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Abstract: We address the process of discounting in random environments, which allows valuation of
the future in economic terms. We review several approaches to the problem regarding different well-
established stochastic market dynamics in the continuous-time context and include the Feynman–Kac
approach. We also review the relation between bond-pricing theory and discounting and introduce
both the market price of risk and the risk neutral measure from an intuitive point of view devoid of
excessive formalism. We provide the discount for each economic model and discuss their key results.
We finally present a summary of our previous empirical studies for several countries on the long-run
discount problem.
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1. Introduction

The introduction around three decades ago of the view and methods of statistical
physics into economics and finance signaled the appearance of a new interdisciplinary
aspect of physics, which is sometimes called “econophysics” [1–3]. The fact that financial
prices are random with sudden and uncontrollable ups and downs has been long-known;
however, the first step towards a systematic mathematical analysis of price randomness
was taken by Bachelier in 1900, who proposed a model for the market dynamics in which
the prices follow ordinary Brownian motion [4].

However, Bachelier’s model is not completely satisfactory because, in such a represen-
tation, prices can be either positive or negative, contradicting one of the most fundamental
tenets of economics, the “principle of limited liability”, which affirms that prices cannot
attain negative values. This limitation in Bachelier’s model was remedied more than six
decades later by Osborne [5] by assuming the geometric Brownian motion where prices are
described by the exponential of the ordinary Brownian motion and, hence, they can never
attain negative values.

Let us denote by S(t) a speculative price (or an economic index) at time t. In the
continuous time framework, the geometric Brownian motion assumes that

S(t) = S0ex(t), (1)

where S0 = S(t0) is the price at some initial time t0 and x(t), the so-called return, is
described by the ordinary Brownian motion, that is to say, by the stochastic differential
equation

dx(t) = mdt + σdW(t), (2)
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where W(t) is the standard Wiener process with zero mean and unit variance. Note that the
return is assumed to be a diffusion process with constant drift m and diffusion coefficient
σ. In this model, the return is a Gaussian process with the mean and variance given,
respectively, by m and σ2. The price is, hence, a log-normal process, and the geometric
Brownian motion is also called the log-normal model.

Despite the log-normal model being used in countless financial applications, it has
certain limitations [6], which have given rise to several generalizations. One of them
assumes that the return is a more complex diffusion process obeying a stochastic equation
of the form

dx(t) = f (x, t)dt + g(x, t)dW(t), (3)

which is interpreted in the sense of Itô. In this case, returns, and hence prices, are driven by
an external “force” and by multiplicative noise, which, in the most general case, depend
explicitly on the time and on the return level. Function f (x, t) drives prices, and function
g(x, t) modulates the intensity of the fluctuations around the deterministic motion set
by f (x, t). In any case, and regardless of the values taken by x(t), the prices given by
Equation (1) are always nonnegative, thus, keeping the principle of limited liability.

Another significant shortcoming of the geometric Brownian motion model is the
absence of both “fat tails” and skewness in the distribution of log-prices (i.e., returns).
Indeed, empirical distributions of log-prices not only show fat tails—meaning that extreme
losses and profits have a higher probability than those of the log-normal model—but also
an asymmetric shape in the sense that losses are usually more probable than profits [6]. In
order to address these and other problems, intense research has been prompted both in
mathematics and physics, which, among others, may involve the use of the Lévy process as
driving noise (instead of the Wiener process). One of the most popular alternative financial
models—proposed by Mandelbrot [7] and Fama [8] in the early 1960s—is provided by
substituting the Wiener process by the Lévy process, which can take into account the
appearance of fat tails in the probability distribution of prices, a widely accepted empirical
fact [6]. A major inconvenience of the non-Poissonian Lévy jump processes is, however,
their lack of finite moments apart from (at most) the first one, which does not seem to be
case in empirical data [6]. or models in which the variance σ2 (or the noise intensity g) is a
random process, such as in the so-called “stochastic volatility models” [9–11].

In economics and finance, one of the most consequential developments is that of
“discounting”, which essentially attempts to answer the crucial question of what the price
will be in the future. In other words, discounting weighs the future relative to the present.
Traditionally, the weighting procedure has been performed through a decreasing exponen-
tial. Thus, under a constant interest rate r, continuously compounded, a dollar invested
today at time t = 0 yields ert dollars at time t [12]; hence, one dollar in any future time t is
worth e−rt today. This statement is true under constant and fixed rates; however, in real life,
rates are random, and this uncertainty makes it completely unrealistic to represent rates
by constant quantities or even by deterministic functions of time, and, as a consequence,
random models for rates must be addressed.

The problem of discounting is widely known in finance where it has been thoroughly
studied closely related to bond pricing particularly over short periods of time [13]. Dis-
counting, particularly in the long run, is of importance not only in the context of finance but
to many other aspects of the global economy. For instance, we may consider the long-term
environmental planning, which is certainly sensitive in relation to climate action. Thus, in
an oversimplified way, an environmental problem, which costs X to fix at a time t is worth
an investment of e−rtX today.

This analysis assumes that the interest rate remains constant between today and the
distant future t. The rate r becomes a key magnitude to decide whether it becomes more
beneficial to take action today with a significant investment or whether the discount gives
negligible value to today’s investment. The choice of discount rate is perhaps the biggest
factor influencing the debate on the urgency of the response to global warming as it relates
today’s investments with potential climate-related losses in future [14]. No wonder that, in
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recent years, obtaining a long-run discount rate valid for decades ahead has been the object
of intense controversy.

Thus, Nicholas Stern, in an influential report commissioned by the UK government,
advocated for a long-run discount of 1.4% [15], which on a 100-year horizon implies a
present value of 25% (meaning that the future is worth 25% as much as the present). On
the other hand, Willian Nordhaus proposed a discount rate of 4% [16] (implying a present
value of 2%) and even the higher value of 6% [17], which implies a present value of 0.3%.
Stern has been widely criticized for using such a low rate [18–20], and the question is far
from being settled.

Economists present a variety of reasons for discounting, particularly for environmen-
tal problems in the long run. These reasons include, among others, ethical considera-
tions [21,22], impatience, economic growth [23] and arguments based on the maximization
of utility functions that are mostly chosen for mathematical convenience [24], all of them
ingrained in a phenomenological expression called the Ramsey formula [25], which consti-
tutes the standard approach to discounting in the economics literature (particularly in the
long-run) [14].

From an empirical point of view, any practical economist involved in environmental
debates might consider the average of historical interest rates, which occurred in the last
200 hundred years to estimate the forward discount rate (which is 2.7% in the less unstable
countries [26]) or take the average of Wall Street forward looking models, with price bonds
of maturity as long as 30 years. Unfortunately, due to historical fluctuations of real interest
rates, the appropriate rate is considerably below such averages [26].

In econophysics, the problem of discounting, despite its relevance, is virtually un-
known. The main purpose of this paper is to offer a survey of the problem devoid of
excessive formalism and abstraction as well as to review some of our recent work on the
problem [26–30]

2. The Process of Discounting—Fundamentals

Let us denote by M = M(t) a given quantity of wealth at time t. In economics, the
increment of M(t) is assumed to be proportional to the quantity itself and the duration
of the variation. For a continuous and instantaneous infinitesimal variation, this can be
written as

dM(t) ∝ M(t)dt. (4)

This starting phenomenological law is built on the empirical observation that the
larger M(t), the greater its variation at a given time along with the simpler assumption that
such a variation is linear in M(t) and not, for instance, quadratic.

2.1. Definitions and General Setting

We define the interest rate as the relative time derivative

r(t) ≡ 1
M(t)

dM(t)
dt

=
d ln M(t)

dt
, (5)

i.e., the rate is the time derivative of the logarithm of wealth. Let us incidentally note that
the linearity shown in Equation (4) is equivalent to assume that r(t) is independent of M(t).

In the simplest case, the law (4) represents a direct proportionality, that is to say, r(t) is
constant and and from (5), we see that

dM(t) = rM(t)dt, (6)

where r is the constant interest rate that has units of 1/(time) (wealth is assumed to be
dimensionless). By direct integration, we have the usual exponential law [12]

M(t) = er(t−t0)M(t0), (7)



Entropy 2022, 24, 496 4 of 31

which connects wealth at some time t0, for instance, today (which, without loss of generality,
we can take equal to zero) with wealth at some future time t > t0.

The growth law (6) appears in many branches of natural and social sciences. Thus, in
radioactivity, if N(t) represents the number of active nuclei at time t, the usual hypothesis
is that this number decreases as

dN(t) = −λN(t)dt.

where λ > 0 is the decay constant. Similar considerations apply to many other situations,
as in chemical reactions or population dynamics, to name a few.

As we mentioned above, discounting is the procedure of linking wealth at different
times. This is done through the discount function defined as

δ(t) ≡ M(0)
M(t)

, (8)

where M(0) is today’s wealth. In the case of constant rates, we see from Equation (7) that
this function is given by the decreasing exponential

δ(t) = e−rt. (9)

The assumption of constant rates is actually unrealistic. A first generalization would
be to assume that rates are known functions of time r = r(t). In such a case, the growth
law (6) would be given by

dM(t) = r(t)M(t)dt, (10)

which, after integrating, yields

δ(t) = exp
(
−
∫ t

0
r(t′)dt′

)
. (11)

However, the assumption of rates being given by constants or by deterministic func-
tions of time is unjustified, in particular over long periods of time. Financial interest rates
are typically described as random, as the many models for stochastic interest rates appear-
ing in the literature [13,31,32]. In other words, r(t) is a random function of time, and in
consequence the discount function δ(t) given by Equation (11) is a stochastic process. The
effective discount function is then defined as the average of δ(t),

D(t) = E
[

exp
(
−
∫ t

0
r(t′)dt′

)]
, (12)

taken over all possible realizations of r(t). The function r(t) can, in principle, be any
random process. However, the most natural and simplifying assumption is that rates are
Markovian processes with continuous paths—that is, they are diffusion processes [13]. This
approach was proposed after the success of taking an identical approach to model stock
prices with log-normal process in 1959 and contrasting with empirical data [5]. The first
interest rate model was proposed by O. Vasicek in 1977 [33] and during the same decade
when stochastic differential equations became crucial to obtain European option prices.
Therefore, rates are solutions to stochastic differential equations of the form

dr = f (r)dt + g(r)dW(t), (13)

where W(t) is the Wiener process and the stochastic differential equation is interpreted in
the sense of Itô. We assume that drift f (r) and noise term g(r) do not depend explicitly on
time, that is to say, the time dependence is only implicit through r = r(t), which means that
the interest rate process is time homogeneous and may be stationary [34]. This is certainly
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an idealization because real markets do not appear to be time-homogeneous, at least over
long periods of time [35].

