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Under the assumption of common priors, if the information partitions of two
agents are finite, then simply by communicating back and forth and revising their
posteriors the two agents will converge to a common equilibrium posterior, even
though they may base their posteriors on quite different information. Furthermore,
given any integer, n, one can construct an example in which the revision process
not only takes » steps to converge, but no evident revision occurs—for (n— 1)
steps both agents repeat the same conflicting posteriors—until the last step, when

*the two agents decide to agree. Common knowledge of each other’s posterior does
not necessarily lead agents to the posterior they would have agreed upon had infor-
mation been directly exchanged. On the other hand. the examples that are charac-
terized by a discrepancy between the direct and indirect communication
equilibrium, are rare: with probability 1, the revision process constructed here leads
the two agents in one step to the direct communication equilibrium. Journal of
Economic Literature Classification Numbers: 022-026

Opinions depend on prior beliefs held and additional information received.
Whether communication between agents is sufficient to eliminate differences
of opinion is a question of primary interest—normative as well as

* This research was partially supported by National Science Foundation Grant SOC 77-
0600 to the Institute for Mathematical Studies in the Social Sciences at Stanford University.
We are grateful to Robert Aumann for length and enlightening discussions. The contributions
of the referees in the preparation of the final version were substantial.

¥ The second author’s work was partially supported by National Science Foundation Grant
SES 78-25910 to Columbia University.

192

0022-0531/82/050192-09$02.00/0

Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved,



WE CAN'T DISAGREE FOREVER 193

positive—for the theory of decentralized decision making. Aumann [1976]
gives an elegant and elementary answer to this question. He demonstrates
that, if two persons have identical priors and if their posteriors for a given
event 4 are common knowledge, then these posteriors must be equal, even
though the two agents may base their posteriors on quite different infor-
mation. Aumann goes on to emphasize that the key notion is that of common
knowledge, which he explains intuitively as follows: Call the two people «
and . To say that an event is common knowledge means more than just that
« and § know it; it must also be the case that a knows that § knows it, §
knows that « knows it, ¢ knows that § knows that « knows it, and so on. If
one merely assums that the two persons know each other’s posteriors, the
result is not true.

In the present paper we want to answer a number of questions left open by
Aumann’s argument. First, observe that the equality of the posteriors is
claimed by Aumann only for those (rare) events whose posteriors happen to
be common knowledge. No process is described according to which an agent
might revise his own posterior when informed of the posterior of the other
agent. We shall demonstrate that for an arbitrary event A, under the
assumption of common priors, if the information partitions of both agents
are finite, then simply by communicating their posteriors back and forth the
agents will be led to make revisions that in finitely many steps converge to a
common, equilibrium posterior. This posterior we refer to as the indirect
communication equilibrium—indirect, since @ and f communicate their
posterios on A but not directly the information they received. Furthermore,
we shall show that, given any positive integer, #n, one can construct an
example in which the revision process not only takes n steps to converge, but
no evident revision occurs—for (n— 1) steps both agents repeat the same
conflicting posteriors—until the last step, when the two agents decide to
agree.

Second, observe that, in principle at least, agents ¢ and § could
communicate to each other not only their posteriors, but every shred of
knowledge, including everything conceivably related to the event A, they
possessed. In such a case, i.e., with pooled information (direct communication
equilibrium), equality of the two posteriors is trivial, since agents are
assumed to have identical priors. The question follows whether the common
posterior arrived at in the indirect communication equilibrium coincides with
the common posterior arrived at with pooled information. We shall construct
an example to demonstrate that this is not necessarily the case—common
knowledge of each other’s posterior does not necessarily lead agents to the
posterior they would have agreed upon had information been directly
exchanged. On the other hand, the examples that are characterized by a
discrepancy between the direct and indirect communication equilibria exhibit
a high degree of symmetry, which is clearly atypical. We shall conclude by
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demonstrating that “with probability 1”—in a sense to be made precise—the
revision process we construct leads the two agents in one step to the direct
communication equilibrium.

In discussing the probability of some event occurring, for instance the
election of a particular presidential candidate, individuals are not likely to
recount every experience and piece of information they have ever had. What
we show is that, if two agents have the same priors and if they know the type
of information the other is capable of having obtained (they know each
other’s “information partitions™), then simply the terse announcement of
probability assessments back and forth will lead to a common judgment; this
judgment, however, may not be the same common judgment individuals
would make if they shared all their information.

Let (22,.2, p) be a probability space, #* and .9** partitions (known to
both agents) of £ whose join' . 2% V .2# consists of non-null events. In the
interpretation, (£2,.%) is the space of states of the world, p is the common
prior of & and f, and .#*! is the information partition of person #, i = @, f. If
the true state of the world is w, then i is informed of that element P/(w) of
7! that contains w. Given w € £, an event E is called common knowledge
at w if E includes that member of the meet® .#% A %° that contains w.

