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THE POWER OF COMMITMENT

by

Chien-fu Chou and John Geanakoplos

History has seen many examples of the lone man—I1ike Christ, Luther,
Gandhi, or Hitler—who without initial wealth or position, succeeds in
changing the behavior of an entire society, for good or for 111, Whence
comes this power? No doubt such leaders have possessed extraordinary
ability, and have formulated original ideas with great appeal which others
could readily follow. But there is another striking similarity among
these leaders; namely their single-minded devotion to their ideals, and
their uncompromising attitude toward those who opposed them, no matter
what the personal cost. There is hardly any need to document this facet
of their personalities, so widely is it known. But we cannot help recall-
ing Gandhi’s threat to starve himself to death if the fighting between
Hindus and Muslims did not stop. Indeed the whole-hearted commitment of
these leaders to their ideals was often reflected in their followers'’
commitment to them. The purpose of this paper is to show how significant
is the power to make commitments, perhaps in the name of some ideal.

Economists have long stressed the idea of commitment {or more pre-

cisely conditional commitment) and the related concept of credible threat.

*An earlier version (October 1985) of this paper appeared under the
title "On Finitely Repeated Games and Psuedo-Nash Equilibria,® CFDP #777,
Geanakoplos would like to thank Paul Milgrom and Partha Dasgupta for help-
ful comments.



Thus an incumbent monopolist who can commit himself to flood the market in
case a potential rival begins production can thereby protect his monopoly.
But if by flooding the market the monopolist lowers price so much he des-
troys his own profitability, then his threat is not necessarily credible,
and a shrewd rival may indeed enter without fear of drastic retaliation.
If the monopolist could find some device to guarantee his reputation for
retaliation, then he could reap monopoly profits (without ever having to
exercise his threat).

It is this familiar economic illustration of the power of commitment
that is the basis for this paper, but with one important difference. 1In
the above story the incumbent monopolist had initial position and impor-
tant wealth, for he had the power, by acting differently, to reverse
completely the potential entrant’s preferences between entering and not
entering. If the incumbent had a very small maximum capacity for produc-
tion, even a credible threat to increase production to the maximum in case
of entry would likely not deter entry. Furthermore the monopolist’'s threat
would seem to be all the more ineffectual the shorter the length of time
during which he could commit to the maximum output.

In this paper we focus attention on the circumstances under which an
agent with arbitrarily small resources can nonetheless cause drastic
changes in the behavior of the rest of his community, through his ability
to commit himself in advance to actions he might take much later during an
arbitrarily short period of time. Our story requires five ingredients.
First, there must be at least two agents that the committed agent can play
off against each other. Second, these agents must interact with each

other on a great many occasions. Third, these interactions must be



observable. Fourth, these interactions must be rapid, or else the agents
must not discount the distant future too much, so that identical future
and contemporary interactions are regarded as nearly equally valuable.
Fifth, the relationship between actions and benefits must be smooth, so
that drastic changes in benefits can only be brought about by large
changes in actions, and more importantly, small changes in benefits can
always be brought about by small changes in actions. For reasons that
will become clear, we shall refer to this fifth ingredient as "generic
smoothness."

Some of these ingredients have already become standard in the econom-
ies literature, and these models form our point of departure. We begin
with a one-shot game G among N players, describing their possible
actions ("one-shot strategies") and the benefits to each as a function of
the joint actions taken by zall the players. In such a game with self-
interested players, we could not expect any outcome other than a "Nash
equilibrium,” i.e. a vector of joint actions by the players from which no
player can advantageously deviate. Of course this eliminates hypothetical
possibilities in which the players could act more cooperatively (or more
ruthlessly), perhaps making them all better off (or all worse off), be-
cause such joint behavior would allow some individual agent to "cheat,"
i.e. to deviate advantageously from the hypothetical plan. Two famous
examples of such games are the "prisoner’s dilemma® and "Cournot oligop-
oly." We shall conslder a game G with N players repeated T times,
usually called the supergame GT . Without any player who can make com-
mitments, it is well-known that when the one-shot game G has a unique

Nash equilibrium, the only outcome which is consistent with individual



incentives (a "perfect Nash equilibrium") in the supergame GT is the
repeated play of the one-shot Nash equilibrium moves. Our purpose is to
show that when generic smoothness holds for G , as it does for Cournot’s
game but not for the prisoner’s dilemma, then if the lst player, no matter
how insignificant, can commit himself just for the last period T , he
can arbitrarily alter the equilibrium moves of the other N players
during most of the periods of the supergame GT , Lf T 1is large enough.
The paradox that without commitment finite repetitions of a game, no
matter how long, may not provide for any more cooperation than the one-
shot game itself is a long-standing puzzle which has received a great deal
of attention. The so-called "folk theorem," which asserts that if the
game is infinitely repeated, then in perfect Nash equilibrium it is pos-
sible to observe any distribution of joint moves giving each player more
(on average, i.e. per period) than the (Minmax) he could guarantee himself
if everyone colluded against him, has only strengthened the sense of para-
dox, although it is clear why the infinite case is so different. 1In the
infinite case any deviation at date t from a hypothetical path can be
punished by joint behavior after date t . Each player (including the
original cheater) has an incentive to carry out the punishment, because if
he doesn't he can be punished by another, perhaps longer punishment phase
ete. (see Rubinstein (1979) for details.) In short, when G is repeated
infinitely often, no commitment is necessary te enforce cooperation, since
at any stage the short run gains from deviation must be weighed against an
infinite future of potential retribution. In the T-fold repetition super-
game, players have no incentive not to deviate at the Tth period, if

there are short run gains to be made, since there is no future. By



working backwards one can see that only the repeated one-shot Nash equi-
librium can be maintained on the equilibrium path of GT .

The power of the lst agent to commit himself to a conditional strat-
egy in the last period breaks the yoke of backward induction. In period
T-1 the N agents can be slightly deflected from their one-shot Nash
strategies by the small threat the lst player can generate in period T ,
if the game G 1is smooth., What is surprising is that fof smooth games
this arbitrarily small deflection quickly propagates backward into ever
larger deviations from the one-shot Nash strategies in earlier periods.

In fact we prove that the ability of the 1lst agent to commit himself
allows for a "folk theorem"™ for finitely repeated generic smooth games

GT , even though the commitment is for only one time period, and the 1lst
agent may be very small compared to the others.

Take as an 1llustration the Cournot game G with N producers whose
one-shot strategies consist of choosing a level of production for the com-
modity they all produce. Suppose that any subset of N-1 players can
produce enough of the good to drive its price down to zero, so that each
player’'s Minmax payoff is zero., Take any vector of quantities
q=- (ql, ceny qn) affording each player positive profit. For example,
each qj might be near zero, except for 9 » which might be near 1's
monopoly level of production. If player 1 can commit himself at the be-
ginning of the game to play any conditional strategy for just the period
T , depending on what other players have done before time T , then
there is a perfect Nash equilibrium during which the players play q in
all but the last K periods, no matter how large T 1is. This proposi-

tion holds ne matter how small is the maximum capacity for production by



agent 1. During the last K periodS'therproduction of the N agents
along the equilibrium path converges to the one-shot Nash strategies. But
for large T the proportion of periods during which q is played
approaches 1.

