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Abstract

Decision theory and game theory are extended to allow for information process-
ing errors. This extended theory is then used to reexamine market speculation
and consensus, both when all actions (opinions) are common knowledge and
when they may not be. Five axioms of information processing are shown to be
especially important to speculation and consensus. They are called nondelusion,
knowing that you know, nested, balanced, and positively balanced. We show
that it is necessary and suffi cient that each agent’s information processing errors
be nondeluded and (1) balanced so that the agents cannot agree to disagree,
(2) positively balanced so that it cannot be common knowledge that they are
speculating, and (3) KTYK and nested so that agents cannot speculate in equi-
librium. Each condition is strictly weaker than the next one, and the last is
strictly weaker than partition information.

“Is there any other point to which you would wish to draw my attention?”

“To the incident of the dog in the night-time.”

“The dog did nothing in the night-time.”

“That was the curious incident,”remarked Sherlock Holmes.

Doyle (1901)

Sherlock Holmes is the perfectly rational Bayesian optimizer that economic models
assume all agents are like. Yet most economic actors are probably much more like
Dr. Watson, than like Sherlock Holmes. They usually take signals at face value.

∗This paper was first presented in July 1988 in Columbus, Ohio. I would like to acknowledge
very helpful conversations with Paul Milgrom, Don Brown, Adam Brandenburger, and Eddie Deckel.
Don Brown and I are collaborating on a closely related study of common knowledge. Brandenberger,
Deckel, and I are writing a sequel to this paper [BDG88] from which I have borrowed the notion of
decision-theoretic equivalence used here. Bob Willig prompted the discussion of nested, and John
Vickers drew my attention to Sherlock Holmes. A forthcoming paper by Rubinstein and Wolinsky
touches on some of the issues raised here.
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They often take no notice when something doesn’t happen. They occasionally ignore
unpleasant information. They forget. And sometimes their opinions won’t budge
unless confronted by proof.

The aim of this paper is to develop a coherent definition of equilibrium in games
that allows for such errors in information processing. My point of view is that be-
havior may be only boundedly rational, but it need not be any the less goal oriented
and purposeful, and therefore any the less predictable.

The bulk of this paper is devoted to analyzing the phenomenon of market specu-
lation, and “agreements to disagree.” By now it is well known that neither of these
commonplace events can be observed in equilibrium in a model of Bayesian rational
agents. When agents are allowed to make errors in information processing, however,
these phenomena do eventually emerge in equilibrium. The “curious incident”is the
precise stage of irrationality at which they emerge. It is not true, for example, that
an agent who always ignores unpleasant information is necessarily a sucker for a bet.
It turns out that there is a substantial degree of information processing error (which
is characterized here) that can occur, and still agents will not speculate against each
other in equilibrium. There is a greater degree of irrationality, which can be specified
exactly, that if not exceeded will keep agents from speculating against each other
when those actions are common knowledge. And finally there is a still more serious
kind of error, which again can be stated precisely, which if not exceeded will never
permit agents to agree to disagree.

1 Errors in Information Processing

There are a number of errors that are typically made by decision makers that suggest
that we go beyond the orthodox Bayesian paradigm. We list some of them:

1. Agents ignore the subtle information content of some signals, and perceive only
their face value. For example, an order to “produce 100 widgets”might convey
all kinds of information about the mood of the boss, the profitability of the
widget industry, the health of fellow workers and so on, if the receiver of the
message has the time and capacity to think about it long enough. Another
important example involves prices. It is very easy to compute the cost of a
basket of goods at the going prices, but it takes much longer to deduce what
the weather must have been like all across the globe to explain those prices.
In Bayesian decision making, it is impossible to perform the first calculation
without also performing the second.

2. Agents often do not notice when nothing happens. For example, it might be
that there are only two states of nature: either the ozone layer is disintegrating
or it is not. One can easily imagine a scenario in which a decaying ozone layer
would emit gamma rays. Scientists, surprised by the new gamma rays would
investigate their cause, and deduce that the ozone was disintegrating. If there
were no gamma rays, scientists would not notice their absence, since they might

2



never have thought to look for them, and so might incorrectly be in doubt as
to the condition of the ozone.

3. What one knows is partly a matter of choice. For example, some people are no-
torious for ignoring unpleasant information. Often there are other psychological
blocks to processing information.

4. People often forget.

5. Knowledge derived from proofs is not Bayesian. A proposition might be true
or false. If an agent finds a proof for it, he knows it is true. But if he does not
find a proof, he does not know it is false.

6. People cannot even imagine some states of the world.

We can model some aspect of all of these non-Bayesian methods of information
processing by generalizing the notion of partition from the usual Bayesian analysis.
Let Ω, a finite set, represent the set of all possible (physical) states of the world.
Let P : Ω → 2Ω\φ be an arbitrary “possibility correspondence,” representing the
information processing capacity of an agent. For each ω ∈ Ω, P (ω) is interpreted
to mean the collection of states the agent thinks are possible when the true state is
ω. Let P denote the range of P , so P = {R ⊂ Ω|∃ω ∈ Ω, R = P (ω)}. Given an
arbitrary event A ⊂ Ω, we say that the agent knows A at ω if P (ω) ⊂ A, since for
any ω′ ∈ Ω which he regards as possible at ω, ω′ ∈ A.

Consider, for example, Ω = {a, b} as the state space. Let the possibility corre-
spondence P : Ω → 2Ω take P (a) = {a} and P (b) = {a, b}. We can interpret ω = a
to mean the ozone layer is disintegrating, or a horse is winning, or a proposition is
true. Similarly, we can interpret ω = b to mean the ozone is not disintegrating, or
the horse is losing, or the theorem is false.

Since P (a) = {a}, when ω = a the agent knows that his horse is winning, or that
the ozone is disintegrating, or that the theorem is true. But when ω = b the agent
has no idea whether his horse is winning or losing, or what is happening to the ozone,
or whether the theorem is true or false. The reason for the asymmetry in the agent’s
information processing could be interpreted as any one of the above categories of
errors. The agent might take notice of the gamma rays in state a, but not notice that
there were no gamma rays in state b. In the horse racing interpretation of the model,
the agent might not be able to face the unpleasant news that his favorite horse is
damaged. Or he might not remember an event where nothing of interest happened
to him.

In Bayesian decision theory, the information possibility correspondence always
defines a partition: for every ω, ω′ ∈ Ω, ω ∈ P (ω) and either P (ω) ∩ P (ω′) = φ
or else P (ω) = P (ω′). A Bayesian decision-maker could not have the possibility
correspondence in the above example. He would reason at ω = b that since he did
not receive the signal {a}, that in fact the state must be b. In Bayesian decision
theory the information at a state ω is always consistent with what could be deduced
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from knowing the model and the signal:

P (ω) = {ω′ ∈ Ω|P (ω′) = P (ω)}.

For arbitrary possibility correspondence, such as in the above example, this need not
be the case.

Observe that in the generalized possibility approach to knowledge, there need not
be any presumption that the agent understands the entire state space Ω. It may well
be that the sets of possibilities in P are all confined to some small subset of Ω. In
that case there would be ω ∈ Ω such that ω 6 ∈P (ω′), for any ω′ ∈ Ω. Such ω are not
even imaginable by the agent. Similarly if ω 6 ∈P (ω), then when ω actually occurs
the agent does not think of it, although he might at other times.

In the next few sections we shall describe how decision theory and game theory
can be extended to generalized partitions. Many phenomenon (such as betting) which
cannot be observed in equilibrium when every agent has partition information will
now become possible. To give content to our extension, however, it is necessary to
categorize precisely the kinds of information processing errors which can occur, and
which kinds of errors permit each new phenomenon. Betting, for example, can be an
equilibrium even when agents always imagine the truth, provided they make other
errors. On the other hand betting is ruled out by a degree of rationality that falls
short of partition information.

We shall now describe three limitations on the possibility correspondence. Later
we shall introduce two more.

Definition: We say that P is nondeluded if ω ∈ P (ω) for all ω ∈ Ω. Under this
hypothesis the agent who processes information according to P always considers the
true state as possible.

Definition (Knowing that you know (KTYK):When Knowledge is Self-Evident):
If for all ω ∈ Ω, and all ω′ ∈ P (ω), we have P (ω′) ⊆ P (ω), then we say that the agent
knows what he knows. If the agent knows some A at ω, and can imagine ω′, then he
would know A at ω′. Bacharach ([Bac85]), Shin ([Shi87]), and Samet ([Sam87]) have
all drawn attention to this property. If the agent can recognize circumstances which
confine the possible states of the world to R ∈ P , then whenever ω ∈ R, so that these
circumstances do indeed obtain, the agent must realize that.

Definition: The event E ⊂ Ω is self-evident to the agent who processes information
according to P if P (ω) ⊂ E whenever ω ∈ E. A self-evident event can never occur
without the agent knowing that it has occurred.

The axiom KTYK implies that every R ∈ P is self-evident to the agent.
Shin [Shi87] has suggested that KTYK and nondelusion are the only properties

that need hold true for an agent whose knowledge was derived by logical deductions
from a set of axioms.

Definition: We say that P is nested if for all ω and ω′, either P (ω) ∩ P (ω′) = φ, or
else P (ω) ⊆ P (ω′), or else P (ω′) ⊆ P (ω).
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An example might make the significance of nondelusion, KTYK, and nested
clearer. Let there be just two propositions of interest in the universe, and let us
suppose that whether each is true or false is regarded as good or bad, respectively.
The state space is then Ω = {GG,GB,BG,BB}. One type of information processor
P might always disregard anything that is bad, but remember anything that is good.
Then P (GG) = {GG}, P (GB) = {GG,GB}, P (BG) = {GG,BG}, P (BB) = Ω.
(See Diagram 1a.) It is clear that P satisfies nondelusion and KTYK, but does not
satisfy nested. Moreover, when the reports are GB the agent chooses to remember
only the first, while if they are BG he chooses to remember only the last. Alter-
natively, consider an agent with possibility correspondence Q who can remember
GG and BB because the pattern is simple, and can also remember when he sees
GB that the first report was good whereas with BG he remembers nothing. Then
Q(GG) = {GG}, Q(GB) = {GB,GG}, Q(BG) = Ω, Q(BB) = {BB}. (See Diagram
1b.) This does satisfy nested, as well as the other two conditions. Nondelusion in
these examples means that the agent never mistakes a good report for a bad report,
or vice versa. KTYK means that if an agent recalls some collection of reports, then
whenever all those reports turn out the same way he must also recall them (and pos-
sibly some others as well). Nested means that the reports are ordered in the agent’s
memory. If he remembers some report, then he must also remember every report
that came earlier on the list.

