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Common Knowledge
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incomplete information. If they are rational they recognize their own

ignorance and reflect carefully on what they know and what they do not
know, before choosing how to act. Furthermore, when rational agents interact,
they think about what the others know and do not know, and what the others
know about what they know, before choosing how to act. Failing to do so can
be disastrous. When the notorious evil genius Professor Moriarty confronts
Sherlock Holmes for the first time he shows his ability to think interactively by
remarking, “All I have to say has already crossed your mind.” Holmes, even
more adept at that kind of thinking, responds, “Then possibly my answer has
crossed yours.” Later, Moriarty’s limited mastery of interactive epistemology
allowed Holmes and Watson to escape from the train at Canterbury, a mistake
which ultimately led to Moriarty’s death, because he went on to Paris after
calculating that Holmes would normally go on to Paris, failing to deduce that
Holmes had deduced that he would deduce what Holmes would normally do
and in this circumstance get off earlier.

Knowledge and interactive knowledge are central elements in economic
theory. Any prospective stock buyer who has information suggesting the price
will go up must consider that the seller might have information indicating that
the price will go down. If the buyer further considers that the seller is willing to
sell the stock, having also taken into account that the buyer is willing to
purchase the stock, the prospective buyer must ask whether buying is still a
good idea.

Can rational agents agree to disagree? Is this question connected to
whether rational agents will speculate in the stock market? How might the

People, no matter how rational they are, usually act on the basis of
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degree of rationality of the agents, or the length of time they talk, influence the
answer to this question?

The notion of common knowledge plays a crucial role in the analysis of
these questions. An event is common knowledge among a group of agents if
each one knows it, if each one knows that the others know it, if each one knows
that each one knows that the others know it, and so on. Thus, common
knowledge is the limit of a potentially infinite chain of reasoning about knowl-
edge. A formal definition of common knowledge was introduced into the
economics literature by Robert Aumann in 1976.

Public events are the most obvious candidates for common knowledge. But
events that the agents create themselves, like the rules of a game or contract,
can also plausibly be seen as common knowledge. Certain beliefs about human
nature might also be taken to be common knowledge. Economists are especially
interested, for example, in the consequences of the hypothesis that it is com-
mon knowledge that all agents are optimizers. Finally, it often occurs that after
lengthy conversations or observations, what people are going to do is common
knowledge, though the reasons for their actions may be difficult to disentangle.

The purpose of this chapter is to survey some of the implications for
economic behavior of the hypotheses that events are common knowledge, that
actions are common knowledge, that optimization is common knowledge, and
that rationality is common knowledge. It will begin with several puzzles that
illustrate the strength of the common knowledge hypothesis. It will then study
how common knowledge can illuminate many problems in economics. In
general, the discussion will show that a talent for interactive thinking is
advantageous, but if everyone can think interactively and deeply all the way to
common knowledge, then sometimes puzzling consequences may result.

Puzzles About Reasoning Based on the Reasoning of Others

The most famous example illustrating the ideas of reasoning about com-
mon knowledge can be told in many equivalent ways.! The earliest version that
I could find appears in Littlewood’s Miscellania, published in 1953, although he
noted that it was already well-known and had caused a sensation in Europe
some years before. The colonial version of the story begins with many cannibals
married to unfaithful wives, and of course a missionary. I shall be content to
offer a more prosaic version, involving a group of logical children wearing hats.

Imagine three girls sitting in a circle, each wearing either a red hat or a
white hat. Suppose that all the hats are red. When the teacher asks if any

"This example is so well-known that it is difficult to find out who told it first. It appeared in Martin
Gardner’s collection (1984). It had already been presented by Gamow and Stern (1958) as the
puzzle of the cheating wives. It was discussed in the economics literature by Geanakoplos and
Polemarchakis (1982). It appeared in the computer science literature in Halpern and Moses (1984).
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student can identify the color of her own hat, the answer is always negative,
since nobody can see her own hat. But if the teacher happens to remark that
there is at least one red hat in the room, a fact which is well-known to every
child (who can see two red hats in the room) then the answers change. The first
student who is asked cannot tell, nor can the second. But the third will be able
to answer with confidence that she is indeed wearing a red hat.

How? By following this chain of logic. If the hats on the heads of both
children two and three were white, then the teacher’s remark would allow the
first child to answer with confidence that her hat was red. But she cannot tell,
which reveals to children two and three that at least one of them is wearing a
red hat. The third child watches the second also admit that she cannot tell her
hat color, and then reasons as follows: “If my hat had been white, then the
second girl would have answered that she was wearing a red hat, since we both
know that at least one of us is wearing a red hat. But the second girl could not
answer. Therefore, I must be wearing a red hat.” The story is surprising
because aside from the apparently innocuous remark of the teacher, the
students appear to learn from nothing except their own ignorance. Indeed this
is precisely the case.

The story contains several crucial elements: it is common knowledge that
everybody can see two hats; the pronouncements of ignorance are public; each
child knows the reasoning used by the others. Each student knew the appar-
ently innocuous fact related by the teacher—that there was at least one red hat
in the room—but the fact was not common knowledge between them. When it
became common knowledge, the second and third children could draw infer-
ences from the answer of the first child, eventually enabling the third child to
deduce her hat color.

Consider a second example, also described by Littlewood, involving bet-
ting. An honest but mischievous father tells his two sons that he has placed 10"
dollars in one envelope, and 10"*! dollars in the other envelope, where n is
chosen with equal probability among the integers between 1 and 6. The sons
completely believe their father. He randomly hands each son an envelope. The
first son looks inside his envelope and finds $10,000. Disappointed at the
meager amount, he calculates that the odds are fifty-fifty that he has the smaller
amount in his envelope. Since the other envelope contains either $1,000 or
$100,000 with equal probability, the first son realizes that the expected amount
in the other envelope is $50,500. The second son finds only $1,000 in his
envelope. Based on his information, he expects to find either $100 or $10,000
in the first son’s envelope, which at equal odds comes to an expectation of
$5,050. The father privately asks each son whether he would be willing to pay
$1 to switch envelopes, in effect betting that the other envelope has more
money. Both sons say yes. The father then tells each son what his brother said
and repeats the question. Again both sons say yes. The father relays the
brothers’ answers and asks each a third time whether he is willing to pay $1 to
switch envelopes. Again both say yes. But if the father relays their answers and
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asks each a fourth time, the son with $1,000 will say yes, but the son with
$10,000 will say no.

It is interesting to consider a slight variation of this story. Suppose now
that the very first time the father tells each of his sons that he can pay $1 to
switch envelopes it is understood that if the other son refuses, the deal is off
and the father keeps the dollar. What would they do? Both would immediately
say no, as we shall explain in a later section.

A third puzzle is more recent.? Consider two detectives trained at the same
police academy. Their instruction consists of a well-defined rule specifying who
to arrest given the clues that have been discovered. Suppose now that a murder
occurs, and the two detectives are ordered to conduct independent investiga-
tions. They promise not to share any data gathered from their research, and
begin their sleuthing in different corners of the town. Suddenly the detectives
are asked to appear and announce who they plan to arrest. Neither has had the
time to complete a full investigation, so they each have gathered different clues.
They meet on the way to the station. Recalling their pledges, they do not tell
each other a single discovery, or even a single reason why they were led to their
respective conclusions. But they do tell each other who they plan to arrest.
Hearing the other’s opinion, each detective may change his mind and give
another opinion. This may cause a further change in opinion.

If they talk long enough, however, then we can be sure that both detectives
will announce the same suspect at the station! This is so even though if asked to
explain their choices, they may each produce entirely different motives,
weapons, scenarios, and so on. And if they had shared their clues, they might
well have agreed on an entirely different suspect!

It is commonplace in economics nowadays to say that many actions of
optimizing, interacting agents can be naturally explained only on the basis of
asymmetric information. But in the riddle of the detectives, common knowl-
edge of each agent’s action (what suspect is chosen, given the decision rules)
negates asymmetric information about events (what information was actually
gathered). At the end, the detectives are necessarily led to a decision which can
be explained by a common set of clues, although in fact their clues might have
been different, even allowing for the deductions each made from hearing the
opinions expressed in the conversation. The lesson we shall draw is that
asymmetric information is important only if it leads to uncertainty about what
the other agents are doing.