On the other hand, explicit expressions for f (r) and g(r) should be proposed based
on characteristics obtained by actual data, which is observed to have a reversion toward
a mean value, and it is thus claimed to attain a stationary regime in contrast with, for
instance, stock market price evolution where no stationary behavior is observed. We return
to the comparison between models and empirical data in Section 4.

In order to obtain an operative expression for the effective discount function (12), we
define the additional random process

x(t) =
∫ t

0
r(t′)dt′. (14)

The interpretation of x(t) is apparent after substituting Equation (5) into Equation (14) and
integrating. We find

x(t) = ln
M(t)
M(0)

⇒ M(t) = M(0)ex(t),

which can be taken as an alternative definition of the accumulated return x(t).
Substituting Equation (14) into Equation (12), we see that the effective discount func-

tion can be written as
D(t) = E

[
e−x(t)

]
,

which implies that, in terms of the probability density function (PDF) p(x, r, t|r0) of the
bidimensional diffusion process (x(t), r(t)), we can write

D(t|r0) =
∫ ∞

−∞
dr
∫ ∞

−∞
e−x p(x, r, t|r0)dx, (15)

where we have included the dependence on the initial rate, r0 = r(0), in the discount
function D(t|r0).

From Equations (13) and (14), we see that the bidimensional process (x(t), r(t)) is
defined by the following pair of stochastic differential equations

dx = rdt,

dr = f (r)dt + g(r)dW(t). (16)

Therefore, the joint density obeys the (forward) Fokker–Planck equation (FPE) [34]

∂p
∂t

= −r
∂p
∂x
− ∂

∂r
[ f (r)p] +

1
2

∂2

∂r2 [g
2(r)p], (17)

with the initial condition
p(x, r, 0|r0) = δ(x)δ(r− r0). (18)

After solving the initial-value problem (17)—(18) and obtaining the joint PDF
p(x, r, t|r0), the discount function follows from Equation (15). There are, however, two
different approaches for achieving it. One of them, which is standard in the financial litera-
ture, is based on the backward Fokker–Planck equation, and this is called the Feynman–Kac
approach [13]. A second procedure is based on Fourier analysis [27]. We will explain both
approaches next.

2.2. The Feynman–Kac Approach

Using this method, one obtains a partial differential for the discount function D(t|r0),
which is based on the backward Fokker–Planck equation for the joint density p(x, r, t|r0).
In what follows, we assume that t0 6= 0 and denote x0 = x(t0). By definition, x0 = 0 (cf.
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Equation (14)). However, we temporally keep x0 6= 0 and set x0 = 0 at the end of the
calculation when needed.

The backward FPE for the PDF p(x, r, t|x0, r0, t0) that corresponds to the bidimensional
process (16) is [34]

∂p
∂t0

= −r0
∂p
∂x0
− f (r0)

∂p
∂r0
− 1

2
g2(r0)

∂2 p
∂r2

0
, (19)

with the final condition as t0 → t,

p(x, r, t|x0, r0, t) = δ(x− x0)δ(r− r0). (20)

Let us observe that the problem (19)—(20) is invariant under translations of both time
and x0. We thus define the new variables

t′ = t− t0, x′ = x− x0, (21)

so that
∂p
∂t0

= − ∂p
∂t′

,
∂p
∂x0

= − ∂p
∂x′

,

and Equation (19) reads

∂p
∂t′

= −r0
∂p
∂x′

+ f (r0)
∂p
∂r0

+
1
2

g2(r0)
∂2 p
∂r2

0
. (22)

Under this change of variables, we also have

p = p(x, r, t|x0, r0, t0) = p(x, r, t|x− x′, r0, t− t′) = p(x′, r, t′|r0),

where the last equality comes from the invariance under time and x translations, that is,

p(x, r, t|x0, r0, t0) = p(x− x0, r, t− t0|r0).

Consequently, the final condition (20) becomes the initial condition

p(x′, r, t′ = 0|r0) = δ(x′)δ(r− r0). (23)

Having set the backward FPE in the form given by Equation (22), we next obtain the
equation satisfied by the effective discount D(t|r0). To this end, we multiply Equation (22)
by e−x′ and integrate over x′ and r, we have

∂

∂t′

∫ ∞

−∞
dr
∫ ∞

−∞
e−x′ pdx′ = −r0

∫ ∞

−∞
dr
∫ ∞

−∞
e−x′ ∂p

∂x′
dx′

+

[
f (r0)

∂

∂r0
+

1
2

g2(r0)
∂2

∂r2
0

] ∫ ∞

−∞
dr
∫ ∞

−∞
e−x′ pdx′. (24)

From Equation (15), we see that∫ ∞

−∞
dr
∫ ∞

−∞
e−x′ p(x′, r, t′|r0)dx′ = D(t′|r0). (25)

On the other hand, integrating by parts, the first integral on the right hand side of
Equation (24) and using (25), we have∫ ∞

−∞
dr
∫ ∞

−∞
e−x′ ∂p

∂x′
dx′ =

∫ ∞

−∞
dr
∫ ∞

−∞
e−x′ p(x′, r, t′|r0)dx′ = D(t′|r0), (26)
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where we have considered the boundary condition (otherwise implicit in the definition of
D given in Equation (15))

lim
x′→±∞

[
e−x′ p(x′, r, t′|r0)

]
= 0.

Substituting Equations (25) and (26) into Equation (24) and setting t0 = 0, which
implies t′ = t [cf. Equation (21)], we finally obtain

∂D
∂t

= −r0D + f (r0)
∂D
∂r0

+
1
2

g2(r0)
∂2D
∂r2

0
, (27)

with the initial condition (cf. Equations (23) and (25))

D(0|r0) = 1. (28)

The method for obtaining the discount function D(t|r0) by solving the initial-value
problem (27)—(28) is called the Feynman–Kac approach, and Equation is (27) the Feynman–Kac
equation. In some applications (see, for instance, Section 3), it is convenient to consider
t0 6= 0 so that t′ = t− t0 6= t. In these cases, it is appropriate to denote D = D(t|r0, t0) and
the Feynman–Kac Equation (27) reads

∂D
∂t0

= r0D− f (r0)
∂D
∂r0
− 1

2
g2(r0)

∂2D
∂r2

0
, (29)

with the final condition D(t|r0, t) = 1.

2.3. The Fourier Transform Approach

An alternative method for obtaining the discount function is based on the joint charac-
teristic function—that is, on the Fourier transform of the joint density,

p̃(ω1, ω2, t|r0) =
∫ ∞

−∞
e−iω2rdr

∫ ∞

−∞
e−iω1x p(x, r, t|r0)dx. (30)

One of the chief advantages of working with the characteristic function is that obtaining
the effective discount is straightforward. Indeed, comparison of Equation (15),

D(t|r0) =
∫ ∞

−∞
dr
∫ ∞

−∞
e−x p(x, r, t|r0)dx,

with Equation (30) shows that

D(t|r0) = p̃
(
ω1 = −i, ω2 = 0, t|r0

)
. (31)

Therefore, in order to obtain the discount function, we only need to know the joint charac-
teristic function of the bidimensional process (x, r). The procedure is quite advantageous
in linear cases. In a forthcoming section, we will apply this approach to some standard
models of interest rates.

2.4. Adding Risk Aversion

As we will see in the next section, the process of discounting just described is very
closely related to an important problem in finance called bond pricing. In the context
of bond pricing, there can be two kinds of investors. For one hand, if investors are risk
neutral, then bond prices can be modeled based on the data generating measure p, which
is the solution of the Fokker–Planck Equation (17) with the initial condition (18). This is
sometimes called the Local Expectation Hypothesis (LEH) [36,37]. Nonetheless, a more general
assumption is that investors are sensitive to risk.

In such a case, bonds are somewhat more accurately priced using an artificial density
p∗ usually called a risk-neutral (or risk-correcting) probability measure. Both magnitudes,
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the data generating measure p and the risk-neutral measure p∗, are related through a
quantity that is denoted by q(r, t) and called market price of risk, which, as described in the
next section, is the extra return per unit of risk that investors demand to bear risk. This
additional return is thus determined by a function q = q(r, t) that, in its most general
form, may depend on the rate r and current time t, although the most usual assumption
is that q = q(r) only depends on the rate [33]. Following a standard procedure for bond
pricing [33,38], which we will present in Section 3, one takes risk into account by replacing
the drift f (r) by f ∗(r),

f (r)→ f ∗(r),

where
f ∗(r) = f (r) + g(r)q(r), (32)

and q(r) ≥ 0 is the market price of risk. The form of q(r) is, in principle, unknown and has
to be conjectured. The simplest and most common assumption is that q(r) = q is constant,
in such a case, the value of q may be more easily estimated from empirical data. Now, the
risk-neutral measure p∗(x, r, t|r0) is given by the Fokker–Planck Equation (17) with f (r)
replaced by f ∗(r); that is,

∂p∗

∂t
= −r

∂p∗

∂x
− ∂

∂r

[[
f (r) + g(r)q(r)

]
p∗
]
+

1
2

∂2

∂r2

[
g2(r)p∗

]
, (33)

with the initial condition given by

p∗(x, r, 0|r0) = δ(x)δ(r− r0). (34)

In an analogous way, the discount function adjusted for risk will now be given by the
Feynman–Kac Equation (27) with f (r) replaced by f ∗(r). Or, using the Fourier method,
the discount function will be given in terms of the risk-neutral characteristic function,
p̃∗(ω1, ω2, t|r0), by (cf. Equation (31))

D(t|r0) = p̃∗
(
ω1 = −i, ω2 = 0, t|r0

)
. (35)

3. Pricing Bonds—The Term Structure of Interest Rates

Pricing bonds is a traditional objective in finance and intimately related to the problem
of discounting. It constitutes a vast subject with countless studies, many of them rather
abstract, which have appeared in the mathematical finance literature over the last decades.
We present a short and intentionally simple, yet rigorous, introduction to the subject devoid
as much as possible of technicalities and mathematical subtleties and refer the interested
reader to more specialized works for further information [13].

