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In psychological games the payoff to each player depends not only on what
every player does but also on what he thinks every player believes, and on what
he thinks they believe others believe, and so on. In equilibrium, beliefs are as-
sumed to correspond to reality. Yet psychological games and psychological equi-
libria allow one to model belief-dependent emotions such as anger and surprise
that are problematic for conventional game theory We are particularly interested
m issues of sequential rationality for psychological games. We show that although
backward mduction cannot be applied, and ‘‘perfect” psychological equilibria
may not exist, subgame perfect and sequential equilibria always do exist.  © 1989
Academic Press, Inc

1. INTRODUCTION

Principles such as subgame perfection (Selten, 1965) and sequential
rationality (Kreps and Wilson, 1982) serve, among other things, to restrict
the implicit threats that a player can use to his advantage in an extensive
form game. A threat that a certain choice will be made at some informa-
tion set should be disregarded if it would not be in the interests of the
player to make that choice were the information set actually reached. One
sometimes hears this view challenged on the grounds that a player might
carry out a threat (in violation of a sequential rationality constraint) as a
matter of pride, or for the sheer joy of retaliation. The standard response
is that if players are motivated by such emotional considerations, these
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should be reflected in the payoffs at the terminal nodes of the game tree.
As long as the correct utility function is employed, issues of credibility are
appropriately addressed by the usual solution concepts. While this an-
swer is adequate in the simplest examples, beyond these it is misleading.
A player’s emotional reactions cannot in general be independent of his
expectations and of his interpretation of what he learns in a play of a
game. Hence, we argue that in many cases the psychological payoffs
associated with a terminal node are endogenous, in the same sense as
equilibrium strategies are. Indeed, in some examples, no single set of
payoffs adequately summarizes the strategic situation.

Similar complications can arise whenever players’ utilites depend not
only on the physical outcome of a game but also on their beliefs before or
during play (even in simultaneous games). Consequently, the traditional
theory of games is not well suited to the analysis of such belief-dependent
psychological considerations as surprise, confidence, gratitude, disap-
pointment, embarrassment, and so on. The purpose of this paper is to
develop a framework more general than an extensive form game, that,
together with appropriately modified solution concepts, allows for a satis-
factory treatment of a broad range of psychological phenomena. The
principal distinguishing characteristic of what we call a psychological
game is that the players’ payoffs depend not only on what everybody
does but also on what everybody thinks. More precisely, each player’s
payoff depends on his hierarchy of beliefs. A player’s beliefs specify what
he thinks will happen (that is, a probability measure over the product of
others’ strategy spaces), what he thinks each other player thinks will
happen, and so on. Examples presented later show that it is natural for
higher order beliefs to appear in the utility functions.

In equilibrium we shall require that beliefs correspond to reality. Nev-
ertheless, their presence in the payoffs strictly enlarges the domain of
game theory. Furthermore, it prevents the application of backward induc-
tion as a method for solving for credible equilibria in extensive form
games. Trembling hand perfect equilibria (Selten, 1975) do not always
exist for psychological games. Our main result, however, is that much of
the rest of equilibrium theory can be maintained for psychological games.
The analog of Nash equilibrium exists under the same kind of conditions
as it does in conventional game theory. Despite the failure of backward
induction, so do subgame perfect equilibria and sequential equilibria.

An important precedent for our work is provided by Gilboa and
Schmeidler (1988). In their information-dependent games, a player’s util-
ity can depend upon his prior knowledge that the outcome will lie in a
particular subset of outcome space. These sets parametrize utilities just as
the players’ belief hierarchies do in a psychological game. Gilboa and
Schmeidler give examples that illustrate how emotions (including the ef-
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fects of surprise, revenge, and fashion-consciousness) can be modeled in
their framework. Their main concern, however, is to illuminate certain
paradoxes of common knowledge, whereas we are interested in exploring
the logic of sequential rationality in psychological games and proving
existence of solutions for games whose payoffs depend on belief hierar-
chies.' Our solutions are analogous to traditional equilibrium notions.
This is quite different from the approach Gilboa and Schmeidler take.
Their idea of an ‘‘informationally censistent play’’ combines axioms con-
cerning individual rationality with a fixed point requirement. Less closely
related, but also treating emotional factors in strategic analysis, is a recent
paper by Nalebuff and Shubik (1988).

We begin in Section 2 by studying normal form games only. This intre-
duces some of the essential ideas associated with psychological games,
while avoiding the complexities of the extensive form. Recall that in
traditional equilibrium analysis, the equilibrium strategy profile is taken to
be commeon knowledge among the players. If the same hypothesis is
adopted for psychological games, a single profile generates all players’
beliefs of all orders. Using this observation, we construct a ‘‘summary
form’’ having dimensions drastically lower than those of the original psy-
chological game, but capturing precisely the information needed to com-
pute Nash equilibria or equilibrium refinements. Existence of equilibrium
is established under fairly general conditions.

