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We show that there 1s a broad range of systems of simultancous equations that arise in
economics as descriptions of equilibrium that can be solved in elementary fashion via degree
theory Some of these systems are not susceptible to analysis by standard Brouwer fixed point
methods. Two of our applications are to general equilibrium with incomplete markets, and to
non-convex production with non-competitive pricing rules

1. Intreduction

Equilibrium in economic models is often described by a solution or zero to
a system of simultaneous equations: z: N—R'. The standard technique for
proving the existence of equilibrium is to transform the system by finding a
function f:N—N, where N 1s the closure of N, such that f(x)=x if and only
if z{x)=0. If f is continuous and N is homeomorphic to a compact, convex
set, then by Brouwer’s fixed point theorem, f must indeed leave some Xxe N
fixed.

Ths fixed point approach works especially well for the Walrasian system
where N is S'71, the interior of the (I—1)-simplex, and z is a continuous
function that is bounded from below, satisfying Walras Law: z(p)-p=0 for
peSY !, and a boundary condition such as: p,—pedS' } only if |z(p,)| > .
Indeed, as Uzawa (1962) has pointed out, the Gale-Nikaido~Debreu proposi-
tion that every Walrasian system has a solution is trivially equivalent to
Brouwer’s fixed point theorem. It is well-known that the Arrow—Debreu
model of consumer general equilibrium, with strictly convex and monotonic
preferences, gives rise to a Walrasian system. Furthermore, from the
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Sonnenschein—Debreu—Mantel theorems on the arbitrariness of Arrow-
Debreu excess demand, it follows that the existence of equilibrium for all
strictly convex and monotonic Arrow—Debreu economies is also equivalent
to Brouwer’s fixed point theorem. Note that convexity hypotheses occur in
two separate places in the Arrow—Debreu model. Applied to consumer
preferences, they guarantee continuity of all the individual, and hence the
aggregate, excess demand functions. Secondly, they guarantee that the set of
endogenous variables (prices, etc.) 1s convex, so that Brouwer’s fixed point
theorem is applicable. For a history of the application of Brouwer’s theorem
to the Walrasian system and Arrow-Debreu economies following McKenzie
(1954) and Arrow and Debreu (1954), see Debreu (1982).

The fixed point method is precisely strong enough to solve the Walrasian
system, but there are other classes of economic models in which the space of
endogenous variables need not be convex. For example, the excess demand z
in a production economy depends on prices and the production choice y.
The production choice itself may be constrained to maximize profits in some
{non-convex) set Y at the prices p, or to satisfy some other criterion, such as
marginal or average cost pricing, given by p. In the theory of general
equilibrium with incomplete asset markets, excess demand may be thought of
as depending on the prices p, and a k-dimensional subspace L of R® which is
contrained by p in the sense that L contains the span of the columns of a
matrix M(p).

More generally, let N be a subset of S';} x 4, where A is an auxiliary set
of constramning variables. Let z: N—R' represent an economic system of
simultaneous equations. Our purpose 1s to give a sufficient condition for
there to be a solution (p, a)e N satisfying z(p,a)=0. In the special case that
N is the graph of a continuous function ¢:S'7}— A4, so that N=Graphg=
{(p,o(p))|pe S'7}}, the analysis reduces to the Walrasian system, for which
Brouwer’s theorem is applicable, provided that Walrasian-like hypotheses are
made about z. However, when N has a more complicated structure, a more
powerful technique than Brouwer’s theorem is required. For such N, it is not
even clear how to formulate the equation z(p,a)=0 as a fixed point problem.
We will show, nevertheless, that under Walrasian-like assumptions on z, to
guarantee the existence of a solution it suffices that (1) N be an (I—1)-
dimensional topological manifold; (2) the projection map proj;: N—S\}
given by proj,(p,a)=p is proper; and (3) deg(proj,) is non-zero. It is possible
to find such sets N that are not homeomorphic to any convex body.

There are two ways in which N naturally arises which shall be of central
concern to us. In the first we are given a correspondence ®:S7!—4 and N
is the graph of &, N={(p,a)|ae ®(p)}. We seek (p,d) such that z(p,a)=0 and
ae®(p). If @ is upper hemi-continuous, then proj; is proper. Furthermore, if
there is any open neighborhood UcS!. ! such that, when restricted to
U, d(p)={¢(p),-..,p,(p)} where ¢,:U—A is a continuous function and n is
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odd, then proj, is of non-zero degree. To see the significance of the
(I—1)-manifold hypothesis, consider figs. 1a,b,c.

In all three diagrams A=R,,, and z has the functional form z(p,a)=
3(p)—ae R, so that the graph of z fits in the same diagram as the graph of @.
Note that z is Walrasian-like. In all three diagrams ¢ is upper hemi-
continuous and there is an open set U on which @ is a function. In fig. la
Graph @ is not a manifold and there is no solution to z(p,a)=0 and ae &(p).
In fig. 1b, & satisfies the further property that for each p, ®(p) is convex
valued (and N is also a topological manifold). Here there is a solution.
Indeed a familiar argument along the lines of Kakutani’s fixed point theorem
shows that with convexity there must be a solution. In fig. 1c, @(p) is not
convex valued. But N =Graph @ is an (/— 1)-manifold and there is a solution.

As we have said, we have in mind one application where & is the
(aggregate) supply correspondence of the productive sector of an economy
where production is chosen according to some rule, perhaps not profit
maximization, where firms may not have convex technologies.

In another application to financial models of general equilibrium we think
of A as the collection of all J-dimensional subspaces of some Euclidean space
RS, $>J. Here RS represents the state contingent money payoff space, and a
subspace of RS represents the set of attainable payoff vectors. It is well
known that one can find a topology in which A, called the Grassmanian, is a
J(S—J)-dimensional compact manifold. Let v:S7!—>R%*/ be an arbitrary
continuous function denoting the payoff of each of the J assets in each of the
S states of nature. In this application we let @&(p) be the collection of all
subspaces in A that contain all the asset payoff vectors, ®(p)= {acA|a>
span{v(p)>}. We will show that v can always be approx1mated arbitrarily
closely by a function #:8'71—-RS*’, such that, letting &(p)= {acAla>
span{i(p)>} and N=Graph @, all three properties above hold. We can
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conclude that there must be some (p, @) with z(p,a)=0 and de &(p), and since
the approximation is arbitrarily close, there must also be a solution to
z(p,a) =0 and a>spanlv(p)).

The second way N naturally arises is as the solution to a system of
simultaneous equations. Let f:8'!xA"—>R", where we have placed a
superscript r on A to suggest that in this class of problems we take A to be a
manifold of the same dimension as the range of f. Then N = f~!(0). We seek
(p, @) that simultaneously solves z(p,a)=0 and f(p,ad)=0. Needless to say, we
cannot solve both systems unless we know that f(p,d)=0 can be solved,
which is to say that there must be a peS'7} such that fy(a)=f(p,a)=0 can
be solved for a. Suppose there is a p such that deg(f;0)#0. Then we need
only check that proj;:N=f"10)-S' ! 1s proper to show that the system
(z, f) has a zero. In applications it will typically be much easier to check that
there is one p at which f; has non-zero degree than it is to show that (z, f)
has non-zero degree.