There have been several variations of the supergame GT in the lit-
erature for which "folk theorems" apply when G 1is repeated a large but
finite number of times. All of these variations can be reinterpreted as
devices to introduce commitment in a more or less plausible way into the
definition of equilibrium. In this sense our paper cuts to the heart of
the matter by asking directly what is the minimum amount of commitment
necessary to sustain the finitely repeated folk theorem.

Radner (1980) broke the yoke of backward induction by defining an
c¢-average equilibrium for GT in which a player is satisfied with his
strategy unless he can gain at least ¢ per period more by deviating, and
then showing that repeated full cooperation is an e-average equilibrium
of the T-repeated Cournot game if T 1is large. If we reinterpret Radner'’'s
¢-average equilibrium by supposing that there is an N+15C agent who can
commit himself at the beginning of time to give a reward no larger than
eT at time T+1 to those who followed a prescribed sequence of moves
until period T , then Radner’s result is a precursor of ours on the
power of commitment. For our purposes, however, his result needs improve-
ment, since it demonstrates that when the size of the reward wielded by
the committed player rises proportionately with the number of times he
wants others to cooperate, he can indeed guarantee cooperation. For large
T this will be an excessive amount of resources that one agent can reas-

onably be expected to command. Our results show that Radner’s theorem



can indeed be improved to an ¢-{total)-equilibrium theorem, in which play-
ers are content so long as they cannot gain more than ¢ in total by
deviating.

Benoit and Krishna (1985) showed that a finitely repeated folk
theorem similar to ours applies even without commitment if the one-shot
game G has multiple Nash equilibrium payoffs. Their result holds be-
cause the agents can jointly credibly conditionally commit themselves in
advance to play one or the other Nash equilibrium in period T , and also
perieds T-1, ..., T-K , depending on the previous moves of the game.
Naturally our notion of equilibrium with commitment by the lst agent for
one period can be extended to allow for commitment by any cocalition C of
agents, including C equal to the set of all agents. With more commit-
ment the "finitely repeated folk theorem" becomes easier to prove. Benoit
and Krishna have identified a class of games for which the possibility of
commitment {(albeit of a special form) is built into the definition of per-
fect Nash equilibrium, and not just for one player for one period, but
for all N players for any number of periods. We shall use our methods
to give a brief demonstration of the important Benoit-Krishna theorem.

Krep-Wilson (1982), Milgrom-Roberts (1982), and Kreps-Milgrom-
Roberts-Wilson (1982) proposed an "e-crazy equilibrium" in which with
probability ¢ a player will behave in some arbitrarily specified "crazy"
manner. They have shown (see also Fudenburg-Maskin (1986)) that for any
€ >0, and any vector of average payoffs per period exceeding each play-
er’'s Minmax, for large enough T , there is a specification of craziness
for each player leading to a sequential equilibrium with approximately the

given payoffs. A notable feature of thelr proof is that the number of



periods K(e) that thg behavior of the "crazy" version of an agent dif-
fers from the equilibrium behavior of his rational version is independent
of T . However, it is important to note that K(z) varies inversely
with £ , so that e+K(g) is approximately constant. The expected num-
ber of periods during which the play of an agent is "crazy," i.e. not
governed by self-interest but arbitrarily committed in advance, stays
bounded from above, but also from below, no matter how small the probabil-
ity of craziness is taken. Since the "crazy" behavior may have a signifi-
cant impact on the utility of other players, each time it occurs, we see
once again that in the "e-crazy" formulation of equilibrium a large amount
of "resources" in effect are committed in advance as potential rewards for
"good"” behavior, and that it is this large commitment which provides for
the cooperative equilibrium,

In this paper we concentrate on what we believe is the central phe-
nomenon of repeated games: without commitment, repetition often leads to
nothing new. Yet with enough repetition, the slightest bit of commitment
can make a world of difference. For smooth N-player games the required
amount of commitment is vanishingly small. Our proposition implies that
for smooth games the £-crazy theorem of Fudenberg-Maskin etc. could be
strengthened to require crazy behavior for just one perioed.

In our view, smooth games, in which actions can always be slightly
modified, have not received the attention in the folk-theorem literature
which their structure merits. Reluctance to exploit the differentiability
of the payoff functions is surprising in view of the nearly universal
assumption in the folk theorem literature that the one-shot game G has

convex strategy spaces with continuous pay off functions (see for example



Rubinstein (1979), Benoit-Krishna (1985), and Fudenberg-Maskin (1986)}).
Once one has admitted continuity, differentiability is no longer such a
big step. Matrix games, in which the strategy spaces are finite, are
c;nsidered as special cases in the literature by taking their mixed exten-
sions, and assuming that players are allowed to observe the randomizing
devices, as well as the moves, of their opponents. It should perhaps he
admitted that this is an unpalatable assumption, since it involwves a curi-
ous timing of events: when 1 randomizes at time t , the other players
j discover "after the fact" at time ¢t+1 what randomizing device i
used. Fudenburg-Maskin (1986) shows that this extra observability
hypothesis does not play a significant role in infinite horizon repeated
games, but they leave open the question for finite horizon games.

We analyze the role of observability in folk-theorem proofs because,
as we have said, observability is one of the crucial elements of oﬁr
story. We show that the Benoit-Krishna theorem can be extended to dis-
pense with this extra observability of randomizing devices. This exten-
slon is possible because with multiple one-shot equilibria the threat to
which agents can credibly commit is unboundedly large. But the minimum
commitment necessary to derive a finitely repeated folk theorem for matrix
games G with a unique one-shot Nash equilibrium does increase when ob-
servability is imperfect. For matrix games G with a (completely) mixed
one-shot Nash equilibrium, the payoff functions (to the mixed extension of
G ) are differentiable around the equilibrium (and it is only around Nash
equilibrium that we use differentiability). If the randomiéing devices of
the agents were observable, than these games would fall into the class of

smooth games, to which our first theorem applies. By dropping the hypoth-
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 esis that the randomizing devices are observable, we study the effect of
imperfect monitoring on the power of commitment. We find in general that
the commitment of just one player for one period is not enough to achieve
a folk theorem, but in two player games with nondegenerate mixed strategy
one-shot Nash equilibria, 1f both players can jointly commit themselves
for one period, then again a finitely repeated folk theorem obtains.

In Section 2 we introduce the formal model of repeated games. In Sec-
tion 3 we describe generic smooth games and state our main theorem. In
Section 4 we give its proof. Our method of proof consists of two steps.
In Theorem A we show that once a sufficient punishment can be threatened
at least once, any game (smooth or not) must display the folk theorem
property. The method of Theorem A can be applied in any of the folk
theorem contexts, and this shows the similarity of all of these results.
The crucial idea in our proof of Theorem A is the concept of a reusable
reward system, which explains how a single threat against each player can
be used over and over to enforce cooperation without ever being used up.
In the second step of Section 4 we show how to construct a single large
threat for generic smooth games. In section 5 we note how easy it is to
construct a large threat for games with multiple Nash equilibria, and
hence to derive the Benoit-Krishna theorem from Theorem A. In Section 6
we examine the importance of monitoring in matrix games.

