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If two people have different probability assessments
about the realization of an uncertain event, they can de-
sign a contingent agreement such as a bet or gambie that
offers each of them positive expected value. Yet, in the
process of formulating this kind of agreement, informa-
tion about the basis for each person’s probabilities may
be indirectly revealed to the other. The very willingness
to accept a4 proposed bet conveys information. This ar-
ticle models a process by which private, asymmetrically-
held information is progressively unveiled as a possible
contingent agreement is discussed. If the two parties
share priors and their information partitions are common
knowledge, simple discussion of the acceptability of any
proposed bet is shown to reveal enough about the parties’
private information to render the bet unacceptable.
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1. INTRODUCTION

If two people have different probability assessments
about the realization of an uncertain event, they can de-
sign a bet that offers positive expected value to each per-
son. Yet, in the process of tentativelyv agreeing to the bet,
each may reveal information about the basis for his or
her probabilities. The very willingness to accept a pro-
posed bet conveys information. 1n this article we model
a process by which private, asymmetrically-held infor-
mation is progressively unveiled. If the parties share
priors and therr information partitions are common
knowledge, simple discussion of the acceptability of any
proposed bet ultimately reveals enough about the parties’
differential information to render the bet unacceptable.
This finding bears upon numerous situations in which dif-
fering probability assessments are the basis for apparent
joint gains. These include contingent agreements in ne-
gotiation (Sebenius 1981) and side bets that are proposed
as part of sharing rules in syndicates (Wilson 1968), as
well as incentives for decentralized decision making
(Grossman and Stiglitz 1976).

The process of information transfer that we model is
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loosely related to the inferences one may draw when con-
fronted with an unexpected proposal. If a landowner, for
example, puts his holdings on the market for $10,000 and
is immediately offered $100,000, he might reconsider,
suspecting that oil is on the property or that a new de-
velopment was planned nearby. In another instance, the
off-season vacationer considering an exotic trip at one-
third the normal price might guess that the weather would
be miserable. Closer to the betting theme of this article
would be a novice racing enthusiast who goes to the track
optimistic about a particular horse, but who finds one-
hundred-to-one odds against his favorite. A bet that
seemed attractive on the way to the track may be refused
after exposure to the quoted odds.

Our work extends recent investigations by Aumann
(1976) and Geanakoplos and Polemarchakis (1982). Au-
mann gives an elegant equilibrium result: If two people
have the same priors and if their posteriors for an event
are “‘common knowledge,”” then their posteriors must be
equal. Geanakoplos and Polemarchakis supplement this
equilibrium analysis by exhibiting a process for agents to
revise their posteriors. Under the assumption of common
priors, if both agents’ information partitions are finite,
they show that simple communication of posteriors back
and forth will lead the agents to make revisions that con-
verge to a common equilibrium posterior.

While it may be difficuit to imagine parties repeatediy
announcing posterior distributions to each other, it is not
hard to imagine parties discussing possible actions that
are based on their probabilistic beliefs. Bets and gambles
are examples of such actions. A bet is an agreement that
Party 2 will pay one unit to Party 1 if an event A happens
and Party 1 will pay one unit to Party 2 if A does not
happen. A gamble is a morc general agreement: a random
variable & is specified and it is agreed that Party 2 will
pay G units to Party 1 if G is positive and Party 1 will
pay G units to Party 2 if G is negative. Suppose such a
gamble s proposed and Party 1 is tentatively willing to
take it. Knowing this, Party 2 may tentatively accept or
decline. Party 1 then has the same option if Party 2 has
accepted, and the dialogue continues until both are finally
satisfied or a rejection is encountered. These assumptions
correspond to a situation in which the parties discuss the
gamble before making it and not to the situation where a
firm offer is made and simply accepted or refused.
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The main result of our analysis is that, if the parties
have the same prior and if they have finite information
partitions, one party will ultimately refuse any such gam-
ble even though each side may have based its posterior
assessment on very different, private information. Know-
ing this, the parties should refuse to gamble at the outset.
We first offer a simple example and then prove the result
in general.

2. EXAMPLE

Suppose that {2, the set of possible states of the world,
is represented by the large rectangle in Figure 1. Parties
1 and 2 both adopt a uniform prior distribution over the
rectangle. Party [ partitions the rectangle into (p', p?, p*)
by the horizontal lines and receives the private infor-
mation that the true state of the world o is in p?. Party
2, whose information partition (q', ¢°, ¢*) is indicated by
vertical lines, finds out privately that o € ¢°. Each side
knows the other’s partition, and that information has been
received, but does not know what the information is.