Several fully specified examples are presented in Section 2 using the
framework and notation developed there, but even an impressionistic
description of one psychological game may be helpful to readers at this
point. Think of a twe-person game in which only player 1 moves. Player 1
has twe options: she can send player 2 flowers, or she can send choco-
lates. She knows that 2 likes either gift, but she enjoys surprising him.
Consequently, if she thinks player 2 is expecting flowers (or that he thinks
flowers meore likely than chocolates), she sends chocelates, and vice
versa. No equilibrium in pure strategies exists. In the unique mixed strat-
egy equilibrium, player 1 sends each gift with equal probability. Note that
in a traditional finite game with only one active player, there is always a
pure strategy Nash equilibrium. That this is untrue in psychological
games demonstrates the impossibility of analyzing such situations merely
by medifying the payeffs associated with various outcomes: any medifica-
tion will yield a game with at least one pure strategy equilibrium.

Section 3 introduces psychological games in extensive form. In this
setting we can address ‘‘credible threat’ questions of the kind mentioned

! Gilboa and Schmeidler note that a natural extension of their model 1s to consider knowl-
edge about others’ knowledge, and so on. Our research was conducted independently of
therrs.
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earlier. An elementary example is illustrated in Fig. 1. Player I cares only
about physical outcomes, whereas 2’s payoffs at two of the terminal
nodes depend upon his initial expectations. If he is resigned at the begin-
ning of the game to the idea that 1 will choose u, then A = Sand B = 1,
and 2 chooses U if reached (one could imagine that this corresponds to his
choosing the greater monetary reward). Thus, in one credible equilibrium,
the pair (u; U) is played. But if 2 is confident ex ante that 1 will choose d,
2 would be bitterly disappointed if reached, and, in his fury, would choose
D because it harms 1 (say, A = 0 and B = 2). One sees that this corre-
sponds to another credible equilibrium, with choices (d; D). In neither
equilibrium is either player indifferent about his choice. In contrast, back-
ward induction yields unique outcomes in traditional games except when
there are ties in payoffs. The failure of backward induction in psychologi-
cal games results from the fact that when a node is reached, it does not
capture adequately the state of the game: the node identifies a history of
play, but not the players’ beliefs.

The inapplicability of backward induction implies that the usual proof
of the existence of a subgame perfect equilibrium cannot be translated to
psychological games. We show, however, that these games always have
equilibria analogous to subgame perfect equilibria and sequential equilib-
ria, respectively. Thus, there is no tension between the usual notions of
sequential rationality and the presence of psychological influences on
players’ behavior.

Some examples are worked out at the end of Section 3; Section 4
contains brief concluding remarks.

2. NORMAL ForM PsycHoOLoOGICAL GAMES
In this section we make no use of the extensive form of a game except

insofar as it describes the strategies available to each player. Neverthe-
less, many of the novel features of psychological games appear even in
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this normal form setting; examples are presented once the necessary defi-
nitions have been given. The natural analog to Nash equilibrium is shown
to exist under relatively modest assumptions. We turn now to the formal
definitions.

Let N={1,. . . , n} be the set of players, and for eachi € N, let A, be
the nonempty, finite set of actions available to player i. For any set X
(where the topology of X is understood), A(X) denotes the set of (Borel)
probability measures on X. Thus, 3, := A(A)) is the set of mixed strate-
gies of playeri. Let 3 := X ey 3, and 3, 1= X, 3,,i € N. Each strategy
profile o € % induces a probability distribution P, over the outcome set
(or set of pure strategy profiles) A := X ey A,.

A first-order belief for a player is a probability measure over the prod-
uct of the other players’ mixed strategy sets. Thus, the set of first-order
beliefs of player i is B! := A(S ). Let BY, ;= X, B! and B! := X ey B].
Endow B! with the weak topology. Since 3_, is a subset of a Euclidean
space, it is a separable metric space, and therefore B! is a separable
metric space. The sets of higher order beliefs are defined inductively for
k=1by

Bl .= AGC_, x BL, x - - - x BX),

k+1 . k+1 .= k
B—: C XﬁétBj ’ Bk+] C XzENBta

where for each k, B**! is endowed with the weak topology. The set of
player i’s beliefs is then B, := x3-; B%. endow it with the product topol-
ogy. This structure is familiar from the literature on games of incomplete
information (see, for example, Harsanyi, 1967-1968; Mertens and Zamir,
1985; Brandenburger and Dekel, 1985).

Note that each piece of information appears many times in the belief
hierarchy of player i. For example, a second-order belief is a probability
measure over 3 _, X BY, (this allows for correlation between beliefs about
others’ actions and beliefs about others’ first-order beliefs). Conse-
quently, one can compute the marginal of the second-order beliefs with
respect to X _,; unless the beliefs are nonsensical, this sheuld ceincide
with 1’s first-order beliefs. We say that beliefs satisfying the appropriate
marginal restrictions are coherent. If X and Y are two spaces and 6 € A(X
X Y), we denote by marg(8; X) the marginal probability measure of  on
X : marg($; X)(E) := 8(E X Y) for each measurable set E C X.