Before introducing the formal model, let us mention two analogies
that our proof suggests. Imagine that the hierarchy of time is replaced
by a hierarchy of rank, as in an army of selfish soldiers, where later
time periods are analogous to higher rank. A despot, no matter how poor,

might be able to induce a small change in the behavior of his generals if
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he could commit himself to reward them for appropriate behavior. In par-
ticular he could induce them to take small measures to punish colonels who
disobey orders. The selfish colonels, taking into account the influence
of both the despot and the generals, might be induced into slightly more
noble behavior, including taking the trouble to punish disobedient majors.
The majors will be induced to act still more nobly than the colonels. At
the lowest level, the privates, taking into account the force of the en-
tire army apparatus above them, will display the most noble behavior. In
this way an army of perfectly selfish soldiers could take on the character
of their leader; curiously, the soldiers farthest removed from his influ-
ence would be the most affected by his presence. Note the role of contin-
uous strategy spaces in this analogy. If the generals, for example, had
only two choices, instead of a continuum, then a small incentive could
not be expected to change their choice at all, The chain of influence
would be broken at the very first step.

Our results on commitment are also directly anélogous to the effects
of the social contrivance of money in the overlapping generations economy.
Imagine a world, as in Samuelson (1958), in which every generation from
t = 0 consists of a single agent who lives for two periods, until a last
generation at time T . If there is only one commodity per peried, then
there can be no trade. This might be especially ruinocus if each agent is
rich when young and poor when old. If the government can issue paper
money, backed by an arbitrarily small amount of real goods at time T ,
then for almost all t there can be trade in which the young give nearly
half of their endowment to the old, receiving in return half of the youth-

ful endowment of the next generation. Each generation t = T-K will
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consume approximately half its endowment when young, and save the rest of
its youthful income in paper money. When old, the generation will sell
off its paper money to the next generation, consuming half that genera-
tion’'s youthful endowment. In the last K periods there will be a rapid
inflation which will drive the real value of the paper money nearly to
zero, so that in period T the government can buy back its paper money

at a small cost in real goods. In the last K periods the equilibrium
allocations converge toward autarchy (modulo the arbitrarily small amount
of goods provided by the govermment to back the money). A government that
can credibly commit itself to future actions, however small, can profound-

ly affect the allocation of resources for almost every generatiom.

2. N NITIONS

2.1. uilibri with Commitme

Definition 1. An N-person game G is defined by G = [Ei, Hi’

i=-1, ..., N] , where the Ei are the strategy spaces and the Hi are

the payoff functions for players i =1, ..., N . We assume that each Ei
N

is compact and convex. Let I = X Ei . We also assume that lIi : TR
i=1

is continuous, and concave in the ith coordinate.

We have thus restricted our attention to "one-shot" games which have
Nash equilibria. The standard matrix games, where each player has a fin-
ite number of pure strategies, can be regarded as a special case if we
include all the "randomized" strategies for each player. We shall discuss
these games in Section 6. A canonical example of a game G satisfying
our definition is the Cournot game, where each player must choose a quan-

ity q; € [0, Qi] - Ei , and the payoffs are given by the profits (equal
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to revenue minus costs) that are obtained in some market.1 Typically in

a Cournot game the Nash payoffs to the sellers are less than the monopoly
profits that could be shared if they agreed to cooperate and produce less.
(A still worse situation for player 1i occcurs when all the other players

play qj - 5 the "minmax strategies™ against player i .)

Definition 2. The repeated game GT is defined to be the game that re-
peats G T times, and whose payoff is the sum of the individual period

payoffs. A strategy aT € ET for player i in GT can be represented

i i

by

T (1 _(2) (T)

a5 (ai » O e, 0 )

t-1
where a(l) € X, , and a(t) iz a function from X I to Z, ,
i i i r=l i

t=2, ..., T . Given the N-tuple aT - (af, ey ag) , let
;g - (;il), ;éZ)' Ceny ;gT)) be the realized sequence of actions for

player i . The payoff function for GT is

T T
T T, T (t) =(t) =(t)
I, « O, (¢c7) = Z 1. = T I (o ) eeny O )
i i =1 i =1 ir’1 N

Notice that if we regard Ei as the randomized mixtures over a fin-

ite set of pure strategies, then the definition we have just given for

GT allows the t-period choice of player 1 to depend on the randomizing

1Of course the Inverse demand function P = P(q1 +q, + ...+ qN)
must be well-behaved and similarly for the cost functions ci(qi) so that
the profit function for firm i , Hi(ql' c ey qN)
- qu(ql, c e qN) - ci(qi) will be concave in qi , for each

i=1,..., N,
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device used by player j » i in period t~1 . We change our definition

wvhen we consider matrix games in Section 6.

Definition 3. An N-tuple o% = (af, cey aﬁ) of strategies for the re-
peated game GT is a Nash Equilibrium (NE) if and only if

T T
* * * L. *
Hi(af, R DRy aN) >0 (¥, ..., O., . aN)

for all aiez'i, and all i=1, ..., N .

We are now ready for our main definition:

Definition 4. The N-tuple o%* of strategies for the repeated game GT

is a Nash equilibrijum with commitment by players 1 € ¢ ¢ N, denoted

NEC , 1f and only if
HT(a* o¥ ok) > HT(a o o)
' S A f’ L " °N

for all Ui € 2: such that

D oo™ o

1

Notice that any NE is a NE_  where C=¢ . If CCD

o , then any NE_, Iis

c

a NED . For most of this paper we shall be concerned with the case

NE, , i.e. when C = (1) and only player 1 can commit himself in the

last period.

It is also possible to define a perfect Nash equilibrium (perfect NE)

and a perfect NE of the repeated game GT . lLet o = (;(1),..., ;(f))

C
be any sequence of joint moves in (£ x ... x Z)/r , where r < T . Then

T T
*
1 o0 ¥O

the N-tuple of strategies *aT = (%o N) for the game GT , to-
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gether with the given r-period history o', defines an N-tuple of strat-
egies (;f, *aT) for the game GTiT in the obvious way. If this is an

NE (NEC) for GTWr , no matter what is r or o , then we say that

o* 1s a perfect NE (perfect NEC ) of GT .

Definition 5. Let (perfect) NEC(GT) = (X = (xl, S xN)|3 a (perfect)

T T 1. T, T
NEC *0~ of G° such that fn (G) = x)

Example 1. Prisoners’ Dilemma Game

The payoff matrix of a prisoners’ dilemma game can be represented by

Left Right
Top (2/3,2/3) (0,1)
Bottom (1,0) (1/3,1/3)
The pure strategy pair (Ei, ;§> defined below is a perfect NE{1 2) but
not a NE of G repeated T times:
~(t) Top if ;éf) = Left and Eif) = Top for all r <t ,
o -
1 Bottom otherwise
and
~(t) Left if ;{f) = Top and Eéf) = Right for all r < t ,
a' E ]
2

Right otherwise

Let us now describe a perfect NE, of the ahove prisoners’ dilemma

1
game. Rather than explicitly describe the entire strategies formally, we
define the intended path and what happens in case of deviations. The

reader can easily extend this description to full-fledged strategies. The
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strategies are as above for t < T-4 . But for t = T-3 and t=T-1,
the players intend to play (Bottom,lLeft). For t =T-2 and t =T, the
players intend to play (Top,Right). If there is any deviation from the
intended path, then both players switch to (Bottom,Right) for the rest of
the periods. All subsequent deviations are ignored. Hence,