We shall prove in Section 3 that nested can be interpreted as a property of mem-
ory in this way: Suppose that we think of a set S of fundamental propositions that
can be either true or false. A state ω ∈ Ω specifies which of these propositions are
true, and which are false. Suppose that knowledge at any ω can be described by a
subset S(ω) ⊆ S. The agent knows at ω whether or not each proposition in S(ω) is
true or false. In other words, P (ω) = {ω′ ∈ Ω|s ∈ S(ω)⇒ [s is true at ω′ iff s is true
at ω]}. Finally, let us suppose that the propositions in S can be ordered (say chrono-
logically) and that with respect to this ordering S(ω) is always an initial set, for any
ω. Then P is nested (and nondeluded). Moreover, any nested and nondeluded P can
be equivalently described this way. Nested corresponds to memory in the sense that
the agent always remembers more or less far down the list of S, perhaps depending
on how complicated the pattern of truth valuations is, but always in the same order.

Diagrams 1a
Nondeluded, KTYK, but not nested

Diagram 1b
Nondeluded, nested, and KTYK

Note that nested and KTYK are independent properties. Let Ω = {a, b, c}, and
let P (a) = P (c) = {a, b, c}, while P (b) = {b, c}. Then P is nondeluded and nested,
but P does not satisfy KTYK, since c ∈ P (b) but P (c) ⊆ P (b).
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2 Decision Theory Without Partitions

Our purpose in this paper is to analyze decision-making and game theory in envi-
ronments where information processing is subject to error. Consider the following
canonical decision problem:

Let A be a set of possible actions. Let u : A × Ω → R. Let π be a measure1

on Ω. Let P : Ω → 2Ω be a possibility correspondence. We call a decision function
f : Ω→ A optimal for the decision problem (A,Ω, P, u, π) iff

Condition (1): [P (ω) = P (ω′)]⇒ [f(ω) = f(ω′)].
Condition (2): For all ω ∈ Ω and a ∈ A,∑

ω′∈P (ω)

u(f(ω), ω′)π(ω′) ≥
∑

ω∈P (ω)

u(a, ω′)π(ω′).

This definition applies for any possibility correspondence, whether or not it is a
partition. Notice both conditions (1) and (2) serve to limit choices to reflect the level
of information. Condition (1) requires that the agent’s action is a function of what he
perceives, and condition (2) requires that the agent optimizes, taking his information
at face value.

In the above definition the agent is effectively unaware that he is erring in his
information processing. Given the information that the state of nature ω′ ∈ R ≡
P (ω), the agent routinely uses Bayes Law to update his beliefs and to optimize.2

Were he aware of his errors, he would refine the possibility correspondence into a
partition by letting P̂ (ω) = {ω′ ∈ Ω|P (ω′) = P (ω)}.

In the above decision framework the agent does not completely understand the
model. He also does not necessarily “know what he is doing.” If he knew his optimal
plan f : Ω→ A, and knew at each ω what his choice ought to be, then he would further
refine his information according to the partition Qf (ω) = {ω′ ∈ Ω|f(ω′) = f(ω)}. It
might then turn out that his optimizing behavior would no longer correspond to f .

To illustrate the definition above we shall shortly present three examples which
shall be of further use in later sections. At the same time we investigate the precise
sense in which an agent who knows more but is boundedly rational may be worse off
than if he knew less but was unboundedly rational.

A fundamental consequence of Bayesian decision making, and unbounded ratio-
nality, is that knowing more can never be disadvantageous. If P : Ω → 2Ω and
Q : Ω → 2Ω then we say that Q is coarser than P if P (ω) ⊆ Q(ω) for all ω. If g
is optimal for (A,Ω, Q, u, π), and Q is coarser than P , and P and Q are partitions,
then

Condition (3):
∑

ω∈Ω u(g(ω), ω)π(ω) ≤
∑

ω∈Ω u(f(ω), ω)π(ω).

1Typically we shall suppose that π is a probability on Ω, so
∑

ω∈Ω = 1, but it is convenient for
technical reasons to allow for the more general situation where π is a measure.

2 In case π(R) = 0, the above definition allows the agent’s action to be arbitrary. A more so-
phisticated approach would define conditional probabilities on measure zero events, but we do not
consider these extensions here.

6



It turns out that this property of Bayesian decisions is at the heart of the non-
speculation literature. By allowing for less rational information processing it need no
longer be the case that more knowledge is better.

In fact, one wonders if there are any general properties at all that can be proved
outside the Bayesian framework. We shall show however that there are. Indeed the
“more is better property”applies to a more general set of information correspondences
than partitions.

Example 2.1: Let Ω = {a, b, c}, P (a) = {a, b}, P (b) = {b}, P (c) = {b, c}. (Note
that (Ω, P ) satisfies nondeluded and KTYK, but not nested.) Let π(a) = π(c) = 2/7
and π(b) = 3/7. Let the action set be A = {B,N}, corresponding to bet or not bet.
Let the payoffs from not betting be u(N, a) = u(N, b) = u(N, c) = 0. Let the payoffs
to betting be u(B, a) = u(B, c) = −1, while u(B, b) = 1. It is easy to calculate that
f(ω) = B for all ω ∈ Ω is optimal for (A,Ω, P, u, π). Yet,∑

ω∈Ω

u(N,ω)π(ω) = 0 > (−1/7) =
∑
ω∈Ω

u(B,ω)π(ω).

Of course g(ω) = N for all ω ∈ Ω is optimal for (A,Ω, Q, u, π) where Q(ω) = Ω for
all ω, so for this example inequality (3) fails.

Example 2.2: Let Ω = {a, b, c}, and let P (a) = P (c) = {a, b, c}, while P (b) = {b, c}.
Then (Ω, P ) is nondeluded and nested, but does not satisfy KTYK. Let A = {B,N},
let π(ω) = 1/3, for all ω ∈ Ω, and let u(N,ω) = 0 for all ω ∈ Ω, while u(B, a) = −2,
u(B, b) = −2, u(B, c) = 3. Then f = (f(a), f(b), f(c)) = (N,B,N) is optimal for
(A,Ω, P, u, π), but∑

ω∈Ω

u(N,ω)π(ω) = 0 > −2
3 =

∑
ω∈Ω

u(f(ω), ω)π(ω).

Once again let the coarse partition be Q(ω) = Ω for all ω. Then g(ω) = N for all
ω ∈ Ω is optimal for (A,Ω, Q, u, π), and again (3) is violated.

Example 2.3: Let Ω = {a, b}, let P (a) = {a}, P (b) = {a, b}. Then (Ω, P ) satisfies
all these properties nondeluded, nested, and KTYK. Let A = {B,N}, let π(a) =
π(b) = 1/2. Let u(N, a) ≡ u(N, b) = 0, let u(B, a) = 1, and u(B, b) = −2. Then
f(a) = B, f(b) = N is optimal for (A,Ω, P, u, π), and∑

ω∈Ω

u(N,ω)π(ω) = 0 < 1
2 =

∑
ω∈Ω

u(f(ω), ω)π(ω).

In this case inequality (3) holds. Observe also that if we changed the payoff at
(B, b) to u(B, b) = −1, then there would be a second optimal decision function
f̃(a) = B = f̃(b). In that case

∑
ω∈Ω u(f̃(ω), ω)π(ω) = 0 is worse than the payoff

arising from f , but still as good as the payoff arising from (A,Ω, Q, u, π) where
Q(ω) = Ω for all ω ∈ Ω.

In Examples 2.1 and 2.2, the agent was (ex ante) worse off knowing more because
he did not process information coherently. In Example 2.3 the agent was not worse
off, although he also did not process information correctly. In general we have:
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Theorem 1 Let (Ω, P ) satisfy nondeluded, nested, and KTYK. Let Q be a partition
of Ω that is a coarsening of P . Let f , g be optimal for (A,Ω, P, u, π) and (A,Ω, Q, u, π)
respectively. Then ∑

ω∈Ω

u(g(ω), ω)π(ω) ≤
∑
ω∈Ω

≤ u(f(ω), ω)π(ω).

Conversely, suppose that (Ω, P ) fails to satisfy one or more of the above hypotheses.
Then there is a partition Q of Ω that is a coarsening of P , and an A, u, π such that
f , g are optimal for (A,Ω, P, u, π), (A,Ω, Q, u, π), respectively, and yet the above
inequality is strictly reversed.

Proof The proof of the theorem proceeds by induction on the cardinality of Ω.
Suppose #Ω = 1. Then P (ω) = Ω = Q(ω) for all ω ∈ Ω, and there is nothing to
prove. Suppose the theorem is true for #Ω ≤ k. Consider the case where #Ω = k+1.
Let S = {ω ∈ Ω : P (ω) = Ω}. If S = Ω, then again there is nothing to prove. If
S 6= Ω, let Ω1 = P (ω̄) be any possibility set with the greatest cardinality less than
k+ 1. Then by nondelusion 0 < #Ω1 ≤ k, and #Ω \Ω1 ≤ k. From knowing that you
know, if ω ∈ Ω1, P (ω) ⊂ Ω1 so S ∩Ω1 = φ. Let Ω2 = Ω \ [Ω1 ∪ S]. From nondeluded
and nested, if ω ∈ Ω2, P (ω))∩Ω1 = φ. From KTYK, nondeluded, and the definition
of S, if ω ∈ Ω2, P (ω) ∩ S = φ. Hence, if ω ∈ Ω2, P (ω) ⊂ Ω2. Let I be the partition
of Ω formed by the disjoint sets Ω1, Ω2, and S. Consider the partition Q∗ = Q ∨ I,
defined by Q∗(ω) = Q(ω)∩ I(ω) for all ω ∈ Ω. Let g∗ be optimal for (A,Ω, Q∗, u, π).
Then because Q and Q∗ are partitions, and Q is coarser than Q∗ on Ω1 ∪ Ω2,∑

ω∈Ω1

u(g∗(ω), ω)π(ω) +
∑
ω∈Ω2

u(g∗(ω), ω)π(ω) +
∑
ω∈S

u(f(ω), ω)π(ω)

≥
∑
ω∈Ω1

u(g(ω), ω)π(ω) +
∑
ω∈Ω2

u(g(ω), ω)π(ω) +
∑
ω∈S

u(f(ω), ω)π(ω).

