PHYSICAL REVIEW A

VOLUME 46, NUMBER 10

Singular behavior of the neutral modes during directional solidification

J. S. Wettlaufer
Applied Physics Laboratory, HN-10, University of Washington, Seattle, Washington 98105
(Received 22 March 1991; revised manuscript received 17 June 1992)

We study the geometric behavior of the neutral modes of the linearized equations from four
directional-solidification models in terms of singularity theory. These equations admit well-known
diffusive or Mullins-Sekerka instabilities. For a range of solidification velocity V, <V <V,, a planar
solidification front is linearly unstable to a range of disturbances. The standard neutral curve in linear
theory exhibits weak wavelength selection for ¥ near V.. An equivalence transformation of the neutral-
stability relation of the nonsymmetric model distinguishes the basic geometric behavior of this system.
The neutral-stability relation is an unfolding of a cubic cuspoid normal form. The solution space of this
system is a cusp manifold, generated by families of neutral curves each forming a path in the manifold.
This manifold connects two unfolding theories, allowing us to show the sense in which ¥V, and V,
parametrize degenerate singular points and to show that these points are structurally unstable as critical
points. We show that wavelength selection is enhanced in the neutral curves of the transformed system,
and that the singularity set of the manifold demarcates stability regions solely in terms of control vari-
ables. A particular neutral curve will be open or closed depending on how its path crosses the singulari-
ty set, and the system will not admit hysteresis. The weak wavelength selection is due not only to the
thermophysical or control parameters of the material, but to the singular behavior that is intrinsic to the
formulation. We show that four solidification models possess cubic normal forms, and that asymptotic
limits reveal two different normal forms. The main goal is to point out the geometric structure of a mod-
el, and to show how one can distinguish different solidification formulations and asymptotic limits, using
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simple geometric criteria.

PACS number(s): 81.10.Dn, 81.30.Fb, 47.20.Hw, 47.20.Ky

I. INTRODUCTION

The directional-solidification system [1] is used in a
number of forms to examine the unidirectional
solidification of binary alloys, and has been studied be-
cause of its wide practical interest and intrinsic
mathematical behavior. The alloy is pulled with a con-
stant speed V through an imposed thermal field, and a
mean position is established at which the planar solid-
liquid interface is located. A phase boundary will remain
planar if the stabilizing influences of the thermal fields
and surface tension suppress the destabilizing effects of
solute rejection at the interface {2,3]. This state can be
maintained for growth velocities ¥V less than a critical ve-
locity V, or above a velocity V,. When V=V, there is a
bifurcation to a cellular phase boundary. The physics of
this process is generic, in that any pure solid that is soli-
difying from a binary melt has an unstable phase bound-
ary for growth velocities above the threshold V,, where
the solute diffusion process is too slow to remove local
solutal undercooling. The classical analysis of Mullins
and Sekerka [2] identified these limits for an alloy solidi-
fying in a constant temperature gradient.

We consider solidification in which the system is
infinite in the direction perpendicular to the mean motion
of the interface. Therefore, the system width is not a
control parameter, as is commonly the case [4,6]. The
stability of the system is examined by introducing an in-
terfacial disturbance of the form exp(ot +iax), where o
is the complex growth rate, and a is a wave number in the
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direction x, perpendicular to the mean growth direction.
Initially we focus on the thermally nonsymmetric
(thermal conductivities of both phases differ), chemically
one-sided (solute diffusion in the solid is negligible) mod-
el. This distinction is important, since analyses of sym-
metric models are not readily comparable to one-sided
models [5]. In thermally symmetric, zero-latent-heat
models (e.g., [3]) interfacial disturbances do not induce
disturbances in the thermal fields; the temperature gra-
dient across the entire solid-liquid system is constant.
Here, the effect of the latent heat liberated at the inter-
face is accounted for, and convective transport of heat or
solute is proscribed (Fig. 1). The length and time scales
are based on the solute diffusion scales D /¥ and D /V?,
respectively, where D is the solute diffusivity in the
liquid. The advantage of this scaling is that standard di-
mensionless control parameters M, the morphological
number, which is a measure of the degree of constitution-
al undercooling, and I', the surface-tension parameter,
will result when the thermal and solute fields are suitably
scaled. A disadvantage is that both control parameters
depend on the planar growth velocity ¥ and the far-field
solute concentration C_. By weak wavelength selection
for a system [6], it is meant that V,, for the onset of insta-
bility, depends weakly on the disturbance wavelength.
This is one of the difficulties in comparing the standard
theory [1-3] with experiment, and results in a strong in-
teraction between short- and long-wave disturbances
above V, [6]. The absence of horizontal boundary condi-

Cc
tions results in normal modes that depend continuously
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FIG. 1. Schematic of the solidification system in which the
phase boundary is moving downward into the liquid. The
steady-state thermal T;, and concentration C, fields are
represented, and there are no horizontal boundaries.

on wave number, which may to some extent result in this
selection mechanism. Constraining the horizontal di-
mension results in a discretized spectrum, limiting mode
interaction [4,6]. When the system width is used as an
additional control parameter, the dimensionality of the
problem is effectively increased.

Linear theory provides a characteristic equation relat-
ing the disturbance growth rate o to wavelength, mean
growth  velocity, and other control variables:
F(o,a,M(V,C_),I'(V,C_), controls). For direct steady
modes, setting ¢ =0 demarcates between stability and in-
stability, the boundary being defined by a neutral stability
relation g(a,M,T,controls)=F(o0=0,,,,). Solving the
bifurcation problem for g allows the construction of two
neutral curves that are of particular interest: V(C ) and
V(A), where A is the dimensional wavelength of the dis-
turbance.