(2/3,2/3) € perfect NE | 2}(GT) ., and (2/3,2/3) € lim perfect NEl(GT) ,

T T
whereas NE(G ) = {(1/3,1/3)) for all T .
2.2. The Folk Theoxrem
N .
Let Z . = X Zi , for j =1, ..., N . The minmax value vi for
jwl
isj
player i in the (one-shot) game G 1is Min Max 01 (o,, ¢ )
i -i
a_iez_i aiezi

Let C(G) be the convex hull of all the payoff N-vectors

(Hl(a), ceny HN(a)) as o varies over I .
. - g s onomy ) i = 40 s 0y
Definition 6. We let I(G) = C(G) N {(x xN)lxi >v;e i=1 N}

The folk theorem asserts that the Nash equilibrium average payoffs NE(Gm)
(and also the perfect NE payoffs) to the infinite repeated game G~ are
given by the set I(G) . When the strategy spaces of G are not convex,

then I(G) must be modified to take into account randomization.

efinition /7. % = (xl, s xN) is called a (perfect) NEC (average) pay-

off, and we let x € lim perfect NEC(GT) , 1f and only if there exists a
Tow

sequence xT where xT is a (perfect) NE A average payoff for GT , and

C

Ilim xT - X .
T+
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3. 00 E

We shall now specialize our analysis to smooth games G . Here the
strategy spaces Zi are taken to be compact manifolds (perhaps with
boundary), of dimension Ii . For simplicity the reader can think of them
as rectangles in Rzi , respectively. The payoff functions
Hi : El X ... X EN -+ R are continuously differentiable, arbitrarily many

times; thus we shall write BHifasj and azni/asia and so on. We shall

s

J
always suppose that G has a one shot Nash equilibrium s that lies in
the interior of El X ... X ZN . The classlic example of such a game is

the Cournot game, where II-i is the profit function of firm 1 , depending
on the outputs s, € , = [0, ﬁj

373

1 2 .
costs of production, Ci(si) = as; + Ebisi of player i , where a,

] of all the players j € N, and the

and bi are arbitrary parameters.

We shall always impose three restrictions on the games G that we
analyze. It 1s very important to note, as we shall state more formally in
a moment, that these properties hold for nearly any smooth game G taken
at random (i.e. they hold generically).

We shall focus attention on one-shot games G that have an interior

one-shot Nash equilibrium s satisfying

ani asl asN
(1) Felg | ™
j 8HN BHN
i as1 asN ]
has full row rank, when evaluated at s . (Note that since Ej may have

dimension £j greater than one, we are interpreting ani/as to be a row

i
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vector of dimension £, .)

3

Restriction 1 implies that the Nash equilibrium s 1is not Pareto op-

timal. There are always small deviations (dsl, ..., ds that will make

N’
all players better off. In the Cournot game if each player agreed to pro-
duce a little less, they would all be better off. Restriction 1 also
implies the stronger property, which in the next section we formally de-
fine as full dimensionality, that for each player i there is some devia-

tion (dsl, ..., ds that makes only player 1 better off. 1In the

N’
Cournot game that could happen if all players j = i produced a little

less, while i produced more.

Let
_ 2 2 -
3 Hl a II1
aZHi 351651 3slasN
(2) Hm= - ,
asiasj 82HN 62HN
I 3sNasl’ ’ BsNasN ]

evaluated at s . Then H:g has full rank for each j =1, ..., N,

where by H:g we mean the matrix obtained from H by deleting all the

rows corresponding to Hj , and all the columns corresponding to sj

Restriction 2 implies that the first order conditions BHi/asi =0
defining the one-shot Nash equilibrium s are non-degenerate. If we fix
the moves of any player j at §j near Ej , then we can solve for the

Nash moves of the remaining players in a one-shot play of the game in

A

which they all take for granted that s, = s

] 3

dni -t [ -1 p GHi _
(3) Let =" —(Fi ) [H—j] H + 35 evaluated at s

3 1
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where by FIJ we mean the ith row of F , deleting its jth entry,

and by Hij we mean the jth column of H , deleting its jth entry.
Then for any player i we can find players il' v ik such that
iy T, iy
q = 0, E;i— ~ 0, ..., dsi » 0 .
1 k

The expression (dﬂi/ds )-ds__.I represents the change from Hi(;) in

]
player i’'s one-shot payoff, when player j commits himself to §j - Ej
+ dsj , and then all other players adjust optimally to their one-shot

Nash moves. From restriction 2 we know that the matrix H:? is indeed
invertible, so that these adjustments are well-defined (for small ds, ).
Restriction 3 means that player 1 can directly, or indirectly, affect
the utility of every player (including himself). In the Cournot game
player 1 can directly hurt every other player by producing more. In the
army a general might only be able to discipline his direct subordinates,
but they in turn might be able to punish their subordinates, etc. Restric-
tion 3 is clearly indispensable to our theorem concerning the power of

player 1's commi.tment.2

2Although the naturalness (and necessity for our theorem) of restric-
tions 1-3 is apparent, it is worth noting formally that these restrictions
are generic in a precise sense. Let us index the set of possible games G
by a set of parameters A . We now suppose that the payoff functions Hi

are smooth on the larger domain: Hi : El X ... X EN X A+ R . Suppose
furthermore that for any choice of joint moves and parameters,

(51, ey SN’ a) , and for each player i , there is a direction a, in
A such that (B/Bai)[ﬂi(s,a)/asi] » 0 while the derivatives of the pay-
offs of the other players are unaffected by changes in a, . We saw an

i
example of this in the Cournot game when a; was the linear parameter of
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We are now ready to state our main theorem. By generic smooth game
we mean any smooth game G that has a one-shot Nash equilibrium s sat-

isfying restrictions 1-3.

Theorem 1. For any generic smooth game G ,

lim (perfect)NE (G) = NE(G®)

T

We can describe the same result more sharply as:

Corollary i (of proof). Llet s € 21 X ... X ):N be a joint one-shot
strategy such that Hi(s) > v, for i =1, ..., N, in the generic
smooth game G . Then there is a K such that for any T > K , there is
aT . a (perfect) NE1 of GT such that along the equilibrium path s

is played in each of the first T-K periods. For t > K , §t is play-

ed, where each §t is near a one-shot Nash equilibrium s of G .
Again, we restate the proposition to show its relatiomship to

Radner's e-average deviation theorem.

firm i's cost function. Finally, let us suppose that there is a direc-
tion b, with (3/b)[3° (s,a)/8%s,] » 0 , while all other payoff

derivatives are unaffected bj changes in b except possibly for player

i L]
i1 himself. Again we saw an example of this in the Cournot game where bi

is the quadratic parameter of cost function. Finally, we suppose that for
any player 1 we can find players 11, ey ik such that

8Hil(s,a)/asl » 0, c'iIIiz(s,a)/as]._1 “ 0, ..., aﬂi(s,a)/asik » 0 ., Under
these assumptions on the set of parameters A indexing our collection of
games, a routine application of the transversality theorem [see for
example Dubey-Rogawskl, 1983] shows that for an open, dense set A C A,
of full Lebesgue measure, any game Ga indexed by parameters a € A sat-

isfies restrictions 1, 2, and 3 at each of its interior Nash equilibria,
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Corollary 2 (of proof). Let G be a generic smooth game with Nash equi-

librium s , and Minmax payoffs (vl, ey VN) . lLet s € 21 X ... X EN
satisfy Hi(s) > v for i =1, ..., N . Let ¢ >0 be given, along
with an open set 0 C Zl X ... X EN containing s . Then there is a K

such that for all T > K, we can find joint strategies oI b for oot

such that for each 1 < t < T-K, the players play s along the intended
path of P , while for T-K < t < T-1 they play Qt with §t €0 .
Furthermore, the total that any players can gain by deviating from the
intended path of aT-l , or from any other point of the intended path, is
less than ¢ .