But now we can apply the induction hypothesis to (A,Ω1, P, u, π) and (A,Ω2, P, u, π),
obtaining ∑

ω∈Ω1

u(f(ω), ω)π(ω) ≥
∑
ω∈Ω1

u(g∗(ω), ω)π(ω) and

∑
ω∈Ω2

u(f(ω), ω)π(ω) ≥
∑
ω∈Ω2

u(g∗(ω), ω)π(ω).

Finally, let us observe that if S = φ, we are finished. If there is some ω̂ ∈ S, then Q is
the trivial partition and we can assume WLOG that g(ω) = f(ω̂) for all ω ∈ Ω, and
in particular g(ω) = f(ω) for all ω ∈ S. This concludes the proof, since the converse
follows from Examples 2.1 and 2.2. �

We conclude this section by noting one important extension to decision theory
that fits naturally into our framework. Let Ā be a correspondence specifying for
each ω ∈ Ω the set of possible actions in some ambient space A, Ā : Ω → 2A.
Then we would regard u as a function on A × Ω, and an optimal decision plan for
(Ā, A,Ω, P, u, π) would be a function f : Ω→ A satisfying
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Condition (1′): [P (ω) = P (ω′) and Ā(ω) = Ā(ω′)]⇒ [f(ω) = f(ω′)]
Condition (2′a): f(ω) ∈ Ā(ω) for all ω ∈ Ω and
Condition (2′b): For all ω ∈ Ω and a ∈ Ā(ω)∑

ω′∈P (ω)

u(f(ω), ω′)π(ω′) ≥
∑

ω′∈P (ω)

u(a, ω′)π(ω′).

This new formulation allows us to model the idea that agents take the face value
of a message, and restrict their choices accordingly, without using the subtle content
of the message (i.e., without using knowledge of the function Ā to invert the signal
and so to deduce more about the state). We shall return to this theme in Section 10.

Corollary 2 Let (Ā, A,Ω, P, u, π) be a decision problem with variable constraints.
Let (Ω, P ) satisfy nondeluded, nested, and KTYK. Let [P (ω) = P (ω′)] ⇒ [Ā(ω) =
Ā(ω′)]. Let Q be a partition of Ω that is a coarsening of P , and let Â(ω) ⊂
Ā(ω) for all ω satisfy [Q(ω) = Q(ω′)] ⇒ [Â(ω) = Â(ω′)]. If f , g are optimal
for (Ā, A,Ω, P, u, π) and (Â, A,Ω, Q, u, π), respectively, then

∑
ω∈Ω u(g(ω), ω)π(ω) ≤∑

ω∈Ω u(f(ω), ω)π(ω).

Proof: The proof is exactly as for Theorem 1. �

3 Equivalent Decision Problems

Evidently the naming of states is somewhat arbitrary. For example, splitting a state
into two indistinguishable states, which are physically indistinguishable, should not
change the decision problem. By formulating several definitions of equivalent decision
problems we can clarify the framework of Section 2.

Definition: We say that the decision problem (A,Ω′, P ′, u′, π′) is a renaming of the
decision problem (A,Ω, P, u, π) in the following senses:
Decision-theoretic, if there is a 1—1 and onto map δ : P ′ → P such that for all
R′ ∈ P ′, if R = δ(R′) then π(R) > 0 if and only if π′(R′) > 0 and if both are positive,
then for all a ∈ A,

1

π(R)

∑
ω∈R

u(a, ω)π(ω) =
∑
ω′∈R′

u′(a, ω′)π′(ω′);

Physical, if there is a function ϕ : Ω′ → Ω that is onto and satisfies

u(a, ϕ(ω′)) = u′(a, ω′) for all ω′ ∈ Ω′ and a ∈ A
π(ω) =

∑
ω′∈ϕ−1(ω)

π′(ω′) for all ω ∈ Ω

P ′(ω′) = ϕ−1(P (ϕ(ω′)) for all ω′ ∈ Ω′.

We say that two decision problems are equivalent (in either of the two senses) if
they have a common renaming. An easy argument shows that these are indeed equiv-
alence relations, and that a physical renaming is also a decision-theoretic renaming.
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The decision theoretic equivalence notion was formulated by Brandenburger—
Deckel—Geanakoplos [BDG88]. If it holds and if agents always optimize according
to (1) and (2), then behaviorally the decision problems are equivalent. The following
lemma also appears in [BDG88]:

Lemma 3 For any decision problem (A,Ω, P, u, π) there is a decision-theoretic re-
naming (A,Ω′, P ′, u′, π′) in which P ′ is a partition of Ω′.

Sketch of Proof: Let Ω′ = P ×Ω. Define u′ : A×Ω′ → R by u′(a, (R,ω)) = u(a, ω),

P ′(R,ω) = {R} × Ω, and δ({R} × Ω) = R, and let π′(R,ω) =
{

0 if ω 6∈ R
π(ω) if ω ∈ R . �

The upshot of Lemma 5 is that we can understand the information processing
and decision problem of Section 2 as if the agent is a conventional maximizer, but
has got the prior (on Ω′) wrong. The “correct” priors would be those that would

obtain if the agent knew the function P , namely π∗(R,ω) =
{
π(ω) if P (ω) = R
0 otherwise .

The lemma thus provides us with another interpretation of decision theory with
generalized partitions. If the reader wished, he could rewrite all of our results in
terms of the consequences of using the wrong priors (or in later sections, of players
using different priors). The advantage of the generalized possibility approach is that
it explains how the mistaken priors might have arisen. Theorem 1, for example,
gives conditions under which the agent does at least as well as he would with the
right priors but less information. One perhaps could reformulate the result directly in
terms of priors, but nondelusion, KTYK, and nested make clear just what information
processing errors are tolerable.

We illustrate Lemma 3 with the ozone example in which Ω = {a, b}, π(a) =
π(b) = 1/2, P (a) = {a}, P (b) = {a, b}. Let γ = {a} correspond to “gamma rays”
and n = {a, b} correspond to no gamma rays. Then Ω′ = P × Ω = {γa, γb, na, nb},
P ′(γa) = P ′(γb) = {γa, γb}, P ′(na) = P ′(nb) = {na, nb}, and π′(γa) = 1/2, π′(γb) =
0, π′(na) = π′(nb) = 1/2. The correct priors are π∗(γa) = 1/2, π∗(γb) = π(na) = 0,
and π∗(nb) = 1/2. Note that the only partition of Ω weaker than P is the trivial
partition, which under the transformation of Lemma 3 becomes the trivial partition
Q′ of Ω′. Theorem 1 can be interpreted to mean that any optimal plan f : Ω′ → A
with respect to the prior π′ and the partition P ′ does at least as well, evaluated
according to the correct priors π∗, as any plan feasible (i.e., measurable) with respect
to the partition Q′.

Let us now introduce the idea of a particularly simple, concrete description of the
set of states of nature. Let us call Ω a propositional state space if Ω = 2n. Each
ω ∈ Ω can be interpreted as a truth assignment to each of n ordered propositions,
and we can represent ω as an n-tuple of binary digits: ω = (ω(1), ..., ω(q), ..., ω(n)).
We call A ⊂ 2n a basic propositional event if there is some proposition q such that
A corresponds to all states assigning the same truth valuation to q. More precisely,
there is ω̄ ∈ Ω such that A = {ω ∈ Ω|ω(q) = ω̄(q)}. A propositional event A ⊂ Ω
is a nonempty intersection of basic propositional events: there exists ω̄ ∈ Ω and
1 ≤ q1 ≤ · · · ≤ qm ≤ n such that A = {ω ∈ Ω|ω(qi) = ω̄(qi), i = 1, ...,m}.

Notice that so far the ordering of the propositions has not played an essential role
in our definitions. We suggest that a property of memory is that the propositions (or
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basic propositional events) are arranged in some definite order in the mind, perhaps
from most important to least important, or reverse chronologically from most recent
to most distant, so that one remembers the outcomes in order. Sometimes one might
remember more or less (perhaps depending on the complexity of the outcomes), but
always in the same order. More precisely:

Definition: Let P be a collection of subsets of a propositional state space Ω = 2n.
We say that P has the memory property if for any R ∈ P , there is ω̄ ∈ Ω and
0 ≤ k ≤ n such that R = {ω ∈ Ω|ω(q) = ω̄(q), q = 1, ..., k}.

We now show that nested can always be interpreted in terms of memory.

Lemma 4 Let (A,Ω, P, u, π) be given and let (Ω, P ) be nondeluded and nested. Then
there exists a physical renaming (A,Ω′, P ′, u′, π′) which is propositional and has the
memory property.