There are already two closely related alternatives to Brouwer’s theorem for
demonstrating the existence of a solution to the Walrasian system. In the
path-following approach Smale derived from Hirsch’s mathematical work,
one solves z(p)=Ay for some 4 and yeR’, and then follows the solutions as
A—0. In the homotopy approach, one finds a continuous famuily of functions
z,: N—>R' such that z, has a unique solution and z, =z. One then follows the
corresponding solution to z,=0, beginning where z,=0, until a solution to
z;=z=0 is found. Homotopy methods were brought to the attention of
economists primarily by the book of Milnor (1976). Scarf, Eaves, Balasko,
and Smale, among others, have all used path-following or homotopy
techniques for demonstrating existence and/or computing solutions to the
Walrasian system, in lieu of applying Brouwer’s theorem. Of course these
same techniques have been used to prove Brouwer’s theorem directly. But
the important point for us is that the path-following techniques are
potentially more powerful than Brouwer’s fixed point theorem. In this paper
we describe an economic framework more general than the Walrasian system
to which Brouwer’s theorem does not apply, but for which these two
techniques nevertheless guarantee the existence of a solution to the resulting
simultaneous equation system z. Oriented degree theory, or the related fixed
point mndex theory and the index theory of vector fields, has been used by
Dierker (1972), Balasko (1975), and Smale (1974) in the Walrasian setting,
by, Mas-Colell (1977) and Kehoe (1980) in the Walrasian setting with convex
production, and by Kamiya (1988) in the case with non-convex production.
Duffie and Shafer (1985) used Mod2 degree theory to demonstrate the
existence of equilibrium in the incomplete markets exchange economy setting.
In section 2 we provide a general framework which in principle includes
these examples as special cases, and which we hope will be applicable to
other similar problems. In section 3 we give some applications. In Appendix
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A we give a second proof of our main theorem based on first principles
(which perhaps could be used as the basis of a computational algorithm).

2. The main result

Let S ={(py,....p)eR|p,>0; Y'_ p,=1} be the interior of the I—1
simplex, and let #'!={(p,...,p)eR|p,>0 and Y :., p?=1}. In the follow-
ing pages we will nearly always use S'7}, but nothing of substance would
need to change if we substituted &'7!. Let A be a topological space. Let
N<S7! x A Suppose that z:S'7!x A—R. What conditions on z and N
suffice to guarantee the existence (p, @) e N of a solution to z(p,a)=0?

We begin by defining the Walrasian-like hypotheses we need for z to
satisfy:

Defimition. The function z:84!xA—R' is C*-Walrasian-like (C* means
k-times continuously differentiable) on a set N =S, ! x A4 if it satisfies (1)—<(3)
below:

(1) Ais a C*-manifold and z is C*.
(2) Walras Law: If (p,a)e N, then p- z(p,a)=0.
(3) Boundary: If (p",a")e N, and p"—pedS'TL, then

max limsupz,(p",a*)>0.
{ pu> (1D} n
The similarity to the Walrasian system z is of course unmistakable. Note that
C° means continuous, and that continuity alone is sufficient for our existence
theorems. If (1) holds and if (2) holds more generally for (p,a)€ S} x A, and
if (3) can be strengthened so that (p",a")eS% ! x A and p"—pedS', ! implies
that z,(p",a")—>o0 for some i with p,=0, then we say that z is strongly
Ck-Walrasian like. We now turn to N.

Definition. N is C*regular, if N is a (/—1)-dimensional C*manifold, a
submanifold of S, !x A if k=1. N is proper if the map proj,: N-S' ! is
proper, i.e., if K< S} is compact, then {(p,a)e N|peK} is compact.

Definition. (z,A,N) 1s Ct-admissible if z is C*Walrasian-like and N is
C*-regular and proper.

Remark 1. Suppose that @:S'7!—>A is a correspondence, and N =Graph &.
Then proy, is proper if and only if @ is upper hemi-continuous; in particular
if A is compact then proj, is proper if and only if N is closed in S';} x A.

Example 1. An immportant kind of N arises as the solution to a system of

r-simultaneous equations which depend on r auxiliary variables and the
prices p. Let A be a compact, r-dimensional C*-manifold, and let f:S' 7! x
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A-Re". Suppose that f is C*, for k=1, and f is transverse to zero [i.e. if
f(p,a)=0, then rank Df(p,a)=r], which we write f §0. Then N=f"1(0) is
an (I— 1)-dimensional, C*-manifold, and proj,: N—S% ! is proper. As we shall
see, in the applications of the theorem we shall present, we will also get the
ontoness of proj; as well. Furthermore, in many applications a specific
knowledge of f guarantees that N is proper even when A is not compact.
Finally, this example can be slightly generalized to the case where there is a
family of C*-functions f: T x A,—R", where 4, is open in 4 and { J/_; 4,= 4.
We then require that each f, d\ 0, and if ae 4,n A;, and f(p,a)=0 for some
peSY} then f,(p,a)=0.

Example 2. Let Y<R' be a compact set with a smooth boundary JY of
dimension [—1. To each point ye 3Y associate the outward pointing normal
vector D(y)e &'~ !. Then the map f .4 IxdY-R'"! given by f(p.y)=
[p—D(y)]y! is trivially transverse to zero, if D is a smooth function. Let
N=f"1(0). Moreover, from the fact that max,_,,p*y must have a solution,
proj;(N)=%"71. When Y is convex, N corresponds to the profit maximizing
choices of the firm. In the general case N corresponds to marginal cost
pricing. Note that in neither case is it necessary that for all pe ', L there be
a unique, or even finite number of choices y in 0Y with (p,y)eN. For
example, Y could display constant returns to scale over some bounded range,
and then for some price there would be a continuum of profit maximizing
choices.

We turn to the last property we shall impose on N.

We shall see that degree theory provides not only a powerful tool for
determining existence of equilibria but also for determining index theorems
and generic local uniqueness, giving a deeper insight into the structure of
equilibria. For the reader unfamiliar with the details of degree theory
Appendix B has been provided.

Let N and Y be C° manifolds of the same dimension, and suppose Y is
connected and orientable, and that OcY. Let 2: N-—Y, and suppose that
£71(0) is compact. If N is oriented, then the oriented degree of Z at 0, written
dege(2,0), is well defined. If N 1s not oriented, then the mod2 degree of Z,
written deg,(2,0) is well defined. If dege(2,0)#0 or deg,(2,0)#0 then
271(0)#0, and this is the basis for degree theory as an existence tool. Degree
theory can also be used as a stability tool. If the degree of % is non-zero,
there is a non-empty compact connected subset K of 271(0), which is stable
in the sense that for any open neighborhood U of K, all sufficiently small
perturbations g of 2 have at least one solution xe U n g™ '(0). We call such a
set K a stable set of equilibria. If 27!(0) is a finite set and Z is a local
homeomorphism 1 a neighborhood of each point in 27 !(0), then deg,(Z,0)
gives the number of points in 27 1(0), counted with orientation, which gives a
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basis for computing index formulas. In these circumstances, deg,(Z, 0) counts
the number of points in 27 1(0) mod 2, i.e., deg,(2,0)=1 if #z~(0) is odd and
deg,(3,00=0 if #z71(0) is even. Since S', ! is connected and proj;: NS’}
is proper, the degree of proj, is also well defined and independent of the
point at which it is computed. We write degy(proj,) or deg,(proj,) for this
degree. It will turn our that for admissible (z, 4, N) a sufficient condition for
the existence of a zero of z is that the degree of proj, is not zero; for this

reason we turn to some examples of computing the degree of proj,.