Thus for generic smooth games, Radner's g-average-equilibrium theorem

can be strengthened to an e-total equilibrium theorem.

4, THE MAIN ARGUMENT AND SOME MORE USEFUL DEFINITIONS
4.1. o abil and Consecutive Deviations
We continue with the definitions of Section 2, then derive some

lemmas leading to the proof of Theorem 1. Let (rl, ce., T be a wvector

N)
of nonnegative numbers which we call rewards. Clearly we shall use re-
wards to enforce cooperation. However, if we wish to enforce "perfect”
cooperation, then we must be prepared to punish deviations off the equi-

librium path, and to punish deviations from deviations, ete. With this in

mind, we give:

Definition 8. The strategies *aT for the game GT are said to be

enforceable by the reward structure (rl, cens rN) if
H?(UT, *aT.) - H.(*UT) < r, for all a? € E? , and all i =~ 1, ..., N .
iti -i i = i i i

Similarly, if for any 1 period history o ., with r <T, if
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(;r, *oT) is enforced in GT_f by the reward structure (rl, ey rN) ,
then we say that (rl, cens rN) perfectly enforces *aT .

Note that *aT is a (perfect) NE of GT if and only if it is (per-
fectly) enforceable by the reward structure (0, 0, ..., 0).

Let *aT be an N-vector of strategies for GT . Given a history
a , up until 7 < T , we shall say that player i deviated from *a?

at time r if *air)(;r—l) ” Eif) and a(f)(;f-l) - E(T)

3 ]

Furthermore, we shall say that player i1 was the last deviator from *aT

for j <1i.

up until time s if there is a time t < r at which he was the deviator,
and if there is no time ¢t' , t < t' < r at which some other player

j » 1 was the deviator.

Definition 9. The strategies *aT for the game GT are said to prevent

consecutive deviations if for any 7 < T period history a , if 1 was
the last deviator from *aT up until r , then Hi—f(;r, (az, *aEi))
< TG, %) for all o) €% .

"Trigpger strategles" are the most famous example of such strategies.

Let (*sl, S *SN) = *s be a one-shot Nash equilibrium for G and

let Hi(sl, . SN) > Hi(*s) . The trigger strategy *ai for player i

T

in G is *air)(;r—l) -3 if ;(t) =s for all t<r-1, and

i
*air)(;r—l) - *si otherwise, for r =1, ..., T . Trigger strategies
have the special property that once one player has deviated, then no play-
er can subsequently deviate advantageously.

The first ingredient in our deviation of a "finitely repeated folk

theorem" is a general lemma showing that the same finite reward structure

(rl, ey rN) can be used to perfectly enforce cooperation for an arbi-
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trarily long time. Please note that the lemma does not depend on any
properties of the game G (like convexity or smoothness), except that it
assumes G has a (perhaps mixed strategy) Nash equilibrium and it assumes

that the minmax strategies that all players j = i play against 1

yi
7 J
are observable, i.e. pj [ Ej

Consider the one-shot game G with minmax payoffs

i i i
v - Hi(pi, p_i) > Hi(ai, y_i) Vai e Zi , and a

Nash equilibrium +*s with payoffs Hi(s*) . Without loss in generality

Vv o= (vl, e, VN) .

we take Min Hi(a) = 0 and Max Hi(a) =1, forall i=1, ..., N,
oED o (D

Lemma 1. Let S be an N-tuple of one-shot strategies for G with

payoffs ni(;) =X satisfying xi > vi for all i=-1, ..., N . Llet

i
= {1 * X, = Mi *
V={ig NII‘Ii( s) >v,}, let X, =Min(x;, I;(*s)) , and let

K = Max[l/(gi - vi)] + 1 ., Then for any period t it is possible to
iew

devise strategies aT that (1) do not permit consecutive deviations and
(2) are perfectly enforced by the reward structure (K, ..., K) and (3)

yield a history ET with realization s in at least T-K periods.

Proof. We shall give a sketch--the proof is cbvious except for notation.
Let T > K (otherwise there is nothing to prove). The intended path

means each player 1 plays ;i at each date r < T-K , and plays *Si

for T-K<r<T,

Let W be the set of players with v, < Hi(*s) , and let B be the

i
rest, all with v, = Hi(*s)

If a player i € B deviates from the intended path, or from any
other phase we shall subsequently define, then all players should play *s

until the end. Deviations from this path by any player are ignored.
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Clearly once player i € B has deviated, no player can again advantage-
ously deviate., Player 1 € B can gain at most 1 by deviating from the
intended path.

If a player i € W deviates from the intended path at time
r < T-K, then from r+1 to r+K all other players should play pi .
After r+K , all players should return to the intended path. If during
period r+1 to r+K a player j €W, j = i deviates from the intended
punishment of i (playing anything different from that specified by p§ )
then play returns immediately to the intended path. If i himself devi-
ates from his own punishment phase, then the punishment continues as
before. It is easy to see that no player i € W can advantageously devi-
ate from the intended path, or from his own punishment. Once i deviates
from the punishment of j € W, play immediately returns to the intended
path., Hence 1 € W cannot deviate consecutively, advantageously, since
he also has no opportunity to deviate following a deviation of k € B .

Since the most that any player i can gain by deviating from the
punishment phase of j € W is K (and is zero if j € B ) , it follows

that the behavior of i € W is perfectly enforced by the reward K .

Q.E.D.

Lemma 1 can easily be ektended to average payoffs
(xl, . xN) >> (vl, ces vN) that are rational combinations of payoffs

-
from strategy N-tuples s and s for the one-shot game G . Let

-

X = (nl/C)H(;) + (n2/C)H(;) . The intended path must now be a sequence of
1 g 0, times. The
punishment phase shall last K = [gax[l/(gi - vi)] + 1] cycles, i.e. be
KL periocds long, and r;, must beliz least KL .

L-cycles, in any of which 5 occurs n, times and
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As T gets large, the K (or KL ) periods during which x is not

realized becomes negligible.

4.2. Reusable Reward Systems and the Continuation Property

We now turn to the question of how the reward structure

(rl, ceey rN) can be established. When we deal with perfect equilibria,
this is by no means a simple idea. In a perfect equilibrium it is neces-
sary always to be able to threaten the last deviator. It may be very
simple to arrange a punishment phase for 1 if he deviates from the
status quo. But if J] deviates from that punishment phase, theﬁ it may
be necessary to arrange an even longer phase to punish j . The problem
is eliminated if we can establish the existence of a reusable reward

system.

Definition 10. A usable, perfect, T-period, NEC reward system with reward

structure (rl, ce ey rN) is a set of N+1 perfect NEC's
(oa, ia, i=1, ..., N) for the game GT satisfying H{(Oa) - H?(ia)
> ri , forall i=1, ..., N .