A bond is a financial instrument that one purchases now and that provides a payment
in the future. From a more technical point of view, we say that a (discount) bond is a
default-free claim on a specified sum of money to be delivered at a given future date called
the maturity time. Such claims are bought and issued by investors. Let us denote by B(t0, t)
the price at time t0 of a discount bond maturing at time t ≥ t0, with unit maturity value,

B(t, t) = 1.

Let us incidentally note that, if the final maturity price is not 1 (say, B(t, t) = β) then the
price of the bond at t0 would be βB(t0, t).

Bonds are classified according to the time interval to maturity τ defined as

τ = t− t0.

Thus, if τ = 10 years, we talk about a 10-year bond that is traded at t0 (for instance,
today) with price B(t0, t0 + 10) and that, after 10 years, has unit value. Similarly for a 3-year
bond, 3-month bond, etc.
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The central question is to know the backward evolution of the bond price, from unit
maturity to the initial purchasing price B(t0, t). Note that the problem is virtually iden-
tical to the problem of discounting discussed in Sect. II, with the sole difference that, in
discounting, we look for the forward evolution from a known initial value to an unknown
final value, while, in bond pricing, the situation is reversed, since we know the final value
but not the initial one.

In order to proceed further, we define the instantaneous rate of return b(t0, t) (also called
forward rate) as the relative time variation of the bond price (compare with Equation (5))

b(t0, t) ≡ 1
B(t0, t)

∂B(t0, t)
∂t0

=
∂ ln B(t0, t)

∂t0
. (36)

The knowledge of the forward rate b(t0, t) allows us to relate the initial price B(t0, t)
and the maturing price B(t, t) = 1. Indeed, the integration of the above equation directly
leads to

B(t0, t) = exp
[
−
∫ t

t0

b(t′0, t)dt′0

]
. (37)

The close analogy between bond pricing and discounting is now apparent. Indeed, the
comparison of Equation (37) with Equation (11) shows that B(t0, t) is the equivalent of the
discount function δ(t) and that the forward rate b(t0, t) is the equivalent of the discount rate
r(t). However, in what follows, we will use the notation r(t) not for the forward rate b(t0, t)
but for the so-called spot rate (also called nominal rate), which we define in Equation (39).

Another quantity of interest is the yield to maturity y(t0, τ) defined by

y(t0, τ) ≡ − 1
τ

ln B(t0, t0 + τ) ⇒ B(t0, t0 + τ) = e−τy(t0,τ). (38)

From (37), we see that

y(t0, τ) =
1
τ

∫ t0+τ

t0

b(t′0, t)dt′0,

that is to say, the yield is the time average of the forward rate over the maturity period τ.
A final quantity is needed, the spot or nominal rate, which is defined as the limit of the

yield when the maturity tends to 0. In dealing with bonds, one sometimes uses, for the
nominal rate, the notation n(t0) instead of r(t0)—the later reserved for real interest rates,
which can be negative due to inflation (see Section 3).

r(t0) ≡ lim
τ→0

y(t0, τ) = lim
τ→0

[
1
τ

∫ t0+τ

t0

b(t′0, t)dt′0

]
. (39)

Solving the indeterminacy by expanding the integral in powers of τ, we see that the spot
rate is given in terms of the forward rate by

r(t0) = b(t0, t0). (40)

In other words, the spot rate is the instantaneous forward rate.
Let us finally note that a loan of amount M subscribed at time t0 with an interest rate

r(t0) (the spot rate) will, at time t0 + dt0, increase in value to M + dM, where

dM = r(t0)Mdt0. (41)

Indeed, at any time t0, the value of the spot rate r(t0) is the instantaneous increase of the
loan value, that is, r(t0) = d ln M(t0)/dt0 (compare with Equation (36)). All of this clearly
heightens the close similarities with discounting mentioned above.

However, subsequent values of the spot rate are not necessarily certain. We will see
next, the consequences of this fact on the time evolution of the bond price B(t0, t).
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3.1. Dynamics of the Bond Price

Suppose the spot rate r(t0) is not deterministic but random. In such a case, and
analogously to discounting, the usual assumption is that r0 = r(t0) is a Markovian ran-
dom process with continuous trajectories; that is, a diffusion process obeying a stochastic
differential equation of the form

dr0 = f (r0)dt0 + g(r0)dW(t0), (42)

where W(t0) is the standard Wiener process. We assumed that the drift and the noise
intensity are independent of time, thus, the time dependence of these coefficients is implicit
through r0 = r(t0). We know that this implies invariance under time translations, and we
can set t0 = 0 when needed without loss of generality.

We will now obtain the time evolution of the bond price B(t0, t) from the purchasing
time t0 to maturity t, and to this end, we follow Oldrich Vasicek [33]. Let us first observe
that the most natural hypothesis consists in assuming that the bond price B is a function of
the initial spot rate r0 = r(t0) and write

B = B
[
t0, t|r(t0)

]
. (43)

In this way, B(t0, t|r0) represents the price of a bond issued at time t0 and maturing at time
t, given that the initial interest rate is r0 = r(t0). The infinitesimal variation of the bond
price is then defined by

dB = B
[
t0 + dt0, t|r(t0 + dt0)

]
− B

[
t0, t|r(t0)

]
.

We expand in Taylor series up to second order

B
[
t0 + dt0, t|r(t0 + dt0)

]
= B

[
t0, t|r(t0)

]
+

∂B
∂t0

dt0 +
∂B
∂r0

dr0

+
1
2

[
∂2B
∂t2

0
dt2

0 +
∂2B
∂r2

0
dr2

0 + 2
∂2B

∂t0∂r0
dt0dr0

]
+ · · · .

Substituting for Equation (42) and taking into account that dW(t0) = O(dt1/2
0 ) [34,39], we

write

dB =

[
∂B
∂t0

+ f (r0)
∂B
∂r0

]
dt0 + g(r0)

∂B
∂r0

dW(t0) +
1
2

g2(r0)
∂2B
∂r2

0

[
dW(t0)

]2
+ O(dt3/2

0 ).

However,
[
dW(t0)

]2
= dt0 (in mean square sense) [34,39], and, up to the first order in dt0,

we obtain

dB =

[
∂B
∂t0

+ f (r0)
∂B
∂r0

+
1
2

g2(r0)
∂2B
∂r2

0

]
dt0 + g(r0)

∂B
∂r0

dW(t0). (44)

Defining

µ(t0, t|r0) ≡
1
B

[
∂B
∂t0

+ f (r0)
∂B
∂r0

+
1
2

g2(r0)
∂2B
∂r2

0

]
, (45)

and
σ(t0, t|r0) ≡ −

1
B

g(r0)
∂B
∂r0

, (46)

we see from (44) that the bond price satisfies the stochastic differential equation

dB
B

= µ(t0, t|r0)dt0 − σ(t0, t|r0)dW(t0), (47)
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showing that the bond price is also a diffusion process.
Averaging Equation (47) and recalling that E[dW(t0)] = 0, we see that

µ(t0, t|r0) = E
[

1
B

dB
dt0

]
,

which proves that µ(t0, t|r0) is the average of the instantaneous rate of return [cf.
Equation (36)] at time t0 on a bond with maturing date t, given that the current spot
rate is r0. In an analogous way, one can easily show that σ2(t0, t|r0) is the variance [33].

We therefore see from the above development that the bond price is a random quantity
but with a final fixed price (the maturity price). The question is: what is the (initial) price
that an investor has to buy (or sell) a bond at time t0 maturing at time t = t0 + τ with
the current spot rate r0? One possible answer would be proceeding as in discounting to
take the average over all possible realizations of the bond price. However, this procedure
implies that the expected rate of return of a bond is invariant under risk variation—that is,
under changes of the variance σ2(t0, t|r0)—a fact that investors always have in mind.

We explain next a procedure resulting in a deterministic bond price, which takes
into account the risk aversion of investors (in practice this is only true to some extend
because the mathematical procedure assumes that the market is driven by Gaussian white
noise—that is, the Wiener process, which is an idealized noise presenting, among other
shortcomings, no fat tails, a key characteristic of real markets [6]).

3.2. The Market Price of Risk

Consider an investor who, at time t0, sells an amount M1 of a bond maturing at time
t1 and, at the same time, buys an amount M2 of another bond with a different maturing
date t2. The total worth of the portfolio, thus, constructed is M = M2 −M1. Note that each
amount Mi (i = 1, 2) is a multiple of the bond price B(t0, ti|r0) (i = 1, 2) and, hence, they
also obey the stochastic differential Equation (47). That is,

dMi
Mi

= µ(t0, ti|r0)dt0 − σ(t0, ti|r0)dW(t0).

As a consequence, the infinitesimal variation dM = dM2− dM1 of the worth of the portfolio
changes over time according to

dM =
[
µ(t0, t2|r0)M2 − µ(t0, t1|r0)M1

]
dt0

−
[
σ(t0, t2|r0)M2 − σ(t0, t1|r0)M1

]
dW(t0). (48)

Suppose we choose the amounts M1 and M2 such that

M1 =
M

σ1 − σ2
σ2, M2 =

M
σ1 − σ2

σ1, (49)

where M = M2 −M1 and σi = σ(t0, ti|r0) (i = 1, 2). Hence M1 is proportional to σ2, while
M2 is proportional to σ1. With this choice, we have

σ2M2 − σ1M1 = σ2
σ1M

σ1 − σ2
− σ1

σ2M
σ1 − σ2

= 0,

and the random term in Equation (48) vanishes. This renders the portfolio composed of
such amounts of the two bonds instantaneously riskless:

dM =
M

σ1 − σ2
(µ2σ1 − µ1σ2)dt0, (50)
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where µi = µ(t0, ti|r0). The rate of return rM of this portfolio is

rM ≡
1
M

dM
dt0

=
µ2σ1 − µ1σ2

σ1 − σ2
.