A particular coordinate transformation on g yields a
more useful function of control parameters f(x,a,f),
where x represents wave number and a and 3 represent
the controls. The solution space of the system is a cusp
manifold, generated by families of neutral curves f, each
forming a path in the manifold. We view f as a one-
parameter unfolding (Sec. III) of a cuspoid normal form
N =x"™, m =3. The cusp manifold is defined by f,, a
two-parameter unfolding of N. This manifold connects
two unfolding theories, allowing us to show the sense in
which ¥, and V, parametrize degenerate singular points,
and that these points are structurally unstable as critical
points. We find that the manner in which a path inter-
sects the bifurcation set of f, determines the structure of
a neutral curve, and that steady solutions admit no hys-
teresis. At neutral stability, we find that three other
solidification models are represented by unfoldings of a
cubic normal form, and that in certain short- and long-
wave asymptotic limits, the normal form is either a quad-
ratic or quartic cuspoid. By comparing the nonsym-
metric model to one based on different length and time
scales, we find that the flatness of the neutral curve is due
to both the control parameters thermophysical properties
of the material and the intrinsic structure of the normal
form. Thus we view the standard neutral curves in a
different manner, one which has basic geometric
significance.
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In the next section a Mullins-Sekerka instability for
this system is formulated, and we draw a standard neutral
curve V(A). In Sec. III we examine the cusp manifold
determined from f,=0, and a path of f. We show the
condition that dictates the closedness of the neutral
curve, and that ¥, and V, parametrize degenerate critical
points that are unstable as critical points. We present the
geometric  criteria  that  distinguishes  between
solidification formulations and their asymptotic limits.
We point out the origin of the wavelength selection prob-
lem and, in Appendix A, we show the link between two
unfolding theories in the case of one state variable. The
results apply to any binary alloy for which these
solidification models are valid.

II. FORMULATION

The system [1,2] is a continuum description of heat
and mass transfer, so the basic ingredients are the
diffusion fields through both phases. The reference frame
is attached to the solidification front which is moving
with a speed ¥V into the liquid (Fig. 1). The lengths and
times in the problem are scaled on the solute diffusion
scales z,x =(z',x")V/D and t=t'V?/D, where the
primed quantities have dimensions. The temperature T
and solute C scales are

_ Tl,,,S_T(I)
LS™ G*p/v
_Ck-c,
C(k—1C,

(1)

(2)

where the subscripts L,S denote the liquid and solid
phases, and T, is the reference temperature of the planar
interface. The dimensional temperatures T} g
=T;s—T, are measured relative to bulk melting tem-
perature T,, of the pure substance. These are related to
the scales from a thermally symmetric, zero latent heat
analysis [7], but here we include latent heat. The quanti-
ty G*=(2G; +LV /k;)/(1+n) is the average tempera-
ture gradient at the planar interface. The dimensional
temperature gradient in the liquid is G, the latent heat
per unit volume is L, and the ratio of the thermal conduc-
tivity of the solid to that of the liquid is n =k, /k;. The
far-field solute concentration is C,, and k is the segrega-
tion coefficient, giving the ratio of the solute in the solid
to that in the liquid. We consider k to be less than unity,
representing the low solubility of impurity in the solid.
Using the above scales, the dimensionless diffusion
fields obey the following two-dimensional equations and
boundary conditions. For the liquid, z > A (x, ),

V2T, =0, (3a)
V2C+C,=C, ; (3b)
for the solid, z < h (x,t),

V2Ts=0. (3¢)
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Atz =h(x,1),
T, =Ts=MC+MTh,_(1+h}) 32, 4)
I(1+h,)=n(Tg,—h, T )—(T;,—h T,,), (5)
(14+h)[1+C(k—1)]=C,—h, C, . (6)
In the far field,
T, —>T;y C—Cy asz— o0, (7)
Ts—Tgy as z—— o0 (8)

where the subscripts x,z,t denote partial differentiation.
Equations (3a) and (3c) represent the limit as D /k; and
D /kg approach zero, where «; (kg) is the thermal
diffusivity of the liquid (solid). Condition (4) is an impuri-
ty corrected Gibbs-Thomson relation. The latent heat
parameter appearing in condition (5) is /[ =LV /k,G*.
Far from the interface the influence of the deflection
h(x,t) on the diffusion fields will be negligible, so the
steady-state planar solutions T;, C,, and Ty, will ade-
quately describe them. The morphological number M
and surface tension parameter I' are the standard nondi-

|

_ a[MR(1+n)—Q2G, + (R +k)—a?MT(R +k)(1+n)]
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mensional parameters appearing in (4),
mG, mC (k—1)V
G*  DkG*
r— T,vakV

LDmC  (k—1) "’

in which m is the liquidus slope, taken from a locally
linear binary phase diagram. The steady-state solute gra-
dient at the interface is G., and y; is the solid-liquid in-
terfacial surface tension. It is important to recognize that
in this formulation the velocity dependence of M is also
implicitly represented in G*, which is not the case in a
model without latent heat. Equations (3)—(8) completely
describe the mathematical problem for the unknown
functions C, T, T, and h.

The basic states, which represent the planar interface,
are perturbed as z =h (x,t)=exp(ot +iax), and we keep
track of their temporal behavior. When solving the re-
sulting eigenvalue problem for the growth rate o using a
standard procedure (e.g., [1-3]), a characteristic equa-
tion, that is an implicit function of ¢ is obtained,

M= ) 9)

(10)

g = a
I(R+k)+Ma(l+n)

in which R =(1+a2+0)"/2—1 is a wave-number param-
eter. If Re(o)=0, then Im(o)=0, since there is an ex-
change of stabilities for the finite-latent-heat system [8].
When Re(o)>0 the planar interface loses stability to
nonoscillatory or direct disturbances, and when
Re(o) <0 it is stable. By setting 0 =0, we obtain the
condition that must be satisfied by the neutrally stable
modes,

R 1 k
R3+R¥1+k)+—= |[kT+——1|+——=0, 12
( ) r M MT (12)
= 2.00
10" E unstable
107
1A,
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FIG. 2. The dimensional ¥V (A) neutral-stability curve for an
H,0-NaCl system [10] with C,=0.035 wt.%, n=3.57,
k=0.3,G;,=3.57T Km !, y,=33 mJm % and L =3.06X10?
Jm 3. The planar interface is unstable interior to the curve.
The inset is the neutral curve near the critical velocity, V.(A,).

) (11)

[

where R =R (0 =0). This is the neutral function g re-
ferred to earlier, and can be transformed to the cubic ob-
tained by Coriell, McFadden, and Sekerka [9], who used
different temperature and solute field scalings. The locus
of points (R >0,M,T), for a given segregation coefficient
k, demarcates regions of stability from regions of instabil-
ity, since 0 =0 at every point satisfying Eq. (12).

