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Abstract

Afriat’s original method of proof is restored by using the minmax
theorem.
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1 Introduction

Afriat’s Theorem brilliantly characterizes the observable implications of util-
ity maximization. Consider a finite set of observable price-consumption data
{(p1, x1), ..., (pn, xn)}. What are the testable implications of the hypothesis that
all the consumption bundles xi were chosen by maximizing the same unobserv-
able utility function u over budget constraints determined by the corresponding
prices pi?

To answer this question, Afriat [1967] defined the observable net expenditure
matrix Aij = pi · (xj − xi) and the unobservable net utility matrix Φij =
u(xi) − u(xj). If utility were observable, we could deduce the ranking of the
consumption bundles by the sign of each Φij . Lacking that information directly,
the observable data nevertheless indirectly reveal that u(xi) ≥ u(xj) whenever
Aij ≤ 0, since in that case xj must have been affordable when xi was chosen.
If u is known to be monotonic, then Aij < 0 reveals u(xi) > u(xj).

It follows that if the data is derived from maximization of a monotonic util-
ity, then there can be no cycle in the A matrix containing a negative element
but no positive element. This property is called the generalized axiom of re-
vealed preference or GARP.1 Afriat’s Theorem asserts that GARP is the only
observable implication of utility maximization, even if one restricts attention to
concave and monotonic utilities.

Afriat gave an extremely interesting, though complicated, inductive/combinatorial
proof of his theorem, but his argument was incomplete, because it failed to deal
with the cases in which some Aij = 0. In the proof he introduced another im-
portant property of matrices, which we shall call additive GARP, or AGARP,
which requires that the sum of the entries of any cyclic subset of the matrix must

1For the origins of this name, and the distinction between GARP and SARP (the Strong
Axiom of Revealed Preference), see Fostel, Scarf, and Todd [2004].
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be nonnegative. With this concept in mind, his proof can be divided into three
steps. First, he argued that if A satisfies GARP, then the prices in the given data
can be rescaled, replacing each pi with λip

i, creating a new data set with net
expenditure matrix ΛA that satisfies AGARP as well as GARP. This is the most
interesting part of his proof, but also the part that is incomplete. Second he
shows that for any matrix a satisfying AGARP, like a = ΛA, there are hypothet-
ical utility levels (ϕ1, ..., ϕn) and a hypothetical net utility matrix Φij = ϕi−ϕj

such that a + Φ ≥ 0. Third, he shows that then there must be a concave and
monotonic utility u, with u(xi) = ϕi, such that xi ∈ arg maxx∈RL{u(x)− pi ·x}
for all i.

Several later authors sought simpler and complete proofs, along different
lines from Afriat. Varian [1982] gave a different inductive/combinatorial proof,
using step three of Afriat but combining the first two steps. Fostel, Scarf, and
Todd [2004] did the same in a shorter proof. Diewert [1973 ] observed that
Afriat’s theorem could be looked at as a problem in linear programming, and
in their second proof, Fostel, Scarf, and Todd succeeded in giving a duality
theorem proof of Afriat’s theorem, again combining steps one and two.

I return to Afriat’s original approach and prove steps one and two separately,
both from the maxmin theorem of two person zero sum games. In step one, the
”Afriat” player chooses scalar multiples of the prices, while the other player
chooses a cycle. The maxmin theorem allows me to complete Afriat’s first step,
and to strengthen it. I show that the ”Afriat” player can find scalar multiples
such that no matter what nonzero cycle the other player chooses, the sum of the
net expenditures over the cycle will be strictly positive. I call this strict additive
GARP, or SAGARP. This strict conclusion allows me to fill the small gap in
Afriat’s original logic, albeit using a maxmin rather than combinatorial method.
In my second lemma, the ”Afriat” player chooses the hypothetical utilities, and
the other player chooses an entry ij. Using another maxmin argument I show
that the ”Afriat” player can guarantee that every aij + Φij ≥ 0.