In order to avoid arbitrage opportunities—that is, making profits without taking any
risk—the rate rM must be equal to the spot rate r0. If not, the portfolio can be purchased by
taking funds borrowed at the spot rate, or otherwise sold and the profits lent out to accom-
plish a riskless arbitrage [33]. Therefore (compare also Equation (41) with Equation (50))

r0 =
µ2σ1 − µ1σ2

σ1 − σ2
.

Rearranging terms, we find (µ1 − r0)/σ1 = (µ2 − r0)/σ2, so that

µ(t0, t1|r0)− r0

σ(t0, t1|r0)
=

µ(t0, t2|r0)− r0

σ(t0, t2|r0)
.

This equation is valid for arbitrary maturities t1, t2, . . . , it then follows that the ratio
[µ(t0, t|r0)− r0]/σ(t0, t|r0) must be independent of the maturity time t.

Let us denote by q(t0|r0) the common value of such a ratio for a bond of any maturity
date, given that the current spot rate (at time t0) is r0,

q(t0|r0) ≡
µ(t0, t|r0)− r0

σ(t0, t|r0)
, (t ≥ t0). (51)

The quantity q(t0|r0) is called the market price of risk, as it gives the variation of the expected
rate of return on a bond (specified by the risk premium µ− r0) per an additional unit risk
(specified by the standard deviation σ). The market price of risk q(t0|r0) is the so-called
Sharpe ratio [40] of the excess return µ− r0.

Note that, if q = 0, the spot rate r0 = r(t0) and the average rate of return µ coincide.

µ(t0, t|r0) = r(t0)

(t = t0 + τ) meaning that the expected instantaneous rates of return on bonds are the same
for all maturities.

3.3. The Term Structure Equation and the Risk-Neutral Measure

The introduction of the market price of risk implies a non-random bond price
B = B(t0, t|r0), which, in turn, allows a deterministic equation for B. In effect, rewrit-
ing Equation (51) as

µ(t0, t|r0)− r0 = σ(t0, t|r0)q(t0|r0),

and substituting µ and σ for their definitions given in Equations (45) and (46), we have

1
B

[
∂B
∂t0

+ f (r0)
∂B
∂r0

+
1
2

g2(r0)
∂2B
∂r2

0

]
− r0 = −q(t0|r0)

1
B

g(r0)
∂B
∂r0

,

which, after rearranging terms, yields

∂B
∂t0

= r0B− [ f (r0) + g(r0)q(t0|r0)]
∂B
∂r0
− 1

2
g2(r0)

∂B
∂r2

0
. (52)

This equation, called the term structure equation, is a partial differential equation for
B(t0, t|r0), that is obtained once we know the random character of the spot rate process
r(t) (through its drift f and noise intensity g) and once the market price of risk q(t0|r0) is
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specified. Bond prices are thus obtained after solving the deterministic Equation (52) with
the final condition:

B(t, t|r0) = 1. (53)

Let us observe that the term structure Equation (52) for the bond price B is identical
to the Feynman–Kac Equation (27) for the discount function D as long as we make the
following change of drift

f (r0) −→ f (r0) + g(r0)q(t0|r0). (54)

On the other hand, as we have seen in Section 2, the solution of the Feynman–Kac
Equation (27) for the discount function D(t|r0) is written as the average (cf. Equation (15))

D(t|r0, t0) =
∫ ∞

−∞
dr
∫ ∞

−∞
e−x p(x, r, t|r0, t0)dx,

where p(x, r, t|r0, t0) is the probability density function of the bidimensional diffusion
process (x(t), r(t)) defined by Equation (16),

dx = rdt, dr = f (r)dt + g(r)dW(t).

Now the analogy between the term structure Equation (52) and the Feynman–Kac Equation (29)
suggests that we can write the bond price B(t0, t|r0) as an average over the different real-
izations of the spot rate r(t0). However, this averaging procedure is taken using a modified
PDF called the risk-free measure. Thus, it can be proven in a more rigorous way that [32,33]

B(t0, t|r0) =
∫ ∞

−∞
dr
∫ ∞

−∞
e−x p∗(x, r, t|r0, t0)dx, (55)

where p∗(x, r, t|r0, t0) is the risk-free measure that is the PDF of the bidimensional process
(x(t0), r(t0)) defined by the following pair of stochastic differential equations that include
the market price of risk (see Equation (54)):

dx = rdt,

dr = [ f (r) + g(r)q(t|r)]dt + g(r)dW(t). (56)

That is, p∗ is the solution to the FPE

∂p∗

∂t
= −r

∂p∗

∂x
− ∂

∂r

[[
f (r) + g(r)q(t|r)

]
p∗
]
+

1
2

∂2

∂r2 [g
2(r)p∗], (57)

with the initial condition

p∗(x, r, t0|r0, t0) = δ(x)δ(r− r0). (58)

Since, as we have shown in Section 2.2, the Feynman–Kac approach to discounting
is equivalent to the Fourier method described in Section 2.3, we can apply the latter to
directly obtain the bond price knowing only the risk neutral PDF, without having to solve
the Feynman–Kac Equation (52) with condition (23). Indeed, the characteristic function of
the risk neutral density p∗ is the joint Fourier transform

p̃∗(ω1, ω2, t|r0, t0) =
∫ ∞

−∞
e−iω2rdr

∫ ∞

−∞
e−iω1x p∗(x, r, t|r0, t0)dx,

which, after comparing with Equation (55), yields

B(t0, t|r0) = p̃∗
(
ω1 = −i, ω2 = 0, t|r0, t0

)
. (59)
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Finally, once we know the bond price, the yield to maturity y(t0, τ|r0) (also called the
term structure of interest rates) is readily evaluated from Equation (38):

y(t0, τ|r0) = −
1
τ

ln B(t0, t0 + τ|r0). (60)

The graphic representations of y(t0, τ|r0) as a function of t0 and for different values of the
maturity interval τ are called yield curves and are of prime importance for practitioners.

4. Standard Models

Throughout the above development, it is clear that, in order to proceed further in
the discounting process (as well as in pricing bonds), we need to identify the specific
diffusion process chosen for modeling rates. Such a choice is mostly based on the analysis
of empirical data [26,29]. Clearly, in any proposed market model, there are idealizations,
otherwise a complete treatment of the problem would be very problematic, not to say
impossible, not only analytically but computationally as well.

In addition to assuming a diffusive behavior for the market, the first of such ideal-
izations is supposing that the market is stationary, i.e., the structural conditions of the
market do not change over time. However, and in particular after the 1980s, market cir-
cumstances have largely changed due to a great increase of transaction volumes along with
transparency and, to a lesser extend, changes in investor perspectives. In this review, we
only address stationary models, although we are working on new models dealing with
some non-stationary features of the market [29,35], and we refer the interested reader to
these works for further information.

On the other hand, there is a property of the market that appears to be well founded
on empirical grounds. This is the property of mean reversion meaning that prices tend to
return to some fundamental value, called the normal level, which is typically identified as
the long-time (i.e., stationary) mean value. The simplest method of introducing this feature
in the diffusion market model is to assume a linear drift of the form f (r) = −α(r − m),
where α > 0 is the strength of the reversion to the normal level, identified by m.

In such a case, the drift acts like a linear restoring force driving r(t) towards m as time
increases. Despite that the introduction of mean reversion might create some arbitrage
opportunities, the property of mean reversion is widely accepted in the literature [6], and
we previously discussed this issue in the context of option pricing when considering the
Ornstein–Uhlenbeck model [41].

4.1. Bonds and Real Rates

Before proceeding with the introduction of some standard models for the market
evolution, we briefly explain the link between bonds and (real) interest rates.

Financial economists have developed a large number of models of interest rate pro-
cesses to enable them to price bonds and other cash flows. In these models, interest rates are
described by positive random processes since financial interest rates rarely take negative
values. Although the models could be, in principle, extended to arbitrary horizons, they
have only been studied carefully over time horizons of up to 30 years, since bonds are
seldom issued for periods longer than this.

On the other hand, environmental economists are interested in the real behavior of
the economic growth over longer horizons, in contrast to financial economists who are
typically more interested in nominal rates over shorter periods of time. The behavior of
real and nominal rates usually differ as, due to inflation, real rates can take on negative
values. In this way, real rates r(t) are generally defined by the so-called Fisher procedure:

r(t) = n(t)− i(t), (61)

where i(t) is the inflation rate that is usually generated from consumer price indexes as
we will explain in the next section. The quantity n(t) represents nominal rates, which are
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typically constructed out of government bonds and are usually positive (even though, in
recent years, nominal rates have taken slightly negative values). In order to explain the close
relationship between nominal rates and bonds, let us first recall that nominal rates were
called spot rates in the previous section on bond pricing where we used the notation r(t)
instead of n(t). We thus define the spot (i.e., nominal) rate as (see Equations (39) and (40))

n(t) ≡ lim
τ→0

[
1
τ

∫ t+τ

t
b(t′, t)dt′

]
= b(t, t), (62)

where b(t′, t) is the forward rate for bonds defined in Equation (36) (see also Equation (37)),
that is

b(t′, t) =
∂ ln B(t′, t)

∂t′
⇒ B(t′, t) = exp

[
−
∫ t

t′
b(t′′, t)dt′′

]
where B(t′, t) is the price at time t′ of a (government) bond maturing at time t ≥ t′. Let us
recall the definition of the yield to maturity y(t, τ) given in Equation (38),

y(t, τ) ≡ − 1
τ

ln B(t, t + τ) ⇒ B(t, t + τ) = e−τy(t,τ)

(τ ≥ 0), so that

y(t, τ) =
1
τ

∫ t+τ

t
b(t′, t)dt′

and comparing with Equation (62), we see that, in terms of the yield nominal rates, n(t)
can be defined as

n(t) = lim
τ→0

y(t, τ). (63)

Thus, for empirical analysis, the yield can be used as an estimator of the nominal rates:

n(t) ∼ y(t, τ), (64)

and the accuracy of such an estimator increases as τ → 0. We will return to this discussion
in the next section.