Suppose that an event 4, known to both parties and
represented by the shaded subset of the large rectangle,
is of interest. The following bet is proposed: if w € A,
Party 2 pays one unit to Parly 1, and if o ¢ A, Party 1
pays one unit to Party 2. This implies that the bet is at-
tractive to Party 1 if the probability of A is greater than
half and that the bet is attractive to Party 2 if the prob-
ability of A is less than one-haif. We assume the risk-
neutrality of both parties. The parties successively an-
nounce their willingness or unwillingness to take the bet.
Denote by c; the knowledge that Parties 1 and 2 have

about each other’s information. Each party can deduce’

c¢;. Before discussion (Oth iteration) both parties know
only that co = (p', p°, p*: 4", ¢*. ¢°).

The bet is offered to Party I who says yes (denoted by
Y) since the conditional probability of @ € A (given
knowledge that w € p?) exceeds one half. Party 2 thereby
knows that Party I's information could not have been that
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Figure 1. Vulnerable Bets Where Parties Have Private Information.
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w € p?, or Party 1 would have said no (N). However, the
possibility that @ € p' or @ € p? cannot be ruled out.
Thus ¢; = (p, p*; q', ¢, ¢°), a fact now known to each
potential bettor. Party 2 then calculates the conditional
probability that w € A given that w € ¢* and that either
w € p' or w € p?, finds it to be less than half, and also
tentatively says Y. Party 1 deduces that Party 2's infor-
mation could not have been that w € ¢* but must have
been that € ¢' or € ¢°. Thus, ¢2 = (p', p%: ¢', ¢°).
Since the conditional probability that w € p* and that w
€ ¢' or w € ¢ exceeds half, Party | again says ¥, and
both sides realize that c; = {(p?; ¢!, ¢°). Party 2 now says
Y, implying that ¢; = (p?; ¢°). Since the conditional prob-
ability of A given that w € p? and w € ¢° is less than half,
Party 1 now refuses the bet. The sequence of responses
to the proposed bet is YYYYN.

3. GENERAL RESULT

Now consider a general probability space ({1, S, «),
where (1 is the space of states of the world, S is the col-
lection of all possible events (sets) that are made up of
elements of (2, and 7 is common prior of Parties 1 and
2. Party I's partition of the space is P with elements p’
(i € Iy, a set of m integers). Party 2's partition is O with
elements g/ (j € Jy, a set of n integers). We assume that
the coarsest common refinement of P and O consists of
events whose probability does not vanish. If the true state
of the world is w, then Party 1 is privately informed of
that element of P that contains w (denoted by p'(w)). Sim-
ilarly, Party 2 privately learns which element of Q con-
tains w (denoted by ¢’(w)). Each side knows the other’s
partition. Suppose a gamble G is proposed. The two par-
ties take turns saying ¥ or N to G, beginning with Party
1. We assume that a party says Y if and only if his current
expectation from the gamble is strictly positive.

Proposition 1. The gamble G will be refused by one of
the parties after a finite number of repetitions of this proc-
ess. The number of ¥’s before an N is at most min(2m
- 2.2n — 1)

To prove this proposition, set

Py ={p'|i € I, E(G | p)) > 0},
and ‘
O =1{q’|j € Jo. E(G | ¢/ N (UP,)) < 0O},
and define P, and Q; for k > | by
P = {p'|i € I, EIG | p' 0 (U(QiN . .. NO_1))] > 0O}
and
Qx ={¢’|j € Jo, E[G| g/ 0 (UPO ... NOP)] <O

Notice that P; and Q, for £ = 1, do not depend on the
true state of nature and hence are known to both parties
at the outset.

Lemma I. Suppose all the announcements preceding
Party 1’s (Party 2’s) turn in round & are Y’s. Then Party
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I’s (Party 2°s) announcement in round & will also be Y if
and only if @ € U Py(w € UQ,). (Notice that w € UP;
is equivalent to p'(w) € Py and w € UQ; is equivalent to
7/(w) € Qi)

To prove Lemma 1, consider the first round of an-
nouncements. Party 1, who makes the first announce-
ment, will announce Y if and only if

E(G | p(w)) > 0,

that is, if and only if p(w) € P,. Party 2 knows this, and
so after Party 1’s Y, Party 2’s expectation for G is

E(G | ¢/(w) N (UPY)).

