Cowles Foundation Paper 600

Journal of Mathemaucal Economics 13 (1984) 1-9 North-Holland

UTILITY FUNCTIONS FOR DEBREU’S ‘EXCESS DEMANDS’

John GEANAKOPLOS*
Yale Umwersity, New Haven, CT 06520, USA

Recerved January 1979, final version accepted September 1983

Given an arbitrary function x: R'—»R' satisfymng Walras law and homogeneity, Debreu decom-
posed x nto the sum of ! ‘individually rational’ functions x(p)=Y 4, x*(p). Here we find explicit
utility functions u*, constructed on the basis of a simple geometric intuition, which give rise to
Debreu’s excess demands x*(p).

In a series of papers by Sonnenschein (1973), Mantel (1974), Debreu
(1974), McFadden et al. (1974) and Mantel (1976), it has been demonstrated
that neoclassical microeconomic theory imposes almost no restriction on
community excess demand functions other than Walras law and homogene-
ity, if the economy contains no more commodities than consumers. Unfor-
tunately, many of the ideas in these important proofs are hidden by the
extremely complicated nature of the constructions.

Perhaps the most remarkable of these proofs is Debreu’s. He decomposes
an arbitrary continuous function x(p) on R’ (the ‘candidate excess demand’)
satisfying Walras law and homogeneity of degree zero into ! functions x%(p),
k=1,...,1 and he constructs ! systems of convex, monotonic indifference
curves in such a way that, subject to the budget constraint p'x <0, x%(p) lies
on the highest indifference curve of the kth system, k=1,...,1, (so long as p is
not too close to the boundary where some price is zero). In this paper I write
down explicit concave and monotonic utility functions u*,k=1,...,1, cons-
tructed on the basis of a simple geometric intuition, such that maximizing
the kth utility function, u*, subject to the budget constraint p'x <0, gives
exactly the kth individual excess demand x*(p) in Debrew’s decomposition
(away from the boundary). In order to guarantee concavity and monotonic-
ity of the utility functions I impose the restriction that the original x(p) be
differentiable as well as continuous, but I hope thereby to bring the ideas
lying behind Debreu’s decomposition into sharper focus.

The plan of this article is as follows. First the arbitrary x(p) is decom-
posed, x(p) =Y k-1 X*(p) = k=1 B(P)£*(p) as in the Debreu paper, where only
the scalar functions 5, depend on the original candidate excess demand x(p).

*I would like to acknowledge helpful conversations with Heraklis Polemarchakis, Truman
Bewley and Bob Anderson, as well as the very useful comments of an anonymous referee
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In Part 2 we observe that £*(p) is the closest point in the budget set
{xeR'|p'x<0} to the kth unit vector e*. We also note that £*(p) and x*(p)
are elements of X*={xeR!|x, <0,i#k,x,>0} for all pe®R’,, and conversely
that for any xe X* there is a unique p(x), namely p(x) =¢€* —x;x/|x[?, such
that £*(p(x)) and x*(p(x)) are scalar multiples of x. It follows immediately
that p(X*(p))=p and hence that the utility function «* defined on all of X* by
u*(x) = —(|£*(p(x)) = €*|* + |x — x*(p(x))|?) is uniquely maximized over the set
{xeR'|p'x<0} n X* at x*(p), for any peR,.

In order to assure monotonicity and concavity, we must restrict our
attention in Part 3 to a compact set of prices P, for instance {pe R’ |P, e,
i=1,...,1,|p|=1} for any ¢>0. Then each individual excess demand x*(p) will
lie in some large convex and compact subset X* of R'. By perturbing the
utilities and taking advantage of the differentiability assumption, it is shown
that each utility 4* can be taken to be monotonic and strictly concave on X*
and still give rise to the same x*(p). Finally, in Part 4 of the argument, u* is
extended to all of R', preserving concavity, monotonicity and the excess
demands for all pe P, but perhaps not for p outside of P. Observe that since
X* is bounded, we can choose w*eR’,, the initial endowment vectors for
k=1,...,], large enough so that the net trade space R', —w* contains X* for
all k=1,...,1

Notation

Let RY, ={peR'|p,>0,i=1,...,1}. We denote by T(p) the set {x e R* | p'x =0}
for all pekﬂr, where p'x means p transpose. We let p L x mean p'x=0.

Let e be the kth standard basis vector, k=1,...,] and let IT 1)y be the
projection of y perpendicularly onto T(p), ie., in the direction p. Then
1)y =L1—pp'/|p]*1y.