Let A be an event, and let q'(-) denote the posterior probability p(4].7)
of A given {’s information,; i.e., if w € 2, then q'(w) = p(4 NP (w))/p(P!(w)).

PrROPOSITION (Aumann). Let w € 2, and let q° and q* be numbers. If it
is common knowledge at w that Q*(w) = q* and q*(w) = ¢°, then q° = ¢”.

The concept of common knowledge of the two posteriors can be made
explicit as follows: Consider the events

Ef(w) = {o' € 2{q, (') =¢"},
EYw)={w' € 2|¢°(w")=¢"}

and let P(w) be the member of the meet .9 A.7* which contains w. To
assume that “it is common knowledge at w that q“(w)=g" and
q®(w)=g"” is equivalent to the assumption that E*(w)>P(w) and
E®(w) > P(w). Intuitively then, the posteriors of the two agents on an event
A can be common knowledge only if it is the case that the probability of 4
conditional on any element of .%*" contained in P(w) is the same. But this is a
rather unlikely situation—for most events 4 it will not be the case. As a
result, Aumann’s proposition demonstrates the identity of posteriors for a
very limited class of events. In the argument that follows we do not impose
any restrictions on the event 4. Of course, if it is the case that the event A4

" The coarest common refinement of .%** and .9°%,
* The finest partition refined by both .%°¢ and .#%.
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satisfies Aumann’s conditions, the equilibrium of our revision process is
indeed Aumann’s common knowledge equilibrium,
Consider the following example®: Let

0=11,2,3,4,5.6,7,8,9), pk)=4forallke2;
P =1{1,2,3}, 4,5,6},{7,8,9}};
28 ={{1,2,3,4}, {5,6,7,8}, {9}}:
PV PP ={{1,2,31, {4}, {5, 6}, {7, 8}, {91}

PN =11,2,3,4,5,6,7,8,9};
w = 1; hence 2*(w) = {1, 2,3} and 2% (w) = {1, 2,3, 4}.

The only events 4 which could be common knowledge are by definition
those for which p(4 M E)/p(E) is the same for all events E in £*V .2 In
the example that leaves only A =02 or A =@ and it is clear that in the
former case q%(w)=1=q%(w) in the latter case q%(w)=0=q"(w).
Suppose, on the other hand, that 4 = {3, 4}. Then q*(w) = p(4 N F*(w))/
p(P¥(w)) =14 and q®(w) = p(d NP5 (w))/p(F*(w)) = 3, and these differ.
Now suppose, still taking 4 = {3, 4}, that the two agents are allowed to
announce and revise their posteriors. Then a might begin by announcing
q%(w) =1, which informs 8 that #*(w)={1,2,3} or {4,5,6}. § already
knew this, however, and so will still announce q®(w) = 3. This tells @ that £
has observed %% = {1, 2, 3,4} yet does not change @’s opinion (since he
already has better information); hence, he will announce again q§(w) = 3. At
.this point # can conclude that .#*(w) = {1, 2, 3} for if F*(w) were {4, 5, 6}
then a would have announced q$(w) = 1. Thus f has gained information and
will himself announce q5(w)=4 and agreement is reached. Note carefully
that for A4 = {3, 4} the original qf(w)+ q%(w) even though £ knows q{(w)
before o announces it (i.e., § can deduce from his own information what
q%(w) must be) and a knows q?(w) without an announcement; § does not
know, however, that @ knows q®(w); hence there is no common knowledge.

Finally, we leave it to the reader to see that if A = {1, 5, 9}, then we would

get the process qf(w)=1, d*(w) =14, qs(@)=3 q(@)=1, qi(w)=3

q%(w) =1, in which the agents repeated exactly the same opinions, yet still
managed to communicate information. In Proposition 2 we show how to
extend the repetitions indefinitely.

More generally, let the two information partitions .9?* and .%°® be finite;
% = (P%..., P%} and 9% = (PP, P}}. Consider the process, 7, of revision
of their posteriors by @ and f defined stepwise as follows:

¥ Whenever £ is finite, .# is taken to be the power set of 2.
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Step 1.
@ announces q7(w) :%' (1)
Let a, be the set a, = gk [)(;)(’(:T(;)A): q‘f(w)g.
Let b, be the set b, = ZZ ‘p((;?lz;g@i'ef?;gf” = Q?(w)g .
Step t.
o announces g (w) = p((l;:lg?()cggt)b[:;:?;’;;{ﬂ (3
Let a, be the set a, = gk ‘p((ﬁ’(‘a}:;g@”;;zi),;;fl) = q?(w)§ .
$ announces gf(w) = (PP (@) N Ukea Pi) M A) (@)