DEFINITION. b, = (b!, b2, . . ) € X7 B¥ = B, is coheretzt if for
eachk =1, marg(b**!,S_; x BL, x - - - x B¥;") = b*. Denote by B,(0) the
set of player i’s coherent beliefs.

Since each player knows that the other players are also rational, he
should not believe that they may entertain beliefs that are not coherent, or
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that they may believe that others may entertain beliefs that are not coher-
ent, and so on. That is, coherency should be common knowledge. The set
of beliefs for player / in which he is sure that it is common knowledge that
beliefs are coherent is denoted B, ; beliefs in B, are said to be collectively
coherent.? Let B := X,eny B,. For an extensive discussion on common
knowledge of coherency, and alternative characterizations, the reader is
directed to Brandenburger and Dekel (1985).

Player i’s utility function ii,: B, x A — R depends on the outcomes (as
in the standard literature) and also on his beliefs. We assume that player i
seeks to maximize the expected value of i7,. Extend &7, to u,: B, X 3 — R
by

ulb,, @) := Ses Po((b,, t) foreach b, € B,and o € 3.

We interpret u,(b,, o) to be the payoff to player i if he believed b, and
then found out that o was actually played. As in the standard theory of
games, the payoffs for player i are defined first on the outcomes (given
any belief profile b) and only afterward extended by taking expectations to
all of the mixtures included in 2. The reason is that player / is presumed
not to observe the mixture used by any player j # i. On the other hand,
there is no requirement that the payoffs be linear in the beliefs. In particu-
lar, player i may get the same payoff if he expects j to deliver checolates,
and she does, as he would if he expected her to deliver flowers and she
did. Yet his payoff might be very different if he expected her to randomize
and she did (perhaps because he might think she is indecisive).

DEFINITION. A normal form psychological game G = (Ay, . . . ,A,;

ui, . . . , Uy,) consists of an action set A, and a utility function u, : B, X
3, — R for each player i.

In general, players’ beliefs may reflect their disagreement over various
issues. But in equilibrium, all beliefs are assumed to conform to some
commonly held view of reality. If o is the equilibrium profile in question,
each player i believes (with probability 1) that his opponents follow o_,,
that each opponent j # ¢ believes that his opponents follow o —,, and so on.
We denote this profile of beliefs by () = (B1(0), . . . , Ba(0)) € B.

2For eachj € Nand k = 1, let Y*:= x i, B!, Inductively define, fora =0, 1, . . . , the
sets

X*¥a) := projection of B, (&) mto Y¥,j € Nand k = 1,
X" () .= X,z XHa) (regard 1t as a subset of x i, BL,), and
B(a+1):={b, € B(a)| forevery k=1, b*' (3 _, x X*(a)) = 1}.

Then B, 1= N, B @) is the set of collectively coherent beliefs of player 1 € N.



66 GEANAKOPLOS, PEARCE, AND STACCHETTI

Definition. A psychological Nash equilibrium of a normal form psy-
chological game G is a pair (b, ) € B x 3, such that

() b = B(6) and
(ii) for each i € N and o, € 3, u,(b,, (0,, 6-)) < u,(b,, &).

Examples
The Bravery Game

Player 1 must publicly take a decision, and is concerned with what his
friends (player 2) will think about him. He can take a bold decision, which
exposes him to the possibility of danger, or a timid, safe decision, so his
action space is A; = {bold, timid}. His friends do not choose any action in
the game, thus A, = {0} (since their action space is a singleton, we omit
mention of their strategy in what follows). Player 1 chooses bold with
probability p and timid with probability 1 — p. His payoff depends not
only on what he does but also on what he thinks his friends think of his
character (that is, on what he thinks they think he will do). In general their
beliefs are given by a distribution on p, but to keep things simple, let us
suppose that player 1 cares only about the mean g of his beliefs about the
mean of their beliefs. In particular, we suppose that player 1 would prefer
to be timid rather than bold, unless he thinks that his friends expect him to
be bold, in which case he prefers not to disappoint them.

Players 2 prefer to think of their friend as bold; in addition, it is good for
them if he is bold. We let g represent their expectation of p (so g is player
I’s expectation of g). The game and payoffs are described in Fig. 2.

Note that unless ¢ = %, player 1 prefers to be timid rather than beld.
Players 2 always prefer that player 1 act boldly, especially if they expect
him to. In equilibrium we must have p = g = g. It would be very nice for

2-§, 21 +q)
boid

timid
31-§. 1-q

FIGURE 2
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players 2 to believe that their friend is bold (g = 1), but if he is not, then in
equilibrium they cannot hold these beliefs.

Equilibrium beliefs must correspond to equilibrium play, yet they can
still exercise a decisive influence on what happens. In a traditional game
with one active player there is either a unique equilibrium or a continuum
of equilibria, all with the same payoff for the active player. Yet in the
bravery game there are three equilibria.