Definition. N has the global graph property if there is a function ¢: 87! —4
with N =Graph ¢ ={(p, ¢(p))|pe S\ }}.

Clearly if N has the global graph property, then deg,(proj,)=1. In this
case also we can orient N by the homeomorphism @:S' ! —N defined by
@(p)=(p, ©(p)), and with this orientation degy(proj,)=1.

Definition. N has the local graph property if there is a non-empty open set
UcS'7! and a function ¢: U—A4 with N n (U x A)=Graph ¢.

In this case we have proj; 1(p) < U x A for pe U, so that

deg (proj,, p) = deg (proj, !(U X A}~ N» ).

But proj, |(UX o~y is a local homeomorphism and since deg(proj,)=
deg (proj,, p) for any pe $'71, this gives either ]dego(projl)[ =1 or deg,(proj,)=1.

Definition. N satisfies the generic graph property if there is an open, dense
subset U< S',! and a function ¢: U— A such that N n (U x 4)=Graph o.

Example 3. Let A be a compact r-dimensional manifold, as in example 1
and let 187! x A>R’ be transverse to zero and smooth. Let N=f~1(0).
Then by the transversality theorem, there is an open, dense subset U of S}
such that for each peU, Nn({p}xA4) is a finite set. We can calculate
deg (proj,) =deg(proj,,p) for any peU. Note that deg,(proj,,p) counts the
number of elements in N n({p} x A)mod 2, while degy(proj,,p) counts the
same elements with orientation. The generic graph property requires that U
can be chosen so that N n({p} x 4) is a singleton, for all pe U.

Example 4. Let A=R’, and suppose that f:S8'7! x A—R" 1s transverse to 0.
Furthermore, suppose that N = f !(0) is proper and onto. Finally, suppose
that for any fixed pe Sy}, f,; A=R>R’, given by f,(a)= f(p,a), is affine in
a, 1e., there exists C=C(p)e R" and B=B(p)e R"*" such that f,(a)=C+ Ba.
Then again by the transversality theorem and properness, there is an open,
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dense subset U =S’} such that for all peU, N n({p} x 4) is a finite set. But
from the affineness of f,, it contains exactly one element, or else a continuum
of elements, or it is empty. By the ontoness of N it cannot be empty, so the
generic graph property holds for N.

Example 5. A is an oriented (/—1)-manifold, F:4A—-S! is a proper
continuous map, and N={(p,a): p=F(a)}. Then N is proper, and in this case
F=proj, o p, where p: A—> N is the homeomorphism defined by p(a)=(F(a), a).
If we give N the oriented manifold structure induced by p, then deg,(p)=1,
and thus

degy(F)=degy(proj,) deg(p)=degy(proj,).

Remark 2. The hypotheses that N is an (/—1)-dimensional topological
manifold, that proj,: N—S';! is proper, and that N satisfies the local graph
property imply that the map proj,: N—S'"} is onto.

Remark 3. Since proj,: N—S'; ! 1s onto, we may define the correspondence
®:S'71—>A by ®(p)={ac A|(p,a)e N}. The local graph property implies that
there is some open set U< S, ! such that restricted to U, the correspondence
@ is actually a function ¢.

Remark 4. Similarly one might define the correspondence Z:S' !—R' by
Z(p)={z(p,a)|ac &(p)}. This correspondence is non-empty-valued, and upper
hemi-continuous. Compared to the famous so-called Walras excess-demand
correspondence, the only property that it does not satisfy is
convex-valuedness.

Remark 5. Any non-empty-valued, upper hemi-continuous, convex valued
correspondence can be approximated arbitrarily closely by a continuous
function. Indeed that 1s how Kakutani’s fixed point theorem is derived from
Brouwer’s fixed point theorem. But it 1s easy to see that there can be N (or
equivalently Z) satisfying regularity, properness, and the local graph property
that cannot be globally approximated by a continuous function on S' !
Consider for example the simple situation depicted in fig. 2.

When [>2, N may also have the generic graph property, without being
globally representable, even approximately, by a continuous function.

Notation. Let Hi={xeR""!|Y x,=b}. Note that Hj is an n-dimensional
hyperplane in R"*!, and that S'7! is an open subset of H\™!. peR' will
always denote p=(1/L1/l,...,1/). We always consider Hj to be the n-
dimensional oriented smooth manifold with atlas {(H}),({,)}, where y,: Hy—
R* is defined by
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l//b(xla---sxmxn+ 1)=(x1’---nxn)'

S'-1, as an open subset of H.™!, is always given the induced smooth,
oriented manifold structure.

Given a (z,4,N) C* admissible, 2: N>H4 ! will always denote the C*
function on N defined by 2(p, @) =(p,z,(p,a),...,p:zp, a)). Note that 2~1(0) =
27 1(0) A N.

We are now ready to state our main theorem.

Theorem 1. Suppose (z, A, N) is C°-admissible. Then:
(1) If N is oriented:
degy(2,0)=(—1)'"" degy(proj,).
(2) If N 1s not oriented or even not orientable:
deg,(2,0)=deg,(proj,).

Corollary 1. Suppose (z,A,N) is C°-admissible. If deg,(proj,)#0 or
dego(proj,) #0, then there is a stable set K of solutions to z(p,a)=0,(p,a)e N.

Corollary 2. Let z:S' ! x A" R! be C°-Walrasian-like, and let f:S'7!x A"
R" be continuous. Suppose there is at least one peS',l such that if
fa)=f(P,a), then deg(f;0) 15 non-zero. Moreover, letting N=f~'(0),
suppose proj,: N—S'7! is proper. Then there is a solution (p,d) to the system

of simultaneous equations z(p,a)=0 and f(p,a)=0.

Remark 6. If N has the giobal graph property, then it is homeomorphic to
S'7! and defining z:S' 71— R' by z/(p)=2z(p.¢(p)) Theorem 1 is reduced to
the standard Walrasian existence problem.
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Lemma 1. Suppose (z,A,N) is C*-admissible for some k>0. Then there is
some open, convex set St™'<S'L, with non-empty smooth boundary 08. 'c
S'7L, such that if peS'TINSI"Y, and (p,a)e N, then 2(p,a)=A(p—p) has no
solution A=0. In particular, if h:[0,1]1x N=>HY ! is defined by h(4,(p,a))=
A2(p,a)+(1—A)(p—p), then h is C* and h™'(0) is compact.