PPP@) M Uyeq, P

PP Uea POA)
PP Urn P8 ‘“w)% |

Let b, be the set b, = ?l ‘

Note that at each step only probabilities are communicated, yet before
convergence is reached the fund of common knowledge is steadily increasing:

a,2a,>- Da,2a,,>--

L)

lebZD”' DlebH-lD”"

We shall now show that if, for some n, a,,, =a, and b, ., = b, then it must
be the case that q2, ,(w) =q%, (). By definition, for all k € a

n+1>

p ((P;:m U P?)mA)=q:H<w>p (P;*m U P?). (5)

leb, leby

Similarly, for all /€ b

n+1°

p((P?m U P:)mA)=qﬁ+,<w>p (P?m U P;:). (6)

keanH keay i
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Since a,=4a,,, Eq.(5) holds for all k€a,, and hence )., p((Pg N
Utes, PN A) = a5 /(@) Yhen, PPEN ey, PP). Furthermore, since the
events in a partition are disjoint,

p(U 7 U P?mA):qmw)p(U Pia U P?). (9)

kea, {eb, kea, leb,

Similarly, Eq. (6) implies that

p (U P P:mA)=qﬁH<w)p( U P U p) (8)

leb, kea, leb, kea,

But from (7) and (8),

q:7+1(w) = q‘f,’H(w),

since the term p(U,e, PPN Ukeq, Pi) is non-zero by the assumption that
#*V #% consists of non-null events.* The argument for the convergence of
n in finitely many steps can now easily be completed. By the preceeding
argument at step £+ 1 either a,. ,Sa, or b, & b,, unless the equilibrium
has been reached with qf, ,(w)=q®, (w). Consequently, in at most K + L
steps, m must converge,

ProposITION 1. Under the assumption that the two information
partitions are finite, given any event A, the revision process m converges in
finitely many steps. Furthermore, the sum of the cardinalities of the two
partitions is an upper bound on the number of steps required for the process
to converge.

It is clear from the argument for Proposition | that at every step of the
revision process the information of at least one of the two persons
changes—a,S a,., or b, b, ,. This does not imply, however, that any of
the posteriors must change—it may well be that qf, (w)=qf(w) and
q?, [(w) =q¥(w). We say that evident revision occurs if q2, ,(w) # q“(w) or
Q?+ (w) # q/tz(w)-

Consider the following example®:

)for all ke Q.

2
n

1
0= ngH\llgkénz}; p(k)=(
P — {{1’”.’”}’ {n + 1,,_., 2}’1}, {2)’1 + 1,..., 37’1},.--5

{n(n— 1)+ 1., 1%

* Observe that it is not the case that if g7, (w)=4q}}. () then a,,, =a,and b,, , = b,.
* This example was provided by Robert Aumann in exchange for a Kosher dinner.
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I =l n+ 1), {0+ 2,0, 20 + 2}, {20 4 3,..., 3n + 3},...,
XA(n=2)n+ 1)+ 1., (n* = 1)}, {#*});

A={lLn+2,2n+ 3, (n—2)n+ 1)+ 1, n*};

=
w=1.
Then P*(w)={l,.,n} and P*(w)={l...n+1}. Agent a announces
q7(w)=1/n while agent f announces q%(w)=1/(n+ 1). Furthermore
a,=.7* while b, = 7%/{(n*}}. At every subsequent step up to the nth the
sets @, and b, are reduced by one element but the posteriors q%*(w) and g°(w)
remain equal to q%(w) and q}(w), respectively. At the nth step, however,
agent f “learns” that « has observed {l,.,n} and, consequently he
announces q4(w) = 1/n.

ProrosiTion 2. Given any positive integer n, one can construct an
example with finite information partitions such that

(1) The process m takes n steps to converge, and

(2) No evident revision occurs until the final step.®

We now turn to the question whether the indirect communication
equilibrium coincides with the direct communication one. Consider the
following example:

Q=11,2,3,4},  p(i)=4for all i € 2;
7% ={{1,2}, 3,4} 2P ={{1,3}. {2, 4}}.

