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Abstract

We use a simple agent based model of value investors in financial markets to
test three credit regulation policies. The first is the unregulated case, which
only imposes limits on maximum leverage. The second is Basle II and the
third is a hypothetical alternative in which banks perfectly hedge all of their
leverage-induced risk with options. When compared to the unregulated case
both Basle II and the perfect hedge policy reduce the risk of default when
leverage is low but increase it when leverage is high. This is because both
regulation policies increase the amount of synchronized buying and selling
needed to achieve deleveraging, which can destabilize the market. None
of these policies are optimal for everyone: Risk neutral investors prefer the
unregulated case with low maximum leverage, banks prefer the perfect hedge
policy, and fund managers prefer the unregulated case with high maximum
leverage. No one prefers Basle II.
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1. Introduction

The recent crash in home and mortgage prices, and the ensuing global
recession, has brought forth numerous proposals for the regulation of lever-
age. The trouble is that many of these proposals ignore the mechanism of
the leverage cycle, and thus might unwittingly do more harm than good.

Leverage is defined as the ratio of assets held to wealth. A homeowner
who buys a house for $100 by putting down $20 of cash and borrowing the
rest is leveraged 5 to 1. One reason leverage is important is that it measures
how sensitive the investor is to a change in asset prices. In the case of the
homeowner, a $1 or 1% decline in the house price represents a 5% loss in
his wealth, since after he sells the house and repays the $80 loan he will
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only have $19 out of his original $20 of capital. Limiting leverage therefore
seems to protect investors from themselves, by limiting how much they can
all lose from a 1% fall in asset prices. Basle II1 effectively puts leverage
limits, through rules for eligible financial collateral, on loans banks can give
to investors, and furthermore it ties the leverage restriction to the volatility
of asset prices: if asset prices become more likely to change by 2% instead of
1%, then Basle II curtails leverage even more. At first glance this seems like
good common sense.

The leverage cycle, however, does not arise from a once and for all ex-
ogenous shock to asset prices, whose damages to investors can be limited by
curtailing leverage. On the contrary, the leverage cycle is a process crucially
depending on the heterogeneity of investors. Some investors are more opti-
mistic than others, or more willing to leverage and buy than others. When
the market is doing well these investors will do well and via their increased
relative wealth and their superior adventurousness, a relatively small group
of them will come to hold a disproportionate share of the assets. When the
market is controlled by a smaller group of agents who are more homogeneous
than the market as a whole, their commonality of outlook will tend to re-
duce the volatility of asset prices. But this will enable them, according to
the Basle II rules, to leverage more, which will give them a still more dispro-
portionate share of the assets, and reduce volatility still further. Despite the
leverage restrictions intended from Basle II, the extremely low volatility still
gives room for very high leverage.

At this point some exogenous bad luck that directly reduces asset prices
will have a disproportionate effect on the wealth of the most adventurous
buyers. Of course they will regard the situation as an even greater buying
opportunity, but in order to maintain even their prior leverage levels they
will be forced to sell instead of buying. At this point volatility will rise and
the Basle II lending rules will force them to reduce leverage and sell more.
The next class of buyers will also not be able to buy much because their
access to leverage will also suddenly be curtailed. The assets will cascade
down to a less and less willing group of buyers. In the end, the price of the
assets will fall not so much because of the exogenous shock, but because the
marginal buyer will be so different from what he had been before the shock.
Thus we shall show that in some conditions, Basle II not only would fail to

1Note that we do not refer here to the minimum leverage ratio introduced in Basle III.
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stop the leverage build up, but it would make the deleveraging crash much
worse by curtailing all the willing buyers simultaneously. The policy itself
creates systemic risk.

We shall also see that another apparently sensible regulation can lead
to disaster. Common sense suggests it would be safer if the banks required
funds to hedge their positions enough to guarantee they can pay their debts
before they could get loans. The trouble with this idea is that when things
are going well, the most adventurous leveragers will again grow, thereby
lowering volatility. This lower volatility will reduce their hedging costs, and
enable them to grow still faster and dominate the market, reducing volatility
and hedging costs still more. Bad luck will then disproportionately reduce
the wealth of the most enthusiastic buyers. But more importantly, it will
increase volatility and thus hedging costs. This will force further selling by
the most enthusiastic buyers, and limit the buying power of the next classes
of potential owners. In just the same way as Basle II, the effort to impose
common sense regulation of leverage can create bigger crashes.

