and T > 0, let
Rr(u)={t>0:a,, 5, €},

so that we have
e_‘sNT/ ele W dt du = / e_I(“)e_‘SNT/ e’ dt du.
atv+\/2u6¢9|‘ ker v Rr(u)

Using the second order Tylor approximation of N at dyv we have

N(tv+ Vitu)
o LAY <5Nv + f}“ﬁ)

(i e () B st - (140))
- (1 B e o (1))

and hence for fixed u,

2
o1 gt gy — / o1 (w)= M (Hess(N) (5wv)u g,
ker 1

Observe that e~!(®e=0nT f et dt < e~ and by the formula for I from

Theorem 4.11, e~ 1(W) ¢ Ll(ker 1/1). Then by the Lebesgue dominated conver-
gence theorem,

lim e5NT/ ete 1) dt du,
T—00 tv+\fu€¢T

:/ e~ 1 Jim e_‘sNT/ et dt du
ker 1) T—o0 Ry (u)

52 i3
:/ e_[(u) lim €_5NT <€6NTé\'uT(Hess(N)(5Nv))u+o<| i)) "
ker 1

T—oo

2
_ / o~ 1)~ T (Hess(N) (Swv)u gy,
ker )
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Proof of Theorem 7.53. After replacing Lemma 5.17 with Lemma 7.9, the re-
mainder of the proof for the asymptotic (7.4) of NQ,T is almost identical to
the proof of Theorem 6.12.

We present the proof of the asymptotic (7.5) for T]Q"T. Some care must be
taken since in the definition of ng"T, the volume measures on maximal flat
cylinders C' are normalized using their -circumference £, (C), rather than
N(A(ve))-

Note that for C' € Cn(T, €), we have £,(C) = Y(A(ve) < N(A(ye)) < T
and hence we have

T g < ner- (7.10)
w)

1
Next, we show an upper bound for n&'T. Fix 9 > 0 such that % >
for all w € £\ {0}. Fix e > 0 and choose a cone ¢’ C € such that v € int ¢’

and 5;/),61(03)) >1—¢ for all w € ¢’. Then we have

mer(f ® )

<ol 3 velpelhe)

Cn((1—e)T,€)

Ve(f)
Cn(TSONCN(T ) UCN ((1—€)T Q)
Vo(f)
S DR s T R
C(T,¢")=C((1-£)T)
1
=0 Ng(l—a):r t oo MgT - MQ‘I/,T - #Q,(l—a)T - NE‘/,Q—S)T
(1 —epT

1 N N

o (R ~ i)

(7.11)
Using the asymptotic (7.4) for #Q,T in (7.10) and (7.11), we obtain

N
my (f . Ner(f®e) 1 my (f

CN vl )/ cpdeThm WT T3 T < T 5CN vl )/ pdm.
Imax,| Sy —oo NI /oy (L—=e)* " Imx,| Jasy

Since € > 0 is arbitrary, this completes the proof. |

Remark 7.12. We remark that in the above proof of the asymptotic for n&'T
for a given cone € as in (7.2), it was crucial that the asymptotic for ,ug, 7 is
the same for any smaller €' C € satisfying (7.2).

APPENDIX A. AN IDENTITY BETWEEN K, AND [

Let I' < G be a Zariski dense Anosov subgroup (Definition 4.1). Let
1 € a* be a tangent form (3.13) tangent to ¢r at some v in the interior
of the limitcone £ of I' (Definition 3.2). We take v normalized so that
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1(v) = 1. The purpose of this appendix is to prove the following identity
between the constant x, and function I : kery¥ — R appearing in the local
mixing theorem (Theorem 4.11 or Theorem A.2) and the index [M : Mr] of
the holonomy group Mp of I (Definition 3.5). This identity was required in
Sections 5-7 to determine the constants in the asymptotics we proved.

Proposition A.1. Using the same notation as in Theorem 4.11 or Theo-
rem A.2, we have

/{\,/ e 1) gy = [M : My,
ker v
where du denotes the Lebesque measure on ker v as in (4.9).

We will in fact deduce Proposition A.1 from local mixing with respect to
the BMS measure m,, and an accompanying uniformity statement.

Theorem A.2 (Local mixing, [CS23, Theorem 1.3|). There exists ky > 0
2
and function I : ker) — R is defined by I(-) = (-, — (V) for some inner

(V,v)

product (-, )« on a such that for any u € ker ¢ and for any ¢1, 2 € C.(I'\G),
we have

lim 2 o1 (x exp(tv + Vtu))p2(x) dmy(z)
t—+o00 NG

(w)
= BE S myl 4 (01) - my ,(62),

[, | ZE3r

where r = rank(G), 3r denotes the finite set of A-ergodic components of my,
and mx, 1s as in Subsection J.2.