Proof: The proof proceeds by induction on #Ω. For Ω = {ω}, let there be one
proposition n = 1 and let Ω′ = {T, F}, let P ′(T ) = P ′(F ) = Ω′, and let u′(a, T ) =
u′(a, F ) = u(a, ω) for all a ∈ A. Finally, let π′(T ) = π′(F ) = 1

2π(ω).
Suppose now that the lemma is true for #Ω ≤ k, and let #Ω = k + 1. Let

T0 = {ω ∈ Ω|ω ∈ R ∈ P only if R = Ω}. If T0 = Ω, there is nothing to prove. So
suppose#T0 ≤ k. For each ω ∈ Ω\T0, let T (ω) be the set in P with largest cardinality
≤ k containing ω. Then (T0, {T (ω)|ω ∈ Ω \ T0}) is a partition of Ω. By combining
sets we may suppose that the partition T consists of two sets, each containing at most
k states. For any Ti, and ω ∈ Ti, either P (ω) = Ω or P (ω) ⊂ Ti. Let Pi : Ti → 2Ti \φ
be defined by Pi(ω) = P (ω)∩ Ti. Then each of the decision problems (A, Ti, Pi, u, π)
satisfies the induction hypothesis. Hence there are renamings (A,Ω′i, P

′
i , u
′
i, π
′
i) where

each Ω′i = 2ni . To every ωi ∈ Ω′i there is an integer 0 ≤ ki(ωi) ≤ ni such that
P ′i (ωi) = {ω ∈ Ω′i|ω(q) = ωi(q), q = 1, ..., ki(ωi)}. By adding irrelevant propositions
(whose truth is never distinguished by the P ′i ) WLOG n2 = n1 and Ω′2 ≈ Ω′1 =
21+n1 . Let (A,Ω′, P̃ ′, π′, u′) be defined by Ω′ = Ω′1 ∪ Ω′2 = 2 × 2n1 . P̃ ′ is defined by
P̃ ′(ω′) = Pi(ω

′) if ω′ ∈ Ω′i; π
′ is defined by π′(ω′) = πi(ω

′) if ω′ ∈ Ω′i; u
′ is defined by

u′(ω′) = ui(ω
′) if ω′ ∈ Ω′i. It is clear that (A,Ω′, P̃ ′, π′, u′) is a physical renaming with

the memory property for (A,Ω, P̃ , π, u), where P̃ (ω) = Pi(ω) if ω ∈ Ti. (Each P̃ ′(ω′)
is characterized by specifying a truth valuations to one proposition distinguishing
whether ω′ ∈ Ω′1 or ω ∈ Ω′2, to ki(ω

′) of the next n1 propositions if ω′ ∈ Ω′i).
Finally, recall that P̃ (ω) = Pi(ω) differs from P (ω) only if P (ω) = Ω. Define P ′ on

Ω′ = Ω′1 ∪ Ω′2, as follows: P
′(ω′) =

{
Ω′ if ω′ ∈ Ω′i and P (ϕi(ω

′))=Ωi

P̃ (ω) otherwise
. Clearly,

if P ′(ω′) = Ω′, then this set can be characterized by specifying the truth valuation
of none of the n′+n1 propositions. Hence (A,Ω′, P ′, u′, π′) is a physical renaming of
(A,Ω, P, u, π) that has the memory property. �

4 Game Theory with Generalized Partitions

We can extend game theory as well as decision theory to allow for information process-
ing errors. The fundamental notion in game theory is the equilibrium concept pro-
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vided by John Nash in 1951. Let G = (I, Ai,Ω, Pi, ui, πi), i = 1, ..., I, be a collection
of decision makers. Let ui have domain XIi=1Ai ×Ω. Then we say that the functions
(fi, i = 1, ..., I) are a Nash equilibrium for the Game G iff

1. [Pi(ω) = Pi(ω
′)]⇒ [fi(ω) = fi(ω

′)], ω, ω′ ∈ Ω, i ∈ I.
2. For all ω ∈ Ω, i ∈ I, and ai ∈ Ai,∑

ω′∈Pi(ω)

ui(ai, f−i(ω
′), ω′)πi(ω

′) ≤
∑

ω′∈Pi(ω)

ui(fi(ω), f−i(ω
′), ω′)πi(ω

′).

We can interpret our definition of Nash equilibrium in much the same way as
we did the single agent decision-maker. The players themselves do not completely
understand the model, and so they are led to make information processing blunders
concerning the signals they receive.

One consequence of this point of view is that one of the rationalizations for Nash
equilibrium, that each player deduces what he should do as a matter of logical in-
trospection, is no longer tenable. However, many of the other interpretations of
equilibrium are still viable. For example, an equilibrium can still be characterized as
an agreement from which no agent has an incentive to deviate.

Let us emphasize one limitation of the current model. Agents are permitted to
make errors about the significance of their signals. But these errors do not depend
on the moves of other agents, even though, for example, the news that some state
has occurred might be much more unpleasant depending on what the other players
plan to do in that state. If we extended our equilibrium notion to allow for correlated
equilibria, as in [BDG (1988)], then it would be natural to allow the errors to depend
on the moves of other agents. (E.g. there might be some things that you simply
refuse to believe somebody else would ever do.)

We now give three examples illustrating the definition of Nash equilibrium with
generalized partitions, which will also serve to introduce the idea of speculation.

Example 4.1: Let I = {1, 2}. Let Ω = {a, b, c}, P1(a) = {a, b}, P1(b) = {b}, P1(c) =
{b, c}. Let P2(ω) = Ω for all ω ∈ Ω. Let π1 = π2 = π, with π(a) = π(c) = 2/7,
π(b) = 3/7. Let the action spaces be A1 = A2 = {B,N}. Finally, let the payoffs in
the three states be:

B N B N B N
B
N

[
−1, 1
ε, 0

0, ε
ε, ε

] [
1,−1
ε, 0

0, ε
ε, ε

] [
−1, 1
ε, 0

0, ε
ε, ε

]
a b c

where ε > 0 is small. It is clear that there are two Nash equilibria. In the first,
fi(ω) = N , ∀ω ∈ Ω, i = 1, 2. In the second, fi(ω) = B, ∀ω ∈ Ω, i = 1, 2. We are
most interested in the possibility of the second equilibrium. Here the agents always
bet against each other, simply on account of different information. Indeed, although
agent 1 always knows strictly more than agent 2, on account of his “irrational”
(generalized partition) information processsing, on average he is losing money.
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Example 4.2: Let I = {1, 2}. Let Ω = {a, b, c}, P1(a) = P1(c) = Ω, P1(b) = {b, c}.
Let P2(ω) = Ω for all ω ∈ Ω. Let π1(ω) = π2(ω) = π(ω) = 1/3 for all ω ∈ Ω. Let the
action spaces be A1 = A2 = {B,N}. Finally, let the payoffs in the three states be:

B N B N B N
B
N

[
−2, 2
ε, 0

0, ε
ε, ε

] [
−2, 2
ε, 0

0, ε
ε, ε

] [
3,−3
ε, 0

0, ε
ε, ε

]
a b c

where ε > 0 is small. Again there are two Nash equilibria. In the trivial one,
fi(ω) = N , ∀ω ∈ Ω, i = 1, 2. In the second, fi(a) = f1(c) = N , but f1(b) = B,
f2(ω) = B, ∀ω ∈ N . Again, in the interesting equilibrium a bet does take place,
though not always. Note also that agent 2 is willing to bet (always) because he
knows that the only time his bet will be taken up is in state b, where he wins. Agent
1 knows that 2 is always willing to bet, but does not realize that he himself only bets
when he is sure to lose. Once again agent 1 loses out to agent 2 despite his superior
knowledge at each ω, because he is not perfectly rational.

Example 4.3: Let I = {1, 2}. Let Ω = {a, b}, P1(a) = {a}, P1(b) = {a, b},
P2(a) = P2(b) = Ω. Let π(ω) = πi(ω) = 1/2, i = 1, 2, ω ∈ Ω. Let the action
spaces be A1 = A2 = {B,N}, and the payoffs in the two states be:

B N B N
B
N

[
1,−1
ε, 0

0, ε
ε, ε

] [
−2, 2
ε, 0

0, ε
ε, ε

]
a b

[1,−1]where ε > 0 is small. Here there is a unique equilibrium, at which fi(ω) = N ,
i = 1, 2, ω ∈ Ω. If f2(ω) = B, ∀ω ∈ Ω, then agent 1 would choose f1(a) = B,
f1(b) = N , in which case agent 2 would no longer be willing to bet.

If we changed the payoff at (B,B, b) from (−2, 2) to (u1(B,B, b), u2(B,B, b)) =
(−1/2, 1/2), then again there would be a unique equilibrium with fi(ω) = N , i = 1, 2,
∀ω ∈ Ω. In this game the information processing error of agent 1 is more serious,
since by ignoring the unpleasant information about state b, he is led to make a wrong
decision and bet all the time if he thinks agent 2 is always betting. On the other
hand, in this game agent 2 is not willing to bet if he thinks agent 1 is always betting.

We might consider a third variant of the game in which the payoffs are as in the
second variant, but now P2(a) = {a}, P2(b) = {b}. Now if agent 1 is always betting,
agent 2 can take advantage of the situation, choosing f2(a) = N , f2(b) = B. But in
our definition of equilibrium, though agent 1 ignores the exogenous unpleasant news
about the state of nature, he does not misunderstand the strategy agent 2 adopts.
Hence 1 would choose not to bet, and once again we have a unique equilibrium at
which fi(ω) = N , i = 1, 2, ∀ω ∈ Ω.

We now show that Nash equilibrium with generalized partitions can always be
given a Bayesian interpretation.
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Definition: We say that the game G′ = (I, Ai,Ω
′, P ′i , u

′
i, π
′
i) is a decision-theoretic

renaming of the game G = (I, Ai,Ω, Pi, ui, πi) if (i) there are I 1—1 and onto maps
δi : P ′i → P i; (ii) moreover, for all R

′
i ∈ P ′i, and f ′i : Ω′ → Ai satisfying f ′i(ω̃

′) = f ′i(ω
′)

whenever P ′i (ω̃
′) = P ′i (ω

′), let Ri = δi(R
′
i), and let fi : Ω → Ai be defined by

fi(ω) = f ′i(ω
′) for ω′ with δi(P ′i (ω

′)) = Pi(ω). Then we must have π′i(R
′
i) > 0 if and

only if πi(Ri) > 0, and then for all ai ∈ Ai, (iii) 1
πi(Ri)

∑
ω∈Ri ui(ai, f−i(ω), ω)πi(ω) =

1
π′i(R

′
i)

∑
ω′∈R′i

u′i(ai, f
′
−i(ω

′), ω′)π′i(ω
′).

The following lemma appears in [BDG (1988)].

Lemma 5 Any generalized game G = (I, Ai,Ω, Pi, ui, πi) has a decision-theoretic
renaming G′ = (I, Ai,Ω

′, P ′i , u
′
i, π
′
i) in which P

′
i is a partition of Ω′, for i = 1, ..., N .

Proof: Let Ω′ = P 1 × · · · × P I ×Ω. Let P ′i (R1, ..., RI , ω) = {Ri} × P−i ×Ω, and let

π′i(R1, ..., RI , ω)) =

{
πi(ω) if ω ∈ Ri and R−i = P−i(ω)
0 otherwise

for i = 1, ..., I, Ri ∈ P i,

ω ∈ Ω. Let u′i(a, (R1, ..., Rn, ω)) = ui(a, ω) for i = 1, ..., I, a ∈ XI
i=1Ai, Ri ∈ P i,

ω ∈ Ω. Finally, let δ({Ri} × P−i × Ω) = Ri. �

As an immediate corollary we have

Theorem 6 If the action spaces Ai are convex and the ui concave in Ai (or if the
action spaces are discrete but randomization is permitted) then any generalized game
has a Nash equilibrium.