Interactive Epistemology

To examine the role of common knowledge, both in these three puzzles
and in economics more generally, the fundamental conceptual tool we shall use

This story is due to Bacharach, perhaps somewhat embellished by Aumann, from whom I learned
it. It caricatures the analysis in Aumann (1976), Geanakoplos and Polemarchakis (1982), and Cave
(1983).



Common Knowledge 57

is the state of the world. Leibnitz first introduced this idea; it has since been
refined by Kripke, Savage, Harsanyi, and Aumann, among others. A “state of
the world” is very detailed. It specifies the physical universe, past, present, and
future; it describes what every agent knows, and what every agent knows about
what every agent knows, and so on; it specifies what every agent does, and what
every agent thinks about what every agent does, and what every agent thinks
about what every agent thinks about what every agent does, and so on; it
specifies the utility to every agent of every action, not only of those that are
taken in that state of nature, but also those that hypothetically might have been
taken, and it specifies what everybody thinks about the utility to everybody else
of every possible action, and so on; it specifies not only what agents know, but
what probability they assign to every event, and what probability they assign to
every other agent assigning some probability to each event, and so on.

Let Q be the set of all possible worlds, defined in this all-embracing sense.
We model limited knowledge by analogy with a far-off observer who from his
distance cannot quite distinguish some objects from others. For instance, the
observer might be able to tell the sex of anyone he sees, but not who the person
is. The agent’s knowledge will be formally described throughout most of this
survey by a collection of mutually disjoint and exhaustive classes of states of the
world called cells that partition Q. If two states of nature are in the same cell,
then the agent cannot distinguish them.

As an example, suppose that Q is the set of integers from 1 to 8, and that
agent i is told whether the true number is even or odd. Agent i’s partition
consists of two cells {1,3,5,7} and {2,4, 6, 8}. If the true state were 4, then i
would perceive that any of the even states is possible, while none of the odd
states is possible. To remind us that what the agent thinks is possible depends
on what the real state of the world is, we write P{(4) = {2, 4, 6, 8} to denote the
partition cell {2, 4, 6, 8} of states that 7 thinks are possible when the true state of
the world is 4.

Any subset E contained in Q is called an event. If the true state of the
world is @, and if @ € E, then we say that E occurs or is true. If every state that
i thinks is possible (given that w is the true state) entails £, which we write as
P(w) C E, then we say that agent i “knows” E. Note that at some o, ¢ may
know E, while at other w, i may not. If whenever E occurs 7 knows E, that is if
P(w) CE for all states w in E, then we say that E is “self-evident” to . Such an
event E cannot happen unless i knows it. In the example we just used, let
E =({1,2,3,5,7}. Then at ® = 3 agent { knows w is an odd number between 1
and 8 and hence in E. At w = 2 agent i knows o is an even number between 1
and 8, and hence cannot tell whether or not o is in E, since 2 is but 4, 6, and 8
are not. Hence E is not self-evident to i. The only self-evident events to i are
{1,8,5,7},{2,4,6, 8}, and Q itself.

We can model the process of learning by analogy to an observer getting
closer to what he is looking at. Things which he could not previously distin-
guish, such as for example whether the people he is watching have brown hair
or black hair, become discernible. In our framework, such an agent’s partition
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becomes finer when he learns, perhaps containing four cells {female /brown
hair}, {{female /black hair}, {male/brown hair}, {male/black hair}} instead of
two.

Naturally, we can define the partitions of several agents, say ¢ and j,
stimultaneously on the same state space. There is no reason that the two agents
should have the same partitions. Indeed different people typically have differ-
ent vantage points, and it is precisely this asymmetric information that makes
the question of common knowledge interesting. In the example of integers
from 1 to 8, suppose that we introduce a second partition P; =
{{1,2}.{(3,4,5,6,7,8}}. Note that the event E ={1,2,3,5,7} is also not self-
evident to agent j.

Suppose now that agent 7 knows the partition of j; that is, suppose that ¢
knows what j is able to know, and vice versa. This does not mean that i knows
what j knows. For example, at @ = 1, i knows that E occurs, and j knows that
E occurs, but i does not know that j knows that E occurs, since i thinks 3 is
possible, in which case j would think all of {3,4,5,6, 7, 8} are possible, which
includes states not in E.

Since the possibility correspondences are functions of the state of nature,
the reader can see that in effect each state of nature o specifies not only the
physical universe, but also what each agent knows about the physical universe,
and what each agent knows each agent knows about the physical universe and
so on.

The Puzzles Reconsidered
With this framework, reconsider the puzzle of the three girls with red and

white hats. A state of nature w corresponds to the color of each child’s hat. The
table lists the eight possible states of nature.

STATES OF THE WORLD

a b ¢ d e f g h
1 R R R R wow W W
PLAYER 2 R R w W R R w W
3 R W R W R W R w

In the notation we have introduced, the set of all possible states of nature ()
can be summarized as {a,b,¢,d, ¢, [, g, h}, with a letter designating each state.
Then, the partitions of the three agents are given by: P, = {{q, ¢}, {b, f},
{e, gh{d, b}, Py = {{a, e}, {b, d}. {e, g} {f, W)}, Py = {{a, ). {c, d}, e, f}.{g, h}}.
Observe that these partitions give a faithful representation of what the
agents could know at the outset. Each can observe four cells, based on the hats
the others are wearing: both red, both white, or two combinations of one of
each. None can observe her own hat, which is why the cells come in groups of
two states. For example, if the true state of the world is all red hats—that is,
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RWW RWW
RWR } RWR
RRW RRR RRW RRR
- 3 . b 3
www WWR Wwww WWR
WRW WRR WRW WRR
9 2
Figure la Figure 1b
1 1
RWW l RWW
RWR RWR
RRW RRR RRW
* 3 L] 3
www WWR WWW WWR
WRW WRR WRW WRR
2 2
Figure Ic Figure 1d

® = a = RRR—then agent 1 is informed of P(a) = {a, ¢}, and thus knows that
the true state is either a = RRR, or ¢ = WRR. In the puzzle, agent ¢ “knows”
her hat color only if the color is the same in all states of nature o which that
agent regards as possible.

In using this model of knowledge to explain the puzzle of the hats, it helps
to represent the state space as the vertices of a cube, as in Figure 1a.® Think of
R as 1 and W as 0. Then every corner of a cube has three coordinates which are
either 1 or 0. Let the i*" coordinate denote the hat color of the i agent. For
each agent i, connect two vertices with an edge if they lie in the same
information cell in agent i’s partition. (These edges should be denoted by
different colors to distinguish the agents, but no confusion should result even if
all the edges are given by the same color.) The edges corresponding to agent ¢
are all parallel to the i axis, so that if the vertical axis is designated as 1, the
four vertical sides of the cube correspond to the four cells in agent 1’s partition.

An agent ¢ knows her hat color at a state if and only if the state is not
connected by one of i’s edges to another state in which i has a different hat
color. In the original situation sketched above, no agent knows her hat color in
any state.

Note that every two vertices are connected by at least one path. Consider
for example the state RRR and the state WWW. At state RRR, agent 1 thinks

®This has been pointed out in Fagin, Halpern, Moses, and Vardi (1988).
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WRR is possible. But at WRR, agent 2 thinks WIWR is possible. And at WWR
agent 3 thinks WWW is possible. In short, at RRR agent 1 thinks that agent 2
might think that agent 3 might think that WWW is possible. In other words,
WWW is reachable from RRR. This chain of thinking is indicated in the
diagram by the path marked by arrows.

We now describe the evolution of knowledge resulting from the teacher’s
announcement and the responses of the children. The analysis proceeds inde-
pendent of the actual state, since it describes what the children would know at
every time period for each state of the world. When the teacher announces that
there is at least one red hat in the room, that is tantamount to declaring that
the actual state is not WWW. This can be captured pictorially by dropping all
the edges leading out of the state WWW, as seen in Figure 1b. (Implicitly, we
are assuming that had all the hats been white the teacher would have said so.)
Each of the girls now has a finer partition than before, that is, some states that
were indistinguishable before have now become distinguishable. There are now
two connected components to the graph: one consisting of the state WWW on
its own, and the rest of the states.

If, after hearing the teacher’s announcement, the first student announces
she does not know her hat color, she reveals that the state could not be RWW,
since if it were, she would also be able to deduce the state from her own
information and the teacher’s announcement and therefore would have known
her hat color. We can capture the effect of the first student’s announcement on
every other agent’s information by severing all the connections between the set
{(WWW, RWW} and its complement. Figure 1¢ now has three different compo-
nents, and agents 2 and 3 have finer partitions.