We write x>y iff x, 2 y;,i=1,...,] and x#y and x>y iff x,>y;,i=1,...,L
Let x(p) denote a function x: R}, >R'. We call x(p) a candidate aggregate
excess demand function if it satisfies:

(1) Homogeneity (H): x(p)=x(Ap) for all 1>0 and all pe R, .
(2) Walras law (W): p'x(p)=0 for all peR',. .
(3) Twice continuous differentiability (C?): x(p) is C? on R, .

We define a rational agent as an ordered pair (u, X) satisfying;

(1) X=R', —w, for some we R, that is X is the set of net trades.

(2) u is a function u: X—>R which is monotonic, x> y=-u(x)>u(y) and
concave, u(Ax+(1—A)y) = Au(x) + (1 — Du(y) for all x and y and 0<A< 1.

(3) Given peR', the agent always acts to maximize u(x) such that
xeX,p'x=<0. If x(p) is the unique solution to a rational agent’s maximiz-
ation problem for all pe PcR,, and if x(p) is C2, then we call x(p) a
rational individual excess demand on P.
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Recall that u is monotonic if Du(x)>0 and strictly quasi-concave if
y'D?u(x)y <0 for all y I Du(x) for all xe X.

Theorem. Let x(p) be a candidate excess demand function, x: RY >R, and let
P be a compact set, PcR'.. Then there exist 1 rational agents {(u*,X%)
k=1,...,1} giving rise to | rational individual excess demands X*(p) such that
Yt % p)=x(p) for all pe PR,

-Part 1. Decomposition. By Walras law, p'x(p)=0 for all pel?’.H ie.,
x(p) e T(p). Now for all peR',, we can find a scalar 6(p) such that x(p)
+0(p)(p/||p|) > 0. If x(p) is C* and homogeneous, then 6 can be chosen so as
well.

Let II7,y denote the projection of y perpendicularly onto T(p). (See fig. 1).

If {e!,e?,...,¢'} is the standard basis for R' and x(p)=(x,(p),...,x,(p))'=

T(p)
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Fig 1
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Yi=1%(p)é*, then by noting that IT,,,6(p)(p/||p|)) =0, we can set

x(p) = 1(pyx(p) = I 1 p)I:x(P) +6(p) ’_lgﬂ:l

1

=1l [ > (xk(P) +6(p) £k—>ek]
=1 [l

1
=3 (xk(P) +6(p) P >H T(p)ek'
=1 [

Let B,(p)=x(p) +0(p)pi/|lPl)) and X(p)=Bup) 1", k=1,...,I. We have
just shown that x(p) can be decomposed at all pe R’ into I functions

4(p)=Pu(p) 1€, k=1,...,1 satisfying H, W, and C? and that §,(p)>0 for
all peR’, and k=1,...,1

i i
x(p) = k;1 x(p) = k;1 Bp)l1 T( p)ek'

Observe that IT T(p,e" is a vector with a strictly positive kth coordinate and
I—-1 strictly negative components, that is, x¥(p)<0,i#k and O<xk(p) for
k=1,...,1 This will be important later.

Note that so far the only use of the continuity of x(p) was to show that the
Bi(p) are continuous. We will not need continuity to construct our utility
functions (the construction is entirely geometrical). We need it to prove
continuity of the utility functions and we need continuous differentiability to
prove that the gradients of u* exist and are monotonic and bounded away
from zero on a compact set and twice continuous differentiability to prove
concavity of the utility functions.

Part 2. There exist functions u',...,u' such that max[u*(x) such that
xe{xeX*|p'x<0}] is uniquely attained at X*(p) for all pe K%, and k=1,...,1

As a first step, consider the special case where B (p)=1 for all p. Then
x4(p)= HT(p)ek’

Lemma 1. Let ii(x)=—|x—y|[*=—Y4_; (xx — )% Then i, is a monotonic
strictly concave utility function on X ={xe R’ |x,- <y;,i=1,...,1} whose derived
rational individual excess demand z(p) is exactly IT (Y Jor all peR' with
p'y>0.

Proof. u,(x) is exactly the negative of the square of the distance between x
and y. Maximizing 4,(x) on {xeR'|p'x<0}=B(p) is equivalent to minimiz-
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ing the distance between y and B(p), which obviously occurs uniquely at
7,y so long as p'y=0. See fig. 2. Moreover, on X, 4, is differentiable and
Diiy(x)=D[—->"_; (x,—y)* 1= —2(xy —yq,..., %, —y;)>0 since x<y, hence
di, is monotonic. Furthermore, D?%ii(x)=—2I, hence fi, is also strictly
concave. Q.E.D.