We use Eq. (12) to draw a dimensional neutral stability
curve in the (V,A) plane, for the material parameters of
an H,0-NaCl system [10]. Figure 2 shows the entire neu-
tral curve, and the inset shows the bottom of the neutral
curve close to V.. Near the critical velocity, we see the
weak dependence of ¥ on A noted by other investigators,
e.g., [6,11]. There are short (due to surface tension) and
long (due to the finite interaction range of the solute field)
A cutoffs which bound the allowable scale of the interfa-
cial substructure.

III. SURFACE OF NEUTRAL STABILITY

We examine the neutral modes determined from Eq.
(12), and the analogous expressions from other models,
within the framework of singularity and catastrophe
theory [12,14,15]. The purpose is to obtain a geometric
interpretation of systems behavior, extending previous
discussions [9] of this result. In this section we will see
(a) the topological origin of the wavelength selection
problem within this system of equations; (b) that even in
physical systems in which weak wavelength selection is a
prominent feature of the linear analysis, the selection is
enhanced when transforming solutions into a different
neutral surface; (c) the sense in which ¥V, and V,
parametrize degenerate singular points, and that these
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points are structurally unstable as critical points; (d) that
the topological behavior is intrinsic to the formulation,
and independent of the physical scaling chosen; and (e)
that we can distinguish between different solidification
formulations and asymptotic regimes of the same system
by studying the number and nature of the critical points.

A. Relation to cubic cuspoids

A bifurcation diagram is defined by the set (x,£,) that
satisfies a scalar equation of the form g(x,&§,)=0, in
which x is the unknown state variable, and & is the bifur-
cation parameter. Singularity theory [12] deals with the
conditions under which two such equations and their bi-
furcation diagrams are qualitatively similar. Appendix A
outlines these conditions. Typically, the state variable
will represent the solution amplitude of a set of
differential equations put in one-to-one correspondence
with the above scalar system via Liapunov-Schmidt
reduction. Locally, this procedure puts the solutions to a
system of n equations (n can be infinite) in one-to-one
correspondence with the solutions of a k-parameter fami-
ly of bifurcation problems, g(x,§)=0, where
E=(&y - .., E&x). Generally, we think of &, as the bifurca-
tion parameter, and &, ...,&; as auxiliary parameters.
For the thermally symmetric system, placed in a small
periodic box, Haug [4] investigated the variation of the
disturbance amplitudes with bifurcation parameter V, al-
lowing only single and two-mode bifurcations. He re-
stricted k and n to values near unity, and used symmetry
arguments to identify possible normal forms, but did not
show when they occur. Here, x represents wave number
rather than amplitude.

We can write Eq. (12) as

g =R3+pR*+¢qR +r=0, (13)

where the form of the coefficients can be obtained by in-
spection. g is a monotonically increasing function of R
for all k,M,I" when g >0, since p and r are always posi-
tive. [For the thermally symmetric system, a (k,M,I")
surface has been examined; first Ref. in [13]]. We remove
the quadratic term by performing the transformation
R =x —p /3, giving the bifurcation problem that defines
the neutral path mentioned above,

f=x*t+ax +B=0, (14)

where a and B depend on the underlying control parame-
ters V, C, Gy, k, etc. The qualitative features of the bi-
furcation problems for f and g do not change under this
equivalence transformation. The function f is a universal
unfolding (in the sense of contact equivalence [12]) of the
cubic cuspoid normal form N =x3, and has been studied
in the context of singularity and bifurcation theory [12].
It is necessary to consider two unfoldings of N: f as in
Eq. (14) and f,(x, 4, B), a two-parameter unfolding,

f,=x*+Ax +B =0, (15)

in which 4 and B are not slaved to one control parame-
ter, but can attain all control states accessible to the
solidification system. We define the bifurcation diagram
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FIG. 3. (a) The neutral surface F,; a two-parameter unfold-
ing (with respect to contact equivalence [12]) of the cuspoid nor-
mal form x3. (b) The projection 7 of the surface onto the con-
trol plane T'( A,B) where the cusp forms the bifurcation set S,
with right- and left-hand nappes S, and S,, respectively. Inside
the cusp there are three real solutions to f, =0, and outside
there is one.

F,={(x, A,B):f, =0} as the neutral surface since every-
where on the surface the base states are neutrally stable.
This surface is shown in Fig. 3(a).

The sheets of the surface illustrate the root structure of
(15). In Fig. 3(b) the points of F, are projected onto the
plane of control parameters 7( 4,B),

7 Fy—»T=(x, A,B)—~(A,B) .

The points that satisfy f,=9d,f,=0 are given by the
equation

D=443+27B*=0, (16)

defining the bifurcation set S of (15), where the tangent
plane to the neutral surface is perpendicular to the con-
trol plane [12,14]. So, the projections of the folds in F,
into T are the folds in T, defined by S. As (A4,B) pass
through S, into the interior of the cusp region [Fig. 3(b)],
the root structure of (15) changes from one real and two
complex conjugate roots, to three real roots. Two real
roots meet along S, and three real roots meet at the cusp
point 4 =B =0. Looking up in the x direction from a
point T( A',B’), one might see three layers of the surface
F,, or just one, corresponding to the number of points in
F, with control state (4',B’). f,=09,f,=0 along D =0,
so Eq. (16) generates a set of degenerate singular points
(12,14]. The qualitative nature of the system will change
only when the bifurcation set is crossed.