Proof. Suppose (p",a")eN and p"—pedSy L If 2(p",a") = A"(p"—p) for A"=0
and n large, then limsup, z,(p", ") =lim sup, A"(p} — p,) £ 0 for all i with p,<p,,
contradicting the boundary condition. So all p with 2(p,a)=A(p—p), 1=0
and (p,a)e N for some a can be taken to lie inside some set S.™! satisfying
the conditions of the lemma. Since §! !< S84 !, proji(S.™1) is compact by
the properness of proj,, and [0,1]x proj; {(St"Y)>h~'(0) is closed by
continuity, it is compact. O

Remark 7. The lemma shows that the ‘excess value demand’ map Z 1s
homotopic to the trivial map (p,a)—(p—p), in such a way that the zeros of
the homotopy remain in a compact set. This trivial map is actually the excess
value demand of a single Cobb-Douglas consumer who ignores a, has
endowment of the / goods equal to [p, and utility function u(x,...,x;)=1I1I,x,.

Proof of Theorem 1. Define a map ¢:S'7!—>H5 ! by ¢(p)=p—p. The
derivative of Yoodoy ! is just (—1) times the identity map of R'™!, so
degy($,0)=(—1)'"1. By the product rule, for the oriented case we have

dego(¢ o projy, 0) = degy($, 0) degy(proj ) =(— 1) ~* degy(proj,).

Define h:[0,1]x No>HY ! by h(t,(p,a)=t2(p,a)+(1 —t)poproj,(p,a). h is a
homotopy between 2 and ¢ o proj;, and h™1(0) 1s compact by Lemma 1. Thus

degy(2,0)=dego(¢ o proj;, 0)=(—1)'~* degy(proj,).

In the non-oriented case, the only difference is that deg,(¢,0)=1, so that we
get deg,(2,0)=deg.(proj,). O

Degree theory can be used as a tool for demonstrating the existence of
equilibrium even if z is a correspondence. Moreover, we can dispense entirely
with the boundary condition if we suppose that z is also defined for
(p,a)e ST ' x A, provided that we modify the definition of equilibrium to
permit goods 1n excess supply with a price zero. We combine both these
observations in the following corollary to Theorem 1. The idea behind the
corollary is that under suitable condtions on the correspondence Z there
must be a sequence of continuous functions z* satisfying the earlier boundary



J Geanakoplos and W. Shafer, Systems of sumultaneous equations 79

condition which ever more closely approximate the correspondence Z when
prices are strictly positive.

Corollary 3. Suppose A is metrizable, Z:S'! x A-2%® is a correspondence,
and N<S'7 ! x A such that:

(1) Z is upper hemi-continuous, convex, compact, non-empty valued.

(2) pz=0 for all p such that there exists an a€ A for which (p,a)e N and
zeZ(p,a).

(3) N is compact.

(4) (871 x A)n N is an (1—1)-dimensional topological manifold.

Let proj, denote the projection of (S!xA4)AN into S} Then
degy(proj,)#0 or deg,(proj;)#0 implies that there exists a (p,a)eN and a
Ze Z(p,a) such that 7<0.

Proof. Step 1. Suppose Z is single valued, so we can consider Z as a
continuous function. For each positive integer n, define

S x A-R by Zip,a)=Z(p,9+1/n(l/lp,~1), i=1,...,1L

Then (2", A.(S'7 1 x A) " N) is C°-admussible, so by Theorem 3 and Corollary
1 there exists (p",a")e(S4} x A)n N such that z"(p",a")=0. By (3) we can
suppose that (p",a")—(p,d) e N. Since we have Z(p", a")=1/n(1—1/Ip}) for all
n, it follows that Z (5,a)=0 if 5,>0 and Z,(5,a) =0 if 5, =O0.

Step 2. We apply Step 1 to approximate selections from Z. Let d be a
metric on S'; ! x 4, and {q,},.; @ partition of unity with compact supports
such that diam (supp q,) <¢ for all a. Select (p* a*)esuppq, and z*€Z(p* a®)
and define a function

Zg! Sl-!-l X A‘_’Rl by za(pa a)= Z qa(pa a)(za__(pza)v)

ael

where v=(1,1,...,1)eR.

Then z, is well defined, continuous, and satisfies p-z,(p,a)=0 for all (p,a).
By Step 1, there is a (p%,a®) e N such that z,(p%, a°) <0. Let e—0 and (p,a) be a
cluster point of {(p%,da%)}. Using properties (1) and (2) of Z one can readily
venfy that {z,(p%,d°)} has a corresponding cluster point Z such that Z<0 and
zeZ(p,a) .

3. Applications

We now give some examples, applying Theorem 1 to the standard pure
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exchange model, the standard Walrasian model with production, and to the
problem of pseudo-equilibrium in a model with incomplete markets, and to a
model with non-convex production and general pricing rules.

Example 1. Standard pure exchange model

Take N=S'7!, and any economic model which gives rise to a
C%Walrasian-like excess demand z:S'; ! —»R! (4 can be taken to be a one
point set, and hence ignored.) Thus proj,: S'; -8} is just the identity map,
so degy(proj;)=1. If z is smooth and 0 is a regular value of 2, then 2
preserves orientation at pe 2~ !(0) if and only if

sgndet D(YgoZoiy | 1)(x)ix=llll(ll): L

If we assume z is the restriction of a homogenous of degree 0 function to
S'71, then a little exercise in determinates gives

sgndetD(l//()o%ol//f1)(x)|z=,,,,(p)=sgndet[DJz,(p)], ij=1,...,1—1

Thus we get

(— 1) '=degy(2,0)= Y sgndet[Dz(p)}, i, j=1L,...,1-1,

pez~ 1(0)
which is Dierker’s (1972) index formula.

Example 2. Production

We consider a model (F* w" 0" Y) where F::R!, ., xR, —»R is agent I's
demand function, w* his endowment vector, and 6" his share of profits. Y is
the production set. Assume F" is continuous, homogenous of degree 0,
p-F'(p,m)=m, and lim,_ 5, ;0 | F"(p, 1)|| = + 0. Assume w"eRY,, Y w'e R, ,,
and that Y 6"=1,6">0. Finally, suppose Y satisfies (i) is closed and convex;
(i) Y "R, ={0} and (iii) Y=Y —R',. Let A=R, z:5'7} x R'>R' be defined
by

2(p, y) =Y, F*(p, max(0, pw" + 6"py)) — ¥ w" — y,
h h

and

N= {(P, yeSy i xR yeargmax py’}.

y ey

We assert that deg,(2,0) is well defined and equal to (—1)'"%.
By the usual argument the attainable production set is compact, so we can
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modify Y, without affecting 21(0), to satisfy: (iv) Y=K~—R!, K compact,
convex. From now on we assume Y satisfies (iv). It is now easy to check that
z 1s C°-Walrasian-like on N, and that proj,: N— S} is proper. We need to
show that N is an [—1 manifold, and compute the degree of proj;.