I present my proof because I believe each of the first two parts of Afriat’s
argument are worthy of proof on their own, and to help illuminate the power of
his approach. His method of proof contains more information than his theorem.
My strengthened version of step one does not follow from Afriat’s theorem itself,
and it allows me to derive his theorem correctly. The separation of the two steps
allows one to instantly derive the theorem of Brown and Calsamiglia [2008] that
the only observable implication of utility maximization and constant marginal
utility is that A satisfies AGARP. Finally, some readers might agree that a game
theoretic proof is the most straightforward. It uses familiar concepts, and it does
not require the introduction of any artificial auxiliary variables. Naturally any
linear programming proof, such as the one obtained by Fostel, Scarf, and Todd,
can be reinterpreted as a maxmin proof. But my proof follows a different logic
(for example, by separating steps 1 and 2).

In Sections 2 and 3, I recapitulate the definitions of GARP, AGARP, and
SAGARP, and in Section 4, I prove Afriat’s Theorem from the maxmin theorem.
I present the Brown-Calsamiglia Theorem as a Corollary.
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2 Generalized Axiom of Revealed Preference

Definition: The pair (p, x) is a price-consumption datum if p ∈ RL
+\{0}, x ∈ RL

+.
Consider a fixed finite set of of price-consumption data {(p1, x1), ..., (pn, xn)}.
Definition: The utility function u : RL

+ → R rationalizes the price-consumption
data {(p1, x1), ..., (pn, xn)} iff for every i,

xi ∈ arg max
x∈RL

+

{u(x) : pi · (x− xi) ≤ 0}.

Define the net expenditure matrix A by Aij = pi · (xj − xi).
If u rationalizes the data, then Aij ≤ 0 implies u(xi) ≥ u(xj), since xj is

affordable at price pi and xi was chosen. We say that xi is revealed preferred
to xj .

We say that u is monotonic iff u(y) > u(x) whenever y >> x.2 If u is
monotonic and rationalizes the data, then Aij < 0 implies that u(xi) > u(xj),
since if pi · xj < pi · xi, then there is also y >> xj (and therefore u(y) > u(xj))
with pi ·y < pi ·xi. We say then that xi is revealed strictly preferred to xj . It
follows from the transitivity of utility maximization choices, that if a monotonic
u rationalizes the data, then there can be no cycle in the consumption data
of revealed preference including a strict revealed preference. More precisely,
consider the following definitions.

Definition: A cycle c on N = {1, ..., n} is a sequence of distinct integers
(i1, i2, ..., ik) with each ij ∈ N. The cycle c defines a one-to-one function c :
N → N by c(ij) = ij+1 if 1 ≤ j ≤ k−1, c(ik) = i1, and c(i) = i if i is not in the
sequence. Note that if for some i ∈ N, c(i) 6= i, then for all t ≥ 1, ct+1(i) 6= ct(i).

Definition: Given an n×n matrix a with zeroes on the diagonal, any cycle c
defines a cyclic subset ac = {aic(i) : i ∈ N}. Call ac nonzero if some element
of it is nonzero.

Definition: An n× n matrix a with zeroes on the diagonal satisfies GARP
iff every nonzero cyclic subset ac contains a positive element.

We have just argued that if a monotonic u rationalizes the data {(p1, x1), ..., (pn, xn)},
then the associated net expenditure matrix A must satisfy GARP.

3 Additive GARP (AGARP and SAGARP)

Definition: An n × n matrix a with zeroes on the diagonal satisfies additive
GARP or AGARP iff for every cycle c, sum(ac) =

∑n
i=1 aic(i) ≥ 0.

Definition: An n× n matrix a with zeroes on the diagonal satisfies strictly
additive GARP or SAGARP iff for every nonzero cycle c, sum(ac) =∑n

i=1 aic(i) > 0.
Clearly SAGARP is stronger than AGARP which is stronger than GARP.

We shall see that if a data set satisfies GARP, then by rescaling the prices,
replacing each pi with λip

i, we can create a new data set with net expenditure
matrix ΛA that satisfies AGARP and even SAGARP, as well as GARP.