Proof: There is always a decision-theoretic renaming G′ of G which is a standard
Bayesian game; hence G′ has a Nash equilibrium, which induces a Nash equilibrium
on G. �

5 Speculation in Equilibrium

Will rational, risk averse agents bet against each other? Can they agree to disagree
about the probability of some event? What if they have access to different informa-
tion? What if some of them make information processing errors?

Aumann (1976) showed that when agents have partition knowledge, it cannot be
common knowledge that they disagree. Milgrom—Stokey (1983), and less generally
Sebenius—Geanakoplos (1984), showed that when agents have partition knowledge,
it cannot be common knowledge that they will speculate or bet against each other.
A number of authors, in a long series of papers, have shown that there can be no
speculation in a rational expectations equilibrium (e.g., Kreps (1977), Tirole (1982)).
The nonspeculation idea could also have been reformulated in terms of a Nash equi-
librium. With partition-information all of these theorems are pretty much the same:
they can all be instantly derived from one theorem which we shall give below. When
knowledge is described by generalized partitions, however, these theorems are dis-
tinct; their proofs are different and so are the hypotheses needed for each of them.
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Examples 4.1 and 4.2 show that speculation and betting can occur in Nash equi-
librium if the possibility correspondences Pi fail to be partitions. The extension of
game theory to generalized partitions thus permits us to model a new phenomenon.

On the other hand, perhaps it is not surprising at all that agents can bet against
each other even though they have common priors, when their rationality is bounded.
After all, one way such generalized partitions can arise is if the agents are faulty in
their processing of information for example they may ignore all unfavorable infor-
mation. Another way to see the same thing, as the proof of Theorem 6 makes clear
(see Brandenburger—Deckel—Geanakoplos (1988)) is that a generalized equilibrium is
isomorphic to a Bayesian partition equilibrium in which the priors may be different.
The agents may have started with common priors, but on account of their faulty
information processing, they behave as if their priors were different. It is well-known
that gambling can take place between agents with different priors.

In this light the surprise is that any weakening of partition information still re-
tains enough structure to prevent speculation. Recall for instance that nondelusion,
knowing that you know, and nested are together still consistent with throwing away
unpleasant information at least once. Yet we have:

Theorem 7 Let G = (I, Ai,Ω, Pi, ui, πi) be a generalized game. Suppose each player
i has an action zi such that for all (f1, ..., fI),

∑
ω∈Ω ui(zi, f−i(ω), ω)πi(ω) = ūi.

Furthermore, suppose that if for any (f1, ..., fI),
∑

ω∈Ω ui(f(ω), ω)πi(ω) = ūi for all
i, then fj(ω) = zj for all ω ∈ Ω, j = 1, ..., I. Finally, let each Pi satisfy KTYK,
nondeluded and nested. Then G has a unique equilibrium, in which fi(ω) = zi for
all i = 1, ..., I, and all ω ∈ Ω. Conversely, if any Pi fails to satisfy any of KTYK,
nondeluded, and nested, then there are Ai, ui, πi, i ∈ I, for which the theorem fails.

Proof: Let (f1, ..., fI) be an equilibrium. Fix fj for all j 6= i, and look at the one-
person decision problem this induces for player i. Clearly fi must be an optimal plan
for this decision problem. But if i had the trivial partition Qi(ω) = Ω for all ω ∈ Ω,
he would be able to guarantee himself ex ante utility at least ūi by always playing
gi(ω) = zi. Hence by Theorem 1,

∑
ω∈Ω ui(f(ω), ω)πi(ω) ≥ ūi. Since this is true for

all i, by hypothesis fi(ω) = zi for each i and ω ∈ Ω. �
In Example 4.1 speculation occurs because P1 does not satisfy nested. In Example

4.2, P1 does not satisfy KTYK. In Example 4.3, there could be no speculation no
matter how we defined the payoffs.

The examples show that KTYK, nondeluded, and nested not only suffi ce to elim-
inate speculation in Nash equilibrium, but are necessary as well. If an agent’s infor-
mation Pi fails to satisfy all of the above, we can find other agents with partition
information, and properly specified payoffs for all the agents at which there will be
some speculation in equilibrium.

Like Theorem 1, Theorem 7 can be extended to allow for variable action spaces.

Corollary 8 Consider the generalized game Ḡ = (I, Āi, Ai,Ω, Pi, uiπi) with variable
action spaces. Suppose that [Pi(ω) = Pi(ω

′)] ⇒ [Āi(ω) = Āi(ω
′)], i = 1, ..., I. Then

if there are zi ∈
⋂
ω∈Ω Āi(ω), i = 1, ..., I, such that the conditions of Theorem 7 are
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satisfied, then Ḡ has a unique equilibrium f̄ with f̄i(ω) = zi for each i = 1, ..., I,
ω ∈ Ω.

Proof: Follow the logic of the proof of Theorem 7, and apply Corollary 2 where
Âi = {zi}. �

We can immediately apply the above theorem to show a generalization of the
standard no speculation theorem in rational expectations equilibrium.

We define an economy E = (I,RL+,Ω, Pi, ui, πi, ei) by a set of agents I, a com-
modity space RL+, a set Ω of states of nature, endowments ei ∈ RLΩ

+ and utilities
ui : RL+ × Ω → R for i = 1, ..., I, and generalized partitions Pi and measures πi for
each agent i = 1, ..., I. We suppose each ui is strictly monotonic, and strictly concave,
and that [Pi(ω) = Pi(ω

′)]⇒ [ei(ω) = ei(ω
′)] for all i = 1, ..., I.

Definition: A rational expectations equilibrium (REE) (p, I, xi) for E = (I,RL+,Ω, Pi, ui, πi, ei)
is a function p: Ω→ RL++ and for each i ∈ I, xi ∈ RLΩ

+ satisfying

(i)
∑I

i=1 xi =
∑
ei.

(ii) p(ω)xi(ω) = p(ω)ei(ω), for all i = 1, ..., I, and all ω ∈ Ω.

(iii) [Pi(ω) = Pi(ω
′)andp(ω) = p(ω′)] ⇒ [xi(ω) = xi(ω

′)] for i = 1, ..., I, and all ω,
ω′ ∈ Ω.

(iv) Let I(p) = {ω : p(ω) = p}. Then ∀ω ∈ Ω, and all i, if y ∈ RL+ and p(ω)y =
p(ω)ei(ω), then∑

ω′∈Pi(ω)∩I(p(ω))

ui(xi(ω), ω′)πi(ω
′) ≥

∑
ω′∈Pi(ω)∩I(p(ω))

ui(y, ω
′)πi(ω

′)

The reference to rational in REE comes from the fact that agents use the subtle
information conveyed by prices in making their decisions. That is, they not only use
the prices to calculate their budgets, they also use their knowledge of the function p
to learn more about the state of nature. If we modified (iii) and (iv) above to

(iii′) [Pi(ω) = Pi(ω
′)]→ [xi(ω) = xi(ω

′)] for i = 1, ..., I.

(iv′)
∑

ω′∈Pi(ω) ui(xi(ω), ω′)πi(ω′) ≥
∑

ω′∈Pi(ω) ui(y, ω
′)πi(ω′) for all i = 1, ..., I, for

all ω ∈ Ω and all y ∈ RL+ with p(ω)y = p(ω)ei(ω).

Then we would have the conventional definition of competitive equilibrium (CE).
The following nonspeculation theorem holds for REE, but not for CE. (For proofs
when agents have partition information and learn from prices, see Kre (1977), Tir
(1981), DGS (1987). For an example with partition information in which agents do
not learn from prices, and so speculate, see DGS (1987).) We say that there are
only speculative reasons to trade in E if in the absence of asymmetric information
there would be no perceived gains to trade. This occurs when the initial endowment
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allocation is ex ante Pareto optimal, that is if
∑I

i=1 yi(ω) ≤
∑I

i=1 ei(ω) for all ω ∈ Ω,
and if for each i = 1, ..., I,

∑
ω∈Ω ui(yi(ω), ω)πi(ω) ≥

∑
ω∈Ω ui(ei(ω), ω)πi(ω), then

yi = ei for all i = 1, ..., I.

Corollary 9 Let E = (I,RL+,Ω, (Pi, ui, πi, ei)) be an economy, and suppose the
initial endowment allocation is ex ante Pareto optimal. Let (p, I, x) be a rational
expectations equilibrium. Suppose that each Pi is nondeluded, nested, and satisfies
knowing that you know. Then xi = ei for all i = 1, ..., I.

Proof: The proof follows immediately from Corollary 9. Let P ′i (ω) = Pi(ω)∩I(p(ω))
be the generalized partition for each agent, and let Āi(ω) = {y|p(ω) · y = 0 and
ei(ω) + y ≥ 0}. Let zi = 0 ∈

⋂
ω∈Ω Āi(ω). �

6 Knowing Your Own Action

Consider again the single person decision problem (A,Ω, P, u, π), and suppose that
f : Ω→ A is an optimal plan. What do we mean when we say that the agent “knows
what he is doing” at some ω ∈ Ω? Simply put, we mean that if the agent regards
ω′ as possible at ω, then he should take the same action at ω′ as at ω: if ω′ ∈ P (ω),
then f(ω′) = f(ω).

Recall that in decision theory, the agent begins with a prior π on Ω, then refines
his information to P (ω). If P describes a partition, then the agent behaves as if
he has sifted through every possible source of information. On the other hand, if
P is a generalized partition, then the agent might forget or ignore information at
ω which should have caused him to exclude the possibility of ω′. This is consistent
with knowing what he is doing provided that at ω′ he would take the same action.
Suppose that Watson does not notice whether the dogs did anything in the night
time, and chooses some action. If the dogs had barked, Watson would have noticed;
he has erred by not deducing from the absence of sound that in fact the dogs did
not bark in the night time. Nevertheless we could say that Watson knew what he
was doing if the information he would receive from hearing the dogs bark would not
change his mind about his best decision.