In this way, taking nominal rates corrected by inflation as a proxy of economic growth,
we recently demonstrated [26,29,30] through a detailed empirical study on many countries
that real interest rates are negative around 25 % of the time (see next section). To under-
stand how discounting depends on the random process used to characterize interest rates,
we focused on three different models and obtained exact analytical expressions for the
discount function [27]. The three models describe to, varying degrees, a number of relevant
characteristics observed in the data, while being simple enough to allow for complete
analytical treatment. The main results are summarized in Table 1.

The first model is based on the Ornstein–Uhlenbeck (OU) process—also called the
Vasicek model in the financial literature [13]—which allows for negative rates and is, there-
fore, suitable for pricing environmental problems. The model has a stationary probability
distribution and exhibits reversion to the mean, which means that the process tends to
return to its average stationary value. We will review this model below.

The second and third models that we considered are given by the Feller and log-
normal processes, respectively. For these processes, the rates cannot be negative. The Feller
process—also known as the Cox–Ingersoll–Ross (CIR) model [42]—has reversion to the
mean and stationary probability distribution.

This is one of the most popular models in finance [13], and we recently reviewed
the main properties of the Feller process in previous works [27,43]. A third model, also
implying positive rates, is the log-normal process (occasionally called the Dotham model in
the financial literature [44]). The model does not have reversion to the mean nor a stationary
distribution. Despite these shortcomings, the log-normal process has also been used in the
financial literature mainly because it is positive and allows for analytical treatment [13].
We refer the interested reader to our previous work [27] for details on this model.
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As remarked in the introduction, we are primarily interested in valuing the far future
for environmental problems rather than the short time discount of finance, the latter
implying positive interest rates, while the former involves positive as well as negative
rates. For this reason, we next review in more detail the Vasicek model allowing for both
positive and negative rates than the CIR and log-normal models of which we only present
a sketched review.

Table 1. Key statistical features for three standard models: the Vasicek (Ornstein–Uhlenbeck), the
Cox–Ingersoll–Ross (Feller) and the log-normal models. The average and variance are provided in
terms of the model parameters to better compare the asymptotic behavior of D(t). The asymptotic
discount is provided by showing an exponential decay with a long-run rate of discount r∞ for the
Vasicek and the Cox–Ingersoll–Ross models and also in the log-normal case for a specific combination
of parameters (k2/2 < α, mild fluctuations). The parameter δ is defined in Equation (111).

Model E[r(t)] Var[r(t)] D(t → ∞) r∞

Vasicek m k2/α exp(−r∞t) m− k2/2α2

Feller m mk2/(2α) exp(−r∞t) 2m
1+
√

1+2k2/α

Log-normal r0eαt r2
0e2αt[ek2t − 1] constant (k2/2 > α) −−

exp(−r∞t) (k2/2 < α) (α− k2/2)/δ

t−1/2 (k2/2 = α) −−

4.2. The Vasicek (Ornstein–Uhlenbeck) Model

In this model, the rates are described by the Ornstein–Uhlenbeck process [33], which
is a diffusion model with linear drift and constant noise intensity:

dr(t) = −α[r(t)−m] + kdW(t), (65)

where r(t) is the rate and W(t) is the Wiener process. The parameter m (the normal level)
is the mean value to which rates revert, k > 0 is the amplitude of fluctuations, and α > 0
is the strength of the reversion to the mean. These parameters have to be estimated from
empirical data.

In this case, the Fokker–Planck equation for the joint density p(x, r, t|r0) of the bidi-
mensional process (x(t), r(t)), given by Equation (17), reads

∂p
∂t

= −r
∂p
∂x

+ α
∂

∂r
[(r−m)p] +

1
2

k2 ∂2 p
∂r2 , (66)

with the initial condition
p(x, r, 0|r0) = δ(x)δ(r− r0). (67)

The joint Fourier transform of these equations results in a simpler initial-value problem
for the joint characteristic function p̃(ω1, ω2, t|r0), which can be readily solved to yield the
Gaussian density [27]

p̃(ω1, ω2, t|r0) = exp
{
−A(ω1, t)ω2

2 − B(ω1, t|r0)ω2 − C(ω1, t|r0)
}

, (68)

where A(ω1, t), B(ω1, t) and C(ω1, t) are given by [27]

A(ω1, t) =
k2

4α

(
1− e−2αt

)
, (69)

B(ω1, t|r0) = ir0e−αt +
k2ω1

2α2

(
1− 2e−αt + e−2αt

)
+ im

(
1− e−αt

)
, (70)
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and

C(ω1, t|r0) = iω1r0
1
α

(
1− e−αt)+ k2ω2

1
2α3

[
αt− 2

(
1− e−αt)+ 1

2

(
1− e−2αt

)]
+imω1

[
t− 1

α

(
1− e−αt)]. (71)

The characteristic function of the rate r(t) is obtained by setting ω2 = 0 in Equation (68),
which also results in the Gaussian density

p̃(ω2, t|r0) = exp
{
− k2

4α

(
1− e−2αt

)
ω2

2 − i
[
r0e−αt + m

(
1− e−αt)]ω2

}
, (72)

and in the stationary state (t→ ∞), we have

p̃st(ω2) = e−(k
2/4α)ω2

2−imω2 =⇒ pst(r) =
( α

πk2

)1/2
e−α(r−m)2/k2

, (73)

which proves that the normal level m is the stationary mean value,

m = E[r(t)]. (74)

It can also be shown that the correlation function of the process, defined as the average

C(τ) = E
[
r(t + τ)r(t)

]
−
[
E
[
r(t)]

]2,

(τ ≥ 0) in the stationary state reads [27]

C(τ) = (k2/2α)e−ατ , (75)

which means that α−1 is the correlation time, τc, of the rate. Indeed,

τc ≡
1

C(0)

∫ ∞

0
C(τ)dτ = α−1.

Let us observe that the volatility, σ2 = C(0), is independent of the normal level and given by

σ2 = k2/2α. (76)

The discount function D(t|r0) is also obtained from Equations (68)–(71) although, in
this case, after setting ω1 = −i and ω2 = 0 (cf. Equation (31)). We have

ln D(t) = − r0

α

(
1− e−αt)

+
k2

2α3

[
αt− 2

(
1− e−αt)+ 1

2

(
1− e−2αt

)]
−m

[
t− 1

α

(
1− e−αt)],

which, after rearranging terms, can be written as

ln D(t) = −
(

m− k2

2α2

)
t +

1
α

[
m− r0 −

k2

4α2

(
3− e−αt)](1− e−αt), (77)

where r0 = r(0) is the initial rate. Note that, as t→ ∞ (in fact when t� α−1, i.e., for times
much greater than the correlation time α−1) Equation (77) shows at once that the discount
function of the Vasicek model has the typical exponential decay

D(t) ' e−r∞t, (78)
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where
r∞ = m− k2/2α2, (79)

is the long-run discount rate. Let us note that the long-run rate can be defined as the limit

r∞ = − lim
t→∞

ln D(t)
t

, (80)

as long as the limit exists. Let us also note the important fact that r∞ is smaller than the
mean value of the return given by the normal level m. This reduction is quantified by the
“noise-to-signal” ratio k/α, which means that either a long persistence (recall that this is
equivalent to long correlation time, i.e., α small) or an increase of the noise fluctuations (i.e.,
k large) reduce the long-run discount rate as compared with the average rate m.

Finally, we easily see from Equation (77) that, as t→ 0, the discount function approx-
imates to D(t) ' e−r0t, which would correspond to a fixed interest rate without random
fluctuations or deterministic changes.

Risk Aversion

As mentioned above, risk aversion is taken into account by introducing the market
price of risk q(r) and changing the drift according to Equation (32). For the Vasicek model,
in which f (r) = −α(r−m) and g(r) = k, we have

f ∗(r) = −α(r−m) + kq(r), (81)

and assuming q(r) = q to be a constant independent of r, we write

f ∗(r) = −α(r−m∗), (82)

where
m∗ = m +

qk
α

. (83)

Since the modified drift f ∗(r) has the same form that f (r), we conclude that the adjusted-
for-risk discount function will be given by Equation (77) after the replacement m→ m∗. In
particular, the adjusted long-run discount now reads (cf. Equation (79))

r∗∞ = m +
qk
α
− k2

2α2 . (84)

We thus see that the long-run discount depends on the historical rate m; however, this
is shifted by two terms. The first term raises the long-run rate due to the market price of
risk. The second shift lowers it by an amount given by the ratio of uncertainty (as measured
by k) and persistence (as measured by α). We rewrite Equation (84) as

r∗∞ = m +
k
α

(
q− k

2α

)
. (85)

This shows that the overall shift in the long-run discount rate will be positive or negative
depending on the size of the market price of risk and on the noise-to-signal ratio between
the volatility parameter and the reversion rate.

It is not surprising that the market price of risk raises the long term rate; however, it is
not so obvious that uncertainty and persistence can lower it. Indeed, for any given mean
interest rate m, by varying k and α, the long-run discount rate r∞ can take on any value less
than m, including negative values, while, at the same time, the standard deviation σ can
also be made to take on any arbitrary positive value.

A negative long-run rate is due to the amplification of negative real interest rates
r(t). Computation of the discount function involves an average over exponentials, rather
than the exponential of an average. As a result, periods where interest rates are negative
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are amplified and can easily dominate periods where interest rates are large and positive,
even if the negative rates are rarer and weaker. It does not take many such periods to
substantially reduce the long run interest rate.

To summarize, in the Vasicek model, and even taking into account risk aversion, the
long-run discounting rate can be much lower than the mean and, indeed, can correspond
to low interest rates that are rarely observed.