In one equilibrium p = g = § = 1, and the payoffs are (1, 4). In a second
equilibrium p = ¢ = ¢ = 0, and the payoffs are (3, 1). In the third
equilibrium p = g = g = # and payoffs are (3, 7). Player 1 is best off when
his friends expect little. but if their expectations are high he is trapped into
meeting them, and then in a vicious cycle (for player 1) they are justified
in holding such a lofty opinion of him.

A Confidence Game

Player | has invited a woman for a date, but he is not sure she will
accept. He cannot tell whether she is player 2, who likes him, or player 3,
who does not (nature chooses the woman’s identity, with equal probabili-
ties). Even if she likes him, it is not certain that she will accept. She will
go out with him only if she thinks he is quite confident of himself, and that
she measures by his probability assessment of being accepted. The payoff
to player 1 depends not only on whether he is accepted or rejected but
also on his expectations. If his invitation is accepted and he was pessimis-
tic, he will be happy, but even more so when he expected it and was ready
to be accepted. If he is rejected, he will be extremely depressed if he was
optimistic, but his disappointment is moderated by initial pessimism.

The extensive form of the game and the payoffs are presented in Fig. 3.
Note that g is 1’s expectation of p, and s is 1’s expectation of r. Moreover,
g represents player 2’s expectation of player 1’s expectation of her ac-
cepting him, and similarly § is 2’s expectation of 1’s expectation of player
3 accepting the invitation. The first move is by nature (player 0). When

1+q+s,3(G+3),0

reject ™ —4(q+s),0,1

FIGURE 3
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g + s is higher, player 1 is happier to be accepted. but also more devas-
tated by rejection. When g + § > 34, player 2 prefers to accept 1’s offer,
but otherwise does not. Player 3 always prefers rejection.

We can easily calculate that there are again three equilibria; in the first,
p=qg=g=1landr=s=§=0and the payoffs are (—1, £, ) to the three
players. In the second, p = g = g =0 = r = s = §, and the payoffs are (0,
3, 3). In the last equlibrium, p = g =g =34, r = s = § = 0, and the payoffs
are (—%, 4, 3). Player 1 has the best chance of an affirmative response in
equilibrum 1, in which he is the most confident. But his disappointment is
so great when he is rejected by player 3 that the most confident equilib-
rium is also the worst equilibrium for him.

Existence Theorem for Nash Equilibria of Normal Form
Psychological Games

The preceding examples were relatively easily described, because each
player cared about lower order beliefs in his belief hierarchy, and only
about expectations. In general, a complete description would need to
include payoffs associated with higher level beliefs, such as: *‘I, player 1,
think that player 3 will choose ‘heads’, but I think that 2 thinks 3 will play
‘tails’, and I think 2 thinks I think 3 will play tails, . . . .”” Fortunately,
this kind of information is unnecessary for the purpose of equilibrium
analysis. As noted before, any candidate equilibrium (b, o) must involve
belief hierarchies reflecting common knowledge of o. We therefore define
a “‘summary form’’ of a simultaneous psychological game, which contains
Jjust that information needed to compute the Nash equilibria of the game.

Consider a normal form psychological game G = (A}, . . ., A,;
Uy, . . ., uy). For o, 7 € 3 and i € N, let w,(o, 7) := u,(8,(0), 7);
w, 3 X 3 — R is called the summary utility function of player i, and
G:=(Ay,. .., A w1, . .., w,)is the summary form of G.

LEMMA. The function B, : 2_—9 B, is continuous when B, is given the

product topology. Hence, ifu,: B, X X — R is continuous, w,: % X % — R
is continuous.

The proof is straightforward and is omitted.

THEOREM. Let G = (Ay,. .., Ay u1,. . . , uy) be a normal form

psychological game. Assume u, : B, X 3 — R is continuous for each
i € N. Then G has a psychological Nash equilibrium.

Proof. Let BR,: 3 — 3%, be player i’s “‘best response’ correspon-
dence, defined for each o € ¥ by

BR,(0) := {#, € 3|w,(0,(#,, o)) = w,(o,(1,,0_)) foralr €3}
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Note that for each b, € B,, 7,7 €3, and A € (0, 1),
u b, A+ (A = N7) = ruy(b,, )+ A = Nu,b,, 7).

In particular this implies that w,(o, 7) is concave in 7,. Therefore, the set
BR,(0) is convex. Since w, is continuous, the Maximum theorem (see, for
instance, Berge, 1963) implies that BR, is upper semicontinuous and com-
pact valued. Therefore, the correspondence BR : 3 — 3, defined by
BR(0) := X,en BR(0), o € 3, admits a fixed point &. It is easy to verify
that (B8(&), &) is a Nash equilibrium of G. Q.E.D.