In recent years a variety of studies including ?, ?, ?, ?, ?, and ? have made
it clear that deleveraging can cause systemic financial instabilities leading to
market failure, as originally discussed by ?. The specific problem is that
regulatory action can cause synchronized selling, thereby amplifying or even
creating large downward price movements. In order to stabilize markets a
variety of new regulatory measures have been proposed to suppress such
behavior. But do these measures really address the problem?

In this paper we focus on the systemic risk component of overlapping
portfolios. By systemic risk here we mean the default of financial institutions
generated by the internal dynamics of the financial system. Such defaults
are typically synchronized and in more serious cases involve the default of a
substantial number of agents. Our example here is simple, as there is only
one risky asset. Contagion is transmitted between agents when they buy or
sell the asset, and as we will see, the use of leverage can lead to market crises.
A key point in this study is that crises emerge endogenously, under normal
operation of the model – there are long periods where the market is relatively
quiet, but due to the build up of leverage, the market becomes more sensitive
to small fluctuations (which would at other times have negligible effect).

Of particular interest here are leverage constraints, which are a significant
part of financial regulation. These constraints are implemented in numerous
ways, most influential in the form of capital adequacy rules in the Basle II
framework and as margin requirements and debt limits in the Regulations
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T, U, and X of the Federal Reserve System. Margin requirements were
established in the wake of the 1929 stock market crash with the belief that
margin loans led to risky investments resulting in losses for lenders (?). ?

discusses the regulation, historical background, accounting mechanics and
economic principles of margin lending according to Regulations T, U, and X.

In comparison to straightforward leverage constraints, the Basle II cap-
ital adequacy rules classify and weight assets of banks according to credit
risk. Banks regulated under the Basle II framework are required to hold
capital equal to 8% of risk-weighted assets. A recent case study of the Bank
of Canada discusses unweighted leverage constraints as a supplement to ex-
isting risk-weighted capital requirements (?). The second of the Basle II
Accords (Basle II) capital adequacy regulations added a significant amount
of complexity and sophistication to the calculation of risk-weighted assets. In
particular, banks are encouraged to use internal models, such as value-at-risk
(VaR), to determine the value of risk-weighted assets according to internal
estimations. In a nontechnical analyses of the Basle II rules, ? provides an
easy accessible analysis of both the Basle I and Basle II framework.

? provide an extensive overview of leverage constraints, pointing out that
regulatory constraints on leverage are generally fixed limits that do not vary
over time or with changing market conditions, and suggest that from a mi-
croprudential perspective fixed leverage constraints result in large variations
in the level of risk. Recent studies of central banks also conclude that current
regulatory leverage constraints are inadequate (??). From a macropruden-
tial perspective internal estimations of banks appear to be cyclically biased
in determining the value of risk-weighted assets, contributing to a procyclical
increase in global leverage (?). ? and ? have also argued that the Basle II
regulations fail to consider the endogenous component of risk, and that the
internal models of banks can have destabilizing effects, inducing crashes that
would otherwise not occur.

Computational agent-based models have gained popularity in economic
modeling over the last decades and are able to reproduce some empirical
features of financial markets that traditional approaches cannot replicate(?).
An advantage of this approach is the ability to implement institutional fea-
tures accurately and to be able to simulate any model setup, without the
constraints of analytic tractability. An extensive review of financial multi-
agent models can be found in ? and ?. ? has focused more on models with
many types of agents and ? concentrating more on models with a few types
of agents and the effects of heterogeneous strategies.
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In this paper we use an agent-based financial market model introduced by
? to test the performance of several credit regulation policies. The model in-
troduced by ? will be used as a baseline. In this work, the model is extended
to allow short selling and to incorporate different regulation policies. The
use of this simulation model allows us to explicitly implement and test any
given regulatory policy. We test three different cases: (1) An unregulated
market, (2) the Basle II framework and (3) a hypothetical regulatory pol-
icy in which banks completely hedge against possible losses from providing
leverage (while charging their clients the hedging costs). We find that when
leverage is high both of the regulatory schemes fail to guard against systemic
financial instabilities, and in fact result in even higher rates of default than
no regulation at all. The reason for this is that both regulatory policies com-
pel investors to deleverage just when this is destabilizing, triggering failures
when they would otherwise not occur.