4.3. The Cox–Ingersoll–Ross (Feller) Model

In the financial literature, one of the most accepted models for interest rates is the
Cox–Ingersoll–Ross (CIR) model [42] where rates follow the Feller process described by
drift and noise intensity given, respectively, by [45]

f (r) = −α(r−m), g(r) = k
√

r. (86)

The Feller model is thus a diffusion process described by the stochastic differential equation

dr(t) = −α
[
r(t)−m

]
dt + k

√
r(t)dW(t), (87)

where W(t) is the standard Wiener process, and, as in the OU process, m > 0 represents
the mean stationary rate (the normal level), and α−1 is the correlation time [27]. Let us note
that, in one-dimensional diffusions, the diffusion coefficient is given by the square of the
noise intensity, and we thus see that the Feller process has a linear diffusion vanishing
at the origin. This turns the origin into a singular boundary, which results in significant
properties for the process [43].

As in the Vasicek model, the linear drift results in a restoring force, which, in the
absence of noise, makes the process decay toward the normal level m. On the other hand,
the state-dependent noise intensity k

√
r for large values of r magnifies the effect of noise,

while when r goes to zero, this effect vanishes. Therefore, as the process approaches the
origin, the drift drags r towards m. Hence, since m > 0, starting at some positive value
r0 > 0 the process cannot attain negative values with the overall result that the Feller process
always remains positive.

Previous works [27,43] that we reviewed rather thoroughly presented the properties of
the Feller process, and we refer the reader to these works for more detailed information. The
process is not Gaussian, and the stationary PDF as t→ ∞ is the Gamma distribution [27]

pst(r) =
(2α/k2)θ

Γ(θ)
rθ−1e−(2α/k2)r, (88)

where
θ =

2αm
k2 (89)

is a positive and dimensionless constant that combines all the parameters of the model into
a single expression. As mentioned above, a major characteristic of the Feller process is that
r(t) cannot attain negative values, which makes the model a convenient tool for pricing
bonds, which are never negative [13].

In the Feller model, the joint density of the discounting process (x(t), r(t)) defined in
Equation (16) obeys the Fokker–Planck equation (FPE) (cf. Equations (17) and (18))

∂p
∂t

= −r
∂p
∂x

+ α
∂

∂r
[(r−m)p] +

k2

2
∂2

∂r2 (rp), (90)

with the initial condition
p(x, r, 0|r0) = δ(x)δ(r− r0). (91)
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The joint Fourier transform, Equation (30), turns Equations (90)–(91) into a more
manageable problem:

∂ p̃
∂t

=

(
ω1 − αω2 − i

k2

2
ω2

2

)
∂ p̃

∂ω̃2
− iαmω2 p̃, (92)

p̃(ω1, ω2, 0|r0) = e−iω2r0 . (93)

Equation (92) is a linear partial differential equation of first order whose solution can be
obtained by the method of characteristics, and we refer the interested reader to our work [27]
for a detailed information. Once we know the solution p̃(ω1, ω2, t|r0), the discount function
is then obtained through Equation (31) with the result [27]

D(t) =

[
2λe−(λ−α)t/2

(λ + α) + (λ− α)e−λt

]θ

exp
{
− 2(1− e−λt)r0

(λ + α) + (λ− α)e−λt

}
, (94)

where θ is defined in Equation (89) and

λ =
√

α2 + 2k2. (95)

Notice that λ > α and the time scale represented by λ−1 is smaller than the correlation time
α−1.

In this case, the long-run discount rate, defined by the limit (cf. Equation (80))

r∞ = − lim
t→∞

ln D(t)
t

,

is directly obtained from Equation (94) with the result

r∞ =
1
2
(λ− α)θ, (96)

and, as in the Vasicek model, the effective discount reduces to the expected exponential
decay

D(t) ' e−r∞t (t→ ∞). (97)

Substituting into Equation (96) the expressions for θ and λ given in Equations (89) and (95),
we write

r∞ =
2m

1 +
√

1 + 2k2/α2
, (98)

which clearly shows that the long-run discount rate is always smaller than the stationary
average rate:

r∞ < m.

Figure 1 shows the discount function D(t) along with the quantity − ln D(t)/t (cf.
Equation (80)) and compare them with the Vasicek model with equivalent parameters.
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Figure 1. The Vasicek and Cox–Ingersoll–Ross discount functions. The parameters used are those
corresponding to the United States and are provided by Table 5 of Ref. [29] (see Section 5). In the
top figure, we plot the discount function D(t), while in the bottom figure, we plot the log ratio
− ln D(t)/t. In the top figure, we observe the asymptotic exponential decay of the discount after
more than a hundred years, while in the bottom figure, we clearly see the existence of a long-run
discount rate for the Vasicek model (cf. Equation (80)). The initial rate r0 is arbitrarily taken to be 1%.
In both models, we assume no market price of risk q(r) = 0 (the Local Expectation Hypothesis).

Risk Aversion

For the Feller process, the adjusted drift for risk defined in Equation (54) reads

f ∗(r) = −α(r−m) + kq(r)
√

r, (99)

where q(r) is the market price of risk as discussed in the previous section. For any function
q(r) (including a constant market price of risk q), this adjusted drift leads to an unsolvable
Fokker–Planck equation with no analytical expression for the adjusted discount and the
long-run discount rate. It is, nonetheless, possible to obtain analytical expressions for these
quantities if the market price of risk has the following functional form

q(r) = q
√

r, (100)
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where q ≥ 0 is a positive quantity. In such a case, we may write

f ∗(r) = −α∗(r−m∗), (101)

where
α∗ = α− kq, m∗ =

αm
α− kq

. (102)

The adjusted drift has the same form as f (r). Therefore, the adjusted discount function
will be given Equation (94) with the replacements α→ α∗ and m→ m∗, and the long-run
discount is (cf. Equation (98))

r∗∞ =
2m∗

1 +
√

1 + 2k2/α∗2
. (103)

From the definitions of α∗ and m∗, we easily see that α∗ ≤ α and α∗m∗ = αm. Hence,
writing r∗ as

r∗∞ =
2α∗m∗

α∗ +
√

α∗2 + 2k2
≥ 2αm

α +
√

α2 + 2k2
= r∞,

so that r∗∞ ≥ r∞, and, if the market price of risk has the form given in Equation (100), then,
in the CIR model, risk always increases the long-run discount rate regardless of the noise
intensity and persistence.

4.4. The Log-Normal Model

In this model, rates are described by the the geometric Brownian motion (log-normal
process), and the model is determined by the stochastic differential equation

dr
r

= αdt + kdW(t), (104)

where r is the interest rate, α and k are constant parameters. α may be positive or negative,
whereas k is always positive, and W(t) is the standard Wiener process. Equation (104) can
be integrated at once yielding

r(t) = r0 exp
{(

α− k2

2

)
t + kW(t)

}
, (105)

showing that r(t) is never negative (r0 > 0). Therefore, the log-normal model is more suited
for modeling nominal interest rates and bonds in finance than for the long-run real rates of
environmental economics. Contrary to the OU and Feller processes, the log-normal process
does not show reversion to the mean. Indeed, as t increases, we see from Equation (105)
that the rate either diverges when α > 0 or goes to zero if α < 0. In an equivalent way, one
can also show from Equation (105) that the mean and variance of the process are [27]

〈r(t)〉 = r0eαt, Var[r(t)] = r2
0e2αt

(
ek2t − 1

)
.

The discount associated with the log-normal process model was studied in 1978 by
L. U. Dothan [44], and, in finance, it is sometimes refereed to as the Dothan model. As it
allows for analytical treatment, it is one of the models used in the literature [13]. For this
model, the FPE for the joint density of the discounting processes (x(t), r(t)) is given by (cf.
Equation (17))

∂p
∂t

= −r
∂p
∂x
− α

∂

∂r
(rp) +

1
2

k2 ∂2

∂r2 (r
2 p), (106)
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with the usual initial condition given by Equation (18). The Fourier transform of this
expression leads to the following equation for the characteristic function p̃(ω1, ω2, t|r0)

∂ p̃
∂t

= (ω1 + αω2)
∂ p̃

∂ω̃2
+

1
2

k2ω2
2

∂2 p̃
∂ω̃2

2
(107)

and the initial condition (91). Equation (106) is a partial differential equation of second
order, which cannot be solved by the method of characteristics, and we refer the interested
reader to our work [27] for more information on how to solve Equation (107) using the
time–Laplace transform. Hence—and contrary to Vasicek and CIR models where it is
possible to obtain exact expressions for the discount function D(t)—for the log-normal
case, we can only achieve the exact expression of its Laplace transform,

D̂(s) =
∫ ∞

0
e−stD(t)dt.

The resulting formula—written as an integral of special functions, the Kummer function—is
rather intricate, and we will not write it here (see [27] for more information). However,
from the exact expression for D̂(s), we can obtain asymptotic expressions as t→ ∞ of the
discount function D(t) in real time. This is done using the so-called Tauberian theorems,
which relate the small s behavior of D̂(s) with the long-time behavior of D(t) [46,47]. The
final result is the following asymptotic expression for the discount function D(t) in the
long run as t→ ∞ [27]

D(t) ∼


constant k2/2 > α,
e−r∞t k2/2 < α,
t−1/2 k2/2 = α.

(108)

The asymptotic form of the discount function thus depends on the values taken by
the ratio α/k2 between the strength of the constant deterministic drift α and the amplitude
of fluctuations given by k2/2 (which can be considered the “signal-to-noise ratio” of this
model).

(i) The case k2/2 > α corresponds to strong fluctuations, where the noise intensity
k2/2 is greater than the drift parameter α. In this case, the discount tends to a constant
value (for the actual value of this constant, see [27]).

