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We observe the transient formation of a ringed pattern state during spin up of an evaporating fluid on a

time scale of order a few Ekman spin up times. The ringed state is probed using infrared thermometry and

particle image velocimetry and it is demonstrated to be a consequence of the transient balance between

Coriolis and viscous forces which dominate inertia, each of which are extracted from the measured

velocity field. The breakdown of the ringed state is quantified in terms of the antiphasing of these force

components which drives a Kelvin-Helmholtz instability and we show that the resulting vortex grid

spacing scales with the ring wavelength. This is the fundamental route to quasi-two-dimensional turbulent

vortex flow and thus may have implications in astrophysics and geophysics wherein rotating convection is

ubiquitous.
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The impulsive rotation, or change in angular velocity�,
of bounded fluid described by the Navier-Stokes equations
results in the propagation of stresses into the interior.
Despite the ubiquity of the process, it remains sufficiently
complex to insure its centrality as a long standing and
fundamental problem in fluid mechanics [1,2]. Fluids are
often heated or cooled at their bounding surfaces and
whether they are homogeneous or stratified, there are
common conundrums that influence a range of disciplines
from astrogeophysical flows to engineering phenomena
(e.g., [3–8]). Here, we examine pattern formation during
transient spin up experiments where buoyancy forcing is
supplied by evaporative cooling from the top surface of a
layer of water of depth H that is probed using infrared
thermometry and particle imaging velocimetry (PIV). It is
found that this localized surface cooling drives convection
that evolves into a radially symmetric ringed, or ‘‘bulls-
eye’’, pattern near the free surface [Fig. 1(b)] itself decay-
ing vertically creating a ‘‘bowl’’ shaped region (Fig. 5). We
extract velocity fields to uncover the origin of the transient,
symmetric and depth-dependent ring pattern. It is demon-
strated that this results from a temporary balance between
the Coriolis and viscous forces which dominate inertia

during an Ekman spin up time �E � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2=��

p
of order

unity, where � is the kinematic viscosity. Finally, we find
that beyond this transient state, the ring pattern breaks
down to the canonical quasi-two-dimensional vortex grid
state [9,10] in a manner reminiscent of a Kelvin-Helmholtz
instability [Fig. 1(c)]. It is found that the number density of
vortex coresN is inversely proportional to the square of the
ring wavelength �, itself decreasing with �.

The patterns that emerge in rotating convection display
the competition between Coriolis and viscous forces across
a range of space and time scales (e.g., [5,8]). A signature

process in rotating convection contrasts the implications of
Taylor-Proudman theorem, which forbids vertical motion
for an inviscid constant density rotating fluid, with the
buoyancy forcing, which can drive narrow regions of

FIG. 1 (color online). A sequence of particle-number-density
images showing the flow field at a horizontal level 0.6 cm below
the free surface of a volume of water H ¼ 11:4 cm deep with a
22:9� 22:9 cm cross section. Unless otherwise specified dimen-
sionless time is t � t0=�E, with time ¼ t0. (a) t ¼ 0 just before
the initiation of rotation. (b) t ¼ 2:6, the flow field was axisym-
metric consisting of regular concentric rings. (c) t ¼ 3:9, wavy
billows appeared upon the breakdown of the rings. (d) t ¼ 5:0
the vortex grid state. In this experiment Ro ¼ 1:4� 10�3 and
�E ¼ 167 s. The movie is in the supplementary material [20].
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weak convection in fluids with finite viscosity. Thus, the
formation of vortices or sheets in the interior of a rotating
fluid subject to buoyancy forcing can be characterized by
the flux Rayleigh number Ra describing the strength of
buoyancy transfer in the fluid, the Rossby number Ro
capturing the relative influence of buoyancy forcing to
rotation and the Taylor number Ta characterizing the rela-
tive influence of rotation to viscous forces:

Ra ¼ BH4

�2�
; Ro ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B

�3H2

s
; Ta ¼

�
2�H2

�

�
2
;

(1)

where B is the buoyancy flux and � is the thermal diffu-
sivity of the fluid (in our case water). It is well known that
in rotating and nonrotating convection (e.g., [8]) the criti-
cal Rayleigh number (Rac) for the onset of convection
depends on the nature of the thermal boundary conditions
(fixed temperature, fixed flux, or mixed) and that in the
former case whether both bounding surfaces are free, rigid
or one is free and one is rigid; Rac converges to a large

Taylor number scaling of Rac ! constTa2=3 [8]. Far be-
yond critical, a particularly compelling example of con-
vective pattern formation is the transient ring state
observed during spin up. The present study, in combination
with previous work [9,10], confirms that this transient
state, and its breakdown into a vortex grid is generic in
that it occurs under all thermal and mechanical boundary
conditions described above, as well as in both cylindrical
and square cross-section cells. Our method quantifies the
underlying causes for the evolution of the entire process.