The announcement by student 2 that she still does not know her hat color
reveals that the state cannot be any of {WWW, RWW, RRW, WRW}, since these
are the states in which the above figure indicates student 2 would have the
information (acquired in deductions from the teacher’s announcement and the
first student’s announcement) to unambiguously know her hat color. Con-
versely, if 2 knows her hat color, then she reveals that the state must be among
those in {WWW, RWW, RRW, WRW}. We represent the consequences of
student 2's announcement on the other students’ information partitions by
severing all connections between the set {WWW, RWW, RRW, WRW} and its
complement, producing Figure 1d. Notice now that the diagram has four
separate components.

In this final situation, after hearing the teacher’s announcement, and each
of student 1 and student 2’s announcements, student 3 knows her hat color at
all the states. Thus no more information is revealed, even when student $ says
she knows her hat color is red.

If, after student 3 says yes, student 1 is asked the color of her hat again, she
will still say no, she cannot tell. So will student 2. The answers will repeat
indefinitely as the question for students 1 and 2 and 3 is repeated over and
over. Eventually, their responses will be “common knowledge”: every student
will know what every other student is going to say, and each student will know
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that each other student knows what each student is going to say, and so on. By
logic alone the students come to a common understanding of what must
happen in the future. Note also that at the final state of information, the three
girls have different information.

The formal treatment of Littlewood’s puzzle has confirmed his heuristic
analysis. But it has also led to some further results which were not immediately
obvious. For example, the analysis shows that for any initial hat colors (such as
RWR) that involve a red hat for student 3, the same no, no, yes sequence will
repeat indefinitely. For initial hat colors RRW or WRW, the responses will be
no, yes, yes repeated indefinitely. Finally, if the state is either WWW or RWW,
then after the teacher speaks every child will be able to identify the color of her
hat. In fact, we will argue later that one student must eventually realize her hat
color, no matter which state the teacher begins by confirming or denying, and
no matter how many students there are, and no matter what order they answer
in, including possibly answering simultaneously.

The second puzzle, about the envelopes, can be explored along similar
lines, as a special case of the analysis in Sebenius and Geanakoplos (1983); it is
closely related to Milgrom and Stokey (1982). For that story, take the set of all
possible worlds ) to be the set of ordered pairs (m, n) with m and n integers
between 1 and 7; m and = differ by one, but either could be the larger. At state
(m,n), agent 1 has 10™ dollars in his envelope, and agent 2 has 10" dollars in
his envelope.

We graph the state space and partitions for this example below. The dots
correspond to states with coordinates giving the numbers of agent 1 and 2,
respectively. Agent 1 cannot distinguish states lying in the same row, and agent
2 cannot distinguish states lying in the same column.

1 2 3 4 5 6 7

N O T 00N —
]
]

The partitions divide the state space into two components, namely those
states reachable from (1,2) and those states reachable from (2,1). In one
connected component of mutually reachable states, agent 1 has an odd number
and 2 has an even number, and this is “common knowledge”—that is, 1 knows
it and 2 knows it and 1 knows that 2 knows it, and so on. For example, the state
(4, 3) is reachable from the state (2, 1), because at (2, 1), agent 1 thinks the state
(2, 3) is possible, and at (2, 3) agent 2 would think the state (4, 3) is possible. In
the other component of mutually reachable states, the even/odd is reversed,
and again that is common knowledge. At states (1,2) and (7, 6) agent 1 knows
the state, and in states (2, 1) and (6, 7) 2 knows the state. In every state in which
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an agent 1 does not know the state for sure, he can narrow down the
possibilities to two states. Both players start by believing that all states are
equally likely. Thus, at w = (4, 3) each son quite rightly calculates that it is
preferable to switch envelopes when first approached by his father. The sons
began from a symmetric position, but they each have an incentive to take
opposite sides of a bet because they have different information.

When their father tells each of them the other’s previous answer, however,
the situation changes. Neither son would bet if he had the maximum $10
million in his envelope, so when the sons learn that the other is willing to bet, it
becomes “common knowledge” that neither number is 7. The state space is
now divided into four pieces, with the end states (6, 7) and (7, 6) each on their
own. But a moment later neither son would allow the bet to stand if he had $1
million in his envelope, since he would get only $100,000. Hence if the bet still
stands after the second instant, both sons conclude that the state did not involve
a 6, and the state space is broken into two more pieces; now (5,6) and (6, 5)
stand on their own. If after one more instant the bet is still not rejected by one
of the sons, they both conclude that neither has $100,000 in his envelope. But
at this moment the son with $10,000 in his envelope recognizes that he must
lose, and the next time his father asks him, he voids the bet.

If from the beginning the sons had to ante a dollar knowing that they
could not recover it if the other son refused to bet, then both of them would say
that they did not want the bet on the very first round. We explain this later.

Here is a third example, reminiscent of the detective story. Suppose,
following Aumann (1976) and Geanakoplos and Polemarchakis (1982), that two
agents are discussing their opinions about the probability of some event, or
more generally, of the expectation of a random variable. Suppose furthermore
that the agents do not tell each other why they came to their conclusions, but
only what their opinions are.

For example, let the set of all possible worlds be Q = {1,2,...,9}, and let
both agents have identical priors which put uniform weight 1/9 on each state,
and let P, ={{1,2,3},{4,5,6},{7,8,9}} and P, ={{1,2,3,4},{5,6,7,8},{9}}.
Suppose that a random variable x takes on the following values as a function of
the state:

We can represent the information of both agents in the following graph, where
heavy lines connect states that agent 1 cannot distinguish, and dotted lines
connect states that agent 2 cannot distinguish.

1...2...3...4 5...6...7...8 9

Suppose that @ = 1. Agent 1 calculates his opinion about the expectation
of x by averaging the values of x over the three states 1,2, 3 that he thinks are
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possible, and equally likely. When agent 1 declares that his opinion of the
expected value of x is 1, he reveals nothing, since no matter what the real state
of the world, his partition would have led him to the same conclusion. But
when agent 2 responds with his opinion, he is indeed revealing information.
For if he thinks that {1,2,3,4} are possible, and equally likely, his opinion
about the expected value of x is — 1. Similarly, if he thought that {5,6,7, 8}
were possible and equally likely, he would say — I, while if he knew only {9} was
possible, then he would say 17. Hence when agent 2 answers, if he says —1,
then he reveals that the state must be between 1 and 8, whereas if he says 17
then he is revealing that the state of the world is 9. After his announcement, the
partitions take the following form:

1...2...3...4 5...6...7...8 9

If agent 1 now gives his opinion again, he will reveal new information,
even if he repeats the same number he gave the last time. For 1 is the
appropriate answer if the state is 1 through 6, but if the state were 7 or 8 he
would say —7, and if the state were 9 he would say 17. Thus after 1’s second
announcement, the partitions take the following form:

1...2..73...4 5...6 7...8 9

If agent 2 now gives his opinion again he will also reveal more information,
even if he repeats the same opinion of —1 that he gave the first time.
Depending on whether he says —1, 5, or —7, agent 1 will learn something
different, and so the partitions become:

1...2...8...4 5...6 7...8 9

Similarly if 1 responds a third time, he will yet again reveal more information,
even if his opinion is the same as it was the first two times he spoke. The
evolution of the partitions after 2 speaks a second time, and 1 speaks a third
time are given below:

1...2...3 4 5.6 7...8 9

Finally there is no more information to be revealed. But notice that 2 must
now have the same opinion as 1! If the actual state of nature is » = 1, then the
responses of agents 1 and 2 would have been (1,— 1),(1,— 1),(1, 1).

Although this example suggest that the partitions of the agents will con-
verge, this is not necessarily true—all that must happen is that the opinions
about expectations converge. Consider the state space below, and suppose that
agents assign probability 1/4 to each state. As usual, 1 cannot distinguish states
in the same row and 2 cannot distinguish states in the same column.

a b
c d

Let x(a) = x(d) = 1, and x(b) = x(c) = —1. Then at ® = a, both agents will say
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that their expectation of x is 0, and agreement is reached. But the information
of the two agents is different. If asked why they think the expected value of x is
0, they would give different explanations, and if they shared their reasons, they
would end up agreeing that the expectation should be 1, not 0.