A useful treatment of the solidification system is to use
V as the bifurcation parameter, and fix auxiliary parame-
ters C,, k, etc. f(x,a,B) is a one-parameter unfolding of
N, where (a,8)C( A4, B) both depend on V. We define the
bifurcation diagram F ={(x,a,B):f =0} as the neutral
path since everywhere along this path the base states are
neutrally stable. Thus F, is a surface; 4 and B vary in-
dependently, and F is a subset of the surface that can be
formed using (a,B) in T(A4,B). Fis a closed set, deter-
mined by the range of growth velocity that is physically
accessible to a system with fixed auxiliary parameters, so
there are only a finite number of points where F meets S.
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The closedness of a neutral curve, defined by FNF,, de-
pends on this number. Since (a,B)C(A4,B), then
FNF,=F, so that in practice one focuses on F. For fixed
auxiliary parameters, F is the only path accessible to a
particular system. A slice of the fold region at constant x
will give the standard C (V) neutral curve. By varying
an auxiliary parameter, say C ., we can obtain a family of
paths F, in F,. Golubitsky and Schaeffer [12] prove that
the universal unfoldings of all bifurcation problems
G (x, A,B), in one state variable x, and of finite codimen-
sion, that satisfy G(x,0,0)=x> may be written as
parametrized families of paths through the cusp.

Now we investigate the qualitative behavior of this
solidification formulation by examining a path. The
physical controls are the values of a and B that can be ob-
tained by varying ¥V through the same range as in
Fig. 2. In Fig. 4, we show the neutral path of the
H,0-NaCl system from V<V, ,=(a>a,B>f.), to
V>V,=(a>a,,B<B,), in both the surface F, [Fig.
4(a)] and in the control plane T [Fig. 4(b)]. We can think
of the bifurcation diagram (here, a neutral curve) as what
is recovered by lifting the path in T to the cusp surface
F,. The path begins at (a>a,,3>f3,) on the right-hand
sheet where x <0, so the solutions are unphysical there.
At critical (a,8)=(a,,B.), the path jumps up to the
right-hand fold where the tangent plane is perpendicular
to the control plane. The upper fold in the pleated region
is the only fold of physical interest since x >p /3 is re-
quired for positive wave numbers. After passing through
the initial bifurcation point of the path (x_,a.,B.), the
roots split. If B<O0 in the pleated region, the neutral
curve would break since x <p /3 is not allowed. Finally,
as a—a, and B— 3, the roots coalesce at x =x_, closing
the neutral surface (and curve). The system restabilizes
when the path exits the pleated region through the right-

(a)

(b)

FIG. 4. (a) The neutral path F in the surface F,. The path
“begins” on the lower right-hand sheet of F, where the solu-
tions are unphysical. The path “jumps” up to the right-hand
fold [see (a)] or crosses the right-hand nappe of the bifurcation
set S| [see (b)] when (A4,B)=(a,,B,.), labeled by c. The system
stabilizes after exiting the cusp region [see (b)] at
(A,B)=(a,,B,), labeled by a. The shaded area is the region of
instability. The path is parametrized by the underlying bifurca-
tion parameter ¥V, and C,, is fixed at the value in Fig. 2. A neu-
tral curve is closed if the path F enters and exits S by crossing
S.
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hand nappe S, of the bifurcation set S, through which it
entered. Thus, if a neutral path enters the cusp region by
crossing through S, then in order for the neutral curve
to be closed it must exit through S,. The curve will be
open if the neutral path exits through S,. We can see
this by taking a slice of F, at constant 4 and moving B
through B =0 and S, as shown in path a of Fig. 5. The
path runs off on the upper left-hand sheet leaving a single
branch to the neutral curve. In this case, there is no re-
stabilization of the planar interface. Since unphysical
solutions exist on the lower fold, there is no hysteresis as-
sociated with the critical points. Two other paths and
their bifurcation diagrams are shown in Fig. 5. In path ¢
of Fig. 5 we see an island, or isola, of unphysical station-
ary states, unconnected to the physical branch. Isolas
have also been seen in the amplitude bifurcation diagrams
[4,11]. If the system were formulated in such a way that
only negative wave numbers were allowed, then a neutral
curve would be closed when the path entered and exited
through the left-hand nappe as shown in path ¢ of Fig. 5.

In the symmetric model of solidification [3], sufficiently
long wavelengths are unstable, resulting in an open neu-
tral curve. Here we see the geometric distinction (as op-
posited to those discussed in [5]) between the symmetric
and nonsymmetric formulations. The bifurcation at
(x.,a.,B,) is not equivalent to the pitchfork normal form
x3+ax=0(a <0), and cannot be considered as a pertur-
bation of the pitchfork since 5. >>0. Here, the neutral
path crosses the bifurcation set twice, resulting in a
closed neutral curve with two critical points. The curve
is closed because the same nappe of the bifurcation set is
crossed. We discuss the stability of the critical points in
the next section.

Near critical, the a-x neutral curve is relatively sharper
than the B-x neutral curve. In part, this behavior is due
to the velocity dependences of a and pS;
dla|/3V >0B/dV >>3M /3V. In Fig. 6 the |a|-x and B-x
neutral curves are superposed. Both curves are closed
since the path leaves the folded region by passing through
S,. Relative to the standard neutral curve close to the
critical velocity, the |a|-x curve exhibits strong wave-

[_,B (a)

- (b)
{ Ty
~ e { )
\\\ N~ —7
~
a b c

FIG. 5. (a) Three paths through the bifurcation set S in T and
(b) their associated bifurcation diagrams. The horizontal coor-
dinate is the underlying bifurcation parameter ¥V, and the
dashed lines refer to unphysical solutions. The direction of path
a is discussed in the text. The neutral curve is open for path a
and path c¢. Path b is similar to F.
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T
102
B o

FIG. 6. The |a|(x) (dotted line) and B(x) (solid line) neutral
curves from ( 4,B)=(a.,B.) to (A4,B)=(a,,B,). There is rela-
tively strong wavelength selection in the |a|(x) plane due to the
dependence on ¥, and B(x) resembles the standard curve near
the critical velocity.

length selection, and folds back over itself on this scale.
The B-x curve exhibits relatively weak wavelength selec-
tion near the critical velocity, and the curves are qualita-
tively similar for values of |a|,8<10°. The |a|-x curve is
more interesting close to the critical velocity because a is
changing very rapidly, but 8 undergoes very little change
for x ranging over more than two orders of magnitude.
Since || reaches a maximum after the critical value and
then turns around to approach a, [Fig. 4(b)], the critical
wave number is flanked by bands of unstable modes,
which are themselves flanked by upper and lower cutofTs.
The upper and lower cutoffs are the surface-tension and
finite-solute-diffusion-range stability limits, but the inter-
mediate bands are a result of the turnaround of «a, giving
a quartic structure to the curve. The relatively flat B-x
curve stems from the fact that the critical point occurs on
a part of the upper fold with small curvature. Together,
these curves display the topological origin of the weak
wavelength selection observed in a standard neutral
curve, and we return to this in Sec. III D.