2the notation y >> x means that yi > xi for all i.
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4 Afriat’s Theorem

Afriat’s Theorem: The price-consumption data {(p1, x1), ..., (pn, xn)} can be
rationalized by a continuous, concave, and monotonic function u : RL

+ → R if
and only if the matrix A defined by Aij = pi · (xj − xi) satisfies GARP.

Lemma 1: Suppose that a is an n× n matrix with zeroes on the diagonal
satisfying GARP. Then there is an n×n diagonal matrix Λ with strictly positive
diagonal elements such that Λa satisfies SAGARP.

Proof : Let C be the (finite) set of all cycles c on N for which ac is nonzero.
We suppose C is nonempty, for otherwise the lemma is trivially true.

Consider the two person zero sum game in which the Afriat player chooses
any row i ∈ N and the Cycle player chooses any nonzero cycle c ∈ C. Cycle pays
Afriat aic(i), which is well-defined since each cyclic subset ac contains exactly
one element from each row. By GARP, each nonzero cyclic subset contains a
positive element, so Afriat could trivially assure himself a positive payoff if he
moved second. We show he can do so even if he moves first, with the correct
mixed strategy.

Denote the set of mixed strategies of Afriat by ∆n−1 = {λ = (λ1, ..., λn) ∈
Rn

+ :
∑
λi = 1}. Denote the set of mixed strategies of Cycle by ∆#C−1 = {π =

(π(c)c∈C : π(c) ≥ 0 for all c ∈ C and
∑

c∈C π(c) = 1}. The payoff to Afriat from

a mixed strategy pair (λ, π) ∈ ∆n−1 ×∆#C−1 is∑
c∈C

π(c)

n∑
i=1

λiaic(i)

By von Neumann’s minmax theorem the game has a minmax solution (λ∗, π∗) ∈
∆n−1 ×∆#C−1 with payoff to Afriat of v =

∑
c∈C π

∗(c)
∑n

i=1 λ
∗
i aic(i).

We shall prove that v > 0 by showing that if v ≤ 0, then there must be a
way of splicing together cycles in C to create another cycle that violates GARP.
If v ≤ 0, then no pure strategy of Afriat pays more than 0, hence∑

c∈C
π∗(c)aic(i) ≤ 0 for all i = 1, ..., n

Take any cycle that has positive π∗ weight. By GARP it contains a positive
element, say in row i1. From the i1th inequality above, there must be another
cycle c ∈ C that has positive π∗ weight with ai1c(i1) < 0. Let i2 = c(i1). Proceed
in cycle c, setting ik+1 = c(ik) as long as aikc(ik) ≤ 0. If ik is reached for which
aikc(ik) > 0, then from the ikth inequality above, there must be another cycle d ∈
C that has positive π∗ weight with aikd(ik) < 0. In that case let ik+1 = d(ik). In
this manner of splicing cycles an unlimited sequence (i1, i2, ..., ik, ...) is generated
with all aitit+1

≤ 0. Let i` be the first entry that repeats an earlier entry, say ij .

The cyclic set ac
∗

derived from c∗ = (ij , ij+1, ..., i`−1) violates GARP, because
all its entries are nonpositive, and because it must include the (negative) entry
point of the cycle that generated i`−1i` = i`−1ij . This contradiction proves
v > 0.
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From the definition of minmax solution, no pure strategy of Cycle gives a
better payoff for him than v, hence

n∑
i=1

λ∗i aic(i) ≥ v > 0 for all c ∈ C

Since the number of cycles is finite, we can perturb the λ∗ slightly to make
them all strictly positive without changing the fact that sum(Λa)c > 0 for every
nonzero cycle.3 Take Λii = λi for all i. QED

Lemma 2: Let a be an n× n matrix with zeroes on the diagonal satisfying
AGARP. Then there is ϕ∗ ∈ Rn such that mini,j [aij + ϕ∗i − ϕ∗j ] ≥ 0.

Proof : Let v ≡ supϕ∈Rn mini,j [aij + ϕi − ϕj ]. Observe (by taking ϕ = 0)
that v ≥ −||a||∞ = −maxi,j{|aij |}. Therefore we can confine the sup search
to ϕ with |ϕi − ϕj | ≤ 2||a||∞. Clearly adding a constant to each ϕi does not
change anything, so WLOG we can also restrict attention to ϕ with

∑
ϕi = 0.