As pointed out in Sebenius and Geanakoplos (1983), if instead of giving
their opinions of the expectation of x, the agents in the last two examples
instead were called upon to agree to bet, or more precisely, they were asked
only if the expectation of x is positive or negative, exactly the same information
would have been revealed, and at the same speed. In the end the agents would
have agreed on whether the expectation of x is positive or negative, just as in
the envelopes problem. This convergence is a general phenomenon. In gen-
eral, however, the announcements of the precise value of the expectation of a
random variable conveys much more information than the announcement of its
sign, and so the two processes of betting and opining are quite different,
though they both result in a kind of agreement.

Characterizing Common Knowledge of Events and Actions

To this point, the examples and discussion have used the term common
knowledge rather loosely, as simply meaning a fact that everyone knows, that
everyone knows that everyone knows, and so on. An example may help to give
the reader a better grip on the idea.

The whole interval [0, 1] represents Q. The upper subintervals with endpoints
{0,a,d, f,h,1} represent agent 1’s partition. The lower subintervals with end-
points {0, b, ¢,d, ¢, g, 1} represent agent 2’s partition. At o, 1 thinks [0, a] is
possible; 1 thinks 2 thinks [0, ] is possible; 1 thinks 2 thinks 1 might think [0, a]
is possible or [a, d] is possible. But at », nobody need think outside [0, d]. Note
that [0, d] is the smallest event containing  that is both the union of partition
cells of agent 1 (and hence self-evident to 1) and also the union of partition cells
of player 2 (and hence self-evident to 2).

How can we formally capture the idea of i reasoning about the reasoning
of j? For any event F, denote by P/(F) the set of all states that j might think
are possible if the true state of the world were somewhere in F. That is,
P(F) = U ,crP(e"). Note that F is self-evident to j if and only if P(F) =F.
Recall that for any w, P(w) is simply a set of states, that is, it is itself an event.
Hence we can write formally that at w,  knows that j knows that the event G
occurs if and only if P(P(w)) C G. The set P(w) contains all worlds ' that 1
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believes are possible when the true world is w, so 7 cannot be sure at o that j
knows that G occurs unless P(P(w)) C G.

The framework of € and the partitions (P,) for the agents i € I also
permits us to formalize the idea that at w, i knows that j knows that & knows
that some event G occurs by the formula P,(P/(P(w))) C G. (If k =1, then we
say that ¢ knows that j knows that i knows that G occurs.) Clearly there is no
limit to the number of levels of reasoning about each others’ knowledge that
our framework permits by iterating the P, correspondences. In this framework
we say that the state ' is reachable from w if and only if there is a sequence of
agents i, j,..., k such that o' € P,...(P(P(w)), and we interpret that to
mean that ¢ thinks that j may think that ... may think that o' is possible.

Definition: The event E C Q is common knowledge among agentsi = 1,..., [
at  if and only if for any n and any sequence (i, ...,i,), P, (P, _
(Pil(w))) CE.

This definition of common knowledge was first introduced by the philosopher
D. Lewis (1969), and first applied to economics by R. Aumann (1976). Note that
an infinite number of conditions must be checked to verify that E is common
knowledge. Yet when  is finite, Aumann (1976) has shown that there is an
equivalent definition of common knowledge that is easy to verify in a finite
number of steps (see also Milgrom, 1981). Recall that an event E is self-evident
to ¢ ifand only if P(E) = E, and hence if and only if E is the union of some of
¢’s partition cells. Since there are comparatively few such unions, the collection
of self-evident events to a particular agent 7 is small. The collection of events
that are simultaneously self-evident to all agents ¢ in I is much smaller still.
This can be expressed as the:

Characterizing Common Knowledge Theorem: Let P,, 1 € I, be possibility
correspondences representing the (partition) knowledge of individuals
t=1,..., I defined over a common state space (. Then the event E is
common knowledge at o if and only if M(w) C E, where M(w) is set of all
states reachable from w. Moreover, M(w) can be described as the smallest

set containing o that is simultaneously self-evident to every agent ¢ € [.

Since self-evident sets are easy to find, it is easy to check whether an event E is
common knowledge at . In our three puzzles, the set M(w) appears as the
connected component of the graph that contains . The event E is common
knowledge at o if and only if it contains M(w).

A state of nature so far has described the prevailing physical situation; it
also describes what everybody knows, and what everybody knows about what
everybody knows, and so on. We now allow each state to describe what
everybody does. Indeed, in the three puzzles given so far, each state did specify
at each time what each agent does. Consider the opinion puzzle. For all o
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between 1 and 8, at first agent 2 thought the expectation of x was — 1, while at
o =9, he thought the expectation of x was 17. By the last time period, he
thought at w between 1 and 3, the expectation of x was 1, at o = 4 it was —7
and so on. We now make the dependence of action on the state explicit. Let A4,
be a set of possible actions for each agent i. Each o thus specifies an action
a; = f(w) in A, for each agent i in I.

Having associated actions with states, it makes sense for us to rigorously
describe whether at ¢ knows what action j is taking. Let a; be in 4, and let
E be the set of states at which agent j takes the action a;. Then at w, 7 knows
that j is taking the action a; ifand only if at @ ¢ knows that E occurs. Similarly,
we say that at @ it is common knowledge that j is taking the action a; if and
only if the event £ is common knowledge at o.

Let us close this section by noting that we can think of the actions an agent
takes as deriving from an action rule that prescribes what to do as a function of
any information situation that agent might be in. The first girl could not
identify her hat color because she thought both RRR and WRR were possible
states. Had she thought that only the state RRR was possible, she would have
known her hat color. The second detective expected x to be —1 because that
was the average value x took on the states {1,2,3,4} that he thought were
possible. Later, when he thought only {1, 2, 3} were possible, his expectation of
x became 1. Both the girl and the detective could have answered according to
their action rule for any set of possible states.

Common Knowledge of Actions Negates Asymmetric Information
about Events

The decision rules in our three puzzles all satisfy the sure-thing principle,
which runs like this for the opinion game: If the expectation of a random
variable is equal to ¢ conditional on the state of nature lying in E, and similarly
if the expectation of the same random variable is also a conditional on the state
lying in F, and if E and F are disjoint, then the expectation of the random
variable conditional on E U F is also a. Similarly, if the expectation of a
random variable is positive conditional on E, and it is also positive conditional
on a disjoint set F, then it is positive conditional on E U F.* In the hat
example, the sure-thing principle sounds like this: An agent who cannot tell her
hat color if she is told only that the true state of nature is in E, and similarly if
she is told it is in F, will still not know if she is told only that the true state is in
E U F. Similarly if she could deduce from the fact that the state lies in E that
her hat color is red, and if she could deduce the same thing from the
knowledge that the state is in F, then she could also deduce this fact from the
knowledge that the state is in E U F (even if E N F # Q).

*Or in other terms, we say that a decision rule i : 22/¢ — A satisfies the sure-thing-principle if and
only if y(A4) = ¢(B) = a, A N B = ¢ implies y(4 U B) = a.
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An Agreement Theorem follows from this analysis, that common knowledge of
actions negates asymmetric information about events.” If agents follow action rules
satisfying the sure-thing principle, and if with asymmetric information the
agents i are taking actions a;, and if those actions are common knowledge, then
there is symmetric information that would lead to the same actions. Further-
more, if all the action rules are the same, then the agents must be taking the
same actions, a; = a for all i.

To see why the theorem is true, consider the previous diagram in which at
o the information of agent 1, [0, a], is different from the information of agent 2,
[0, b]. This difference in information might be thought to explain why agent 1 is
taking the action a; whereas agent 2 is taking action a,. But if it is common
knowledge that agent 1 is taking action a, at o, then that agent must also be
taking action a, at [a, d]. Hence by the sure-thing principle he would take
action a, on [0, d]. Similarly, if it is common knowledge at o that agent 2 1s
taking action a, at , then not only does that agent do a, on [0, b], but also on
[b, c] and [c, d]. Hence by the sure-thing principle, he would have taken action
ay had he been informed of [0, d]. So the symmetric information [0, d] explains
both actions. Furthermore, if the action rules of the two agents are the same,
then with the same information [0, ], they must take the same actions, hence
a, = a,.