T(p%)

T(pb) P

Tr(pdyY

Fig. 2

Since p'e*>0 for all peRY and k=1,...,1, it follows that £*(p)=1IIp,€" is
a rational individual excess demand function that can be derived from the
utility function fi*(x)= —|x—e"|%, k=1,...,], once #i* is properly extended
beyond X.

The difficulty that remains is to prove that we can modify i*(x), getting
u*(x) such that the solution to max u*(x) given xe {x e X*|p'x<0} is X*(p)=
Bu(P) 1(,)¢" rather than ITy,e".

The Debreu construction of the indifference curves can be thought of as
the bending of the circles centered at ¢* until they are tangent to T(p) at
B 7(,ye* instead of at IIye*. See fig. 3. Debreu proved that this is
possible on R!={pe R’ |(p,/||p|6§s}. We shall show it is actually possible on
all of R’ by defining a utility function on all X*={xe R |x,<0,i#k,x,>0}.
The idea is that given any x € X* we can find a unique price vector p(x)e RY,
and a unique multiple A(x)x of x such that A(x)x = I 7(,.)€". From Pythagoras’
law we have with this notation #(x)= —|px—e€"||*=—(|[Hr¢ e —e|*+
e — T 7 0,€"]|2) = (| AGe)x — €¥]|> + || — A(x)x||*). We can get the correct excess
demand by defining u*(x) = — (|| 1, xpe* — €[> + [[x — B(PCN T 1o ]|
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Fig. 3

Proof of Part 2. The ray {ix|1>0} and the point ¢* not on the line (since
Ax, <0 and ef =0 for i#k) determine a plane. Hence there is a unique line
perpendicular to x through e*, namely p(x)=e*—x,(x/|x|?). Observe that
P(x)'x=x; —x,(|x|?/|x|) =0 and that, letting Mx)=x/|x|?, A(x)x +p(x)=€",
hence indeed I, e*=A(x)x. See fig. 4. It can be seen that the vector p is
the vector of residuals derived from the regression of € onto x and that the
first term in the above expression is simply the mean squared error of that
regression, namely

2

t k

W—e

2 2 2 2
= (‘w 2—|x|2“> F

Geometrically, as p varies through R, II r(»€* traces out the hemisphere
with center at 3e*. Given any xeX¥, the line from the origin through x
intersects that hemisphere at exactly one point, A(x)x. The line segment from
A(x)x to €* is p(x). Recall from elementary geometry that two lines connect-
ing the two endpoints of the diameter of a (semi)circle to the same point on
the semicircle must meet at a right angle. Observe that p is uniquely
determined up to positive scalar multiples by the line x and the point e*.
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T(p)

direction p(x)

p(x)

()

Fig. 4

Note that in fact p is a differentiable function of x. Note that X* was chosen
so that the uniquely defined p(x) is strictly positive for all xe X*. See fig. 4.

Observe that if x=1ITre*, then p(x) is indeed p, and if x = pII1;)e*, then
also p(x)=p. Thus we can define

() = — || Tr(peape® —€||” —[x — BulpCD T e

From the above demonstration we know that the problem maxu*(x) such
that xeX* and p'x<0 is solved uniquely by B(p)r)e“=x*{p) since
p(X*(p)) =p and any multiple of IT1,e* maximizes the first term of u* subject
to the budget constraint and x*(p) uniquely maximizes the second term by
making it zero. Q.E.D.

Part 3. Now let
(%)= — || D rpepe” — €|* — e exp {nf|x — Bul(pGNT 1 €| -

For ¢ small enough and n big enough, this is monotonic and strictly quasi-
concave on a compact, convex set X* containing {x*(p)|peP}.

Proof of Part 3. Notice first that the derived demands are unaffected. Now
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suppose P is compact in R'; then {x*(p)|pe P} is compact if X* is C°, hence
we can find a closed convex, bounded X* such that {JE"(p)IpEP}cX"cX"‘
Then if x is C, so that fi(p) 1s C', the gradient of ||x— B (PO 1y €||? is
bounded from below on X* But it is obvious that the gradient of —
M 1y —€*||* is proportional to p(x)>0 and hence is bounded from
below by a strictly positive constant in every coordinate on X*. Hence for all
sufficiently small ¢>0, u*(x) is monotonic on X* and gives rise to the excess
demand x*(p).