B. Relation to quartic cuspoids

When there is only one state variable, the unfoldings of
normal forms in singularity theory are simply related to
those of catastrophe theory [12]. The theories differ in
the definition of the equivalence of two functions, but the
pictures generated are the same. We can think of F, as
the singularity set of a generating function
®(x,4,B)=1x*+(A4/2)x*+Bx, an unfolding (with
respect to right equivalence [12]) of the cuspoid
#(x)=1x* In the language of catastrophe theory ¢(x) is
the cusp catastrophe, whereas in singularity theory the
cusp catastrophe is the universal unfolding (in the sense
of contact equivalence [12]) of x* The catastrophe mani-
fold determined from 9, P =0 is identical to the surface
in Fig. 3. ¢(x) does not degenerate under perturbations
of either the generating function or the catastrophe mani-
fold [14,15], so we can focus on either, with no loss in
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(a)

(b)

(A3, Bg)

INZAN/A
\'/l (A4, By) \/I (As, Bs)

FIG. 7. (a) Five points (A4;,B;) in F. (b) The graph of
®(x, A,B), an unfolding (with respect to right equivalence [12])
of the cuspoid normal form x* for these five points. We are par-
ticularly interested in the structure of the critical points. Notice
(dashed circle) that at the points ( A,,B,) and (A44,B,), the
function @ has locally cubic inflections. These singularities cor-
respond to velocities V. and V,, and are structurally unstable as
critical points, and the equilibria of ® form the surface F, in
Fig. 3 (see text).

generality.

We ask what ®(x, 4,B) looks like for the five points
(A4;,B;)in T, shown in Fig. 7(a), and graph ®(x, 4, B) for
these points in Fig. 7(b). We are particularly interested in
the structure of the critical points. At 1, ® has one rela-
tive minimum. At 2, the critical point associated with
V., an inflection is created, accompanying the existing
relative minimum. Inside S, at 3, ® has two relative
minimum and a maximum. At 4, associated with V, the
right-hand minimum and maximum coalesce to form
another inflection. One relative minimum returns at 5.
Since the neutral states of the system exist on a manifold
that minimizes ®, we view ® as a potential. The minima
of @ correspond to stable equilibria, and the maxima and
inflections correspond to unstable equilibria.

The inflection points are locally cubic x> [dashed cir-
cles in Fig. 7(b)]. Consider point 2, associated with V.
In a standard experiment it is desirable to operate with
[1—V/V,<<1, so we investigate the stability of this
critical point with respect to disturbances in V. A pertur-
bation of x> by ex, where |€| <<1, can arise from small
variations in the mean solidification velocity 8V, due to
fluctuations in the experimental control temperatures.
Thus, when [1—V/V,| <<1, €=8 4 or 6B, where 6V >0
is equivalent to € <0, and 8§V <0 is equivalent to €>0.
When € >0 there are no critical points, corresponding to
the transition from 2 to 1. When € <0 there are two, a
minimum and a maximum, corresponding to a transition
from 2 to 3. The same argument can be applied to point
4, associated with V,. Therefore, the critical points of
the solidification system correspond to points of @ that
are structurally unstable as critical points; they degen-
erate into two critical points or zero. When the degree n
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increases, x " behaves worse in this respect [14]. For ex-
ample, if x* is perturbed by ex?, it either becomes a sin-
gle minimum € >0, or two minima and a maximum € <0.
However, x? is structurally stable against perturbations
by €. This is an important point if, for example, the neu-
tral function f, as in (14), is an unfolding of a quartic nor-
mal form. It is tempting to simply investigate the depen-
dence of the variable y = x? with control parameters (e.g.,
Eq. (4.5), third Ref. in [13]). One must proceed with cau-
tion, because it is possible that the generic stability be-
havior of the system will be lost, for example, masking
the singular behavior of a quartic with that of a quadra-
tic. Related examples are presented in the next section.

C. Relation to other models and asymptotic normal forms

Thermally symmetric or frozen-field models assume
that k; =kg, and that / =LV /k,G* <<1, the latter ap-
proximation being poor at high growth speeds [3]. In
this case, linear perturbation theory gives a neutral sur-
face that is an unfolding of a cubic normal form, with un-
folding parameters that depend differently on the bifurca-
tion parameter. Asymptotic behavior reveals several dis-
tinct normal forms.

Long-wave phenomena are of interest because they are
accompanied by long time scales, or slow modes of evolu-
tion. The long-wave limit has been examined in the abso-
lute stability and constitutional undercooling-small k re-
gions of parameter space of this system [13]. Riley and
Davis [13] review the former two analyses and examine
the long-wave behavior for small k, and large I', and for
small k near absolute stability, to exhaust the possibilities
for the frozen-field system in which solute is rejected
(k <1).

Near the critical velocity, Sivashinsky [13] defined a
small parameter e=1—M ~', and investigated the long-
wave behavior in the limit k <<a?<<1. This limit dic-
tates new length and time scales. When rescaling the
frozen-field equations, and performing linear stability
analysis, the resulting neutral surface is an unfolding of a
quartic normal form,

x*+c;xt+c,=0. (17)

This expression follows from Sivashinsky’s Eq. (20) [13],
where the c; are the unfolding parameters containing the
controls, and x is a wave number.

Near absolute stability, Brattkus and Davis [13] chose
€=k '—T as a small parameter, and investigated the
long-wave limit a’<<l~k. After rescaling the
solidification equations, linear stability analysis yielded a

neutral surface of the same form as Eq. (17) above, which
follows from their Eq. (4.5). We note that although the
nonlinear evolution equations developed in these two
long-wave limits behave differently, the unfolded normal
forms possess the same geometric structure. The unfold-
ing parameters c; are presented in Appendix B.