The agreement theorem has the very surprising consequence that when-
ever logically sophisticated agents come to common knowledge (agreement)
about what each shall do, the joint outcome does not use in any way the
differential information about events they each possess. This theorem shows
that it cannot be common knowledge that two players with common priors
want to bet with each other, even though they have different information.
Choosing to bet (which amounts to deciding that a random variable has positive
expectation) satisfies the sure-thing principle, as we saw previously. Players
with common priors and the same information would not bet against each
other. The agreement theorem then assures us that even with asymmetric
information it cannot be common knowledge that they want to bet (Milgrom
and Stokey, 1982).

Similarly, agents who have the same priors will not agree to disagree about
the expectation of a random variable. Conditional expectations satisfy the
sure-thing principle. Agents with identical priors and the same information
would have the same opinion. Hence the agreement theorem holds that they
must have the same opinion, even with different information, if those opinions
are common knowledge (Aumann, 1976).

5A special case of the theorem was proved by Aumann (1976), for the case where the decision rules
¥; = ¢ = the posterior probability of a fixed event A. The logic of Aumann’s proof was extended by
Cave [1983] to all “union consistent” deciston rules. Bacharach (1985) identified union consistency
with the sure-thing principle. Both authors emphasized the agreement reached when ; = ¢.
However the aspect which I emphasize here (following Geanakoplos (1987)) is that even when the
¢; are different, and the actions are different, they can all be explained by the same information E.
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We now come to the question of how agents reach common knowledge of
actions. Recall that each of our three puzzles illustrated what could happen
when agents learn over the course of time from the actions of the others. These
examples are special cases of a getting to common knowledge theorem. Suppose that
() is finite, and that there are a finite number of agents whose knowledge is
defined over ), but suppose that time goes on indefinitely. Suppose that at
each time period ¢ at least one agent acts, and his action is seen by at least one
other agent. Then at some finite time period ¢* it will be common knowledge at
every o that each agent can already predict every action he will see in the
future. If all the agents see all the actions, then at ¢* it will be common
knowledge at every w what all the agents are going to do in the future.

The logic of the getting to common knowledge theorem is illustrated by
our examples. Over time the partitions of the agents evolve, getting finer and
finer as they learn more. But if Q is finite, there is an upper bound on the
cardinality of the partitions (they cannot have more cells than there are states of
nature). Hence after a finite time the learning must stop.

Apply this argument to the betting scenario. Suppose that at every date ¢
each agent declares, on the basis of the information that he has then, whether
he would like to bet, assuming that if he says yes the bet will take place (no
matter what the other agents say). Then eventually one agent will say no. From
the convergence to common knowledge theorem, at some date ¢* it becomes
common knowledge what all the agents are going to say. From the theorem
that common knowledge of actions negates asymmetric information, at that
point the two agents would do the same thing with symmetric information,
provided it were chosen properly. But no choice of symmetric information can
get agents to bet against each other, if they have the same priors. Hence
eventually someone must say no (Sebenius and Geanakoplos, 1983).

The same argument can be applied to the detectives’ conversation,
or to people expressing their opinions about the probability of some event
(Geanakoplos and Polemarchakis, 1982). Eventually it becomes common knowl-
edge what everyone is going to say. At that point they must all say the same
thing, as long as the decision rules satisty the sure-thing principle.

Let us show that the convergence to common knowledge theorem also
clarifies the puzzle about the hats. Suppose RRR is the actual state and that it is
common knowledge (after the teacher speaks) that the state is not WWW. Let
the children speak in any order, perhaps several at a time, and suppose that
each speaks at least every third period, and every girl is heard by everyone else.
Then it must be the case that eventually one of the girls knows her hat color.
For if not, then by the above theorem it would become common knowledge at
RRR by some time t* that no girl was ever going to know her hat color. This
means that at every state o reachable from RRR with the partitions that the
agents have at t*, no girl knows her hat color at w. But since 1 does not know
her hat color at RRR, she must think WRR is possible. Hence WRR is
reachable from RRR. Since 2 does not know her hat color at any state
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reachable from RRR, in particular she does not know her hat color at WRR,
and so she must think WIWR is possible there. But then WIWR is reachable from
RRR. But then 3 must not know her hat color at WWR, hence she must think
WWW is possible there. But this implies that WWW is reachable from RRR
with the partitions the agents have at time ¢*, which contradicts the fact that it
is common knowledge at RRR that WWW is not the real state.

The hypothesis that the state space is finite, even though time is possibly
infinite, is very strong, and often not justified. But without that hypothesis, the
theorem that convergence to common knowledge will eventually occur is
clearly false. We shall discuss the implications of an infinite state space below.

Bayesian Games

The analysis has considered decision rules which depend on what the
agent knows, but not on what the agent expects the other agents to do. This
framework was sufficient to analyze the puzzles about the hat color, and the
expectation of the random variable x, and also for betting when each son
assumed that the bet would be taken (perhaps by the father) as long as he
himself gave the OK. But in the envelopes puzzle when the first son realizes
that the bet will be taken only if the other son also accepts it, he must try to
anticipate the other son’s action before deciding on his own action, or else risk
that the bet comes off only when he loses. To take this into account we now
extend our model of interactive epistemology to include payoffs to each agent
depending on any hypothetical action choices by all the agents.

So far the states of nature describe the physical universe, the knowledge of
the agents, and the actions of the agent. Implicitly in our examples the states of
nature also described the payoffs to the agents of their actions, for this is the
motivation for why they took their actions. We now make this motivation more
explicit. At each w, let us associate with every vector of actions of all the I
players a payoff to each agent 4. In short, each » defines a game among the [/
agents. Since the players do not know the state w, we must say more before we
can expect them to decide which action to take. We suppose, in accordance
with the Bayesian tradition, that every agent has a prior probability on the
states of nature in {2, and that at o the agent updates his prior to a posterior by
conditioning on the information that  is in P(w). This defines a Bayesian
game. The agents then choose at each w the actions which maximize their
expected utility with respect to these posterior probabilities, taking the decision
rules of the others as given. If the mapping of states to actions satisfies this
optimizing condition, then we refer to the entire framework of states, knowl-
edge, actions, payoffs, and priors as a Bayesian Nash equilibrium.

For example, in the last version of the envelopes puzzle the payoffs to the
sons depend on what they both do. Below we list the payoffs to each son at a
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state (m, n), depending on whether each decides to bet (B) or to stick with his
own envelope and not bet (N).

B N
B 10"-1,10"-1 10™—-1,10"
N 10™,10™ — 1 10™,10%

Recall that each son has equal prior probability on every state and that the first
son does not know whether the state is (m, m — 1) or (m, m + 1) unless m = 1
or m=7.1f m =7, the first son knows that he has the highest envelope,
(m > n), and therefore in any Bayesian Nash equilibrium he will choose not to
switch—that is he will choose N. A similar argument applies to the second son.

But now it is easy to see that in any Bayesian Nash equilibrium of the
envelopes game, both sons will refuse to bet at every state (m, n). Since at state
(6,7) the second son must play N in any Bayesian Nash equilibrium, the first
son must play N whenever he sees 6, namely at states (6,5) and (6, 7). But it
then follows that the second son must play N whenever he sees 5, and so on.
This explains why the very first time the father asks his boys whether they will
bet on changing envelopes, knowing that the bet is off unless it is agreed upon
by both sides, they will both immediately say no.

At this point it is worth empbhasizing that the structure of Bayesian Nash
equilibrium extends the framework of interactive epistemology that we devel-
oped earlier. For example, we can turn the hats puzzle into a Bayesian game by
specifying that the payoff to player i if she correctly guesses her hat color is 1,
and if she says she does not know her payoff it is 0, and if she guesses the
wrong hat color it is —o. Similarly, in the opinion game (in which the random
variable x that the players are guessing about is given) we can define the payoff
at o to any player ¢ if he chooses the action a to be —(a — x(w))? It is
well-known from elementary statistical decision theory that a player minimizes
the expected squared error by guessing the conditional expectation of the
random variable. Hence these payoffs motivate the players in the opinion game
to behave as we have described them in our previous analysis.

Bayesian optimal decisions (that is, maximizing expected utility) satisfy the
sure-thing principle. Hence an argument similar to that given in the last section
proves the following Agreement Theorem for Bayesian Games: Suppose that in
Bayesian Nash equilibrium it is common knowledge at some o what actions the
players are each taking. Then we can replace the partitions of the agents so that
at o all the agents have the same information, without changing anything else
including the payoffs and the actions of the agents at every state, and still be at
a Bayesian Nash equilibrium. In particular, any vector of actions that can be
common knowledge and played as part of a Bayesian Nash equilibrium with
asymmetric information can also be played as part of a Bayesian Nash equilib-
rium with symmetric information.