Party 2 will now say Y if and only if this expectation is
less than zero, that is, if and only if ¢/(w) € Q,. One can
complete the proof of Lemma [ by induction.

Lemma 2. (a) Suppose Party I’s announcement in the
first round is Y. If Party 2's announcement in the first
round is also ¥, then P, N P, is a proper subset of P,.
(b) Suppose all the announcements preceding Party 1's
(Party 2°s) in round k are Y's, where & > 1. If Party 1I's
(Party 2’s) announcement in round £ is also Y, then O;N
... NQis aproper subset of Q1N . . . N0 _ (PN . ..
NP1 is a proper subset of P1N ... NPL).

To prove (a), suppose that both parties say Yinround 1.
Then p/(w) € Py and ¢/(w) € @1, or w € (UP)) N (UQ)).
Hence (UP;) N (UQ,) # & Now if P, N P, is not a proper
subset of P, then every element p’ of P, is in P, and thus
satisfies the inequality

E(G | p" N (U0 > 0. (D
Now every element ¢/ of Q, satisfies the following ine-
quality:

E(G| ¢ N (UP)) <0. (2)

Equations (1) and (2) are contradictory. To see this, note
that the sets p* N (UQ,) for p* € P, and the sets ¢/ N
(UP)) for ¢/ € Q, are simply two different partitions for
the nonempty set (UP;) N (UQ1), and that it is impossible
for all the conditional expectations in one partition to be
negative while all the conditional expectations in another
partition are positive. Hence P, N P, is a proper subset
of P] .

The proof of (b) is similar.

If the first 2k announcements are ¥’s, then Lemma |
implies that pl(w) € PiN .. . NP, and ¢/(w) € 01N . . .
N Q. Similarly, if the first 2k + [ announcements are
Y’s, then ¢/(w) € Q1N . . . NQx+,. But Lemma 2 implies
that 7N . .. NPy, is always a proper subset of P;N
... NP, and similarly for the O’s. The stated limit on
the number of consecutive Y’s follows directly from these
observations.

4. RELATION TO AUMANN'S PROPOSITION

The foregoing analysis suggests a straightforward gen-
eralization of Aumann’s proposition. Given two parti-
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tions P = {p’|i € Iy} and Q = {¢’ | j € Jo}, we define
their meet R = P /\ Q = {# | kK € Ky} to be the finest
partition of Q that is refined by both P and Q. In our
example, R consists of the single set () itself. Given any
o € Q, note that p'(w) and ¢/{w) are both contained in
r*(w). We say that an event A is common knowledge at
w if *(w) C A. (For an exposition, see Milgrom 1981.) Let
G be an arbitrary real-valued random variable defined on
(2, 5, 7). We define the random variables e,(w) =
E(G | p'(w)) and ep(w) = E(G | ¢/(w)). Let a be a real
number. We then have the following proposition.

Proposition 2. 1f it is common knowledge at w that e,
=< a and ep = q, then it is common knowledge at o that
€, = €g = d.

The proof is similar to that of Lemma 2. Aumann es-
tablished Proposition 2 in the case where G takes on the
values 0 and 1 and where it is common knowledge at w
that ¢, = b and e = ¢ by showing then that & = ¢. (A
refated result is given in Milgrom and Stokey 1982).

Proposition 2 implies that for any ‘‘bet” or *‘gamble”
as described before, it cannot be common knowledge that
both sides wish to take it. More precisely, if it is common
knowledge that the expectation of each side given its in-
formation is nonnegative, then it is common knowledge
that this expectation is zero. It may not be necessary to
go through the stylized process of offers and acceptances
that underlies the explicit convergence result of Propo-
sition 1. Instead, at the moment when it becomes common
knowledge that both sides wish to gamble—as they ex-
tend their hands, so to speak, to shake on the deal—there
is a contradiction and at least one side will withdraw. In
effect, if there is nothing to prevent the time interval re-
quired for each response and counterresponse from being
arbitrarily short, then before the outstretched hands can
meet, one of the parties will refuse the bet.

[Received February 1982. Revised July 1982.]
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