When applying the short-wave limit a?>>1>>k to Eq.
(12), for arbitrary values of other parameters, the neutral
surface is the unfolding

x2—ci+cy=0 (18)

of a codimension one normal form x?

simple bifurcation [12].

In a model of rapid solidification [7] with zero latent
heat, velocity dependent segregation and liquidus slope,
and linear attachment kinetics, linear perturbation theory
yields a neutral surface that is the unfolding of a cubic
normal form as in Eq. (14). One can derive this expres-
sion by choosing a wave number in Eq. 4.2(a) of [7(a)] or
Eq. 3.5(a) of [7(b)] that is related to R or x here (see Ap-
pendix B). In the former case let A;= —A,; in the latter
case, let A be the wave number, and remove the quadra-
tic terms when o =0. Asymptotic analysis of this system
will also reveal noncubic normal forms. As one might ex-
pect, purely chemical or thermal solidification systems re-
sult in different normal forms [3]. Therefore, we can dis-
tinguish between asymptotic limits of a given
solidification system, and between different formulations,
by the degree of the normal form, and the number of un-
folding parameters. This provides a classification based
on the number and nature of a systems critical points,
and allows one to ask, “When are two solidification sys-
tems, or asymptotic limits of a particular system, qualita-
tively similar?” At this point, we know that the thermal-
ly nonsymmetric finite latent heat system, the frozen-field
system, and one model for rapid solidification, have a
neutral surface that is a two parameter unfolding of a cu-
bic cuspoid normal form, and that particular long- and
short-wave limits have quartic and quadratic normal
forms. These are summarized in Table L.

—c, known as the

D. Wavelength selection

Weak wavelength selection is commonly explained as
the result of the small values of solid-liquid surface ten-
sion in the material systems studied [6]. Indeed typical
values of the capillary length y, /L (tabulated in [16]) are
of the order of a few angstroms, providing a cutoff for the
stabilization of short-wave disturbances. However, the
flatness of the neutral curve admits the interpretation

TABLE I. Unfolded normal forms for four solidification models and three asymptotic limits.

Model Asymptotic limit Unfolded normal form Codimension
Nonsymmetric Nonasymptotic x*+ Ax+B 2
Nonsymmetric Short-wave x*—ci+ch 1
Frozen field Nonasymptotic x3+ Ax +B 2
Frozen field Two-long-wave x*+ex?+c, 2
Rapid solidification Nonasymptotic x*+ 4x+B 2
Scaled on §,,5, Nonasymptotic x4+ Ax +B 2
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that disturbances that are smaller or larger than x. are
immeasurably more stable. Thus surface tension alone
provides no intuition for why, near ¥ =V_ short- and
long-wave dynamics will be so strongly coupled. Of
course, linear theory alone provides no information about
the dynamics of initially shallow cells, only the conditions
that are consistent with multiple scale interactions. The
point is that the cutoffs are disparate, not that surface
tension is small. We see this by interpreting the cubic un-
folding of Eq. (14) as follows.

Near the critical velocity, M ~1 and T'~10"° the
latter varying negligibly with V. Thus, M mimics V as
the bifurcation parameter near the critical velocity, and
we solve for M =M (x) in Eq. (14),

Mx)=——2XFF (19)
x°+A'x+B

where a',8' >0, |A’|,B'>>1, and 4'<0, and are provid-
ed in Appendix B. This form of the bifurcation diagram
reveals the structure of the standard neutral curve. The
long- and short-wave cutoffs appear when Eq. (19) blows
up at the two roots x;,x, >0 of the denominator. The
flatness is due to the fact that x, —x;>>1,and | 4’| >>1,
the magnitude of the latter being due to that of I ™!, We
can think of I'! as the product of two ratios,
L~ '=[(D/V)/(yy/L))(AT./T,,): the ratio of the
diffusion length to the capillary length, and the ratio of
the equilibrium temperature difference between the pla-
nar interface and the far field to the bulk melting temper-
ature of the planar pure solid. The size of this parameter
is indeed responsible for the flatness of the curve, howev-
er, its size is not solely due to the surface tension, which
is an intrinsic property of the material. In the materials
studied, the capillary length is essentially constant, ap-
proximately an angstrom, yet the value of I' ! at the crit-
ical velocity varies by more than six orders of magnitude
(see tables in [16]). This is because the diffusion length
and the temperature ratio vary by at least as much
among these materials. Thus, one might ascribe the flat-
ness of the neutral curve to the long solute diffusion
range. For I' ! < 10? wavelength selection improves sub-
stantially. When the nondimensionalization of the sys-
tem of equations changes, does this qualitative behavior
change?

In order to isolate the control parameters ¥ and C_,
Merchant and Davis [11] determined the two length and
time scales remaining in the problem. These scales are
8,=(yyT,,/LG;)'"* and §,=y,T,, /LG;D, where all
quantities are defined as previously, and the subscripts /,#
denote length and time. In order for both §, and 8, to be
independent of ¥, G; must be independent of V. This is
equivalent to the assumption that there is no curvature in
the liquid temperature field near the interface, which is
questionable at high solidification rates. When this as-
sumption is valid, these scales give rise to dimensionless
control variables V,,; and C,,; (the cursive variables in
[11]) that isolate the experimental controls ¥ and C,, un-
like M, T, and of course a and 3, which are combinations
of the former two. The neutral surface obtained [from
Eq. (2.4a) of [11]] in their formulation is also an unfolding
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of a cubic normal form as in Eq. (14). We expect this
since a change in the length and time scales should not
change the singular behavior of the eigenvalue problem
for the solidification system. This formulation exhibits
weak wavelength selection near the critical bifurcation
point [11], which is qualitatively similar to that exhibited
in the standard scales of Eq. (19). When transforming
into their variables M=V, ,C, ,(1+n)/(2+1,,V,.4)
and I'=V, ,/C, , in the limit of small V,,,;, an equation
for V,,(x) with the same structure as Eq. (19) is ob-
tained. In this case, it is the magnitude of C,,; that is re-
sponsible for the flatness of the curve. C,,; can be large
due to a small liquid temperature gradient, melting point,
segregation coefficient, and surface tension, or due to
large latent heat, solute concentration, or liquidus slope.
Two of these variables are true experimental controls.
The point is that while the selection problem is made
worse by the smallness of interfacial surface tension, it is
not entirely dependent on the material, or the scaling of
the solidification system. Rather, it is caused by the na-
ture of the singularity at the critical velocity, the magni-
tude of the linear coefficient of the cubic unfolding, and
other intrinsic properties of the formulation.