The implications of this theorem for game theory are similar to those
indicated in the last section. If a game theorist attributes some Bayesian Nash
equilibrium behavior to asymmetric information, it must be that the actions the



John Geanakoplos 71

agents are taking are not common knowledge. For if they were, then asymmet-
ric information about events could not give rise to new phenomena.

We now return to the problem of the envelopes. Observe that we showed
that there could not be betting in any Bayesian Nash equilibrium of the
envelopes example, even when it might not have been common knowledge that
the bet would come off. This result cannot be derived from the above theorem,
which presumes common knowledge of actions. Yet the result is so general that
we indicate why it must be true. To this end we invoke a second property of
Bayesian optimal decisions, namely that more information cannot hurt. In
Bayesian Nash equilibrium a player at a state w need only consider the
consequences of action at states @' in P,(w). Nevertheless, we as the outside
observer, can calculate what each player’s expected payoff is by taking the
average payoff of the player over all the states, weighted by the player’s prior
probability. It is easy to see that if we replaced player i’s partition by the “know
nothing” partition {Q2}, then (assuming that the other player’s actions stayed
fixed) the best i could do would not increase i’s expected payoff. (If by
choosing some constant action ¢ improved his expected payoft, then it would
follow that for at least one partition cell he should have been choosing that
action instead of what he did choose).

In the envelopes puzzle, the sum of the payoffs to the two players in any
state is uniquely maximized by the action choice (N, N) for both players. A bet
wastes at least one dollar, and only transfers money from the loser to the
winner. It follows that the sum of the two players’ expected payofls is uniquely
maximized when both players choose (N, N) at every state. Now consider any
Bayesian Nash equilibrium of the envelopes game. Agent 1 could have chosen
N at every w. Since this was possible with no information, it follows that such a
choice (assuming that the other player stuck to his choices at each ) could not
have increased 1’s expected utility. But note that the payoff to agent 1 when he
plays N does not depend on what the other players do. Hence the expected
payoff to player 1 must not go up if all the players switch to N for all . But the
same argument applied to agent 2 shows that his expected payoff must also not
go up if all the players switched to N at every state. Combining these two
statements, we see that the sum of the expected payoffs to the two players at the
Bayesian Nash equilibrium must be at least as high as it would be if the players
always played N, a contradiction, unless the Bayesian Nash equilibrium is to
play (N, N) at each state.

Speculation

The cause of financial speculation and gambling has long been put down to
differences of opinion. Since the simplest explanation for differences of opinion
is differences in information, it was natural to conclude that such differences
could explain gambling and speculation. Yet, we now see that such a conclusion
was premature.
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To understand why, begin by distinguishing between two kinds of specula-
tion. One involves two agents who agree on some contingent transfer of money,
perhaps using a handshake or a contract to give some sign that the arrange-
ment is common knowledge between them. The other kind of speculation
occurs between many agents, say on the stock market or at a horse race or a
gambling casino, where an agent may commit to risk money before knowing
what the odds may be (as at a horse race) or whether anyone will take him up
on the bet (as in submitting a buy order to a stockbroker). In the second kind of
speculation, what the agents are doing is not common knowledge.

We also distinguish speculation from investing or trading. With an invest-
ment, both the borrower and lender can benefit. When two people bet with
each other, one wins what the other loses. An agent who buys a stock from
another will win if the stock price rises, while the seller will lose. This appears to
be a bet. But another reason for trading the stock could be that the seller’s
marginal utility for money at the moment of the transaction is relatively high
(perhaps because children are starting college), whereas the buyer’s marginal
utility for money is relatively higher in the future when the stock is scheduled
to pay dividends. In such a situation, one agent is borrowing and the other
agent is investing. Even with symmetric information, both parties might think
they are benefiting from the trade. This is not speculation. It appears, however,
that only a small proportion of the trades on the stock market can be explained
by such savings/investment reasons. Similarly if one agent trades out of dollars
into yen, while another agent is trading yen for dollars, it might be because the
first agent plans to travel to Japan and the second agent needs dollars to buy
American goods. But since the volume of trade on the currency markets is
orders of magnitude greater than the money purchases of goods and services, it
would seem that speculation and not transactions demand explains much of
this activity.

In this discussion, speculation will mean actions taken purely on account of
differences of information. To formalize this idea, suppose that each agent has
a status quo action, which does not take any knowledge to implement, and
which guarantees that agent a utility in each state independent of what actions
the others choose. Suppose also that if every agent pursued the status quo
action in every state the resulting utilities would be Pareto optimal. A typical
Pareto optimal situation might arise as follows. Risk averse agents (possible with
different priors) trade a complete set of Arrow-Debreu state contingent claims
for money; one agent promising to deliver in some states and receive money in
others, and so on. At the moment the contracts are signed, the agents do not
know which state is going to occur, although they will recognize the state once
it occurs in order to carry out the payments. After the signing of all the
contracts for delivery, but before the state has been revealed, the status quo
action of refusing all other contracts is well known to be Pareto optimal.

At a Pareto optimum there can be no further trade, if agents have
symmetric information. But now suppose that each agent receives additional
information revealing something about which state will occur. If different
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agents get different information, that would appear to create opportunities for
betting, or speculative trade. But if it is common knowledge that the agents
want to trade, as occurs when agents bet against each other, then our theorem
that common knowledge of actions negates asymmetric information about
events implies that the trades must be zero. But even if the actions are not
common knowledge, the argument given in the last section proves that there
will be no more trade. Since the actions are not common knowledge, what is?
Only the facts that the agents are rational—that is, their knowledge is given by
partitions, and that they are optimizing, and that the status quo is Pareto
optimal. We can therefore summarize our argument from the previous section
by stating the Non-Speculation Theorem: Common knowledge of rationality and
of optimization eliminates speculation.

When it is common knowledge that agents are rational and optimizing,
differences of information not only fail to generate a reason for trade on their
own, but even worse, they inhibit trade which would have taken place had
there been symmetric information. For example, take the two sons with their
envelopes, with a maximum of $10 million in one of the envelopes. However,
suppose now that the sons are risk averse, instead of risk neutral. Then before
the sons open their envelopes each has an incentive to bet—not the whole
amount of his envelope against the whole amount of the other envelope—but
to bet half his envelope against half of the other envelope. In that way, each son
guarantees himself the average of the two envelopes, which is a utility improve-
ment for sufficiently risk averse bettors, despite the $1 transaction cost. Once
each son opens his envelope, however, the incentive to trade disappears,
precisely because of the difference in information! Each son must ask himself
what the other son knows that he doesn’t.

More generally, consider the envelopes problem where the sons may be
risk neutral, but they have different priors on €. In the absence of information,
many bets could be arranged between the two sons. But it can easily be argued
that no matter what the priors, as long as each state got positive probability,
after the sons look at their envelopes they will not be able to agree on a bet.
The reason is that the sons act only on the basis of their conditional probabili-
ties, and given any pair of priors with the given information structure it is
possible to find a single prior, the same for both sons, that gives rise to the
conditional probabilities each son has at each state of nature. The priors are
then called consistent with respect to the information structure. Again, the
message is that adding information tends to suppress speculation, rather than
encouraging it, when it is common knowledge agents are rational.

Infinite State Spaces and Knowledge about Knowledge
to Level N

There are two reasons why we might be led to consider an infinite state
space. First, we have assumed so far that each agent ¢ knows the partition of
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every other agent j. One could easily imagine that i does not know which of
several partitions j has. This realistic feature could be incorporated into our
framework by expanding the state space, so that each new state specifies the
original state and also the kind of partition that j has over the original state
space. By defining ¢’s partition over this expanded state space, we allow i not
only to be uncertain about what the original state is, but also about what ;’s
partition over the original state space is. (The same device also can be used if ¢
is uncertain about what prior j has over the original state space.) Of course it
may be the case that j is uncertain about which partition i has over this
expanded state space, in which case we could expand the state space once
more. We could easily be forced to do this an infinite number of times. But in a
series of papers—including Mertens and Zamir (1985), Fagin, Geanakoplos,
Halpern, and Vardi (1992), Gilboa (1986), and Kaneko (1987)—it has been
shown that a countable number of expansions is sufficient for describing
whether an event contained in the original state space is common knowledge.®

A second reason we might consider an infinite state space is that messages
can sometimes be lost. Suppose that two airplane fighter pilots are transmitting
to each other over their radios. If every message has a chance of being lost, and
if the states of the world are meant to be complete descriptions of everything
that might happen, then there must be at least as many states as there are
messages. If we allow for an arbitrarily large number of messages, then we need
an infinite state space.