The procedure is outhned below:

Step 1. Define N*={(p,y)eS\ ' xR:yeargmaxp-y’}. Clearly N is an
open subset of N*. Define v=(1,1,...,1)eR, and suppose without loss of
generality that v-y<1 for all ye Y. Define a map ¢: N*—>H'"! by

o(p,y)=(1—vy)p+y.

Let m: R'—Y be the map which assigns to each zeR' the point in Y at which
(z—y)(z—y) 1s at a minimum. Then using the convexity of Y and the
definition of profit maximization, one can show

= -
o= ST ) eHp

[This map ¢ is a trivial modification of a map in Mas-Colell (1985,
Proposition 3.4.2)]. Thus ¢ is a homeomorphism. Give N* the (I—1)-
dimensional oriented manifold structure determined by the homeomorphism
¢, and N the induced manifold structure obtained as an open subset of N*.

Step 2. We assert degy(proj;)=1. This would be easy if N had the local
graph property, i.e., if the ‘supply function’ were single valued on an open
subset of prices, but this is probably not true in general under our
assumptions. Instead we proceed by a homotopy argument. Let proj,: N*—
S'”'< H' ! be the projection on N*. Note that for any peS', L, proj; {(f)< N,
so that degy(proj,,p)=degq(proj, |v, D) =degy(proj,|y). for any peST} We
now compute deg,(proj,,p). Define h:N*x[0,1]-H"' by h(p,y,t)=
tproj(p, ) +(1—0)¢(p, ). Clearly h is a homotopy between proj, and, ¢ and
we leave it to the reader to show that h™!(p) 1s compact for any peS' L.
Thus degy(proj,, p) =degy(¢,p) =1, so we get degy(2,0)=(—1)'"!. Computing
a useful index formula requires more structure on Y and more work; see
Kehoe (1982), Mas-Colell (1985).

Example 3- Existence of equilibrium for asset economies

Let us take A= G,(R®), the smooth compact J(S —J)-dimensional manifold
of all J-dimensional subspaces of RS. It is well known that 4 can be wntten
as the finite union of sets A=UA,,, where each A, is homeomorphic to
RS- as follows. Let
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G, I
¢ [GZ] [Gz}
be an S xJ matrix, where G, is the J xJ identity matrix I and G, is an
arbitrary (S—J)xJ matrix. The columns of such a matrix G span a J-
dimensional subspace of RS. Permuting the rows of G according to some
permutation ¢ of S elements gives another matrix G° whose columns also
span a J-dimensional subspace. Any a€ A can be represented by G’ for some
G and some permutation o.

Let z:84 1 x G,(R®)->R! be C° Walrasian on S} x G,(RS). We take z to
be the excess demand in an economy where trade depends on prices pe S}
and the ‘potential subspace of trade’ ae A=G,RS). We are also given an
exogenous asset return matrix v:8'; ! > RS*/. Equilibrium is a (5,d)e S} x A
such that z(p,a)=0 and a=span{v(p)). The difficulty in proving the
existence of equilibrium arises because the column span of the matrix v(p)
need not be fully J-dimensional and can vary with p. As a result it is
necessary to introduce the notion of a psuedo equilibrium (p,a)e S} x 4
satisfying z(p, @) =0 and a>span{v(p)). Duffie and Shafer (1985) proved that
pseudo-equilibrium always exists, and that generically all pseudo-equilibria
are equilibria. In papers in this volume Husseini, Lasry and Magill (1990)
and Hirsch, Magill and Mas-Colell (1990) give alternative proofs of the
existence of pseudo-equilibria. Here we use our method to give a brief proof
of both the existence of pseudo-equilibria and the generic existence of
equilibria. We state both theorems, then prove them.

Theorem (Existence of pseudo-equilibria for asset economies). Let z:S'}x
G,(RS)—-R! be strongly C° Walrasian-like. Let v-S';}—>RS*’ be continuous.
Then there exists a (p,a)eS'yLixGHRS) such that z(p,a)=0 and

a> span {v(p))-

Theorem (Generic existence and local uniqueness of equilibria). Let E and M
be smooth manifolds (‘parameter’ spaces). Let 2.S'7} x G,(RS)x E-HY ™' and
0. S Ex M—>RS*Y be smooth. Suppose that % is obrained from a strongly
Walrasian-like z by 2(p,a,e)=p,z,(p,a,¢). Finally suppose that for all
(p,a,e,m), rankD,z=1—1 and rankD,v=SxJ. Then for almost every
(e,m)e E x M (that is, except for a subset of measure 0), there are odd number
of solutions (p,a) e S'; ! x G4(RS) to z(p,a,e)=0 and d=span{v(p,m)>.

Proof of both Theorems. It is convenient to begin, as in the second
proposition, by assuming that 2 and v are smooth, and then to derive the
first proposition by the approximation of continuous functions by smooth
functions.



J. Geanakoplos and W Shafer, Systems of simultaneous equations 83

Recall that we can write A=G,(RS)=|]A4,. Let D,=S""{xA4,xExM.
Let d=(p,a,e,m), and if de D,, we will also write d=(p, G,,e, m), where

G I
G=| !|=
[GZ] [Gz}
and G’ generates a. Define

[ D= RIS by f(p, Ga,e,m) = f(d) =v5(d) — G,v7(d)

where 1°(d) is the matrix obtained from v(d) by permuting the rows
according to ¢~ ! and

- U‘I(d):l
v =
[U‘E(d)
with v a JxJ matrix and v a (S—J)xJ matrix. Note that f(d)=
£.(p, G,,e,m)=0 if and only if the columns of v°(d)=[§,]v5(d), that is, if and
only if the columns of v” are spanned by the columns of [§,]. Therefore for

a€A,, aospan{v(d)> if and only if f(p,G,,e,m)=0.
For any fixed (e,m) e E x M, let

N, em={(p.0) €5} x A,]a>spano(p,m)y} =57 1 x 4

and let N =, N, @m- Suppose that the hypotheses of the second
theorem above are satisfied. Then by perturbing m we can perturb v5
however we want, without affecting G, or ©v]. Hence f,H0. By the
Transversality Theorem, for generic (e,m), N, c.m=/Sa (.m0 is a (I-1)-
dimensional manifold. Next observe that if ae A, N 4,., then f,(p,a,e,m)=0
if and only if f,.(p,a,e,m)=0. Hence for generic (e,m)e ExM, N, is an
(I—1)-dimensional manifold.

Furthermore, since N, is closed m S7!xA4 and A is compact,
proji: N.m—S's+ is proper. To show that deg,(proj)#0 it suffices to
observe that for any peS.y !, v(p,m) is included in some subspace ae A.
Hence proj, is onto. By the Transversality Theorem, since N ,, and S%}
have the same dimension [—1 and proj, is proper, there is an open dense set
UcS', ! on which proj;! is finite valued (and non-empty valued by the
ontoness of proj,). But if there is more than one subspace a€ A containing all
the columns of v(p,m), then there must be infinitely many such a. (See
Example 4 in section 2). Hence proj, is one-to-one on the open set U, so the
mod 2 degree of proj, is non-zero.