The square cross-section cell containing deionized water
initially at rest is set into rotation about its vertical central
axis to values of� from 0.1 to 1:0 rad s�1. The bottom and
side walls are insulated and maintained at the same tem-
perature Tw ¼ 30� 0:1 �C and the relative humidity
above the fluid is held constant at 35%� 1% during the
course of an experiment. Thus, evaporation induced a
constant heat flux Q ¼ 56:0 Wm�2 driving a buoyancy
flux B ¼ 3:7� 10�8 m2 s�3, so that Ra ¼ 3:3� 108 �
Rac, 5� 10�4 � Ro � 10�2, and 2� 107 � Ta � 1:4�
109, thereby insuring a rotationally dominated regime of
flow.

The number density of seed particles in the flow is
captured using a grid-based PIV system [11] to image the
flow structure as a function of time. The velocity data were
calculated in a 1000� 1000 grid with a spatial resolution
of 0:2 mm=pixel. For � ¼ 0, Fig. 1(a) shows a random
network of thin sheetlike downwelling cold streamers typi-
cal of evaporatively induced turbulent convection [12].
Shortly after rotation begins, these downwelling plume
structures are sharply modified and organized into concen-
tric rings. The rings form first at the center, then sequen-
tially grow to cover most of the horizontal plane by t ¼ 2:6
rotating counterclockwise with uniform azimuthal velocity
in a quasistationary state [Fig. 1(b)]. Kelvin-Helmholtz
billows appear on the rings at t ¼ 3:9, grow and roll up

into counterclockwise vortices [Fig. 1(c)]. Finally, at t ¼
5:0, the azimuthal symmetry of these vortices is lost as they
assemble into the regular vortex grid seen in Fig. 1(d). At
this stage we imaged the vertical fields to find classical
rotating convective columnar structure [9,13–17].
Infrared thermometry confirms the hypothesis that the

basic dynamics of ring formation and breakdown is the
same with free surface evaporative cooling and bottom
heating [9], Rayleigh-Bénard [10] boundary conditions,
and free surface evaporative cooling with insulated bot-
tom boundary conditions as studied here. The surface
temperature maps (Fig. 2) reveal the full evolution of
the thermal forcing and associated pattern formation, and
a positive correlation between thermal fluctuations and
vertical velocity [18,19]. The evolution of the patterns
seen in Fig. 2(a)–2(d) are to be compared with those in
Fig. 1(a)–1(d). Although these are two separate runs, the
evolution is essentially the same; the overall temperature
drop from the wall to the center is �T � 2:0 �C and is the
same at different stages of spin up. Thewidth of the vertical
thermal boundary layer at the wall is �T � 10 mm, evolv-
ing slowly in time.
Figure 2(b) is the map for the maximal ring structure

having a radial temperature amplitude of oscillation �T ¼
0:2 �C ¼ 0:1�T and a minimal �T . The radial oscillation
between descending (dark) and ascending (light) fluid is
clearly seen, finally merging with the thermal boundary
layers at the walls. When the Kelvin-Helmholtz instability
is initiated in Fig. 2(c) the ringed-shape thermal plumes
break down into vortices, the centers of which contain
sinking fluid.
Because the flow is rotationally dominated we complete

our analysis by considering the azimuthal component of
the momentum equation in a corotating reference frame in

FIG. 2 (color online). Thermal images of the surface taken at
four stages during the spin up process. In the experiment Ro ¼
5� 10�4, the rotation period is 5.5 s and hence �E ¼ 119 s. The
images were taken at (a) t ¼ 0, (b) t ¼ 2:9, (c) t ¼ 3:7,
(d) t ¼ 8:7. The color bar is the temperature scale in �C.
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cylindrical-polar coordinates,

@u�
@t

þ ½ð ~u 	 rÞ ~u
� ¼ ½�r2 ~u
� � 2½�� ~u
�; (2)

where ~u ¼ ður; u�Þ describes the radial and azimuthal ve-

locity components and ½ ~A
� denotes the azimuthal compo-

nent of ~A. We nondimensionalize using the Ekman length

LE ¼ ffiffiffiffiffiffiffiffiffiffi
�=�

p
, and �E to extract the Coriolis (fc), viscous

(f�), and inertial (fi) forces per unit mass from the PIV
velocity fields by integration of each term of Eq. (2) over
� ¼ ð0; 2�Þ. The areal averaged forces per unit mass for a
component fj are defined as

hjfjji ¼ 2

r2m

Z r¼rm

r¼0
jfjjrdr; (3)

from the ring center (r ¼ 0) to the maximum radius
(r ¼ rm).