Definition 11. A reusable, (perfect), T-period NEC reward system pT

with reward structure (rl, eeay rN) is a set of N+1 (perfect) NEC’s
(Oa, ia, i=1, ..., N) for the game GT which satisfy

M) - (*e) ¢, forall i=1, ..., N, j=0,1, ..., XN,
i=3 .3

3Our reusable reward system is in some sense the finite-time horizon
analogue of Abreu's [1982] simple penal code for infinite horizon games.
A similar device for infinitely repeated games was also used by Fudenberg-
Maskin [1986].
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The following diagram displays the payoffs to two players of 3 NEC‘s

i
forming a reusable reward system: Note that each ia - (ial, cees aN)
is itself an N-vector of strategies, for i =0, ..., N .

)
t H(la)- -H(Oa)
2
H 1¢%0)
. - B!
1

Notice that as long as the intended perfect NEC is o € {oa, 10, 20} but
o 10 , then player i can be threatened with a loss of ¥ if play
switches to ia . Since ia is itself a (perfect) NEC, this threat is
credible.

r 1

Suppose that the strategies aT for the game GT do not allow

consecutive deviations, and suppose furthermore that they can be perfectly

enforced by the reward structure (rl, ceny rN) Let pT“ be a reus-
able, perfect, T"-period NEC reward system with reward structure

(rl, ey rN) . Define the strategies *aT'+Tn in the game GT'+T" by
*agr) - agf) for all players i and 7 < T' . Furthermore, from T'+l

to T'+I" the players follow ia if i was the last player to deviate

from aT up until time T’ . Otherwise they follow Oa .
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Definition 12. The continuation property asserts that if *aT prevents

¥

consecutive deviations in the game GT and is (perfectly) enforceable by

the reward structure (rl, ve., I and if {Oa, la, e ey Na} is a

W

(perfect) reusable NE_, reward system for the game GT with reward struc-

C

ture (rl, ve., I then their combination as above in the game

0

T _T'+T" j

G =G is a (perfect) NEC. Moreover, if the o are all (perfect)

NE’s, then the combination is a (perfect) NE in the game GT .  We denote
I n L n
the combined strategy for the game GT +T by (*oT . pT }

The continuation property hardly needs proof.

4.3. Full-Dimensionality and Reusable Reward Systems

Definition 13. We say that the game G 1is full-dimensional iff the
convex hull of the set of one-shot payoffs to G ,
C(G) = CO{H(U) - (Hl(a), ce ey HN(J))|0 € ) has nonempty interior in
RN .

Lemma 2?2 shows that when G 1is full-dimensional, usable reward

systems can be converted into reusable reward systems.

lemma 2. Suppose for each T it is possible to construct a usable,

perfect, NEC reward system pT - (oaT, laT, cees NaT) for G such that

1lim %H(laT) - 'T exists for each i = 0,1, ..., N, and

T

OH > 1I = (ln 2H N ) Then if G 1is full-dimensional
min 1 M o Ty '

there is a sequence of T-period reusable, perfect, NEC reward systems

with reward structures (ri. ceay rE) satisfying 1lim % rf -r, > 0.

T+
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Proof. Note first that since %H(OUT) € C(G) , OH e C(G) .

From the full-dimensionality hypothesis, we know that there is an

open set of vectors in C(G) arbitrarily near OH . In particular, they
may all be taken to strictly dominate Hmin . We can always choose N of
them to have the form =x - ce, i=0,1, ..., N, where ey = 0 and
e is the ith unit vector, i =1, ..., N, for some vector

x € C(G) , and some small positive =«

Suppose that for each 1 =0, 1, ..., N, X - ¢ce, = H(ls) for some

i

lsexz. Fix T large enough so that the convergence to each n .

i=1, ..., N described in the lemma is within &/4 in each coordinate,.

and such that Te(e - £/4) > (1, ..., 1) . Then for T>T we can

{~T i i orT
. o

denote the NEC ¢ by (s, ) , by which we mean that all

., S,
the players are intended to play is for the first T-T periods. If

there is a deviation by player j 1in one of the first T-T periods, say

in period X , then play switches to jaT-K for the remainder of the

game. If there has been no deviation until period T-T , then the re-

mainder of the game follows strategy OaT . One can verify immediately
that this is a perfect NEC, and hence ;T - (OET, vy N;T

reward system and for all i=0,1, ..., N,

) 1is a reusable

1im % H(iET) - X — £e

F i

Tom

More generally, if x - ce, can only be written approximately as a

rational combination of payoffs in C(G) ,

X - eei = (nl/n)H(ls) + ... + (nK/n)H(Ks) then simply replace each is

in the above construction with a cyecle of ny periods of ls
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nz-periods of 25, ..., and n, periods of Ks . Take T so large that

(r{, ey r;) > {(n, n, ..., n) . Q.E.D.

Combining Lemmas 1 and 2 we get the following theorem,

Theorem A: let G = [Zi, Hi’ i=1, ..., N] be a full-dimensional
N-person game. Suppose that for any (rl, Cees rN) it is possible to
construct a usable NEC reward system for GT , for some T , with
reward structure at least (rl, ey rN) Then ;ﬁ:(perfect)NEc(GT)
= NE(G™)

4.4, e Proof of Theorem

From Lemmas 1 and 2, and the continuation property, it suffices, to
prove the "finitely repeated folk theorem" for any game G , to show that
it is possible to construct a sequence of usable reward systems pT with

arbitrarily large rewards, satisfying Lemma 2.

lemma 3. Let G be a generic smooth game. Then for each T it is pos-

sible to construct a usable, perfect, NE, reward system

1
pT - (oaT, . NaT) for G such that 1lim % H(iaT) - in exists for
T-o
0 1 2 N
each i=0,1, ..., N, and I > Hmin = ( Hl' H2’ cees HN)

Proof. Let o= H(g) be the N-vector of payoffs to all the players at a
Nash equilibrium s in the one-shot generic smooth game G . Since F
has full row rank by restriction 1, it follows that for all small ¢ it
is possible to find small finite changes ds = (dEl, ey dEN)

I(s + ds) = + ce , where e = (1, ..., 1) . Since s 1is a Nash equi-

such that

librium, and the strategy spaces Ei are compact, and the payoffs IIi
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are continuous, the maximum gain any player can obtain by deviating from
S + ds is an amount f(e) that tends to zero as ¢ tends to zero.

. Similarly, for any pair of players i and j with dIIi/dsj 0,
there is some dgj(i,j) and dgk(i,j) , k=3, such that
§(i,j) = s + ds(i,j) = s + (dEl(i,j), dEN(i,j)) is a Nash equilib-
rium for players k » j , given that j 1is commicted to playing
§j(i,j) - ;j + dEj(i,j) ., Furthermore we may suppose that player 1i's
payoff satisfies Hi(E(i,j)) - ﬁi - ¢(i,j) , and that the most player j
can get by deviating is fj(c(i,j)) , which tends to zero as e{(i,j)
tends to zero.

Fix T> N ., One perfect NEl for GT is simply s repeated T
times. A second NE1 for GT is defined as follows. For each period
t < T-N , the intended play is (s + ds) . For each t > T-N , the in-
tended play is s . Deviations in periods after T-N are ignored. If
there 1s a deviation in period t = T-N by player 1 , then play
switches to s from period t+l until T-N . From period T-N+1 until
T , the following occurs.