IV. DISCUSSION

We performed an equivalence transformation of the bi-
furcation problem for g to one that is an unfolding of a
cuspoid normal form N =x3. When viewed as a two-
parameter unfolding of N, the neutral surface is the fold-
ed cusp surface which arises in the study of a variety of
physical systems [12,14,15]. This is shown in Fig. 3. The
solution of the solidification problem is tantamount to
solving the bifurcation problem for the one-parameter
unfolding of N, Eq. (14), which results in a neutral path F
in the neutral surface F,. There are an infinite set of de-
generate points of the unfolding f,, which form the bifur-
cation set S defined by a semicubical parabola [Eq. (16)].
Along S the nature and number of the real solutions to
Eq. (15) change (Fig. 3). A neutral stability plane is
drawn in terms of control variables by projecting the sur-
face F, and FNF, onto the plane T( A4,B) (Fig. 4). We
showed that if the neutral path enters and exits the
right-hand nappe S, of the bifurcation set S, then the
neutral curve will be closed. The manner in which the
path F intersects S will determine the strength of the
wavelength selection. This depends on the sensitivity of
the unfolding parameters to the underlying control, and
on the degree m of the normal form. Examples of two
different open curves and a closed curve that result from
three paths through S are given in Fig. 5. By slicing
FNF,, we drew the |a|-x and B-x neutral curves, the
former being is relatively sharper close to the critical ve-
locity. These are shown in Fig. 6. While selection is
sharpened, this is merely a surgical bypass of the problem
since these are not strictly experimental controls.

We interpreted F, as the catastrophe manifold of a po-
tential function @, that is the universal unfolding (with
respect to right equivalence) of a quartic cuspoid.
Minimizing ® provides the equilibria that form a neutral
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surface the same as that in Fig. 3. The equilibria of ®
vary as the controls 4,B vary. For A,B such that
|1—V/V,| << 1, we found that, with respect to imperfec-
tions in ¥, the critical points ¥V, and V, are structurally
unstable as critical points.

Once the results of a linear theory are cast in the form
of Eq. (14), an entire rostrum of rich mathematical tools
is made available [12,14,15], simplifying studies of
different solidification models. The inclusion or exclusion
of L does not change the codimension of the unfolding.
Rather, only the dependence of the unfolding parameters
on the bifurcation parameter changes. In some asymp-
totic limits (Sec. III C), the relevant unfolding will be of a
different normal form, and the behavior of FNF, will be
replaced by new singular behavior. This suggests an in-
vestigation of new asymptotic theories using normal form
analysis. We have shown that four solidification models
have the same singular behavior, but that asymptotic lim-
its do not. The distinctions are cataloged in Table I.
Higher-order singularities may occur in models that have
not been studied here. The significance of thinking about
the problem in this manner is that the nature and number
of singularities characterize the topological structure of
the particular solidification system. As in the case of two
state variables [15], the anatomy of the problem can be
characterized by the singularities, and one can ask,
“When are two solidification systems similar?”’ The
answer depends on the codimension of the unfolding of
the cuspoid.

V. CONCLUSION

We have studied the qualitative behavior of the neutral
modes of four solidification models. By exploiting the
techniques of catastrophe, singularity, and bifurcation
theories, several interesting features of the equations are
observed.

(i) The steady modes of these models are described by a
cusp manifold that is an unfolding of a cubic normal
form. Certain short- and long-wave asymptotic limits of
the models are described by unfoldings of quadratic and
quartic normal forms. This bounds the number of criti-
cal points of the models between one and three.

(ii) The number and type of singularities is invariant to
scale changes, and the addition of a number of physical
features to the basic solidification model.

(iii) The cusp manifold can be derived as the singularity
set of a quartic normal form, in which the critical points
of the system are unstable to experimental imperfections.
In two long-wave limits the unfolding is quartic, suggest-
ing that slow mode behavior may be difficult to verify ex-
perimentally.

(iv) The initial bifurcation point occurs on a part of the
upper fold that has minimal curvature, exhibiting the to-
pological origin of weak wavelength selection. We find
that the flatness of the neutral curve is an artifact of the
material and control parameters and the normal form
characteristic of the formulation.

We point to the simplicity and limited number of
singular events as a diagnostic of the utility of the ap-
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proach. These methods equip us with simple criteria to
determine when two solidification formulations are simi-
lar. For example, it is known that direct comparisons of
the one-sided and symmetric formulations, lead to ambi-
guous conclusions [5]. Thinking of the problem topologi-
cally allows us to define the difference between formula-
tions, based on the degree of the cuspoid, and the codi-
mension of the unfolding. The suggestion is that two
models are fundamentally similar if the number and type
of their singularities do not differ. Therefore, complex
differences between results of various formulations can be
studied geometrically.
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APPENDIX A

We collect here the similarities between catastrophe,
singularity, and bifurcation theories that are relevant to
the problem as discussed in Sec. III. A complete discus-
sion can be found elsewhere [12]. For systems with n
state variables, the distinction between these theories is
clear; however, when n =1, they are similar.

In catastrophe theory one studies the structure of the
critical points of real valued functions f in E". In singu-
larity theory one studies the structure of the zeros of
mappings h: R"—R". In bifurcation theory one studies
the structure of the zeros of mappings g: R"XR—R",
which depend on a distinguished parameter. Since the
critical points of f are determined by finding the zeros of
the mapping A =V, and bifurcation problems g are just
one parameter families of mappings 4, the existence of a
relation between the theories should not be surprising
[12]. It is the notion of equivalence that sets the distinc-
tion.

The manner in which two functions are defined to be
equivalent differs as follows. In catastrophe theory, two
functions f, and f, in E* are right equivalent if there ex-
ists a difftomorphism germ X (x) with X(0)=0 and a
constant satisfying f(x)=f,(X(x))+const. In singu-
larity theory, two mappings h, and h, are contact
equivalent if there exists a difftomorphism germ X (x)
with X (0)=0 and a nonsingular n Xn matrix M (x), de-
pending smoothly on x such that &, (x)=M (x)h,(X (x)).
Contact equivalence for bifurcation problems is a one-
parameter version of the above.