* The archetypal example of this phenomenon goes something like this. There are n students
in a classroom, all wearing red hats. Each can see what the others are wearing but does not
know the color of his own hat. There is also a rule that anyone can go home if he knows his
hat is red, but communication is not allowed nor can anyone look at his own hat. Clearly
nobody would ever leave, yet if one day the teacher announced that there was at least one
person in the room wearing a red hat, a fact already known to every student, nothing would
happen for n — 1 more days but on the nth day everyone would get up and go home. We give
the explanation for n = 3. On the first day after the leacher’s announcement, a, f, and y sit
still since each see others with red hats. On the second day a might still be unsure about the
color of his hat. But he knows that if it were black then, on day 1, f# must have been looking
at s red hat and so stayed put and » must have been looking at f's red hat and so stayed put.
But then on day 2 «a figures that § would leave if a’s hat were not red. For if a did nol have a
red hat then # would know that y could not have been looking at a’s hat the first day but at
f's. Hence on the second day £ would have left. Since £ did not leave on the second day «
knows that his own hat is red and he leaves on the third day. In summary, it is not until after
the second day that a knows that § knows what y knows and hence not until the third day
everyone goes home.
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Let the true state of the world, w, be 1, and let 4 be the event {1,4}. Then
P (w)=11,2}, PP (w)={1,3}, q%(w) = 3, ¢*(w) = 4. Common knowledge
of the two posteriors leads to no revision (the process 7 converges in one
step) and the indirect communication equilibrium is attained at (3). Suppose,
alternatively, that the two agents had exchanged information. Then each of
them would be informed of #(w)=.2*(w)MN #*(w)= {1} and the direct
communical equilibrium would be attained at (1).

PROPOSITION 3. An indirect communication equilibrium is not
necessarily a direct communication equilibrium.

Observe, however, that it is the high degree of symmetry that characterizes
the example which leads to the divergence between the two types of
equilibria. No matter what set in his information partition person / had been
informed of, he would have assigned a posterior of { to the event 4. As a
consequence, common knowledge of each other’s posterior is of no infor-
mation value to the two agents, We shall now make precise the intuitive
notion that such a situation is atypical: If the event A is chosen randomly,
then, with probability 1, the process n converges, for any w € £, in one step
to the direct communication equilibrium.

Consider the general structure {(2,.2,p)}, .9 = {(P%,.., P2} and %% =
{P%,..., P{). We assume that p is non-atomic and puts positive weight on
every element of the join .#*V.9*=1Q,..,Q,}; of course, these
assumptions still allow for the finite examples we have given simply by
taking partitions at uniform intervals. To each event 4 € % we can assign a
vector  o(d)=(0,(A)r 0 (A)ET" =TT, [0,1], where o,(d)=
PANQ)/p(Q)), j=1,.,M. Observe now that a straightforward application
of Liapunov’s theorem, since p is non-atomic, implies that the function o(-):
# - IM is surjective. Consequently, if we consider I as a measure space
endowed with the Lebesque measure, A, on the Borel ¢ — field, there is
induced on .# a measurable structure and a measure, #, as follows: a subset
A <. # is measurable if and only if O'_I(G) =%, where G is a Borel subset
of I"; u(.#") = A(G). From the surjectivity of the mapping o(-), the induced
measure u satisfies u(o~'(G)) > 0 for any open set G <™. Observe now
that, the process @ will, given A, converge in one step to the direct commun-
cation equilibrium if

(1) the numbers p(P§ MA)/p(P{) are distinct for / = 1,..., K and
(2) the numbers p(Q; M A4)/p(Q,) are distinct for j = 1,.., M.

Conditions (1) and (2) guarantee that each agent reveals all his infor-
mation with his first announcement. Furthermore, since p(P? M A)/p(P?) =
ZQJ_E,,L, o(4) p(Q,;)/p(P}), condition (1) fails for some 4 €.%2 only if at
least one of a finite number of linear equations in the variables oi(d) is
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satisfied; the same holds for condition (2). But the subset G* of I* of points
such that none of these linear equations hold has Lebesque measure 1. It
follows then from the definition of the induced measure ¢ of . % that, if #* =
{A € #: n converges in one step to the direct communication equilibrium},
H*¥>0"Y(G*) and hence u(F*)=1, since 1> u(F*)>u(c™'(G*)=
AMG*)=1.

ProOPOSITION 4. Let the structure {(2, %, p), 7%, 9*} and the function
a(-): B — I be as above. There exists a o-algebra of subsets of . % and a
probability measure u on @ such that (1) for any open set G <IY, the set
A €. B:0(d) € G} is p-measurable and has positive u-measure; (2) if an
event A €. F is chosen randomly according to u, then, for any w € 2, the
process m converges in one step to the direct communication equilibrium.

A number of recent works (see Radner [1978] for an overview) have dealt
with the problem of the information revealed through the price system in a
situation where agents trade under differential information. The analysis has
been restricted, however, to situations where the information of one agent (or
one group of agents) is “‘better” than the information of the other; the
question asked has then been whether the less informed agent will be able to
infer from the equilibrium prices the information received by the other. The
situation we have considered is more interesting; the two agents are only
assumed to have “‘different” information. On the other hand, our agents
exchange their posteriors—they do not just communicate through the general
equilibrium price mechanism. It is a natural question to ask whether—or
under what conditions—the result of the existence of a revision process that
leads ‘agents to a common posterior is preserved under the additional
complication that it is the price mechanism and not the posteriors themselves
which is common knowledge.
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