The time evolution of hjfcji, hjf�ji and hjfiji [Fig. 3(a)]
shows that upon spin up the fluid inertia hjfiji decreases
most rapidly and hjfcji converges with hjf�ji as the ring
state begins to appear at the center. Most striking is the
abrupt appearance of the ring pattern which fills the cell
surface at t ¼ t1 and then breaks down at t ¼ t2 (vertical

dashed lines). Hence, the dissection of the velocity field
shows that the origin of the transient ring state is that
during t1 � t � t2, hjfcji ¼ hjf�ji � 10hjfiji; the Coriolis
force balances the viscous force both of which dominate
inertia.
Figures 3(b) and 3(c) display the radial dependence of fc

and f� at 3 times and their correlation function

CðtÞ�
Rr¼rm
r¼0 ðfc�hfciÞðfv�hfviÞrdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½Rr¼rm
r¼0 ðfc�hfciÞ2rdr
½

Rr¼rm
r¼0 ðfv�hfviÞ2rdr


q ;

(4)

as a function of time, where the hfji are defined by Eq. (3)

but without taking the absolute value. Thus, the maximal
ring pattern of Fig. 1(b) appears as a maximum in CðtÞ at
t ¼ t1 when fc ¼ f� and they are in phase as seen in the
middle panel of Fig. 3(b). That the ring pattern breaks
down at t ¼ t2 through a Kelvin-Helmholtz instability is
demonstrated by the abrupt drop in CðtÞ signaling the loss
of phase between fc and f� at t ¼ 3:1 and the beginning of
rotational dominance in the horizontal force balance driv-
ing shear and vortex formation.

FIG. 3 (color online). Fluid accelerations measured in an ex-
periment with Ro ¼ 1:4� 10�3. (a) Averaged accelerations as
function of time. Black curve: hjfiji; blue curve: hjfcji; and red
curve: hjf�ji. The vertical dashed lines delineate when the ringed
structure is maximal, t ¼ t1 ¼ 2:6, and when the rings started to
break down t ¼ t2 ¼ 3:1. The inset focuses on t1 � t � t2.
(b) Fluid accelerations as functions of the radial distance at three
stages. Blue curve: fc; red curve: f�. (c) Correlation function
CðtÞ between fc and f� as a function of time. Vertical bars
denote fluctuation amplitudes.

FIG. 4 (color online). Flow structures revealed by the thermal
images for different Ro. From (a) to (f) Ro ¼ 1:2� 10�2, 4:0�
10�3, 2:2� 10�3, 1:4� 10�3, 7:6� 10�4 and 5:0� 10�4 re-
spectively. With the exception of (a) the image was taken when
the ringed structure was maximal. Image (b) is taken at the
threshold value Roc for ring formation.
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The temperature maps in Fig. 4 show the flow pattern at
different Rossby numbers when the ringed structure is
maximal. The ring wavelength � decreases with increasing
� and there is a clear threshold Rossby number, here
Roc ¼ 4:0� 10�3, above which the ring patterns are ab-
sent [Fig. 4(a)]. Indeed, for small � horizontal motion is
too weak to suppress vertical thermal convection; the flow
resembles the � ¼ 0 case of Fig. 2(a). When t � t2 the
ringed pattern evolves into a regular vortex grid. After spin
up we systematically varied� and measured the number of
vortices per unit area N, and the mean � at t ¼ t1. The
average spacing between the rings [Fig. 1(b)] is related
to the mean distance between adjacent vortex cores

[Fig. 1(d)] according to � ¼ C=
ffiffiffiffi
N

p
, with a best fit of C ¼

0:605� 0:015.
Finally, to demonstrate the vertical extent of the ringed

state we present the flow pattern simultaneously at differ-
ent horizontal levels at time t ¼ t2 just when the surface
pattern begins to break down (Fig. 5). Here we see the bowl
structure of the ringed pattern with the central ring dis-
appearing beyond a depth of z ¼ 3

4H below the surface

[Fig. 5(d)]. Because of the finite lifetime of the rings,
forming at the center and moving radially outward, the
depth of fluid penetration necessarily decreases with
radius.

In summary, we have used a combination of PIV and
infrared thermometry to quantify the evolution of an evap-
oratively driven convecting spin up system. We find that,
beginning at 2:6�E, a balance of Coriolis and viscous
forces dominating over inertia leads to a transient concen-
tric ringed convection pattern with radial sheets of down-
welling and upwelling fluid. When these dominant forces

lose phase coherence, the sheets break down into a vortex
grid typical of quasigeostrophic turbulence. Moreover, the
ring spacing and the vortex core spacing after ring break-
down obey a simple scaling relation. Our methodology
demonstrates the generality of the ringed pattern state.
As a practical matter, the great sensitivity found here of
convection driven by evaporation under room temperature
conditions suggests that many experiments with an ex-
posed upper surface will display unintended dynamical
effects. Finally, we determined the critical Rossby number
for the existence of a ringed state and this suggests possible
implications for both astrophysical and geophysical con-
vection wherein rotating convection is ubiquitous.
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