(ii) The case k2/2 < α corresponds to mild fluctuations for which the determinis-
tic drift is stronger than noise. In such a case, the discount function has the expected
exponential decay

D(t) ∼ e−r∞t, (109)

with a long-run rate of discount given by [27]

r∞ =
1
δ

(
α− k2

2

)
, (110)

where δ > 1 is a positive numerical factor that only depends on the ratio 2α/k2 and reads

δ = ψ
(

2α/k2
)
+

1
2α/k2 − 1

, (111)

where ψ(·) is the digamma function.
Let us write Equation (109) in a more characteristic form. Indeed, from Equation (105),

we see that

E
[

ln
r(t)
r0

]
=

(
α− k2

2

)
t,
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and, with the help of Equation (109), we write Equation (109) as

D(t) ∼ exp
{
−1

δ
E
[

ln
r(t)
r0

]}
, (112)

(t→ ∞ and k2/2 < α). Note that the average E[ln r(t)/r0] is what a practitioner would take
as an estimate of the discount rate up to time t within the log-normal model. Since δ > 1,
the analytical result (112) shows that the actual long-run rate of the model is a fraction of
the average rate. We indicated elsewhere that the long-run discount rate is at most 73 % of
the average rate [26].

In this way, when 2α/k2 > 1, the log-normal model follows a similar pattern to that of
the OU and Feller models: In all of them, the long-run rate is smaller than the average rate.
This general statement is a direct consequence of Jensen’s inequality, which states that the
average of a convex function is greater than or equal to the function of the average; that is,
E[ f (X)] ≥ f (E[X]). Assuming f to be the decreasing exponential and X as the cumulative
process x(t) defined in Equation (14), it follows immediately that the long-run rate r∞ must
be always less than or equal to the average rate. Nonetheless, our procedure quantifies the
difference among averages [27].

(iii) The critical case α = k2/2, in which deterministic motion and fluctuations are
balanced, leads to the hyperbolic discount function as obtained by Farmer and Geanako-
plos [48,49]. The hyperbolic D(t) is substantially greater than any exponential decaying
function, showing that there is no long-run rate of interest in this case. In fact, the long-run
rate of interest is 0; however, that does not convey as precise information as saying that
D(t) is approximately k/

√
t for all large t. Since the sum (i.e., the integral) of all these D(t)

is infinite, such D(t) assigns infinite value to any permanent positive flow of consumption:
the infinite future is infinitely valuable.

Risk Aversion

Let us very briefly comment on the inclusion of risk aversion in the Dothan model.
For the log-normal process f (r) = αr and g(r) = kr and

f ∗(r) = [α + kq(r)]r.

Assuming a constant market price of risk, q(r) = q ≥ 0, we have

f ∗(r) = α∗r, α∗ = α + q.

Again, f ∗(r) has the same form than f (r), and all previous results will apply after making
the replacement α→ α + q.

5. Some Empirical Results

In order to choose an appropriate model for rates that would allow us to obtain realistic
long-run discount functions, we performed a rather complete empirical study on interest
rates combined with inflation. Our study follows the line partly initiated by Newell and
Pizer [50] (see also [51]). To our knowledge, there are few empirical studies on real rates
with some exceptions. We remark here the recent and excellent survey by Giglio et al. on
the housing market in London and Singapore [52–54], which allowed for a rather realistic
estimation of long-run discount rates.

Our first concern was knowing how the discount process depended on the underlying
random process that characterizes interest rates. To this end, we collected data for the
nominal interest rates and inflation of fourteen countries over time spans ranging from 87
to 318 years [26]. The countries in our sample are Argentina (ARG, 1864–1960), Australia
(AUS, 1861–2012), Chile (CHL, 1925–2012), Germany (DEU, 1820–2012), Denmark (DNK,
1821–2012), Spain (ESP, 1821–2012), United Kingdom (GBR, 1694–2012), Italy (ITA, 1861–
2012), Japan (JPN, 1921–2012), Netherlands (NLD, 1813–2012), Sweden (SWE, 1868–2012),
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the United States (USA, 1820–2012) and South Africa (ZAF, 1920–2012). The data are
summarized in Table 2.

Table 2. List of the countries analyzed. CPI stand for Consumer Price Index. Data has different
specificities, particularly in terms of empty records as has been reported elsewhere [26,29]. *, We have
taken the discount (ID) rate since the government bond yield data was not available.

Country CPI Bond Yield From To Records

Italy CPITAM IGITA10 12/31/1861 09/30/2012 565
annual from 12/31/1861 quarterly
quarterly from 12/31/1919

Chile CPCHLM IDCHLM 03/31/1925 09/30/2012 312
quarterly quarterly

Canada CPCANM IGCAN10 12/31/1913 09/30/2012 357
quarterly quarterly

Germany CPDEUM IGDEU10 12/31/1820 09/30/2012 729
annual from 12/31/1820 quarterly
quarterly from 12/31/1869

Spain CPESPM IGESP10 12/31/1821 09/30/2012 709
annual from 12/31/1821 quarterly
quarterly from 12/31/1920

Argentina CPARGM IGARGM 12/31/1864 03/31/1960 342
annual from 12/31/1864 quarterly
quarterly from 12/31/1932

Netherlands CPNLDM IGNLD10D 12/31/1813 12/31/2012 189
annual annual

Japan CPJPNM IGJPN10D 12/31/1921 12/31/2012 325
quarterly quarterly

Australia CPAUSM IGAUS10 12/31/1861 09/30/2012 564
annual from 12/31/1861 quarterly
quarterly 12/31/1991

Denmark CPDNKM IGDNK10 12/31/1821 09/30/2012 725
annual from 12/31/1821 quarterly
quarterly from 12/31/1914

South Africa CPZAFM IGZAF10 12/31/1920 09/30/2012 329
quarterly quarterly

Sweden CPSWEM IGSWE10 12/31/1868 09/30/2012 135
annual annual

United Kingdom CPGBRM IDGBRD ∗ 12/31/1694 12/31/2012 309
annual annual

United States CPUSAM TRUSG10M 12/31/1820 10/30/2012 183
annual annual

Since all but two of our nominal interest rate processes are for 10-year government
bonds, which pay out over a 10-year period, we smoothed out inflation rates with a 10-year
moving average and subtracted the annualized inflation index from the annualized nominal
rate to compute the real interest rate, as explained in the previous section by means of the
Fisher’s procedure (cf. Equation (61)),

r(t) = n(t)− i(t),

where n(t) is the nominal rate and i(t) is the inflation rate. The particular case of the United
States is plotted in Figure 2.
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Figure 2. The construction of real interest rates r(t) in terms of the nominal rates n(t) and inflation
i(t) (Fisher’s procedure). Large fluctuations and negative rates are shown here for the United States
(USA).

In our empirical analysis, the nominal rates are determined by IG rates constructed
from the 10-year Government Bond Yield y(t, τ) with τ= 10 years. Thus, looking at
Equations (63) and (64), we estimate the nominal rates by

n(t) ∼ y(t, τ = 10 years).

Let us recall that denoting, by B(t, t + τ), the government bond issued at time t and
maturing at time t + τ with unit maturity, B(t, t) = 1, the yield y(t, τ) is defined as (cf.
Equation (38))

y(t, τ) ≡ − 1
τ

ln B(t, t + τ) =⇒ B(t, t + τ) = e−τy(t|τ).

One can argue that τ = 10 years is not a short period of time in order to consider
y(t, τ = 10 years) a very accurate estimator of n(t) (cf. Equations (63) and (64)). Al-
though this may be true, we must bear in mind that 10 year bonds are the shortest bonds
available for most of the countries analyzed.

The inflation rate is estimated through the Consumer Price Index (CPI) as

i(t) ∼ 1
τ

ln
[
I(t + τ)/I(t)],

where I(t) is the aggregated inflation up to time t, and τ =10 years. The relation between
I(t) and the Consumer Price Index (CPI) is

I(t + τ) = I(t)
τ−1

∏
j=0

[
1 + C(t + j)

]
,

where C(t) is the time series of the empirical CPI. The instantaneous rate of inflation i(t) is,
therefore, estimated by the quantity i(t + τ), which is written in terms of the CPI reads

i(t) ∼ i(t + τ) =
1
τ

τ−1

∑
j=0

ln
[
1 + C(t + j)

]
.

A remarkable characteristic observed for all countries is that real interest rates fre-
quently become negative as the real interest rates are mostly dominated by inflation i(t) > 0
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(see Figure 2). In some cases, as we can see in Table 3 (see also Figure 2), negative real
rates show high frequency and long periods of time, and, on average, real interest rates are
negative one quarter of the time.

Table 3. The OU (Vasicek) model parameter estimation in yearly units using stationary averages.
“Neg RI” provides the time percentage and the number of years with negative real interest rates.
The columns m̂, k̂ (in %) and α̂ are estimates from the country time series; r̂∞ (in %) is evaluated
from Equation (79). The Min and Max columns give reasons regarding the level of robustness of the
estimation as they provide the minimum and the maximum values of the parameter estimation for
four data blocks of equal length. The parameter α is estimated by fitting the empirical correlation
function to an exponential (cf. Equation (75)) after using the whole data block. Countries in boldface
are those considered historically more stable with positive long-run rates r̂∞ > 0.