The agent always knows what he is doing under the action plan f if the action he
is supposed to take is always self-evident to him. We shall describe the circumstances
in which an agent who “always knows what he is doing”may appear to be perfectly
rational even when he is making information processing errors.

Definition: An agent who processes information according to (Ω, P ) knows what he
is doing at some ω ∈ Ω using the action plan f : Ω → A if P (ω) ⊂ Qf (ω) = {ω′ ∈
Ω|f(ω) = f(ω′)}.

We shall now show that if an agent always knows what he is doing (i.e., knows
for all ω ∈ Ω), then better information will make him better off under quite general
circumstances. To this end we introduce our fourth and fifth properties of information
processing:
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Definition: The information processor (Ω, P ) is positively balanced with respect to
some set E ⊂ Ω iff there exists a function λ : P → R+, such that (letting χA be the
characteristic function of any set A ⊂ Ω)∑

C∈P
λ(C)χC(ω) = χE(ω) for all ω ∈ Ω.

If the same holds true for some λ unrestricted in sign, λ : P → R, then we say that
(Ω, P ) is balanced with respect to E. (More generally, for any collection of events,
X ⊂ 2Ω, and E ∈ 2Ω, we say that X is (positively) balanced with respect to E if
there is λ : X → (R+)R such that

∑
C∈X λ(C)χC = χE . �

Balancedness gives a condition under which one can say that every element ω ∈ E
is equally scrutinized by the information correspondence P . Every element C ∈ P
has an intensity λ(C), and the sum of the intensities with which each ω ∈ E is
considered possible by P is the same, namely 1. Balancedness is a generalization of
partition. If E can be written as a disjoint union of elements of P , then (Ω, P ) is
trivially balanced with respect to E.3

There is a special class of events for which being balanced is especially important.
Recall:

Definition: An event E ∈ Ω is self-evident to the processor (Ω, P ) if P (ω) ⊂ E
for all ω ∈ E. The notion of self-evident has been used in Shin [1989], Sam [1987],
BG [1988], Gea [1988], and MS [1988]. An event is self-evident if it can never occur
without the agent knowing that it has occurred.

Definition: (Ω, P ) is balanced (positively balanced) if it is balanced (positively
balanced) with respect to every self-evident set.

If (Ω, P ) is a partition, then the self-evident sets are (disjoint) unions of elements
of P . Hence (Ω, P ) is trivially positively balanced. Note that in Example 2.1 (Ω, P ) is
balanced with λ(P (a)) = 1 = λ(P (c)), and λ(P (b)) = −1 but not positively balanced.
In Examples 2.2 and 2.3 (Ω, P ) is positively balanced since for both of them Ω ∈ P .

We now use the notion of self-evident events to characterize the relationship be-
tween positively balanced and balanced and nondeluded, KTYK, and nested. Posi-
tively balanced is a weakening of nested, and balanced is a further weakening that is
also a weakening of KTYK.

Lemma 10 If (Ω, P ) is nondeluded and nested, then (Ω, P ) is positively balanced.

Proof: Let E be self-evident to (Ω, P ). For each ω ∈ E, let E(ω) =
⋃
ω′∈E ω∈P (ω′) P (ω′).

By nondeluded ω ∈ E(ω), and by nested E(ω) is a partition of E, and each E(ω) ∈ P i.
�

3Balancedness is similar to a concept (with the same name) that played an important role in the
development of the theory of the core in cooperative game theory.
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Lemma 11 Let (Ω, P ) satisfy nondelusion and knowing that you know. Then (Ω, P )
is balanced.

Proof: The proof proceeds by induction. If #Ω = 1, there is nothing to show.
Suppose the truth of the Lemma for #Ω ≤ k. Now let #Ω = k + 1. Find an
element R ∈ P which minimizes #R. From nondeluded, knowing that you know,
and the minimality of #R, we deduce that P (ω) = R for all ω ∈ R. Moreover, if
P (ω′)∩R 6= φ, then P (ω′) ⊃ R, for otherwise if ω′′ ∈ P (ω′)∩R, then #P (ω′′) < #R.
Let Ω′ = Ω \R, and let P ′ : Ω′ → 2Ω′ be defined by P ′(ω) = P (ω) \R. Then (Ω′, P ′)
satisfies KTYK and nondelusion. By the induction hypothesis (Ω′, P ′i ) is balanced.
Now, let E be self-evident to (Ω, P ). If E ∩R = φ, then E is self-evident to (Ω′, P ′),
and the balancing weights are strictly positive only on C ∈ P ∩ P ′. If E = R, then
the result is obvious. If R 6 ⊆E, then E′ = E \ R is self-evident to (Ω′, P ′). Use the
balancing weights for P ′ and E′, and choose the correct weight for R. �

Figure 2

The logical connections between balanced, positively balanced, nested, KTYK,
and partition information, assuming nondeluded. In later sections we show that if
each agent is nondeluded, then

all agents balanced ⇔ they cannot agree to disagree

all agents positively balanced ⇔ no common knowledge speculation

all agents nested and KTYK ⇔ no equilibrium speculation

In our next theorem we show that Theorem 1 can be proved under much weaker
hypotheses if we suppose that the agent knows what he is doing. (Needless to say, if
an agent is not unboundedly rational, we might not expect him always to know what
he is doing.)

Theorem 12 Let (Ω, P ) be nondeluded and positively balanced. Let f : Ω → A
be optimal for the decision problem (A,Ω, P, u, π). Suppose that the information
processor (Ω, P ) always knows what he is doing under the action plan f . If Q is
a partition of Ω that is a coarsening of P , and if g is optimal for (A,Ω, Q, u, π), then∑

ω∈Ω

u(g(ω), ω)π(ω) ≤
∑
ω∈Ω

u(f(ω), ω)π(ω).

If Q(ω) ⊂ Qf (ω) for all ω ∈ Ω, then the above inequality is actually an equality.
Conversely, if (Ω, P ) fails to be either nondeluded or positively balanced, then there
exist decision problems and partitions Q for which the above inequality is strictly
reversed.

Proof: Since Q∨Qf defined by (Q∨Qf )(ω) = Q(ω)∩Qf (ω) ⊂ Qf (ω) is a partition
which refines Q, and since more information is always better for partitions, it suffi ces
to show that equality holds above whenever Q(ω) ⊂ Qf (ω) for all ω ∈ Ω.
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Let E ∈ Q. Since Q is a partition of Ω, Q(ω) = E for all ω ∈ E, and since Q is a
coarsening of P , it follows that E is self-evident to (Ω, P ). Write∑

C∈P
λ(C)χC = χE , where λ ≥ 0.

By nondelusion, if ω 6 ∈E, then ω ∈ P (ω) and so λ(P (ω)) = 0. Since E ⊂ Qf (ω) for
any ω ∈ E, it follows that f(ω) = a for all ω ∈ E, for some a ∈ A. To conclude the
proof of the first half of the theorem, it suffi ces to show that for all b ∈ A,∑

ω∈E
u(f(ω), ω)π(ω) =

∑
ω∈E

u(a, ω)π(ω) ≥
∑
ω∈E

u(b, ω)π(ω).

But for any C ∈ P with λ(C) > 0,
∑

ω∈E u(a, ω)π(ω) ≥
∑

ω∈E u(b, ω)π(ω), hence∑
C∈P

∑
ω∈Ω λ(C)χC(ω)u(a, ω)π(ω) ≥

∑
C∈P

∑
ω∈Ω λ(C)χC(ω)u(b, ω)π(ω) hence∑

ω∈Ω

χE(ω)u(a, ω)π(ω) ≥
∑
ω∈Ω

χE(ω)u(b, ω)π(ω).

To argue in the other direction, note that there are trivial counterexamples if
(Ω, P ) does not satisfy nondeluded. If it does, then suppose that for all deci-
sion problems (A,Ω, P, û, π̂) and for all E ⊂ Ω where E is self-evident to (Ω, P ),
[
∑

ω∈C(a, ω)π̂(ω) =
∑

ω∈Ω χC(ω)û(a, ω)π̂(ω) ≥
∑

ω∈Ω χC(ω)û(b, ω)π̂(ω) for all C ∈
P , C ⊂ E] implies [

∑
ω∈Ω χE(ω)û(a, ω)π̂(ω) ≥

∑
ω∈Ω χE(ω)û(b, ω)π̂(ω)]. Since the

û(a, ω), û(b, ω), π̂(ω) are arbitrary, we can apply Farkas’Lemma which assets that
there are λ(C) ≥ 0 for C ⊂ E such that

∑
C∈P,C⊂Ē λ(C)χC = χE . �

The idea behind the proof of Theorem 12 is quite different from that used in the
proof of Theorem 1. The following definitions are clarifying.

Definition: A function δ : 2Ω → A is said to satisfy the sure-thing principle if
whenever E, F are disjoint and δ(E) = δ(F ), then letting B = E ∪ F , δ(B) = δ(E).
We say that δ satisfies the generalized sure-thing principle if whenever δ(E) = d for
all E ∈ X ⊂ 2Ω, and X is positively balanced with respect to some B ∈ 2Ω/φ, then
δ(B) = d.

Behavior which is optimal in the sense we have described, where information
processing errors are represented by possibility correspondences or generalized parti-
tions, always satisfies the generalized sure-thing principle.

Theorem 12 has one particularly important consequence. Suppose an agent who
is positively balanced optimally chooses some action plan f under which he knows
what he is doing. If the agent were to forget everything he knew except what was
necessary to implement the decision plan, then he would still choose the same plan
if he was nondeluded and positively balanced. To put the matter still differently, the
optimal behavior of an agent who is nondeluded and balanced and always knows what
he is doing cannot be distinguished from the behavior of an unboundedly rational
(partition information processing agent).
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7 Common Knowledge of Events vs. Common Knowl-
edge of Actions

Aumann (1976) introduced the idea of common knowledge of events and actions. We
investigate what conclusions we can draw (about speculation and consensus) when
we add the additional hypothesis that actions are common knowledge. Again we find
a nonspeculation theorem, but under weaker conditions than Theorem 12, and with
a different proof. We also derive a consensus theorem under still weaker hypotheses,
with yet another kind of proof.

We can already get some idea of the importance of the hypothesis that actions
are common knowledge from Example 4.2. The agents do bet in equilibrium, but at
the moment each commits himself to the bet he does not know whether it will be
accepted or not. The bet is not common knowledge. We now formalize this idea.