Thus for generic (e, m)€ E x M, the hypothesis of Theorem 1 are satisfied.
We conclude that if z and v are smooth, then for almost all (e,m)e E x M, we
can find (p,a) with z(p,a,e)=0 and a>span {v(p,m)). But now by passing to
sequences (¢",m")—(e,m), a similar conclusion must hold for all (e,m).
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Furthermore, for any continuous z*:S% ! x G/{RS)-R' and continuous
v*: S >RS*7 we can always approximate z* and v* by smooth z and wv.
Moreover, we can always take E to be a bounded open set containing the
origm in HYy' and M=RS*, and define Z(p,a,e)=z(p,a)+
(e./p){min, <,,p,} and &(p,m)=v(p)+m as extensions of z and v satisfying
the hypotheses of the second theorem. Passing to the limit (", m")—(0,0)
yields the theorem on the universal existence of pseudo-equilibria.

To prove the generic existence of genuine equilibria, we shall show that
for generic (e,m)eExM, there is no (p,a) satisfying 2(p,a,e)=0,
aospanlv(p,m)y and rankvj(p,m)<J. It will follow that v(p,m) has full
rank, hence there is a unique ae A with a>span{v(p,m))», hence all the
pseudo-equilibria above are genuine equilibria.

Let 77! as before be the (J —1)-dimensional sphere. Extend 2 and f, to
D, x #’~1 by ignoring the last coordinate. But now consider a new set of J
equations ¥:D,x ¥/ "' >R’ given by ¥,(p,a,e,m, x)=v(p,m)x. Then given
(p,a,e,m), and so given vj(p,m), there is a xe ¥’ solving ¥, (p,a,e,m,x)=0 if
and only if v{(p,m) does not have full rank J. But now consider the system
(G, £, P): D, x FT P HE L X RIS™D x RY. Remember that rankD,z=1—1
and that rank D,v=S8 x J. The latter assumption allows us to control v{ and
v} independently, so that we have rank D, (f,, ¥,)=J(S—J)+J as well as
rank D 2=I—1. Thus (& f,,%¥,) 0. By the Transversality Theorem, for
generic (e,m), (2, f,, ¥, ): S Ix A, x #? 1sHL P x RIG™D x RY is t.ansverse
to 0. But this is only possible, given the dimension of the domain and range,
if (2, f,, ¥,)~*(0) is empty. Applying this argument to each ¢ finishes the proof.

Example 4. Increasing returns and general pricing rules

In this section we investigate a model with a non-convex production set
and general pricing rules. This model is a very special case of the model in
Bonnisseau and Cornet (1989); the novelty here will be the computation of
degy(2,0), which surprisingly turns out to be independent (given our method
of orienting N) of the pricing rule itself. This allows the computation of an
index formula in the smooth case, but we have not carried out this
calculation. Kamiya (1988) has recently analyzed a much more general model
using similar techniques from degree theory.

We consider an economy E=(F, Y, f), with the following interpretation: Y
is the production set. We assume Y contains any initial endowment of goods:
for example, one could take Y=Y'+{w}, where w>0 is the intial endow-
ment vector and Y’ satisfies the usual assumption Y’ n R, ={0}. p=f()) is
the pricing rule. For example, f(y) could be a realization of average cost
pricing, a selection from the set of break-even price vectors for y. If 3Y is
smooth, f could be marginal cost pricing (see Example 2, section 2). F(p,y)
represents aggregate demand at prices p and production vector y. We assume
any income redistribution scheme 1s embodied in F.
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We make the following assumptions: (1) Y <R’ satisfies (i) Y nRY | #0;
(i) {y=w}nY is compact VweR’ and (i) Y=Y—R’. (2) Define Y;=
{yeY:Ay' €Y such that y'>y}. Then f:Yy—S'' is continuous and satisfies
yf()>0VyeYnR,. (3) F:R,, xR, is continuous and satisfies (i)
pF(p,y)=py for all (p,y) such that py>0; (ii) If p">pedR’, and py>0, then
| F(p" |- + 0.

The basic idea is as follows. Define (z, 4, N) by

A=R,
N={(p,y)eS i x Yep=f(y)}

A basic difficulty is that N need not be proper and z may not be
C°-Walrasian, so that Theorem 1 does not apply directly to (z, 4, N). What
we will do is replace (z, 4, N) with a model (z, 4, N'), where N' is obtained
from a new Y! and f!, such that (z, 4, N') satisfies the hypotheses of
Theorem 3 and the changes made to Y and f have no effect on 27 !(0). This
will allow us to show

Proposition. There is a choice of orientation of N such that

degy(2,0)=(—1)'"".

Proof of Proposition. For any ceR, let V(e)={yeR:y 2eVi}. For ¢>0,
define Y!'=[Y nV(—¢)]—R. Given the assumptions on Y and f, it is
possible to find a ¢>0 and an f': Y;—S ! such that

(i) YenV(—e=YsnV(-e),

iy SO=f(VyeYenV(—¢/2),

(iii) if ye Y3 and y,< —¢, then f](y)=0,
(iv) 37>0 such that yfi(y)=1, VyeYi.

Note that if z(p,y)=0 and (p,y)eN, then necessarily yeRY, so that
replacing Y and f by Y! and f! can have no effect on the equilibria, nor
any effect on Z in a neighborhood of the equilibria.

We first show that N! is C%-regular and proper. Define ¢: Yy—>H{™ ! by

¢(Y)=y+(l_—lv')i)v, where v=(1,1,...,1)eR%

¢ assigns to each ye Y% the unique vector ¢(y)e H ™! in the direction v from
y. It is not difficult to check, given the properties of Y}, that ¢ is a homeo-
morphism of Y} onto H|"!. We give Y; the oriented manifold structure
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induced by this homeomorphism, so that degy(¢)=1. N'={(p,y)eS, | x
Yip=f'(»)}. N'is an open subset of Graph™!(f'), and the latter can be
made an oriented (I — 1)-manifold via the homeomorphism p: Y ;—Graph ™! (f1)
defined by p(»)=(f'(»),y). Note that this makes p an orientation preserving
homeomorphism, so that degy(p)=1. We give N' the oriented manifold
structure induced as an open subset of Graph™!(f!). If K =S} is compact,
then proj; Y(K) =K x[V(—&) n Yg], so it is bounded. It is closed by conti-
nuity. Hence N is proper.

It 1s easy to check that a is C°-Walrasian on N', given the assumptions on
F and the properties of f!.

It remains to compute the degree of proj': N'—S'7!. Note that for any
peS'TL there is by contmuity an open neighborhood U of f'"!(p) such
that fYU)cS'TL. Thus on U, f'=projop, so that degy(f',p)=
degg(proj,, p) degy(p). Since degy(p)=1 and degy(proj,, p) =degy(proj,), we need
only show that deg,(f*,p)=1. We do this by a homotopy argument. Define
h:YEx[0,1]-H"! by

h(y, ) =tf'(»)+ (1= (y).