Moreover, for all ¢1,¢2 € C.(I'\G), there exists a constant Dy(¢1,p2)
depending on ¢1 and ¢2 such that for all (t,u) € [0,00) x ker), we have

r—1

tz o1 (x exp(tv + Vtu))do(x) dmy(z)
G

< Dy(¢1, ¢o)e 2Itvtiullelvlla—{tvtviuv).)

)

where || - ||« denotes the norm induced by (-, ).

Proof of Proposition A.1. We refer the reader to Subsection 4.2 for the nota-
tion used in this proof. Let S : X, — € be a continuous section of the trivial
ker )-vector bundle my : © — AX,. Then we have a continuous function
s:A® xR — a such that for all (x,y,7) € A® xR,

ST (z,y,r)) =T(z,y,s(z,y,7)) and ¥(s(z,y,r)) =r.
Then we have a homeomorphism &y, x ker ¢ = €} given by
(C(z,y,7),u) = T(z,y,s(z,y,7) +u).
Observe that for T > 0 and u € ker 1, the a-coordinate of
C(z,y, s(z,y,r) + o) exp(tv + viu) € T\(A®) x a)
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is given by

s(z,y,r) +u' +tv+ Viu=s(z,y,r+1t) + (v +Viu) — 3z, y, 7, t), (A.3)
where §(z,y,7,t) := s(x,y,r +1t) — s(x,y,r) — tv € ker .

Fix a compactly supported continuous function b : kerty — [0, 00) such
that [, p () du” =1, where du is the Lebesgue measure on ker¢ sat-
isfying dmy,, du’ = dmzp‘g. Let ¢ € C.(Q) be the function given by the
M-invariant lift of the function 1x, ® b on &y x ker¢) = . Note that

i
mw‘z(¢) - 430 mw(¢) - [M : MF]v (A4)

where the last equality uses #3r = [M : Mr] [LO20a, Theorem 1.1]. Using
Theorem A.2 applied to the functions ¢ = ¢2 = ¢ and using (A.4), we have

lim t7 /X - b((u' + \/iu) — S(x,y,r,t))b(u) dmy, (T(z,y,r))du’
wX er

t—+00

ke 1w \me ]

/6\,6_[(“) 9
=) (myl,(0))" = ERTVEU AN (A.5)

|me‘ Z€E3r

Rearranging and integrating (A.5) with respect to u € ker ), we obtain

Ky / e 1w gy
ker ¢

:M/k T /korw/xw b(( + Vi) — 8(w, .1 1)

|me | erqp L0
b(u') dmpy, (T (z,y,r)) du’ du
(A.6)
Next, we explain how to move the limit in (A.6) outside of the integral. By
Theorem A.2, there exists a constant D := Dy (¢, ¢) > 0 such that for all
(t,u) € [1,00) x ker), we have

r—

7 / / b((u' + Vitu) — §(z,y, 7, £))b(u) dmx, (T(z,y, 7)) du' du
kery J Ay,

< De~2tv+vaull V= (tvvEuv)) (A7)

t

Note that for ¢t > 1,

JullZIvIZ = (u,v)3
v+ Viul ||Vl — (v + Viu, V). = T -

ulZlIvIE = (u,v)2

7 20IE A+ (lullslivile + (us v)e)

A8)
Define the function f : ker — [0, 00) by
ruy = — BBV G
20vIIZ + llulllvlle + u, v)
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Then combining (A.7) and (A.8), for all (¢,u) € [1,00) x ker ¢, we have

b((u' + \/iu) — 8(z,y,r,t))b(u) dmy, (T(x,y, 7)) du’ du

ker ¢ J Xy,

< De W (A9)

Moreover, we observe that e=2f(") ¢ Ll(ker1)) since for all u € kere \ {0},
we have

2ol2 2

IO [l = ()

avoo A [ullslvile 4 (u, v)

> 0.

Then by (A.9), we can apply the Lebesgue dominated convergence theorem
in (A.7), followed by the change of variables % = v/tu, Fubini’s theorem and
integrating using [, " b(u") du’ =1 twice to conclude that

I@’V/ e~ 1) gy
ker v
M : M)
:[ r] / / / (W + Vtu) — 3(z,y,7,1))
|me‘ t—+00 ker ) Jker J Xy,

b(u') dmy, (T(z,y,r)) du' du,

:[M Mr] lim / / / ((u' +a) — 3(x,y,r,t))
‘m?ﬁ/‘ t=400 Jiery Xy Jker

b(u') didmy, (T(z,y,r)) du’

— []\|4 Mr] th? / / dew(F(x,yjr))du/
7n&¢ T Jkeryp J Xy
= [M : My)].
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