We conclude this section with a discussion of the continuity assumption
in the existence theorem. Evidently, Theorem 1 is true if w, is continuous,
for which the continuity of u, when B, is given the product topology is
sufficient but not necessary. As we show with an example, the continuity
of u, when B, is endowed with the product topology is not completely
innocuous. Consider the following situation: a man is deciding whether or
not to give a woman flowers. The psychological phenomenon we wish to
capture is the following. The woman may become unhappy for either of
two reasons: she might expect flowers and not receive them, or she might
conclude from his behavior that he is willing to disappoint her. Thus, even
if she is not expecting flowers but believes that he thinks she is expecting
flowers, she will be unhappy not to receive flowers, because this indicates
his willingness to disappoint her. To carry the story one step further, if
her fifth-order beliefs are that his fourth-order beliefs are that her third-
order beliefs are those described in the previous sentence, then, regard-
less of her third-order beliefs, she would be unhappy not to receive
flowers. As this reasoning can be continued indefinitely, one sees that
unhappiness at not receiving flowers may be triggered by a belief of arbi-
trarily high order. Formally, we define her utility function as follows. Let
p be the probability that he chooses to take her flowers, and g, be her
expectation of p. Inductively define, for £k = 1,

g = his expectation of gy, and
g2u-+1 = her expectation of gy.

Her ‘“‘level of disappointment’” is a function of her hierarchy of beliefs,
defined by [(b,) := max{ga+1|k = 0}. Her utility function is then specified
by Ijl—z(bz, O') =0 + (1 - O')(l - l(bz)), for each bz € B>, where o = 1
represents the outcome “‘he takes her flowers,”” and o = 0 the outcome
‘*he doesn’t take her flowers.”” The reader may check that u, : B; X 2| —
R is not continuous.
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3. EXTENSIVE PsycHoOLOGICAL GAMES

This section restricts attention to a rather simple class of extensive
psychological games. In principle, a player’s utility might depend not only
on his beliefs at the beginning of the game but also on his beliefs as play
progresses (about others’ beliefs at various junctures, as well as their
strategies). Full-blown extensive belief hierarchies of this kind are not
well understood and raise some difficult questions concerning coherency
restrictions and equilibrium analysis. In particular it is not appropriate to
suppose that all beliefs at every information set are generated by the
hypothesis that the strategy profile o is common knowledge. We plan to
address these issues in subsequent work. Here we avoid them by consid-
ering utility functions that depend upon ‘‘reduced’ belief hierarchies.
Specifically, a player’s utility depends only on the strategy profile played,
his initial beliefs about what will be played, his initial beliefs about others’
initial beliefs about what will be played, and so on. Thus, the belief
hierarchies studied here have the same structure as those of Section 2.

We begin by developing the necessary notation for the extensive form,
and then proceed to questions of perfection and sequential rationality.

The Game Form

A game form F = (N, V, <, m, p, I1, A) consists of a set of players N =
{1,. . . , n}, afinite set of vertices V with a partial order <, a function m
specifying for each nonterminal node which player is on the move, a
system of probability distributions p specifying the moves of nature, an
information partition IT of the nonterminal nodes, and an action corre-
spondence A mapping each nonterminal node into a set of actions.

The partial order < gives V the structure of a tree with root vy € V (i.e.,
vo=vforallv € V, where x = y means x <y or x = y) and terminal nodes
T(t € Tiff thereis no v € V such that r < v). For each vertex v there is a
unique path v| := {x € V|x < v} leading from v, to v. The set of
immediate successors of a nonterminal node v is denoted by s(v). For
each nonterminal node v, A(v) is the set of actions available at v. There is
a one-to-one map between s(v) and A(v): for any x € s(v) there is a unique
a € A(v) that leads from v to x.

The move function m : V/IT— {0, 1, . . . , n} specifies for each nonter-
minal vertex v what player chooses an action at v. Player 0 represents
““nature”’: if m(v) = 0, then the action at v is chosen randomly according
with the probability distribution p(v). The system of probability distribu-
tions p is common knowledge among the players N.

If v is a nonterminal node and m(v) = i # 0, then II(v) represents the set
of all vertices that player i cannot distinguish from v. If m(v) = 0, then
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II(v) = {v}. A player always knows when he is on the move and what
actions are available. Therefore, we assume:

(I1) if m(x) # 0 and y € II(x), then m(y) = m(x) and A(y) = A(x).

LetII, i=0,. .., N, denote the information sets where player i (or
nature) is on the move: I1* := {II(x)|m(x) = i}. (I1) implies that A(v) is
constant on each & € I1'. Hence, for every h € I1* and any v € A, one can
define A,(h) := A(v). Finally, we assume:

(I2) each player i € N has perfect recall (see Kuhn, 1953).

Initial Beliefs

DEFINITION. A behavior strategy for player i associates with every A
€ IT* a probability distribution o,(h) over A,(h). Let 3,(h) := A(A,(h)) and
3, denote the set of player i’s behavior strategies, and define % := X oy 3,
and 3, 1= X, 3.

The set of initial beliefs for an extensive game form have the same
structure as the sets of beliefs in normal form games. We retain the
relevant notation from Section 2, along with the notions of coherency and
collective coherency defined there. Thus, B, denotes the set of player i’s
collectively coherent beliefs and B := X ey B,.

Utility Functions

Each strategy profile o € 3 (together with the system of probability
distributions p) induces a probability distribution P, over the terminal
nodes 7. Player i’s utility function i1, : B, X T — R depends on his intial
beliefs and on the outcome reached. We shall assume that player i only
cares about the expected value of #,, and extend his utility function to
u,: B, x3— Rby

u(b,, o) := Zer Po(Duti(b,, 1).