Clearly h is a homotopy between f! and ¢. We assert that for any peS', ],
h™'(p) 1s compact. h™1(p) is closed by continuity, so we need only show that
h~1(p) is bounded. We have

tf ')+ A=)y +({U—vy)/Ho]l=p

(y,r)eh"‘@@{ (1€ Yp x [0, 1],

We assert that (y,f)eh™'(p)=>yeV(—e—(I—1)), so that
h™'(p)c[Ygn V(—e~(—1)]1x[0,1],

a bounded set. The details are left to the reader. Then we have degy(f',p)=
degy(@, p) = dego(¢) =1.

Appendix A: Elementary proof

Our main Theorem 1 relied for its proof on degree theory. Here we give
an elementary proof of a weaker theorem which can also be used as the basis
of a computational procedure to find a zero (re., an equilibrium). Note that
the following theorem would have sufficed for the application we gave to
financial asset general equilibrium.

Theorem I'. Let z°S'T1xA-R' and let NcS'T}!xA If (z,A,N) is
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Cl-admissible and N satisfies the generic graph property, then there exists
(p, @) e N such that z(p,a)=0.

Proof of Theorem I'. Step 1. Without loss of generality, we may replace 2
with Z satisfying Z(p,a)=p—p if pedS. 1,

Take S.;,', an open, convex body with smooth, non-empty boundary 45,
such that S 1285 28, 287128 7. Let d:S4 1 >[0,1] be a smooth
function such that d(p)=0 if peSyI\S.," and d(p)=1 if peS.™*. Such a
function exists by standard arguments. Then let z: N—HY% ! be defined by
zZ(p, a)=d(p)2(p, a) + (1 —d(p))(p —p). Note that z(p,a)=0 for (p,a)e N only if
2(p,a)=0. Now make the change of variables ¢—2¢ and the claim of Step 1 is
established.

Step 2. We may assume that there is an open set UcS%"}! and a function

o:U—>A such that (UxA4A)nN=Graphgp, UndS t#0 and if
(p,a)e[(UndS: ) xA]AN and (p,ad)e(@S:" ' xA)n N and (p,a)+#(p,a)
then

Ap,a) , 2p,a)
lz(p,a)| " |2(¢', @)

From the generic graph property, there is an open dense set U =S’ ! such
that (U x A) n N =Graph ¢, where ¢ 1s a function ¢:U—A. Since we have
great freedom in choosing 0S.™! (anywhere in $'"'\§};!) we may assume
UnadSi 1 #0. Now take (p,a)e[(Un 05 ) x A]n N. Then Z(p,a)=p—p. If
(p',a)e(@5 t x A) and zZ(p',a)=(p—p)=A(p—p), then p'=p (since the ray
from p through p can only interest 85'~! in one place because we took S !
convex). But if (p',da’) is also in N, then by the graph property at p=p/,
d'=a=¢(p), and (p,a)=(p’, d).

Step 3. The path-following analogue of Hirsch’s argument shows that there
is a (p,a)e N with Z(p,a)=0.

Suppose there is no (p,a)e N with Z(p,a)=0. Then we can replace
ZN-H{ ' by G:N-Y defined by G(p,a)=2(p,a)/|z(p,a)|, where Y is the
[—2 sphere in Hy '. Furthermore let us denote by H:[(UndS. ) x A] n
N-) the further restriction of G, so if (p,a) is in the domain of H, then
H(p,a)=G(p,a). Note that the domain of G is a smooth (I—1)-dimensional
manifold, and the domain of H is a smooth (/—2)-dimensional manifold.
Furthermore, since every ray from p intersects S.™! somewhere, the range of
H contains an open set Rin ) .

By applying Sard’s theorem twice, we deduce that there must be some
element yeR<) such that both Gy and Hhy. Hence G™'(y) is a
non-empty one-dimensional manifold. Furthermore, from the preceding Step
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§-1
S++

Fig. 3

2 we know that H™(y) 1s a single point (p*,a*). In fact, Step 2 implies that
G (») N [(851"* x A) " N] 1s also the single point (p*,a*). Moreover, since
Hdy, G '(y) intersects domamn H=[(Un3§,"')x A)nN] transversely.
Consequently G~ 1(y) n[(SL 7! x 4) n N]#0.

Now, by properness, L=G (y) ncl[(S: ' x A)n N] is a compact set
(where the closure 1s taken in N). By following along the path G™!(y) mn
cl[(S1"Y) x A) n N] starting from (p*,a*) we must come either to an end,
contradicting the fact that G !(y) is a one-dimensional manifold, or else
come to another point of intersection of

G W) NAS T xAAN)=GC W) N((BS. ' x A) A N)

contradicting Step 2.

Remark 7. The conditions we have imposed on N are precisely those few
properties of S’} used by Hirsch and Smale in proving that a smooth
Walrasian-like excess value demand 2:S',!—H{ ' has a zero. The assump-
tion that N has dimension [—1 guarantees that the set L of (p,a)e N such
that 2(p,a)/|2(p,a)| 1s a given vector is typically a one-dimenstonal manifold.
The properness assumption guarantees that L (S.™!x A)n N is compact.
The generic graph property guarantees that typically L intersects

(08171 x A) " N in exactly one point. Fig. 3 illustrates the argument when
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N=S'"1 Note that since S, } is contained in the translation of Hy ! by p,
we can easily imagine the domain and range of 7 in the same diagram.

The contradiction to the maintained hypothesis that Z is never zero is seen
in the above diagram in the fact that the manifold L crosses itself at p*. This
is inevitable since once L gets inside SL™! it cannot escape through any other

boundary point pedS.~! because p—p points in the direction p—p* only
when p=p*.

Remark 8. 1Tt is clear that the local graph property is only relevant for
p=p*, where L crosses the boundary of S.~!. In fact if there were locally an
odd number of ae A with (p*,a)e N, the same proof would apply. Once L
‘enters’ S.”! through one point (p*,a)eN, it must leave through another.
Pairing up points, we see there is one (p*, a) left over through which L enters
S!71, but cannot leave S.~!' without crossing itself. Now it can easily be
shown from degree arguments introduced in section 4, that if N satisfies the
local graph property, there is an open dense set U<=S'} such that for each
peU, proj; '(p) consists of an odd number of points. In particular we can
always choose p*eU ndS."!. This is one indication that by using degree
theory we can greatly strengthen this theorem.

Appendix B: Degree theory

We give here a very brief review of the basic facts of degree theory. An
excellent reference 1s Dold (1980); see also Hirsch (1976) for the case of
smooth manifolds.

An n-mamfold is a Hausdorff topological space X which has an open
cover {W,},.4 such that for each o there exists a homeomorphism ¢,: W,—
R" n is called the dimension of X, each {W,,¢,} is called a chart, and
(W, b,}eeq is called an atlas. If all the ‘coordinate changes’ ¢,0
O: L b (W, A W,)> (W, W,), a,de A are smooth (C*), the atlas is called
smooth. If all these coordinate changes (which are homeomorphisms)
preserve orientation, then the atlas 1s called oriented. A manifold with a
countable base for the open sets is called smoothable if it has a smooth atlas.
Such a manifold, together with a given smooth atlas, is called a smooth
manifold. A manifold which has an oriented atlas is called orientable. An
orientable manifold together with an oriented atlas is called an oriented
manifold. The properties of being a manifold, dimension, smoothability and
orientability are topological invariants. An open set C in a n-manifold
(smooth) (oriented) X becomes an n-manifold (smooth) (oriented) in a
natural way.