The possibility correspondence Pi gives rise to a knowledge operatorKi byKi(A) =
{ω : Pi(ω) ⊂ A}. Ki satisfies the following three properties:

(1) KiΩ = Ω;

(2) A ⊂ B ⇒ KiA ⊂ KiB;

(3) KiA ∩KiB = Ki(A ∩B).

If Pi is nondeluded, then

(4) KiA ⊂ A for all A.

Definition (Lewis (1969), Aumann (1976)): We say that an event A is “common
knowledge at ω′′ if for any sequence of players i1, ..., in, ω ∈ Ki1 , ...,KinA.

We can give an equivalent definition of common knowledge based on our familiar
notion of self-evident event.

Definition: Let agents’knowledge be represented by (Ω, Pi), i = 1, ..., I. An event
E ⊂ Ω is self-evident to i if [ω ∈ E] ⇒ [Pi(ω) ⊂ E]. Let Ei be the collection of all
self-evident events to i. We call E =

⋂I
i=1 Ei the collection of public events.

The following proposition is taken from Brown—Geanakoplos (1988), or Monderer—
Samet (1988), extending Shin (1987), who extended Aumann (1976). The reader
interested in a further discussion of common knowledge is referred to any of these
works.

Proposition: Let the knowledge of agents i = 1, ..., I be represented by (Ω, Pi),
where each Pi is nondeluded. Then an event A is common knowledge at ω if and
only if there is a public event E ∈ E with ω ∈ E ⊂ A.

Not only events, but also actions can be common knowledge.
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Definition: Let f : Ω→ A be a function from Ω to some set A. Given information
processors (Ω, Pi), i = 1, ..., I, we say that f is common knowledge at some ω ∈ Ω iff
the event Qf (ω) = {ω′|f(ω′) = f(ω)} is common knowledge at ω.

Observe that if f is the action plan of some player i, then one consequence of
f being common knowledge at ω is that i himself knows what he is doing at ω.
Replacing Ω by the smallest public event Ω′ containing ω, we see that in fact we can
more strongly assert that if f is common knowledge at ω, then i always (in Ω′) knows
what he is doing.

There would seem to be a wide gulf between the hypothesis that agents know
the same things (about all events) and the hypothesis that agents know the same
things about what they are each planning to do. Indeed it is commonly held that
we observe agents interacting (i.e., taking actions) in various ways on account of
the fact that they have asymmetric information. The following theorem, however,
describes the power of assuming actions are common knowledge. It generalizes a
theorem (Geanakoplos (1987)), proved for Nash equilibria, following an idea in Cave
(1983). It shows that if in Nash equilibrium the actions are common knowledge at
ω, then the information might as well be the same as well. Hence once actions are
presumed to be common knowledge, asymmetric information provides no explanation
whatsoever of behavior.

Theorem 13 Let G = (I, Ai,Ω, Pi, ui, πi) have an equilibrium (f1, ..., fI). Let Pi
be nondeluded and positively balanced, for i = 1, ..., I. Suppose that it is common
knowledge at some ω what moves the players are making. Then we can replace each Pi
with P̃i, creating a new generalized game G, having the same equilibrium (f1, ..., fI),
and moreover we can choose P̃i(ω) to be independent of i.

Proof: From the proposition we know that there is a public event E such that
fi(ω

′) = fi(ω) for all ω′ ∈ E, and all i = 1, ..., I. Let P̃i(ω′) = E for all ω′ ∈ E,
but otherwise leave Pi unchanged. Let Zi = fi(ω). Since Zi is optimal given the
information in any Pi(ω′), for any ω′ ∈ E, by Theorem 12 agent i would choose Zi
at ω if he were only informed of P̃i(ω). Since for ω′ 6 ∈E, P̃i(ω′) = Pi(ω), we see
that changing the information structure of the game does not affect the equilibrium
moves. �

The hypotheses in Theorem 13 are not only suffi cient for Theorem 13, but nec-
essary as well. If some agent’s information processing (Ω, Pi) was not nondeluded
or positively balanced, then we could find payoffs, and another player with partition
information, such that in the resulting equilibrium actions were common knowledge
but the asymmetry of information could not be dispensed with. The same remark
applies to Corollaries 14 and 15. They give a necessary and suffi cient condition for
nonspeculation in equilibrium under common knowledge of actions, which is sub-
stantially weaker than the necessary and suffi cient condition for nonspeculation in
equilibrium.
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8 Common Knowledge and Speculation

Corollary 14 Consider the speculative situation of Theorem 7. Drop the assump-
tion that agents know what they know and are nested. Suppose only that Pi is non-
deluded and positively balanced, for each i = 1, ..., I. But suppose also that at some
ω ∈ Ω, it is common knowledge at ω what moves all the players are making. Then at
an equilibrium (f1, ..., fI), fi(ω) = zi for each i = 1, ..., I.

Proof: From the common knowledge hypothesis, for each i, there is a Bi ∈ Ai such
that each player is choosing fi(ω′) = Bi for all ω′ ∈ E, where E is a public event. It
follows from Theorem 12 that∑

ω′∈E
ui(Bi, f−i(ω

′), ω′)πi(ω
′) ≥

∑
ω′∈E

ui(zi, f−i(ω
′), ω′)πi(ω

′).

From this it follows that the ex ante payoffs to each player from the moves

gi(ω
′) =

{
zi if ω′ 6 ∈E
Bi if ω′ ∈ E

would be at least ūi. Since by hypothesis that can be achieved only if each player
chooses zi regardless of ω′ we have Bi = zi for each i = 1, ..., I. �

Corollary 15 Let E = (N,RL+,Ω, (Pi, ui, πi, ei)) be an economy (not necessarily
with strictly convex preferences), and let (p, I, x) be a rational expectations equilib-
rium. Suppose that each Pi is nondeluded, and positively balanced. If at some ω, for
all i, xi−ei is common knowledge, then there is a public event F such that the equilib-
rium would remain the same if we set Pi(ω′) = F for all i = 1, ..., I, and all ω′ ∈ F .
Furthermore, if in addition the endowments were a Pareto optimal allocation, and no
other allocation gave all agents precisely the same utility (as in Corollary 2), then we
could conclude that xi(ω) = ei(ω), for all i = 1, ..., I.

9 Common Knowledge and Consensus

A game of particular interest is the opinion game G∗. Let Ω be a finite set of real
numbers. Let Ai be the set of reals for each i = 1, ..., I. Let πi(ω) = π(ω) > 0 for
all i and ω. Finally, let ui((q1, ..., qN ), ω) = −(qi − ω)2. Let Pi be the possibility
correspondence. In this game G∗, each player optimizes by giving his conditional
expectation of the random variable ω, based on his information Pi(ω).

Theorem 16 Suppose that in the generalized opinion game G∗, (f1, ..., fI) is an
equilibrium. Suppose that it is common knowledge what the moves of the players are
at ω. Finally, suppose that each Pi is nondeluded and balanced. Then all the players
are taking the same action at ω. Conversely, if Pi is not balanced for some i, then
there exists a probability π and renumbering of ω ∈ Ω, and partitions for j 6= i, such
that the players can “agree to disagree” in the equilibrium of G∗.
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Proof: From nondelusion and balancedness, for any public event E we can write
χE =

∑
C∈P i,C⊂E λi(C)χC . From the common knowledge hypothesis, we may choose

E so that for all C ∈ P i, C ⊂ E, 1
π(C)

∑
ω∈C ωπ(ω) = ki. Hence for all such C,∑

ω∈C ωπ(ω) =
∑

ω∈C kiπ(ω). Hence∑
C∈P i
C⊂E

λi(C)
∑
ω∈Ω

χC(ω)ωπ(ω) =
∑
C∈P i
C⊂E

λi(C)
∑
ω∈Ω

χC(ω)kiπ(ω).

Using nondelusion and balancedness,∑
ω∈Ω

χE(ω)ωπ(ω) =
∑
ω∈Ω

χE(ω)kiπ(ω)

or ∑
ω∈E

ωπ(ω) = ki
∑
ω∈E

π(ω), so ki is the same for all i.

The converse follows from Farkas’Lemma as in the proof of Theorem 12, except since
all the inequalities are equalities here, the λi(C) can have either sign. �

Aumann (1976) gave the first famous version of this theorem, for partitions.
Samet (1987) showed that as long as each Pi satisfies nondeluded and knowing what
you know, then if the agents’ opinions are common knowledge, they must be the
same. By following the logic of Theorem 13, we could have shown that agreement
must hold if the Pi are nondeluded and positively balanced, a condition independent
of KTYK. For if the opinions are common knowledge, then by Theorem 13 they could
have been given with identical information across agents. But in that case they are
surely the same. Theorem 16 employs a hypothesis that is weaker than nested and
weaker than KTYK, and yields a necessary and suffi cient condition for never agreeing
to disagree. Note that the proof of Theorem 16 differs from that of Theorem 12 and
Theorem 13.

McKelvey—Page (1986) proved the remarkable theorem that if the average (or
sum) of different agents’ opinions is common knowledge and if each agent began
with the same prior, all the opinions must be the same. Here we extend this result to
possibility correspondences satisfying only nondeluded, nested, and knowing that you
know. The proof can also be regarded as an alternative derivation of McKelvey-Page’s
average opinion theorem.4

Theorem 17 Suppose that in the generalized opinion game G∗, (f1, ..., fI) is an
equilibrium. Suppose that the sum

∑I
i=1 fi of the opinions is common knowledge at

ω̄. Then f1(ω̄) = · · · = fI(ω̄).

4McKelvey—Page (1986) extends for the case of partitions to situations in which only the average
of monotonic transformations is common knowledge. This will hold under the hypothesis that each
(Ω, Pi) is nondeluded and balanced, provided that agents also always know their own opinions.
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Proof: Since
∑I

i=1 fi(ω) is common knowledge at ω̄, there exists E ∈ E satisfying
ω̄ ∈ E, and

∑I
i=1 fi(ω) = k for all ω ∈ E. Let x̄ = 1

π(E)ωπ(ω). Then we must have

that
∑

ω∈Ω(ω− x̄)
∑I

i=1 fi(ω)π(ω) = 0. To prove the theorem it suffi ces to show that∑
ω∈Ω(ω − x̄)fi(ω)π(ω) > 0 unless fi is a constant on all of E, for each i = 1, ..., I.
Observe that from Theorem 1 and the fact that E ∈ Ei,

−
∑
ω∈E

(ω − fi(ω))2π(ω) ≥ −
∑
ω∈E

(ω − x̄)2π(ω).