For each player 1 we know by restriction 3 that there is a sequence
of players il, 12, caay iK through which player 1 indirectly affects
player 1 . To ease notation let us suppose 1 = N, and the sequence of
players is 2, ..., N=1 . Choose numbers e(2,1), £(3,2), ..., e(N, N-1)
such that ¢ < g(N, N-1), fN_l(s(N, N-1)) < e(N-1, N-2), fN_z(s(N—l, N-23))
< g(N-2, B=-3), ..., f2(£(3'2)) < ¢(2,1) . By the continuity of the wvari-
ous fj functions, this can always be arranged. In period T-(N-1) ,
§(N, N-1) is played. If player N-1 does not deviate, then play

continues with s for the remaining periods. Further deviations are
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ignored. 1If player (N-1) does deviate at time T-(N-1) , then in
period T-(N-2) play continues with &§(N-1, N-2) . Afterwards intended
play is s , unless N-2 deviates at time T-(N-2), ... . Finally, if
player 2 deviates at time T-2 from §(3,2) , then in period T-1 s is
played, but in the final period T , 8(2,1) is played. Note that we

left room for one extra period in case the deviator at t < T-N was

player 1 himself. We might have needed a chain 1, 2, ..., N, 1 .

It is easy to verify that the second construction is an NE1 , and
that for large T the average payoffs are approximately Il + ce . Let
this be the sequence oaT . And for each i =1, ..., N, let iaT be
the T-fold repetition of s , giving rise to average payoff II . Q.E.D.
S. PERFECT NASH EQUILIBRIA WHEN G HAS MULTIPLE ONE-SHOT NASH EQUILIBRIA

The method of proof we outlined in Section 4 can be applied in a var-
iety of contexts. In this section we take C = ¢ and derive the theorem
of Benoit-Krishna that replaces our generic smoothness hypothesis with the
assumptions that G 1is full-dimensional and has at least two-Nash equi-

libria which yield each player different payoffs.

Theorem 2 (Benoit-Krishna). Let G satisfy the conditions of Section 2.

Let G be full dimensional, and let G have L one-shot Nash equilibria

lg, ce s LE whose payoff N-tuples Eﬁ - H(IE) , &4=1, ..., L . Suppose
that for each player i the Nash payoffs are not all identical;

L .
*Hi - % 2.£ﬁi > Min Eﬁi - z(l)ﬁi ., 1 €N . Then

=1 £~=1,...,L

lim perfect NE(G') = NE(G®)

T
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Proof. It suffices to construct a sequence of usable, perfect NE reward
0T
systems satisfying the conditions of Lemma 2. For any T take as o
the alternation of each one-shot Nash equilibrium in cyclical fashion. If
L does not divide T , then some Nash equilibria will appear one more
iT et 2(i)=
time than others. Take as o  the one-shot Nash equilibrium 5 re-
peated T times, Then the reward [Hi(oaT) - Ei(iaT)] is approximately

HDF ) o w
G o) . Q.E.D.

6. Matrix Games

Until now we have assumed that strategy spaces are convex. We said
that the usual matrix games, in which each player has access to a finite
number of pure strategies, could be considered convex games provided that
we supposed each player 1 has access to a randomizing device which is
observable by all the other players, but only after i has moved. We
call such devices personal-l randomizing devices. If i flips a
personal-1 coin to decide his move in period t , then j finds out the
outcome of the flip at the beginning of period t+l1 . A more satisfying
theory would not allow j to check the result of i's coin flip "after
the fact,” but this personal-1l observability hypothesis is common in the
repeated games literature; it has been used for example by Aumann-Shapley
(1976), Rubinstein (1979), Benoit-Krishna (1985), and Fudenberg-Maskin
(1986). Fudenburg-Maskin show that for some purposes the personal-l
hypothesis can be dropped for infinitely repeated games.

Theorem A applies to finitely repeated matrix games even if we drop
the personal-1l observability hypothesis. In particular the Benoit-Krishna

theorem can be significantly generalized. However it is now no longer the
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case that an arbitrarily large threat can be created if only one player
can commit himself for just the last period T . Our main theorem must
accordingly be weakened.

If 1i's coin flip is observable simultaneously to all the other
players and i, then we call it public randomization. Public randomization
is less at odds with common sense than personal-l randomization, and for
matrix games we shall always suppose 1t is possible. In games without side
payments public randomization can be used to serve an important function:
i and j might agree to publicly flip a coin, making moves that are ad-

vantageous te 1 1if heads, and advantageous to j 1if tails.

Theorem 3: Theorem A and Theorem 2 are valid for matrix games, even when

players do not have access to personal-l randomizing devices.

Proof: Specializing our various proofs to the case of matrix games, we
see that personal-l randomization is used in only one place: when the
players are called upon to use (possibly mixed) minmax strategies In the
punishment phase of some player j who has just cheated. If player i
is not indifferent between all the pure strategies over which he is
required to mix, then he will certainly cheat if cheating cannot be de-
tected. Note, however, that Lemma 2 does not depend on any minmax
strategies, hence it holds automatically for matrix games. We can modify
the proof of Theorem A as follows.

The reusable reward system constructed in the proof derives from
Lemma 2, and so does not depend on personal-l randomization. Moreover the
payoffs to the N+1 perfect NE.’'s have convex hull with nonempty inter-

1

ior in R°'. By one public randomization, new equilibria can be created
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whose payoffs are arbitrary convex combinations of these N+l payoffs,
In particular, we can always substitute N+l new equilibria with Intended
payoffs which are strictly interior to this convex set, but still far
enough apart that their difference is much larger than K . With this in
mind, suppose that player j cheats, and this cheating is followed by K
periods of punishment by players 1 different from j . For the time
being j has also earned himself the title of the last deviator. 1If
there is no subsequent cheating by any player, then in the last phase we
can always randomize over the original N+1 reusable equilibria so that
all players 1 different from j are compensated so that the sum of the
K period payoffs and the final phase compensation is exactly what their
expected payoff would be .if every player followed his prescribed (mixed)
strategy for the K periods of the punishment phase and in the final
phase the new jth reusable equilibrium were followed. Player j 1is not
compensated, recelving in the final phase exactly the new jth reusable
equilibrium payoff.

Under this scheme it is clear that all players i different from j
might as well follow the prescribed (mixed) punishment of j during the
K period punsishment phase after j cheats. If that is how they are
playing, then clearly j cannot gain during his own punishment phase
since his strategy already prescribes playing as best he can against the
minmax play of his opponents, The important point is that the final re-
usable reward phase now depends not only on who the last deviator was,
but also on what happened during his last punishment phase. (If j
cheats consecutively than in the final phase players i different from j

are compensated only for their behavior during the last punishment phase
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of j ).

Theorem A thus holds. Furthermore, since the creation of arbitrarily
large reward systems in matrix games with multiple one shot Nash equilib-
ria does not depend on personal-l randomization, theorem 2 also holds for

matrix games, Q.E.D.

Even when we allow for personal-l1 randomizing devices, matrix games
do not necessarily have the NE1 folk theorem property because the pay-
offs are not necessarily differentiable at the vertices where pure strat-
egies are played. When there is a mixed strategy Nash equilibrium, then
{generically) the NE1 finitely repeated folk theorem does hqld because
there are differentiable wvariations around equilibrium which permit the
methods of Section 4 to be applied. For these games it is especially
interesting to drop the personal-l hypothesis in order tc see how much the

possibilities for cooperation deteriorate when monitoring is imperfect.