Given a pair of manifolds X and Y of the same dimension, a continuous
map f:X—Y, and a point ye Y such that f~!(y) is compact, degree theory
can be thought of as a way of ‘counting’ the number of points in f ~!().
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Define

Co={(f,X,Y,y): (1) X and Y are oriented manifolds of the same
dimension;
(i) f: XY 1s continuous;
(i) yeY and f~*(y) is compact};

and

C,={(f,X,Y,y): (i) X and Y are manifolds of the same dimension;
(i) f: XY is continuous;
(ii)) ye Y and f~*(y) is compact}.

Let Z and Z, denote the rings of integers and integers modulo 2
respectively. We will describe properties of maps deg,: Co,—~Z and deg,: C,—
Z,, called respectively the ‘oriented degree’ and the ‘mod2 degree’. We can
do this simultaneously: Let (C,R,deg) denote either (Cy,Z,degy) or
(C,,Z,,deg,). We write deg(f,y) instead of deg (f,X,Y,y) whenever X and Y
are obvious from the context. Then the basic result is [see Dold (1980)]:

Degree Theorem. There exists a map deg: C—R satisfying:

(D.1) (normalization). deg (id, Y. Y. y)=1.
(D.2) (localization): If (f, X, ¥,y)eC, XoU> f~(y), Yo Vo f(U), U open n
X, V open in Y, then:
deg (f, X, Y,y)=deg (f|y, U, V,y).

(D.3) (additivityy. If (f,X,Y,y)eC and {G,}7 is a finite partition of X mto
open sets such that (f |G', G, Y,y)eCVi, then:

deg(f,X, Y5y)= Z deg(f Gy Gn Yay)
1=1

(D.4) (homotopy invariance). If (f,X,Y,y), (g,X,Y,y)eC and there is a homo-
topy h. X x[0,1]>Y between f and g such that h™*(y) is compact, then:

deg(f,y)=deg(g,y).

(D.5) (continuity). If (f,X,Y,9)eC and K<Y 1s a compact connected set
containing j such that f~1(K) is compact, then'

deg(f,y)=deg(f,5),  VyeKk.
(D.6) (product rule). If (f,X,Y,y), (g, Y,Z,2)eC, Y is connected and f is
proper, then:
deg(go f,z)=deg(g,z) deg (f.y).
(D.7) (non-triviality): If (f,X, Y,y)eC, then
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deg(f,y)#0 implies f~'(y)#0.

Remark 1. D.5 implies that if (f, X, Y,7)eC, Y is connected and f is proper,
then (since Y is locally compact and locally connected) deg(f,y)=deg f,p)
for all yeY. This common value is denoted deg(f,X,Y) or deg(f), and
is called the degree of f.

Remark 2. If (f,X,Y,y)eC, and f is a homeomorphism, then deg,(f,y)=1.
If (f,X,Y,y)eCo and f is homeomorphism, then degy(f,y)=1 if f preserves
orientation at f (y) and deg,(f,y)=—1 if f reserves orientation. f
preserves orientation at f ~'(y) if there is a chart {W, ¢} from the maximal
oriented atlas on X and a chart {V,y} from the maximal oriented atlas on Y
such that f~i(y)eW, yeV, and f(W)cV, so that the local homeomorphism
Yo fop lip(W)>R" preserves orientation at ¢(f " (y). If Yofodp ! is
smooth, then it preserves orientation at @(f (y) if sgndetDyo fo
¢ @i =1

Remark 3. Suppose (f,X,Y,1)eC, f '(»)={xp,..., X}, m<oo, and there
are disjoint neighborhoods W, of x,, 1=1,...,m, such that each f|y, is a local
homeomorphism. Then by D.2 and D.3,

m

deg(f’X9 Yay)= Z deg(f‘W,a Van(VVl)ay)

1=1

From Remark 2 above, in the mod2 case deg,(f ]W‘, W, f(W),y)=1, so
deg,(f,y)= #f " '(y)mod2. In the oriented case, degy(f|w,y)=1 if f pre-
serves orientation at x, and —1 if f reserves orientation at x, so that
deg,(f, ) counts the number of points in f ~(y) with orientation.

Remark 4. By Sard’s theorem, the situation described in Remark 3 is
‘typical’ if X,Y are smooth and f is smooth [assuming f ~!(y) is always
compact]. However, there are continuous maps g: X —7Y between compact,
smoothable connected manifolds of the same dimension such that g7*(y) is
an infinite set for every ye Y. If (g, X,Y,»)eC and X and Y are smoothable,
however, there is always a (f, X, Y,y) e C such that f and g are homotopic at
y (in the sense of D.4), f is ‘close’ to g, and the situation described in
Remark 3 holds for (f, X, Y, ). [See Hirsch (1976) for an extensive analysis of
approximation by smooth maps.]

Remark 5. Combining D.4 and D.7, we see that if (f,X,Y,y)eC and

deg(f,y)#0, then for any g:X—Y homotopic to f in the sense of D.4,
g '(y)#0. This 1s important because all sufficiently ‘small’ perturbations of f

JMath D
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are indeed homotopic to f in the sense of D.4. For example, let f: X >R,
f~*(0) compact, and suppose X is the union of an increasing sequence of
compact sets, X = U;‘,":l K,. Suppose g: X »R!, and for any sequence x,€ X\
K,, |f(x,)—g(x,)|$3|f(x,)| for n large. Then g is homotopic to f in the
sense of D.4, since for the homotopy given by h(x,t)=tf(x)+(1—1t)g(x),
h~1(0) is compact.

Remark 6. Let (f,X,Y,y)eC. We call a non-empty subset K of f~!(y)
stable if for any open neighborhood U of K, there is a smaller open
neighborhood G of K, U>G>oK, such that (fl|sG,Y,»)eC and
deg(flg, G, Y,»)#0. By Remark 5, 1t follows that if K is a stable set of
equilibria, then for any neighborhood U of K, a sufficiently small pertur-
bation g of f will have solutions in U.

We assert that if deg(f,X,Y,»)#0, then there 1s a stable subset K of
f~Y(y) which is compact and connected. If f~*(y) has only a finite number
of connected components, then this is a trivial consequence of D.3. Other-
wise, it can be shown as follows. The collection of all compact stable subsets
of f71(y) is non-empty [since f~!(y) is one of them by D.2], and it can be
partially ordered by inclusion. Any chain of compact stable sets as a lower
bound; one can readily verify that the intersection of nested compact stable
sets is a compact stable set. By Zorn’s lemma there is a minimal compact
stable set K. If K were not connected, then it could not be nunimal by
axiom D.3
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