DEFINITION. An extensive psychological game T" .= (F, (u,),en) cOn-
sists of a game form F together with a utility function u, for each player.

Subgame Perfection

Once we have identified the strategy spaces 2,, the hierarchies of initial
beliefs B,, and the payoffs u,, a psychological game in extensive form can
also be thought of as a psychological game in normal form. We can ac-
cordingly define a Nash equilibrium of I' = (F, (u,).en) to be any pair
(b, 6) € B x 3, such that
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ul(bla (0-19 0’\-—l)) £ ul(bl’ OA-) for all 0-1 e 21,

and b, = B.(6¢) for all i € N, just as we did for psychological games in
normal form. Recall that the map B, : 3 — B, is the embedding of 3 in B,
according to which o is ‘“‘common knowledge.”

But the extensive structure of F is essential for the natural extension of
subgame perfection to psychological games. For any b € X, ey B, let I'(b)
= (F, (u,(b,, )).en) be the standard (nonpsychological) extensive form
game whose payoffs are computed according to u,(b,, -), iEN.

DEFINITION. The pair (b, 6) € B x 3 is a subgame perfect (respec-
tively, trembling hand perfect) psychological equilibrium of T =
(F, (u).en) If it is a psychological Nash equilibrium of I' and & is a sub-
game perfect (respectively, trembling hand perfect) equilibrium of r'b),
in the traditional sense.

In the standard game of perfect information shown in Fig. 4, the unique
subgame perfect equilibrium can be found by backward induction: if
reached, players 2 and 3. respectively, have every incentive to play g = 1
and r = 1. Knowing this, player I plays p = 0. The game summarized in
Fig. 5 adds a psychological component to the payotfs of players 2 and 3:
the satisfaction that each derives from hurting player 1 is proportional to
the amount by which 1’s action is perceived to have lowered the (stan-
dard) payoff of the player in question. The number g represents player 3’s
expectation of the probability that 2 plays down. The number 7 represents
player 2's expectation of the probability that 3 would play down if
reached. For example, if 1 chooses up and player 2 thinks that had down
been chosen, player 3 would likely have played down, then 2 revels in
hurting player 1 and chooses up. Note that here it is not possible to start at
the end of the tree and work backward. What 2 wants to do depends on
how much he thinks he lost by I's failure to choose down; that loss

99, 0,10

100, 10, 1

FIGURE 4
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99, 10r- 1, 10

100, 10, 1

FIGURE §

depends on what 3 would have done if reached. But 3’s desired choice
depends in turn on what he thinks he would have received in the upper
half of the tree, and this is determined by 2’s expected behavior. It is easy
to check that there is no equilibrium in pure strategies. There is, however,
a unique subgame perfect psychological equilibrium in mixed strategies: 2
and 3 each randomize in such a way as to make the other indifferent
between his two pure strategies. In the solution, § =g =4%,7=r =%, and
player 1 chooses p = 0.

The next example shows that in psychological games, trembling hand
perfect equilibria (Selten, 1975) need not exist. In Fig. 6. p is player 1’s
expectation of player 2’s expectation of the probability that 1 chooses up.
In equilibrium p = p. All candidates for a trembling hand perfect psycho-
logical equilibrium involve 2 playing up with certainty (g = 1). But in the
only psychological equilibrium in which 2 plays g = 1, player 1 chooses
p = 0. This induces the standard game shown in Fig. 7. However, (a;; 8))
is not trembling hand perfect in the induced game; the only such profile is
(ay; By).

This raises the question of whether subgame perfect equilibria and
sequential equilibria always exist in psychological games. Fortunately,

FIGURE 6
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2,0

FIGURE 7

we can answer in the affirmative. For the next definition, recall from
Kreps and Wilson (1982) that a belief system u associates with each
information set a probability distribution over the nodes in that set. Let M
be the set of belief systems for an extensive psychological game T'.

DEFINITION. The triple (13, w,6) EB X M X 3 is a sequential psycho-
logical equilibrium of T' = (F, (u).en) if (b, 6) is a psychological Nash
equilibrium of I' and (w, &) is a sequential equilibrium of I'(b), in the
traditional sense.

THEOREM. Let T = (F, (u,)en) be an extensive psychological game.
Assume u, : B, X 3 — R is continuous for each i € N. Then T has a
subgame perfect psychological equilibrium. Indeed, I has a sequential
psychological equilibrium.

Proof. lete > 0. Foreachi € Nand h € IT, let
38(h) := {r € 3,(h)|7(a) = ¢ for every a € A,(h)}.

I' denotes the perturbed extensive psychological game obtained from I
by restricting player i’s strategies (i € N) to the set

3¢ = {o, € 3,|o(h) € 3i(h) for each h € IT'}.