Consider for example the two person mxn matrix game G = (A,B) given

by

(1,0) (0,1)

(0,.8) (.9,0)

It is impossible to support the alternation of payoffs (0,1) and (1,0) in
a perfect NE1 . What is surprising is that such payoffs can be supported

in perfect NE NE., , where N = {1,2)

1,2y - n
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APPENDIX

Let us give a proof of Theorem 2. Let G = [A,B] be a matrix game
with a mixed strategy Nash equilibrium p* , q* . Let A and B be
normalized so Max Aij = 1 = Max Bkﬂ , and Min Aij = (0 = Min Bkﬂ . Let
w{ = p¥Aq* , and let wg = p*Bq* . We shall prove in Part I that for any
8§ >0 it is possible to construct for some T , a T-period perfect NEN
+u' with residue I (s¥) - (T-1yw# > 1~ , for i=1, 2 . In Part II

we use this perfect NEN to construct the usual reusable reward system.

Proof of Part I

Let us assume for now that p* >> 0 , and gq* >> 0 .

Since (p*, q*) is nondegenerate, let us suppose that by perturbing
player two's strategy we can improve player one, hence, there exists a
q = (ql, Qg ~es qn) such that jglqj = 0 (hence, p*Bgq =0 ) and
p*¥Aq > 0 . For q sufficiently small, a = g% + q 1is still a completely
mixed strategy. Later we shall make q even smaller by multiplying by
1/k . Consider the one-shot strategy pair (p%*, q) - (p, q* + q) . The

one-shot payoffs are

- n¥ * *Aqk =
Hl P*¥A(gq* + q) > p*Aq w{
and

H2 = p*B(q* + q) = p*Bgq* + p*Bq = w§ + 0 = wg .

Since player one still plays the NE strategy, p* , player two is indif—
ferent between any two strategies in the one-shot game. But p* 1is not

an optimal strategy for player one when player two plays gq .
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Consider the repeated game GT . Suppose player one plays p* and
player two plays gq all the time except the last move. If we use the
payoff of the last move T to compensate player one such that he is in-
different between all strategies, and at the same time guarantee player
two an expected payoff arbitrarily close to 1 on the last move, then we
can derive a NEN with a sufficiently large residue for both players.
Against p* player two has no incentive to cheat, and player one is
steadily gaining his residue. One problem is that after paying two's
residue in period T we have only a very limited resource, that is,
1-two’'s residue, to compensate player one for not cheating in the earlier
periocds. Another problem is that we can observe only the realization of

one’s randomization at each move, not how he randomizes.

Let

cj = (expected one-shot payoff for player 1 from strategy j

against q) - w{

(cl, cz, ey cm) = Aq ,

and let Yj(t) be the total number of times player one plays strategy j

in rounds 1, 2, ..., t . Define X(0) =0 and

m
Xty = 2Y(te,k, t=1,2, ..., T-1 .
j=1 )
X(t) + twi is player one'’s expected payoff through period t , given his
choices for r = t , and given that player two randomizes according to

ak = q* + q/k at each move. Let s > 0 be given. For large enough k ,

|X(t+1) - X(t)| will always be less than s . Let
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a - Max{aijlbij =1} . It follows from continuity that for any ¢ , with
a<c<1l, there are one-shot strategies p(c) and q(c) with
p(c)Aq{c) = ¢ ; moreover, ¢ near a , p(c)Bg{c) may be taken near 1.
Define a NEN , (pf, “5) as follows
(1) At the tth move (l=¢t<T),
i) if -s <X(r) <1l -a-13s forall r<t , then (p#*, qk) is
played, where q - q* + q/k ;
ii) if -s = X(r) or X(r) 21 -a - 3a for some r <t ,
{p*, q*) is played.

Define

t = the first time X(t) crosses either one of the boundaries,
-s or 1-a-3s ,

T-1 if X(t) never cross the boundaries.

(2) At Tth move, suppose X(E) =1-28s — ¢ . Then (p(c), q(c)) with
p(c)Aq{c) = ¢ as defined above is played. Observe that for large

enough k , c¢ satisfies a<c<1 .

The above rules specify strategies for the two players.

Since player one always plays p* except the last move, and since
player two cannot affect the' last move, player two is indifferent between
all strategies. Hence, to test that (pf, u%) is a NEN , We need only
check that player one cannot gain by deviating during
t=1,2, ..., T-1 . But it is obvious that no matter what strategy
player one adopts, if player two plays according to g% and player one

2
does not vary at time T , then his expected payoff is:
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(T—l)wf +1-2s .

Thus, (pf, #5) is certainly a NE Hence, for k sufficiently large

_
so that |X(t+l) - X(©)| < s ,

r(uf, 3 =1 - 2s .

Notice that when the players stick to the strategies pf and p§ ,
the path of X(t) 1is a random main process with main drift p¥*Aq/k and
variance proportional to 1/k2 . Hence, for k sufficiently large, the
probability of crossing the top boundary if player one always plays p¥
approaches 1. At the top boundary, the period T payoff goes almost en-
tirely to player two. Hence, given any h > 0 , for k sufficiently

large and s sufficiently small, player two's expected payoffs is

Nz
o~
®

L
"

*
~r
v

(T-l)wi + (1-h)(1-s)

v

rz(#{, #5) (1-h) (1-s)

Finally, we note that dropping the hypothesis that p* >> 0 and

g* >> 0 changes almost nothing in the proof. Player two is still indif-

ferent, apainst pf , to using any strategy By which only involves
playing one shot strategies j with q} > 0 . Doing anything else can

only make player two worse off., As for player one, we still define
(cl, c2, ey cm) = Aq and X({t) as before., If p* is not strictly
positive, then player one’s expected payoff through period t is bounded

above by X(t) + tv1 ; equality necessarily holds only when player one
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uses one shot strategies 1 with p{ >0 . Q.E.D.

00 IT

We can now show how the perfect NEN u* can be used to construct
the reusable reward system posited in the continuity principle.

Since (p*, q*) 1is a nondegenerate mixed strategy, it is strictly
Pareto dominated, and there are strategies aA and aB and integers
ks K since that x = —I(o") +MP) >> (wf, w) . Let (o™ = (a,b)
= ab , and H(aB) = (a’, b') = a'b’ . We shall support the average
payoff =x as a perfect NEN for a game with arbitrarilj large T . Once
one has two perfect NEN'S whose total difference In payoffs can be made
arbitrarily large, then the proof is finished as in our proof of Benoit-
Krishna.

Of course the idea iIs to alternate the payoffs ab and a’b’ over
each cycle of K periods so that ab occurs k times and a'b’ K-k
times., At the end comes NEN p* . In case there is any deviation, both
players get (w{, wg) till the very end. Thus by cheating a player loses

1-§ from the final phase.

Lemma: ILet (a,b) and (a’', b') be given. Let
X = E(a,b) + Eik(a', b’) . Then there exists a function f : (1, ..., K}

-+ {(a,b), (a', b')} such that #f—l(a,b) = k , and such that for any

lStSK,
K
(1) Z f . (r) > (K-t+1)x, and
1 - 1
Tl
K
(2) z fz(r) > (K—tx2 .
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