The assumption that the state space ) is finite played a crucial role in the
theorem that common knowledge of actions must eventually be reached. With
an infinite state space, common knowledge of actions may never be reached,
and one wonders whether that calls into question our conclusions about
agreement, betting, and speculation. The answer is that it does not.

Consider for example the envelopes problem, but with no upper bound to
the amount of money the father might put in an envelope. More precisely,
suppose that the father chooses m > 0 with probability 1,/2™, and puts $10™ in
one envelope and $10™*! in the other, and randomly hands them to his sons.
Then no matter what m > 1 he sees in his own envelope, each son calculates
the odds are 1/3 that he has the lowest envelope, and that therefore in
expected terms he can gain from switching. This will remain the case no matter
how long the father talks to him and his brother. At first glance this seems to
reverse our previous findings. But in fact it has nothing to do with the state
space being infinite. Rather it results because the expected number of dollars in
each envelope (namely the infinite sum of (1,/27)X10™)) is infinite. The same
proof we gave before shows that with an infinite state space, even if the
maximum amount of money in each envelope is unbounded, as long as the
expected number of dollars is finite, betting cannot occur. (In the case with an

®Curiously, to represent that agent i knows that an event is not common knowledge between
agents j and % requires more than a countable expansion of the original state space.
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unbounded maximum but finite expected number of dollars in each envelope,
one can show that for some large but finite m = M it would not be worth
switching envelopes, and then we would be in a situation analogous to the finite
case considered earlier where there is 2 maximum amount of money in any
envelope.)

Similarly, it can be shown that even with an infinite state space, if agents
talk long enough about the expectation of a random variable (that has finite
expectation), then their opinions will converge, although they might not be-
come exactly equal in finite time. (This is a consequence of the martingale
convergence theorem.)

However, one consequence of a large state space is that it permits states of
the world at which a fact is known by everybody, and it is known by all that the
fact is known by all, and it is known by all that it is known by all that the fact is
known by all, up to N times, without the fact being common knowledge. When
the state space is infinite, there could be for each N a (different) state at which
the fact was known to be known N times, without being common knowledge.

The remarkable thing is that iterated knowledge up to level N does not
guarantee behavior that is anything like that guaranteed by common knowl-
edge, no matter how large N is. The agreement theorem assures us that if
actions are common knowledge, then they could have arisen from symmetric
information. But this is far from true for actions that are N-times known, where
N is finite. For example, in the opinion puzzle taken from Geanakoplos and
Polemarchakis, at state @ = 1, agent 1 thinks the expectation of x is 1, while
agent 2 thinks it is — 1. Both know that these are their opinions, and they know
that they know these are their opinions, so there is iterated knowledge up to
level 2, and yet these opinions could not be common knowledge because they
are different. Indeed they are not common knowledge, since the agents don’t
know that they know that they know that these are their respective opinions.

Similarly, in the envelopes puzzle, at the state (4, 3) each son wants to bet,
and each son knows that the other want to bet, and each knows that the other
knows that they each want to bet, so their desires are iterated knowledge up to
level 2. But since they would lead to betting, these desires cannot be common
knowledge, and indeed they are not, since the state (6,7) is reachable from
(4,3), and there the second son does not want to bet. It is easy to see that by
letting the maximum envelope contain $10°*", we could build a state space in
which there is iterated knowledge to level N that both agents want to bet at the
state (4, 3).

Recall the infinite state space version of the envelopes example just de-
scribed, where the maximum dollar amount is unbounded. At any state (m, n)
with m > 1 and n > 1, agent 1 believes the probability is 1/3 that he has the
lowest envelope, and agent 2 believes that the probability is 2/3 that agent 1
has the lowest envelope! If m > N+ 1, and n > N + 1, then it is iterated
knowledge at least N times that the agents have these different opinions. Thus,
for every N there is a state at which it is iterated knowledge N times that the
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agents disagree about the probability of the event that 1 has the lowest dollar
amount in his envelope. But of course for no state can this be common
knowledge.

Another example illustrates the difficulty in coordinating logically sophisti-
cated reasoners. Consider again our airplane fighter pilots, and suppose that
the first pilot radios a message to the second pilot telling him where to
coordinate their attack. If there is a probability p that any message between
pilots is not properly transmitted, then even if the second pilot receives the
message, he will know where to attack, but the first pilot will not know that the
second pilot knows where to attack, since the first pilot cannot be sure that
the message arrived. If the first pilot proceeds with the plan of attacking, then
with probability (1 — p) the attack is coordinated, but with probability p he flies
in with no protection. Alternatively, the first pilot could ask the second pilot for
an acknowledgement of his message. If the acknowledgement comes back, then
both pilots know where to attack, and both pilots know that the other knows
where to attack, but the second pilot does not know that the first pilot knows
that the second pilot knows where to attack. The potential level of iterated
knowledge has increased, but has the degree of coordination improved?

Let us consider the strategy of the first pilot. If he attacks whether or not
he receives the acknowledgement, then in effect he is ignoring the message and
we are back in the previous situation where the second pilot sent no
acknowledgement. It would anyway be silly for him to attack if he did not get
an acknowledgement, since, based on that fact (which is all he has to go on), the
odds are more likely (namely, p compared to p(1 — p)) that it was his original
message that got lost, rather than the acknowledgement. Presumably the first
pilot will attack if he gets the acknowledgement, and not otherwise. The second
pilot will attack if he got the message, and not otherwise. The chances are now
(1 — p)? that the attack is coordinated, and (1 — p)p that the second pilot
attacks on his own, and there is probability p that neither pilot attacks. (If a
message is not received, then no acknowledgement is sent.)

Compared to the original plan of sending one message there is no im-
provement. In the original plan the first pilot could simply have flipped a coin
and with probability p sent no message at all, and not attacked, and with
probability (1 — p) sent the original message without demanding an acknowl-
edgement. That would have produced precisely the same chances for coordina-
tion and one-pilot attack as the two message plan. (Of course the vulnerable
pilot in the two message plan is the second pilot, whereas the vulnerable pilot
in the one message plan is the first pilot, but from the social point of view, that
is immaterial. It may explain however why tourists who write to hotels for
reservations demand acknowledgements about their reservations before going.)

Increasing the number of required acknowledgements does not help the
situation. No strategy pair for the two pilots can yield a different outcome from
the one message scenario where the first pilot sometimes withholds the mes-
sage, except to change the identity of the vulnerable pilot. Furthermore, if the
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pilots are self-interested and do not want to attack if the odds are less than even
that the other pilot will also be attacking the same spot, then there is a unique
Bayesian Nash equilibrium strategy pair, in which each pilot attacks at the
designated spot if and only if he has received every scheduled message. To see
this, note that if to the contrary one pilot were required to attack with a
threshold of messages received well below the other pilot’s threshold, then
there would be cases where he would know that he was supposed to attack and
that the other pilot was not going to attack, and he would refuse to follow the
plan. There is also a difhiculty with a plan in which each pilot is supposed to
attack once some number £ less than the maximum number of scheduled
messages (but equal for both pilots) is received. For if the second pilot gets &
messages but not the (¢ + 1)st, he would reason to himself that it was more
likely that his acknowledgement that he received k messages got lost and that
therefore the first pilot only got (k ~ 1) messages, rather than that the first
pilot’s reply to his acknowledgement got lost. Hence in case he got exactly &
messages, the second pilot would calculate that the odds were better than even
that the first pilot got only £ — 1 messages and would not be attacking, and he
would therefore refuse to attack. This confirms that there is a unique Bayesian
Nash equilibrium. In that equilibrium, the attack is coordinated only if all the
scheduled messages get through. One pilot flies in alone if all but the last
scheduled message get though. If there is an interruption anywhere earlier,
neither pilot attacks. The chances for coordinated attack decline exponentially
in the number of scheduled acknowledgements.

The most extreme plan is where the two pilots agree to send acknowledge-
ments back and forth indefinitely. The unique Bayesian Nash equilibrium is for
each pilot to attack in the designated area only if he has gotten all the messages.
But since with probability one, some message will eventually get lost, it follows
that neither pilot will attack. This is exactly like the situation where only one
message is ever expected, but the first pilot chooses with probability one not to
send it.