Let3®:= Xen 3. fiE€EN,0,€3, h €11, and 7, € 3,(h), then o,/7, will
denote the behavior strategy for player i specifying the mixture 7, at the
information set 4, and o,(k’) at every other information set 4’ € IT1". For
g €2 e>0,i €N, and h € [T, define

BRZ(O-) = {%1 € Ef(h)lw,(cr, (0-1/7’:19 0-—1))
= wy(o, (o/7,, o)) forall r, € Zi(h)}.
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The correspondence BR§ : 3 — X%(h) is u.s.c., and compact and convex
valued. Therefore, the correspondence BR® : 3° — 3° (defined by the
coordinate correspondences BR§, h € I1/I1%) admits a fixed point 6. The
strategy profile ¢ is a Nash equilibrium of I'#(3(6¢)).

Let {¢,} be a sequence of positive numbers converging to 0, and {6} be
a sequence of strategy profiles such that 67 is a Nash equilibrium of
I'=(B(6")) for each r € N. Since X is compact, {6} has an accumulation
point &. Since 8 is continuous, it is not difficult to see that (8(6), ) is a
Nash equilibrium of I" (and that & is a Nash equilibrium of I'(8(5))).
Moreover, for allr =0, i € N, h € I1}, and 7, € 3%(h), we also have

Sier PEOTB(G), 1) = Sier Plospr, o) (DTBET), 1),

where for any y € 3, we mean by PZ(t) the probability that terminal node ¢
is reached if play proceeds according to vy, conditional on & being reached.

Observe that by passmg to subsequences we may suppose that for all he
II'and 7, € 3,(h), P4 and P((,r/T ¢, converge to what we shall call P and
P((,/, P respectlvely (If & reaches h with positive probability, then Ph
= Pland Pk, s )= Pl 6.)) Since 4, and B, are continuous, in the limit

Sier Po@i(B(6), ) = Sier Pls r, ¢ y(DT(BLS), D).

Hence (8(6), &) is a subgame perfect psychological equilibrium of I'. For
eachi € N and h € IT*, one can immediately compute conditional proba-
bilities w(h) to verify that (B(6), u, &) is a sequential equilibrium of the
psychological game T'. Q.E.D.

We now present an example concerning the evolution of sympathy
between players. Its purpose is twofold. First, it demonstrates the reason-
ing involved in analyzing a psychological game with substantial dynamic
structure. Second, it illustrates the structural features of equilibria of
games in which a player builds sympathy not by being generous, but by
being more generous than expected. Such considerations are frequently
significant in actual strategic situations, and their implications, as we
show, can be somewhat counterintuitive.

ExXAMPLE. A dynamic prisoner’s dilemma game. Consider a finite
horizon dynamic prisoner’s dilemma game in which player 2 becomes
sympathetic to player 1 if 1’s play in early periods is unexpectedly cooper-
ative. Specifically, player 2’s payoffs in every period are modified by a
“‘sympathy factor’” a, hereafter called the stock. The stock « is increased
(or decreased) at the end of every period by an amount proportional to the
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FIGURE 8

difference between player 2’s expectation of 1’s choice and player 1’s
actual choice. Suppose the current stock is «. Then the payoffs for the
present period are given by the matrix in Fig. 8.

That is, player 2’s payoff from cooperation is augmented by «, the
extent to which he is sympathetic to 1. If 2 expects I to choose ¢ with
probability p, then next period the stock will be o + k(1 — p) if 1 chooses
¢, and a ~ kp if 1 chooses d, where the “‘sympathy coefficient’” k= 0is a
given parameter. Thus, the stock « is increased whenever 2 is pleasantly
surprised by 1’s action, and decreased otherwise.

Denote by G](a) the T-period game with initial stock o« and sympathy
coefficient k. Periods in the game G/(«) are numbered in decreasing or-
der, so, for example, period T is chronologically the first period of Gi(a),
and period 1 is the last.

Recall that in the traditional finitely repeated prisoner’s dilemma game
G(0), the only equilibrium path involves the outcome (d, d) in every
period, and the only equilibrium payoff is (T, T). We are interested in
whether 1’s ability to manipulate 2’s emotions in the psychological game
puts 1 at a relative advantage, and whether his payoff exceeds that in the
traditional prisoner’s dilemma game.

For concreteness, we first discuss the specific game G3(0), that is, the
three-period game in which the initial stock of sympathy is 0, and the
coefficient of sympathy k is 2. Here the term ‘‘equilibrium’ will mean
“‘subgame perfect psychological equilibrium.”’ The game has no equilib-
rium in pure strategies. If player 1 were expected to play d in period 3, he
could increase « to 2 by surprising 2 with the choice c. It is easy to check
that all equilibrium payoffs of G%(2) are so much better for 1 than his
equilibrium payoff in G3(0) (the subgame that would result if 1 played d in
period 3) that he would want to play ¢ in period 3, a contradiction. On the
other hand, if | were expected to play c. doing so would leave the stock at
0. But in the two-period continuation game, a stock of 0 turns out to be no
better for 1 than a negative stock, so he would defect to d in period 3.
Thus, in any equilibrium, 1 must randomize in period 3.