While these differences exist, the structure of unfolding
theory is identical among the approaches. When there is
a single state variable n =1, the functions f become
f:R—R, and the mappings # become h:R—R. Given a
cuspoid normal form £x7, for some m, each function
f(x), of finite codimension, is right equivalent to it.
Similarly, each mapping h(x), of finite codimension, is
contact equivalent to this cuspoid. In addition, the un-
foldings in these categories are simply related as follows.
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The normal forms x™*! and x™, have codimension

m —1 in catastrophe and singularity theories, respective-
ly. A universal unfolding of x™ *! with respect to right
equivalence is

Gx,A)=x""14+4, _x" 1+~ +4,x. (Al

A universal unfolding of x™ with respect to contact
equivalence is

H(x,B)=x"+B, _,x™ *+ - +B,x+B,,

which, up to rescaling parameters, obtains upon
differentiation of the unfolding with respect to right
equivalence. The choice of m =3 connects G and H to ¢
and f, of Sec. III. The pictures of catastrophe theory,
determined from 3, G =0, are identical to those of singu-
larity theory, determined by solving H =0. So that for
the case of a single state variable and finite codimension,
the generating functions of catastrophe theory can be
unambiguously constructed from the mappings of singu-
larity theory.

(A2)

APPENDIX B

We record here the coefficients and the unfolding pa-
rameters of the various solidification models and asymp-
totic limits discussed in Sec. III, and summarized in
Table I. The coefficients that appear in Eq. (19) are

a'=r"1, (B1)
F_l
B'="5-(2k=1)>0 for k <0.5, (B2)
2
A'=k—F_‘————(k—;1) , (B3)
. k4l 2 ;
=(k-THEFL 4 2 g 41p,
B'=(k =T "=+ 5ok +1) (B4)

(i) The unfolding parameters of the nonsymmetric
model, as derived in Sec. II, can be obtained by inspec-
tion from Egs. (12) and (13).

(a) The nonsymmetric short-wave limit a?>>1>>k.
The unfolding parameters appearing in Eq. (18) and
Table I, with x =a, are

ci=T7"1 ¢j=Mr"!. (B5)

(ii) Although the characteristic equations of the
frozen-field and nonsymmetric models differ substantial-
ly, the unfolding parameters are identical in form. How-
ever, their functional dependence on the primary bifurca-
tion parameter V is different because in the frozen-field
model the liquid temperature gradient is independent of
V. [See the discussion following Eq. (10) and the form of
G* following Eq. (2).]
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(a) The frozen-field long-wave limit k <<a?<<l,
near the critical velocity [13]. The unfolding parameters
appearing in Eq. (17) and Table I, with x =a, are

¢, =T M1—-M71), ¢,=kI!. (B6)

(b) The frozen-field long-wave limit a?<<1~k, near
absolute stability [13]. The unfolding parameters appear-
ing in Eq. (17) and Table I, with x =a, are

kI —1 M~!
_— —_ X 7
ST k+1 &2 ®7

In the case of the cubic unfolding x3+ Ax +B, we

present the parameters p,q,r from the cubic
R3+pR?*+¢gR +r, where x —p /3=R, and
2
A =q—%, B=.L(2p3—9pq +27r) . (B8)

(iii) The nonasymptotic unfolding of the model of rapid
solidification [7] has unfolding parameters A4,B as in Eq.
(B8), with

p=2—k, (B9)
g=T ' [T1—k)—(M~'+k)], (B10)
r=C (k=DM '+k)—k], (B11)
where x —p/3=R, and R=—(i+a?)!?—1=A, of

[7(b)]. Here, k=k(v=1), where v=(1+h,)(1+h2)"/?
is the local interface speed and

kgm(1) kgm(1)
kg+B "’ 1+8 °
kg is the equilibrium segregation coefficient, k(v=0),
and B is an interfacial kinetics parameter as defined in [7].
In addition,
kpm(1)
kg+B’

E: ]’(\=

kgmi(1)

=

k=
where 771 (1) relates the equilibrium segregation coefficient
to k (v), at v=1, and its functional form is given in Ref.
(7).
(iv) The nonasymptotic unfolding of the model based
on length and time scales §; and §, [11] has unfolding pa-
rameters 4, B as in Eq. (B8), with

p=kV,q, (B12)
241,V a
q=m——-cdemd+V,f,d(k—l), (B13)
2414V ma
r=V,,|—————k—=—1+C,yV,u| > (B14)

(1+n)
where x —p /3=R =A, of [11),and R*—V, ;R =a>.
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FIG. 1. Schematic of the solidification system in which the

phase boundary is moving downward into the liquid. The

steady-state thermal T,, and concentration C, fields are
represented, and there are no horizontal boundaries.



(a)
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FIG. 4. (a) The neutral path F in the surface F,. The path
“begins” on the lower right-hand sheet of F, where the solu-
tions are unphysical. The path “jumps” up to the right-hand
fold [see (a)] or crosses the right-hand nappe of the bifurcation
set S| [see (b)] when ( 4,B)=(a,,f3.), labeled by c. The system
stabilizes after exiting the cusp region ([see (b)] at
(A,B)=(a,,B.), labeled by a. The shaded area is the region of
instability. The path is parametrized by the underlying bifurca-
tion parameter V, and C, is fixed at the value in Fig. 2. A neu-
tral curve is closed if the path F enters and exits S by crossing
Fi.
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FIG. 7. (a) Five points (A4;,B;) in F. (b) The graph of
®(x, A,B), an unfolding (with respect to right equivalence [12])
of the cuspoid normal form x* for these five points. We are par-
ticularly interested in the structure of the critical points. Notice
(dashed circle) that at the points (A4,,B,) and (A44,B;), the
function @ has locally cubic inflections. These singularities cor-
respond to velocities ¥, and V,, and are structurally unstable as
critical points, and the equilibria of ® form the surface F, in
Fig. 3 (see text).