The first term, v(x)= — ||z ye* —€*||*=(xZ/|x|*)—1 is concave in the
remaining /—1 variables given any fixed value of x, and therefore the second
derivative D%y is negative definite on [¢*]*. Since e* e[p(x), x] it follows that
D? is negative definite on [p(x),x]*. It is clearly identically O in the direction
x. Furthermore, let f(x)=|x —B(P() 1(,(xy€"||. Since p(x)=p(ix) for all
A>0, it is easy to see that D?f?(x) and also D?w,(x)=D?*[—e"/™®] are
negative definite in the direction x. Thus for small enough & we know that
D2u*(x) = D?%u(x) +sD2w,,(x) is negative definite on [p(x)]*. In order to prove
the quasi-concavity of #* on X*, we must show that D%u* is negative definite
on [Du¥(x)]* =[Duv(x) +8Dw,,(x):|l [Ap(x) +&eDw,(x)]*.

Any yeS' " can be uniquely written as al(p(x)/lp(x)l)+oc2(x/|x|)+
a3(q3/|gs)) + - +,(q,/|da]), Where g, e[p(x), x]l i=3,...,n. Moreover, if
y L Du*(x), then |a1|< Me|Dw,|, where the number M can be taken to be
the same for all x in the compact set X*. Imagine expressing the matrix
D2u* =D?p+¢D?w, in the orthogonal basis

(& x 45 .q.n_>
PG [ s laal
and then calculating y'D?u*y. If «, =0, then we would be done. If a, =0, then
for small enough ¢ we would also get y'D?*u*y<0, since D?v is negative
definite on [p(x),x]* and a; >0 and eD?w,—0 as ¢—0. The only difficult case
arises when a3 = -+ =a,=0. Then y'Duy=0ajv,, +2u,a,0,, +0F 0+ afew), +
2001 02 EW), +a28w;x. Now notice that as ¢—0, so that «;—0, all the terms
except 200,0,0,,, +aZew”, are 0(e?) and effectively disappear. We can assume
that «f=1-0of, that |a,|<MeDw,|, and that w?, <O. It follows that if
wax]/lDw | is sufficiently big, then this last remaining sum is negative. And
that is the point of introducing the exponential operator here. The reader can
quickly verify that by taking n large, the ratio of second derivative to first
derivative of e ™"* can be made arbitrarily large. It follows similarly that

Wasl _

[Dw.|[Df ()]

can be made arbitrarily large on the compact set X* by taking n sufficiently
large.
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Part 4. We can modify the utility functions #* one more time so that they
are strictly concave and monotonic on X*, k=1,...,1, and give rise to the
same excess demands x“(p) for pe P. We can then extend the u* to all of R,
preserving monotonicity and concavity. The x“(p) will again maximize u*
subject to the budget constraint p'x<0, for all peP, k=1,...,L

Proof of Part 4. Fortunately the proof of Part 4 is quite easy. Aumann
(1975) demonstrated that it is always possible to monotonically transform a
strictly quasi-concave C? function into a strictly concave function on any
compact set X*. Simply define V*(x)=—e ™ for N big enough. Then
DV*(x)=NDufe ™" and D2V*=[ND?**—N?Du(Du*)'Je"™* which is
negative definite on [Du*]* since D?u* is, and for N big enough is clearly
negative definite on all of X*.

To extend V* to all of R, define ii* as the infimum of all linear functions
that lie above V* on all of X*. Formally, for every ye X*, let Ly be the linear
function Ly(x)=V*(y)+DV*y)'(x—y). Since V* is C*> and concave on X*,
Ly(x)= V¥(x) for all xeX* and Ly(y)=V*(y). Let #*(x)=inf{Ly(x)|yeX*}.
Since the inf of concave (linear) functions is concave, #* is concave.
Moreover, ii*(x)=V*(x) for all xe X*. Furthermore, since X* is compact and
V* continuously differentiable, @* is well-defined and finite on all R'.
QED.

Finally, observe that it is possible to choose w*eR’ such that w*>x*(p)
for all peP. In that case we can more traditionally restrict the feasible net
trade space to R —w, without disturbing the maximization of utility for
peP. If we had begun with an observable aggregate endowment w as well as
x(p), this last argument would not in general be valid. There would indeed be
restrictions on community excess demands [at least x(p) = w for all p].

References

Aumann, R, 1975, Values of market games with a continuum of traders, Econometrica

Debreu, G, 1974, Excess demand functions, Journal of Mathematical Economucs 1, 15-21.

McFadden, Mas-Collel, Mantel and Richter, 1974, A characterization of community excess
demand functions, Journal of Economic Theory 9, 361-374

Mantel, R.R, 1974, On the characterization of aggregate excess demands, Journal of Economic
Theory 7, 348-353

Mantel, R.R., 1976, Homothetic preferences and community excess demand functions, Journal of
Economic Theory 12, 197-201

Sonnenschemn, H, 1973, Do Walras 1dentity and continuity characterize the class of commumnity
excess demand functions?, Journal of Economic Theory 6, 345-354