Country Neg RI m̂ Min Max k̂ Min Max α̂ r̂∞

Italy 28% (40y) −0.3 −9.1 5.6 6.9 0.8 10.1 0.22 −5.4
Chile 56% (43y) −6.8 −20.2 12.0 25.2 5.6 44.1 0.40 −26
Canada 22% (20y) 2.9 0.1 6 2.3 1.1 2.0 0.26 2.5
Germany 14% (25y) −10.7 −51.0 4.0 33.9 0.9 61.4 0.20 −160
Spain 25% (45y) 5.7 −0.5 13.5 2.9 1.2 3.6 0.06 −6.4
Argentina 20% (17y) 2.4 −2.9 6.8 6.2 2.8 6.7 0.39 1.1
Netherlands 17% (33y) 3.2 0.8 5.4 1.6 0.8 2.2 0.14 2.4
Japan 33% (26y) −2.2 −7.8 4.0 9.7 1.1 13.2 0.24 −10
Australia 23% (33y) 2.6 −0.7 4.9 2.3 0.7 2.8 0.19 1.9
Denmark 18% (33y) 3.2 1.5 4.3 2.3 1.1 2.9 0.23 2.7
South Africa 43% (36y) 1.8 −2.2 5.5 2.5 1.2 2.0 0.21 1.1
Sweden 28% (38y) 2.3 −0.3 3.9 2.5 0.6 3.4 0.25 1.9
United Kingdom 14% (45y) 3.3 1.4 4.3 1.9 1.0 2.4 0.19 2.8
United States 31% (36y) 2.6 1.0 4.0 1.8 1.2 2.1 0.18 2.1

Stable countries 23% (33y) 2.7 −0.14 5.0 2.6 1.04 2.94 0.23 2.1
Unstable counntries 31% (36y) −2.9 17.7 1.8 16 1.9 26.5 0.22 −42

This makes the Feller and log-normal models—as well as any other model assuming
positive interest rates [13]—less interesting or at least less appropriate to model real interest
r(t) = n(t)− i(t) instead of solely considering nominal rates n(t). It is, however, necessary
to remember the fact that nominal rates can indeed become negative as has recently been
observed in Western economies. We, therefore, confined the empirical work to the OU
(Vasicek) model and then assumed the Local Expectation Hypothesis [36–38], according to
which, we live in a risk neutral world, and the market price of risk is zero. Let us recall,
as explained in Section 3, that the market price of risk q = q(r, t) may be any function
of the rate and time. There is, hence, no unique expression for it. Thus, in Section 4, we
presented several expressions of the long-run rate, which include risk in different forms
for all market models analyzed. The usual assumption in the literature [33,38] is that the
price of risk is a constant that is independent of time and the value of the rate but without
any empirical justification. This is a sensitive issue since data is quite scarce, particularly
in environmental applications, for obtaining a credible estimation of q. Moreover, to our
knowledge, in environmental problems, the estimations of the long-run rates do not take
into account, nor even mention, the market price of risk [14–16,50,54]. In any case, we do
not lessen the importance of taking into account some kind of risk in estimating log-run
rates; however, unfortunately, with the data available to us, we cannot make any reliable
estimation of q. For this reason, we have not taken into account the market price of risk,
assuming risk-neutral investors and following the Local Expectation Hypothesis. In any
case, the question is under consideration).

We can estimate the parameters m, α and k of the Vasicek model to each of the data
series. There are several possible procedures. One of the possible methods is to deal with
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stationary averages. The parameter m can be estimated through the stationary mean value
of the rate (cf. Equation (74))

m = E[r(t)].

Parameters α and k can be estimated via the correlation function of the Ornstein–Uhlenbeck
process. Thus, from Equation (75), we have

C(t− t′) =
k2

2α
e−α|t−t′ |.

The empirical correlation can then be fitted by an exponential, which in turn allows us
to estimate α (measured in 1/year units) for each country. The parameter k is obtained
from the empirical standard deviation σ2 = E[|r(t)−m|2], and for the Vasicek model, it is
given by

k = σ
√

2α.

The resulting parameters are shown in Table 3. The minimum and maximum values for
each country allows us to show that parameters may indeed fluctuate over different periods
of time.

Finally, the long-run discount rate can be evaluated from Equation (79),

r∞ = m− k2/2α2.

For this calculation, we neglected the market price of risk as mentioned above.
The countries studied can be divided into two groups. Nine countries have long-run

positive rates (boldface in Table 3). The average historical rate for these nine countries
is m = 2.7 % while the average long-run rate is r∞ = 2.1 %, which, on average, is 29 %
lower than m. Five countries with less stable behavior have long-run negative rates and an
exponentially increasing discount.

Four cases of this group have a negative average rate m due to at least one period of
runaway inflation; the exception is Spain, which has a (highly positive) mean real interest
rate but still has a long-run negative rate. Convergence in this case to the long-run rate
happens within 30 years and typically within less than a decade. This contrasts with other
treatments, which assume that short term rates are always (or nearly always) positive and
predict that the decrease in the discounting rate happens over a much longer timescale,
which can be measured in hundreds of years [50,51,55–58].

Alternatively, we can estimate parameters using the well-established maximum likeli-
hood procedure. For the Vasicek model, the maximum likelihood estimation is extensively
documented in the financial mathematics literature (see for instance [13]). The approach
differs from the previous one as it focuses attention on two consecutive steps of our time
series (generally consecutive years) and takes the conditional probability to perform the
estimation. Table 4 shows that the most inaccurate estimator is α̂, an unsurprising fact since
the estimation of α is known to be quite difficult for the Vasicek model [59]. The last two
columns in Table 4 include the long-run interest rate estimator r̂∞ and its error calculated
through error propagation.

Only four countries (the Netherlands, Sweden, the United Kingdom and the United
States) show a positive long-run rate, r∞ > 0. This estimation procedure leads to more
negative r∞. This feature can be attributed to the fact that, in most of the countries,
estimating α via the maximum likelihood brings smaller values, which in turn leads to
more drastic corrections to the long-run rate as r∞ is inversely proportional to α (remember
that r∞ = m − k2/2α2). This effect is particularly relevant in most turbulent countries
during last century (e.g., Germany) thus signaling a more intense lack of stationarity in
empirical data. The averaged r∞ over all countries estimated via maximum likelihood is
also sensitively smaller.

However, if we focus the attention on stable countries (with r∞ > 0) both estima-
tion procedures bring quite similar results (see, for instance, the United States case in
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Tables 3 and 4, 2.1% versus 1.8%). As in the previous estimation procedure, we also ne-
glected the effects of risk aversion and the market price of risk.

The Vasicek model is therefore the only one among the three classic models allowing
for negative rates, and for this reason, both the Feller and the log-normal models have
been excluded from our analysis. However, for the Cox–Ingersoll–Ross (Feller) model, it is
possible to redefine the model by shifting the process y = r− rmin where rmin < 0.

The estimation through the maximum likelihood procedure and its error analysis
is then possible [59], and Figure 1 includes the shifted Cox–Ingersoll–Ross discount and
compares it with the equivalent result assuming the Vasicek model. We demonstrated in
Ref. [29] how to redefine the Feller process and how maximum likelihood estimation could
be possible.

Table 4. Maximum likelihood estimation of the long-run interest rate for the Vasicek model. m̂
estimates of the mean real interest rate in 1/years (in %). α̂ estimates the characteristic reversion time
in 1/years. The squared root of k̂2 is given in terms of 1/(year)3 (multiplied by 104 to be comparable
with the results in Table 3). These estimators are accompanied by the square root of the variance
of each estimator. r̂∞ estimates the long-run real interest rate with 1/year (in %). Negative values
of r̂∞ imply that the discount function is asymptotically increasing. The standard error is obtained
through error propagation. The last two rows show the average over all countries with the more
stable countries (r∞ > 0) and the less stable countries (r∞ < 0). The error provided corresponds to
the standard deviation of the r̂∞ for the different countries.

Country m̂ σm̂ α̂ σα̂ k̂2 σk̂2 r̂∞ σr̂∞

Italy 1.97 15.95 0.0056 0.0089 0.1146 0.068 −177.8 19.2
Chile −5.79 31.46 0.0201 0.0227 31.07 2.49 −391.7 44.2
Canada 2.66 3.91 0.0142 0.0178 0.275 0.021 −4.15 3.94
Germany −9.45 66.95 0.0071 0.0089 41.72 2.19 −4094 228
Spain 6.71 6.92 0.0167 0.0137 2.371 0.126 −35.78 7.28
Argentina 3.15 7.09 0.0228 0.0231 2.240 0.171 −18.31 7.27
Netherlands 5.99 0.78 0.1648 0.0550 1.797 0.243 5.66 0.78
Japan 5.02 24.68 0.0053 0.0114 1.396 0.109 −243.1 31.4
Australia 3.97 4.50 0.0089 0.0112 0.223 0.013 −10.29 4.58
South Africa 2.69 4.72 0.0154 0.0193 0.435 0.034 −6.49 4.77
Sweden 2.79 1.66 0.0676 0.0317 1.692 0.206 0.95 1.67
Denmark 4.10 2.59 0.0161 0.0133 0.315 0.017 −1.97 2.61
United Kingdom 3.42 0.62 0.1635 0.0326 3.137 0.253 2.83 0.62
United States 3.19 1.23 0.0603 0.0257 1.003 0.105 1.81 1.24

Stable countries 3.85 1.07 0.1140 0.0362 1.907 0.202 2.81 1.08
Unstable countries 1.50 16.86 0.0132 0.0150 8.120 0.523 −498.4 35.3

6. Discussion

We reviewed one of the most important aspects of economics and finance, i.e., the
problem of discount, which weights the future relative to the present. The problem is
clearly very relevant in finance over relatively short time spans; however, it is even more
crucial for long-run planning in addressing environmental problems on how to act now
with measures to mitigate the effects of climate change.

To our knowledge, this is a rather unknown issue to the econophysics community, and
this review is particularly intended for this group. We thus addressed the problem with
a simple approach and yet with a high level of rigor and generality. In this way, we also
developed the traditional method used in mathematical finance to address the problem,
i.e., the Feynman–Kac approach. In addition, we reviewed the bond pricing theory and its
close similarity with discounting and presented a short introduction to the term structure
of interest rates along with the market price of risk.

We obtained quantitative results on the problem by studying, in some detail, three
standard models for the dynamical evolution of rates. These models are based on the
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Ornstein–Uhlenbeck process (the Vasicek model), thus, allowing for both positive and neg-
ative rates and also on the Feller and log-normal processes for positive rates. We presented
the exact results for the discount function and asymptotic expressions as t→ ∞ leading to
the long-run discount rate, and we discussed the modifications of these expressions when
the market price of risk is taken into account.

An important conclusion is that, for all models, the long-run discount rate is always
less than the long-time average rate. This is a conclusion that necessarily has to have
consequences in any long-run economic planning. Finally, we reviewed our recent empirical
study on 14 different countries, which obtained numerical values for the parameters that
appear in the Vasicek model. We demonstrated two different estimation procedures and
briefly discussed their differences and similarities.
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