Of the two equilibria of G3(0), the simpler is as follows. In period 3,
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player 2 plays d and 1 chooses ¢ with probability 4. Consequently, the
stock in period 2 is either —1 or 1. In the former case, no further coopera-
tion occurs on either side, and each player receives a payoff of 2 in the
two-period subgame (not counting the payoff from period 3). In order that
1 be willing to randomize in period 3, his payoff in the subgame reached if
he cooperates must be 3 (balancing the one unit cost of cooperation in
period 3). The equilibrium achieving this in the subgame involves 1 play-
ing c¢ in period 2 (leaving him no opportunity to raise « above the critical
level of 1) and d in period 1, while 2 plays d in period 2 and cooperates
with probability % in period 1. Player 2 is willing to play d in period 2 and
to randomize in the final period because when o« = 1, he is indifferent.
Whether 1 plays ¢ or d in period 3, his supergame payoff is 3, exactly what
it would be in a standard prisoner’s dilemma game with an unsympathetic
opponent. Ironically, player 2’s expected payoff is 13. In this case, it is
better to be manipulated than to be the manipulator.

In the second equilibrium, player 1 again cooperates with probability 3
in period 3, but player 2 cooperates with certainty. Player 2’s incentives
for doing so come from the (subgame perfect) ‘‘threat’’ that if the stock in
the two-period subgame is 1 and he has cooperated, the resulting equilib-
rium will be the same as that described in the preceding paragraph. If he
has not cooperated, a much less attractive equilibrium for him results: in
both remaining periods, player 1 chooses d and player 2 chooses c. In the
event that 1’s choice in period 3 is d, there is no further cooperation,
regardiess of 2’s play in period 3. The payoff pair in this second equilib-
rium is (13, 12).

Note that the first of the two equilibria of G3(0) could be called a state-
space equilibrium, because behavior depends only on the period and the
current stock. The second could not: although player 2’s action in period
3 cannot influence the state in period 2, his period 3 choice does affect the
equilibrium in the subgame G%(1). In the games G3(0) with T > 3, there
continue to be multiple equilibria because a variety of behaviors on 2’s
part can be enforced by credible threats as before. But no matter how long
the game, there is always a state-space equilibrium in which player 1
receives expected payoff T (as though he were in a standard prisoner’s
dilemma game). In this equilibrium, he cooperates with probability 4 in
period T while 2 plays d. If the stock in period T — 1 is —1, there is no
further cooperation on the equilibrium path. If instead the stock is 1,
player 1 cooperates in all subsequent periods except the last. Player 2
cooperates toward the end of the game. For example, if T = 25, in the
subgame G2* (1) he plays d in periods 24 to 4, inclusive, and then cooper-
ates with probability 75 in period 3 and with certainty in periods 2 and 1.
(There is a variety of other endgame behaviors by 2 that are payoff-
equivalent and satisfy the relevant incentive constraints.) This amount of
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cooperation is just enough to compensate player 1 for having cooperated
24 times.

Solutions for other positive values of the sympathy coefficient £ are
similar. The state-space equilibrium for k € [0, 1) exhibits no cooperation
on the equilibrium path.

4. CONCLUSION

Emotional reactions often depend on expectations. An event might
provoke in someone feelings of disappointment or relief, gratitude or
anger, or pride or embarrassment depending on what the individual ex-
pected ex ante, or thought others expected, and so on. Psychological
games provide a framework for the formal analysis of strategic settings in
which expectations and emotions play a role. Our work is complementary
to that of Gilboa and Schmeidler (1988) whose information-dependent
games are a closely related alternative means of extending traditional
game theory. We formulate the natural analogs of Nash equilibrium and
several of its refinements in psychological games, and show by a series of
exampies that they exhibit novel properties. These include multiplicity of
subgame perfect equilibria in some perfect information games (without
ties in payoffs) and the necessity for randomization in certain games with
only one active player.

Equilibrium analysis in psychological games suffers from an extra
source of simultaneity: payoffs associated with a given strategy profile are
generated endogenously and differ across equilibria of the game. Conse-
quently, backward induction no longer affords a proof of the existence of
subgame perfect equilibria. Indeed it turns out that the simplest analog of
trembling hand perfect equilibrium need not exist in psychological games.
On the other hand, we prove the existence of subgame perfect and se-
quential psychological equilibria. Thus, to return to the discussion that
opened the Introduction, there is no fundamental tension between the
presence of emotional factors in decision-making and the imposition of
sequential rationality.

This paper restricts attention to a relatively simple class of extensive
psychological games in which only initial beliefs enter the utility function.
More generally, a player’s payoff might depend, for example, upon his
opinion at some information set that he did not expect to reach, about
what some other player will conclude subsequently about the progress of
play. Extending the domains of the utility functions raises complicated
questions concerning the appropriate formulation of the extensive belief
hierarchies, the degree of common knowledge that should be imposed by
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an equilibrium theory on agents off the equilibrium path, and a number of
related issues. We hope to study these problems in future work.
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