Multiplying out terms and rearranging yields

2
∑
ω∈E

ωfi(ω)π(ω) ≥
∑
ω∈E

(x̄2 + f2
i (ω))π(ω).

Subtracting 2
∑

ω∈E fi(ω)π(ω) from both sides yields

2
∑
ω∈E

(ω − x̄)fi(ω)π(ω) ≥
∑
ω∈E

(x̄2 + f2
i (ω))π(ω)− 2

∑
ω∈E

fi(ω)π(ω)

=
∑
ω∈E

(x̄− fi(ω))2π(ω) > 0

unless fi(ω) = x̄ for all ω ∈ E. �

10 Generalized Games in Extensive Form

Let us now apply our theory to games in extensive form. In this theory players act
over time, and in particular the same player may move many times. The inconsistency
that occurs when information is not given by partitions and total recall can now reveal
itself in time inconsistency of behavior.

Consider a tree, consisting of a finite set of nodes ω ∈ Ω with a partial order. A
tree has a first element, called the root ; maximal or terminal nodes are associated
with payoffs for each of the I players. To every node we associate either “nature”
or one player “who has the move.” Let #ω be the number of immediate successor
nodes of ω, and let player i be on the move at ω. Then the convex feasible move
set for i at ω is Āi(ω) ⊂ S#ω−1, where S#ω−1 is the simplex of dimension #ω − 1.
(Note: implicitly we have numbered the immediate successor nodes 1, ...,#ω.) For
convenience we set Aj(ω) equal to a single point if j 6= i is not on the move at ω. If
nature is on the move at ω, then there is also given an element in S#ω−1, which for
simplicity we take as objectively given.

To every node ω we associate a possibility set Pi(ω) for each player i, in such a
way that if ω′ ∈ Pi(ω), then Āi(ω) ⊂ S#ω′−1. Furthermore, if ω′ ∈ Pi(ω), then ω′

is not comparable with ω in the tree ordering (that is, it is on a different branch of
the tree). We shall maintain ω ∈ Pi(ω), although this is not actually necessary. Note
that these assumptions do not imply perfect recall. This completes our description
of a generalized game G in extensive form.
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A strategy for a player i is an association with each ω ∈ Ω of an element fi(ω) ∈
Āi(ω) in such a way that if (Pi(ω), Āi(ω)) = (Pi(ω

′), Āi(ω′)), then fi(ω) = fi(ω
′).

Given strategies for each of the players, one can calculate “correctly” the expected
payoffs to each player, and then define Nash equilibrium, or perfect Nash equilibrium,
as in conventional game theory. We shall describe a different, generalized notion of
equilibrium.

Given the strategies (f1, ..., fN ) = f of the N players, we can always calculate
the probability πi(ω, f) = π(ω, f) that the node ω will be reached. Note that it is
possible that π(ω, f) = 0, and also in general

∑
ω∈Ω π(ω, f) > 1. Note however that

π(ω, f) depends only on fi(ω′) for ω′ that precede ω. In particular, if ω′ ∈ Pi(ω),
then π(ω, f) does not depend on fi(ω′).

To each ω ∈ Ω and i = 1, ..., I let us also associate the payoff ui(ai, a−i, ω, f),
which is the conditional payoff to player i given that ω has been reached, calculated
using the strategies in f , except that fj(ω) is replaced by aj , for j = 1, ..., N . This is
calculated in the conventional manner, and is obviously well-defined. Note that if i
is on the move at ω and j 6= i then aj does not affect uk(a, ω, f) for any k = 1, ..., N .
Note furthermore that ui(ai, a−i, ω, f), is continuous in (ai, a−i, f), and concave, in
fact linear, in ai.

We define an equilibrium, for the generalized game G as a tuple of strategies
(f1, ..., fN ) satisfying:

fi(ω) ∈ ArgMax
ai∈Ai(ω)

∑
ω′∈Pi(ω)

ui(ai, f−i(ω
′), ω′, f)πi(ω

′, f).

Theorem 18 Every generalized game in extensive form has an equilibrium.

Here is not the place to go into details, but one can also define various refinements
of equilibrium for generalized games. A perfect equilibrium for a generalized game in
extensive form can be defined analogously to a perfect equilibrium for a conventional
game in extensive form, since in the latter case one must appear also to the agent
normal form.

One could give many examples of generalized games in extensive form, but let
us concentrate on the story of Odysseus and the Sirens, and the problem of time
consistency.

Recall that one day Odysseus was told by Circe that his boat was sailing near
the island home of the famous Sirens, whose beautiful singing lured many sailors to
crash against the terrible rocks that studded the shore. Anticipating that once they
heard the music, he and his men would not be able to resist the seductive temptation
to sail nearer to the shore to better hear the songs, he ordered his men to sail clear
of the shore, and he put wax in their ears to make sure that they could hear neither
the Sirens nor himself. He also had himself tied to the mast, so that he could hear
the Sirens but could do nothing to change the course of the boat. When the boat
finally came within earshot of the Sirens, Odysseus struggled violently to free himself
from his bonds and to exhort his men toward shore. Fortunately for him, both the
wax and the bonds held firm, and his boat sailed safely past.
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Odysseus’decision problem is one of the best known in history, precisely because
Odysseus is so famous for his cunning, which indeed this story seems to confirm,
and yet his behavior before and after hearing the Sirens is apparently inconsistent.
A celebrated explanation, given by Strotz, suggests that Odysseus was a man who
greatly discounted the future, but did not discount the distant future much more than
the near future. According to this theory, when Odysseus first realized where he was,
he weighed the near future of sailing near shore to better hear the sirens against the
distant future of crashing on the rocks, and decided to avoid the bargain. But when
the near future became the present, so that the trade-off was between hearing better
now and crashing later, he wanted the bargain.

Although this impatience explanation is quite striking, it is not clear that it is
faithful to the story, nor that it is the most interesting explanation. In the first place,
one of the salient characteristics of Odysseus’personality is that, unlike most of the
other Greeks, he was always planning for the future. These plans and preparations
often involved initial sacrifices for future rewards. (Meticulously arranging the wax
for his men is a perfect example.) It does not seem credible that wily Odysseus
would trade his life for a song just because the song came first. (Indeed if anything
he was willing to give up his life to the Trojan expedition in order to be part of
the immortal song of the poet, because that song is last, and everlasting.) There
is a further technical problem with Strotz’s explanation, namely that it suggests
discontinuous preferences. Until the moment Odysseus hears the song, he keeps his
wits and tries to avoid the rocks. It is only at the instant that he hears the music that
he forgets himself. This behavioral change cannot be accounted for by continuous
time preferences, that ignore the information content of the song.

The theory of extensive form games proposed here is designed to model behav-
ior that is purposeful and cunning, but based on information processing that is not
perfect. My interpretation is that when Odysseus hears the Sirens and “forgets him-
self,”he literally forgets what he knew before, namely that the Sirens are dangerous.
His behavior after he hears the Sirens is not less purposeful or less skillful than be-
fore. The difference is that it is constrained and it is based on different information.
Typically such a beautiful song deserves a better hearing, and having forgotten the
warning of Circe, Odysseus struggles to land his boat closer to shore. The subtlest
part of this information explanation of Odysseus, and one that requires all of the
apparatus of the model, is that Odysseus recognizes full well that he is ensnared in
the ropes and cannot get the attention of his men. But he never asks himself how he
got in that situation. If he did he might have inferred his predicament. Thus the in-
formation explanation, which I believe expresses the paradox of the inconsistent but
cunning planner in a way which impatience cannot, rests on the two ideas which are
the basis of our extension of game theory. Knowledge is not necessarily describable
by partitions, and even the most clever men do not necessarily make inferences from
the constraints they face.

The Odysseus game can be formally modeled in our framework, as the following
diagram makes clear. Nature moves first and chooses to blow Odysseus’boat near
the island of the Sirens, or near some other harmless island (on which there is also
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singing, but perhaps less good). Odysseus then has the choice of binding himself and
putting wax in the ears of his men, or else leaving them all free. Finally he hears
the music, and must decide whether to give the order to stay clear of the shore, or
to move toward the shore. Note that if he has put wax in his mens’ears, then he is
constrained not to give the order to head closer to shore, although the payoff if he
were able is still defined.

The novelty about this game is the information Odysseus has. Odysseus hears
very well the advice of Circe, and so knows whether the boat will be sailing past the
island of the Sirens or a harmless island. If he hears songs from the harmless island,
he remembers well whether he put wax in the ears of his men. A best strategy from
that point is to sail close to shore. But if Odysseus is near the Sirens’ island, and
hears their singing, then he forgets completely Circe’s advice. Moreover, although he
recognizes whether he is bound or not, he does not infer anything from this.

Figure 3

There is a unique equilibrium to this generalized game in extensive form. Odysseus
applies the wax if Circe advises him that he will pass the Sirens, and otherwise, he
does not. After hearing either song, he always tries to head for shore, but when he
is constrained from giving such an order he does the only thing he can, and permits
the boat to stay clear. The reason this last move of Odysseus is optimal is because
Odysseus computes that 99.9% of the time he is called upon to make a decision
about whether to better hear a beautiful song, it is worth doing. Knowing that he
will decide this way later, Odysseus earlier on has no choice but to put the wax in
his mens’ears and tie himself to the mast, even though he would be much better off
sailing clear of the island unfettered.

The time inconsistency of Odysseus’ behavior is mirrored in a host of similar
examples usually having to do with temptation. Typically the optimal response to a
pleasant sensation is to increase it. Life’s experiences strongly encourage such priors.
There are some pleasant experiences, like some drugs or cigarette smoking that some
people recognize to be harmful for them. However, when under their influence, or
sometimes just in their presence, they forget the particular, and reason only from
the general principle that pleasure is desirable. One occasionally meets modern day
Odysseuses who deliberately leave their money home so they will not be tempted by
anything fattening, or who join clubs like alcoholics anonymous so that their drinking
will be punished by shame as well as hangovers.
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