Let S = {ϕ ∈ Rn : ||ϕ||∞ ≤ 2||a||∞, and
∑
ϕi = 0}. Since S is compact, there

must be some ϕ∗ ∈ S with

v ≡ sup
ϕ∈Rn

min
i,j

[aij + ϕi − ϕj ] = max
ϕ∈S

min
i,j

[aij + ϕi − ϕj ] = min
i,j

[aij + ϕ∗i − ϕ∗j ]

For the same reasons we may suppose that ϕ∗ is one of the maximizers, over all
ϕ ∈ Rn, with the fewest number of ij for which v = [aij + ϕ∗i − ϕ∗j ]. It follows
that if there is some ij, i 6= j, at which v is achieved, v = [aij + ϕ∗i − ϕ∗j ], then
v must also be achieved at some jk with j 6= k. Otherwise, by subtracting a
small constant from ϕ∗j we could find another ϕ ∈ Rn which either increases v
or reduces the number of ij at which v is achieved.

Define the n × n matrix Φ by Φij = ϕ∗i − ϕ∗j . From the last paragraph
we see that by starting from ij and jk we can construct a cycle c such that
each element of [a + Φ]c, is equal to v. Since a satisfies AGARP, and since
the sum over any cycle of Φ must be 0, A + Φ must also satisfy AGARP. So
sum[a+ Φ]c = (#c)v ≥ 0, hence v ≥ 0. QED

Lemma 3: Suppose the price-consumption data {(p1, x1), ..., (pn, xn)} gen-
erates a net expenditure matrix a satisfying AGARP, and suppose there are
hypothetical utility levels ϕ ∈ Rn generating a net utility matrix Φ with a+
Φ ≥ 0. Then there is a concave, monotonic, and continuous utility function
u : RL → R with u(xi) = ϕi, such that xi ∈ arg maxx∈RL{u(x)− pi · x} for all
i.

Proof: For all x ∈ RL define

u(x) = min
1≤i≤n

[ϕi + pi · (x− xi)]

As the minimum of linear functions, u is concave and continuous. Since each
pi is nonnegative and nonzero, pi · z > 0 for any z >> 0, hence u is monotonic.

3Note that we were able to deduce that λ >> 0 by proving first that Λ satisfies SAGARP
rather than just AGARP.
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Since rearranging terms in aji + Φji ≥ 0 gives ϕj + pj(xi − xj) ≥ ϕi for all i, j,
we conclude that u(xi) = ϕi for all i. Clearly u(x)− pi · x = min1≤k≤n[ϕk + pk ·
(x−xk)]−pi ·x ≤ [ϕi +pi · (x−xi)]−pi ·x = ϕi−pi ·xi = u(xi)−pi ·xi. QED

Proof of Theorem: Given data generating a net expenditure matrix A
satisfying GARP, follow lemmas 1-3, yielding strictly positive multipliers λi and
continuous, concave, monotonic utility u such that xi ∈ arg maxx∈RL{u(x) −
λip

i·x} for all i. It follows that if for some x ∈ RL, p·x ≤ p·xi, then u(xi) ≥ u(x).
Conversely, if the data is rationalized by any monotonic utility, it is trivial

that A satisfies GARP. QED

Corollary: The price-consumption data {(p1, x1), ..., (pn, xn)} generates a
net expenditure matrix Aij = pi · (xj − xi) that satisfies AGARP if and only if
there is a continuous, concave, and monotonic function u : RL

+ → R such that
xi ∈ arg maxx∈RL{u(x)− pi · x} for all i.

Proof : Assuming A satisfies AGARP, apply the same proof given for Afriat,
skipping lemma 1 by taking Λ to be the identity matrix. To argue in the opposite
direction, the utility maximization condition immediately gives Aij + Φij =
Aij + u(xi)− u(xj) ≥ 0. Hence A+ Φ trivially satisfies AGARP. But any cyclic
subset of Φ sums to 0. So A satisfies AGARP. QED
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