Note that in the plan with infinite messages (studied in Rubinstein, 1989),
for each N there is a state in which it is iterated knowledge up to level N that
both pilots know where to attack, and yet they will not attack, whereas if it were
common knowledge that they knew where to attack, they would indeed attack.
This example is reminiscent of the example in which the two brothers dis-
agreed about the probability of the first brother having the lowest envelope.
Indeed, the two examples are isomorphic. In the example of the pilots, the
states of the world can be specified by where to attack, and by an ordered pair
(m,n) designating the number of messages each pilot received. Each pilot
knows the number of messages he received, but cannot tell which of two
numbers the other pilot received, giving the same staircase structure to the
states of the world we saw in the earlier example.

The upshot is that when coordinating actions, there is no advantage in
sending acknowledgements unless one side feels more vulnerable, or unless the
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acknowledgement has a higher probability of successful transmission than the
previous message. Pilots acknowledge each other once, with the word “roger,”
presumably because a one word message has a much higher chance of success-
ful transmission than a command, and because the acknowledgement puts the
commanding officer in the less vulnerable position.

Bounded Rationality: Mistakes in Information Processing

Common knowledge of rationality and optimization (interpreted as
Bayesian Nash equilibrium) has surprisingly strong consequences. It implies
that agents cannot agree to disagree; it implies that they cannot bet (when the
bet is common knowledge); and most surprising of all, it banishes speculation.
Yet casual empiricism suggests that all of these are common phenomena. This
section explores the implications of common knowledge by weakening the
maintained hypothesis that agents process information perfectly, which has
been subsumed so far in the assumption that knowledge has exclusively been
described by a partition. We seek to answer the question: How much irrational-
ity must be permitted before speculation and agreements to disagree emerge in
equilibrium?’

There are a number of errors that are typically made by decision-makers
that suggest we go beyond the orthodox Bayesian paradigm. Agents often
forget, or ignore unpleasant information, or grasp only the superficial content
of signals. Many of these mistakes turn on the idea that agents often do not
know that they do not know. For example, in the story of Silver Blaze, Sherlock
Holmes draws the attention of the inspector to “the curious incident of the dog
in the night-time.” “The dog did nothing in the night-time,” protested the
inspector, to which Holmes replied, “That was the curious incident.” As
another example, it might be that there are only two states of nature: either the
ozone layer is disintegrating or it is not. One can easily imagine a scenario in
which a decaying ozone layer would emit gamma rays. Scientists, surprised by
the new gamma rays would investigate their cause, and deduce that the ozone
was disintegrating. If there were no gamma rays, scientists would not notice
their absence, since they might never have thought to look for them, and so
might incorrectly be in doubt as to the condition of the ozone.

We can model some aspects of non-Bayesian methods of information
processing by generalizing the notion of information partition. We begin as
usual with the set () of states of nature, and a possibility correspondence P
mapping each element @ in Q into a subset of {). As before, we interpret P(w)
to be the set of states the agent considers possible at . But now P may not be
derived from a partition. For instance, following the ozone example we could
imagine Q = {a,b}) and P(a) = {a} while P(b) = {a,b}. A perfectly rational
agent who noticed what he did not know would realize when he got the signal

"Much of this section is taken from Geanakoplos (1989), which offers a fuller description of possible
types of irrationality and how they affect behavior.
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{a, b} that he had not gotten the signal {a} that comes whenever a is the actual
state of the world, and hence he would deduce that the state must be 4. But in
some contexts it is more realistic to suppose that the agent is not so clever, and
that he takes his signal at face value.

When an agent’s information is described by a partition, whether that
agent takes information at face value or looks for subtle inferences makes no
difference. Partition information is the only situation in which the superficial
content of the information is all that there is. Of course the source of an agent’s
partition information may be that the agent has already teased out all of the
subtle messages and interpretations from earlier information that did have
subtle content.

Imagine a doctor Q who initially assigns equal probability to all the four
states describing whether each of two antibodies is in his patient’s blood (which
is good) or not in the blood (which is bad). If both antibodies are in the blood,
i.e. if the state is GG, the operation the doctor is contemplating will succeed and
the payoff will be 3. But if either is missing—if the state i1s any of GB, BG, or
BB—the operation will fail and the doctor will lose 2. Suppose that laboratory
assistants are looking for the antibodies in blood samples. The doctor does not
realize that if an antibody is present, the lab will find it, whereas if it is missing,
the lab will never conclusively discover that it is not there. The knowledge of
doctor Q 1is therefore described by Figure 2. The laboratory never makes an
error, always reporting correct information. However, though the doctor does
not realize it, the way his laboratory and he process information is tantamount
to recognizing good news, and ignoring unpleasant information.

A lab technician comes to the doctor and says that he has found the first
antibody in the blood, and his proof is impeccable. Should the doctor proceed
with the operation? Since doctor Q takes his information at face value, the
doctor will assign equal probability to GG and GB, and decide to go ahead.
Indeed for each of the signals that the doctor could receive from the actual
states GG, GB, BG the superficial content of the doctor’s information would
induce going ahead with the operation. (If the actual state of the world is BB,
doctor Q will get no information from the lab and will decide not to do the
operation.) Yet a doctor R who had no lab and knew nothing about which state
was going to occur, would never choose to do the operation. Doctor R’s
information is also given by the partition in Figure 2.

Suppose that doctors Q and R know each other’s laboratories, and know
that they each take their laboratory tests at face value. After looking at their
private laboratory tests, the two doctors would be willing to make a wager in
which doctor R pays doctor Q the net value the operation turns out to be
worth if doctor Q performs it. At each of the states GG, GB, BG doctor Q will
decide to perform the operation, and therefore the bet will come off, yet each
doctor would feel that he was likely to come out ahead. The uninformed but
rational doctor R would in fact come out ahead, since 2 out of every 3 times the
operation is performed he will receive 2, while 1 out of every 3 times he will
lose 3.
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Figure 2

Doctor Q Doctor R Doctor §

Imagine now another doctor §, contemplating the same operation, but
with a different laboratory. Doctor §’s lab reveals whether or not the first
antibody is in the blood of his patient, except when both antibodies are present,
in which case the experiment fails and reveals nothing at all. If doctor § takes
his laboratory results at face value, then his information is described by Figure
2. The superficial content of doctor §’s information is also impeccable. But if
taken at face value, it would lead him to undertake the operation if the state
were GB (in which case the operation would actually fail), but not in any other
state.

If doctors § and R understood each other’s laboratories and the way they
drew conclusions from their experiments (but S did not realize that there was
more to his information than the superficial message), then doctors § and R
would also be willing to sign a bet in which R paid S the net value of the
operation if doctor § decides to perform it. Again the rational but less well
informed doctor R would come out ahead.

§’s information processing errors are less severe than Q’s. It is not known
by doctor R that the bet is going to come off when doctors § and R or when
doctors Q and R, set their wager. Doctor R is put in a position much like that
of a speculator who places a buy order, but does not know whether it will be
accepted. One can show that there is no doctor R’ (with partition information,
or even one who made the same kinds of errors as doctor §) who doctor §
would bet with and with whom the bet would come off whenever R’ agreed.
But the same is not true for doctor Q. Consider R' = {{GG, GB, BG}, {BB}}.
Then R’ would agree to bet with Q in precisely the states GG, GB, BG, that Q
would agree to bet against R'. We could think of Q and R’ shaking hands on a
bet, rather than as speculators placing buy orders.

Furthermore, the reader might like to prove to himself that the scientist P
worried about the ozone, whose information possibility correspondence was
described earlier, would not get lured into any unfavorable bets (provided that
the ozone layer was the only issue on which he made information processing
errors). Furthermore, it can be shown that none of the four agents P,Q, R, S
would agree to disagree with any of the others about the probability of some
event.
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Geanakoplos (1989) establishes necessary and sufhcient conditions for the
information processing errors captured by the nonpartitional possibility corre-
spondences to allow for speculation, betting, and agreeing to disagree. There is
a hierarchy here. Agents can be a little irrational, and still not speculate, agree
to bet, or agree to disagree. But if agents are a little more irrational, they will
speculate, but not agree to bet or agree to disagree. If they get still more
irrational, they will speculate and agree to bet, but not agree to disagree about
the probability of an event. Finally, with still more irrationality, they will
speculate, agree to bet, and agree to disagree.
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