Agent-based models have often been criticized for making arbitrary as-
sumptions, particularly concerning agent decision making. We address this
problem here by keeping the model simple and making a minimum of behav-
ioral assumptions. There are four types of investors:

1. Fund managers are perfectly informed value investors that all see the
same perfect valuation signal. They buy when the market is under-
priced and sell when it is overpriced. Fund managers are risk-neutral.

2. Noise traders are inattentive value investors. They buy or sell when
the market is under or over priced, but do so less efficiently than the
fund managers. Noise traders are risk-neutral.

3. Banks loan money to the fund managers to allow them to leverage.
Banks are risk-averse, though the extent to which this is true differs
depending on the regulator scheme.

4. Fund investors place or withdraw money from the fund managers based
on a historical average of each fund’s performance.

The fund managers, which are the primary focus of this article, are het-
erogeneous agents, i.e. there are multiple funds with different levels of ag-
gression. In contrast, the other three types are representative agents, i.e.
there is a single noise trader, a single bank, and a single fund investor. The
primary function of the noise traders is to provide a background price series
to generate opportunities for the fund investor; the function of the fund in-
vestors is to guarantee that the price dynamics can be run in a steady state
without the fund managers becoming infinitely wealthy. The bank is there to
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lend money to the funds, but it is a backdrop – the bank is infinitely solvent.
(It is nonetheless useful to examine welfare measures, such as the losses to
the bank, rate of default on loans, etc.)

The postulated behaviors of each type of agent are reasonably generic,
and in some cases, such as for the banks, we are merely codifying behaviors
that are essentially mechanical and legally mandated by the terms of con-
tractual agreement or regulation. Most importantly, our results are relatively
insensitive to assumptions. The fact that this is a simulation model has the
important advantage of allowing us to quantitatively and explicitly evaluate
any regulatory scheme. This model is useful because it can incorporate more
realism than a typical stylized equilibrium model (????). This joins a grow-
ing class of agent-based models for testing economic policies that attempt
quantifiable, reproducible and falsifiable results, whose parameters are – at
least in principle – observable in reality. Recent studies that use agent-based
models for testing economic policies include ?, ?, ??, ? and ?.

In Section ??, following ? we present the model that serves as the base-
line for comparison of regulatory schemes. In Section ?? the modifications
necessary to implement the regulatory measures are explained. Section ??

presents simulation results comparing both the Basle II-type regulation and
the full perfect-hedge regulation schemes under various leverage levels in the
financial system. In Section ?? we conclude, discussing why Basle II-type
systems – even in their most ideal form – destabilize the market just when
stability is most needed, i.e. in times of high leverage levels in the system.
At the heart of this problem are synchronization effects of financial agents in
time of stress.

2. The baseline model

The baseline model represents a market that is unregulated except for
a maximum leverage requirement. It is an agent-based model with four
different types of agents as described in ?. There is only a single asset,
without dividends and consumption, and investors are given a choice between
holding the asset or holding cash. Prices are formed via market clearing. In
the subsequent paragraphs we give an overview of each type of agent, and
then in the remainder of this section we describe their behavior in more
detail.

In figure ?? we show a schematic structure of the model. The first type
of agents are fund managers, e.g. hedge funds or proprietary trading groups.
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Figure 1: Schematic structure of the model: Fund managers buy a single risky asset when
it is underpriced and sell when it is overpriced. Noise traders also buy or sell when the
market is under or over priced, but do so less efficiently than the fund managers – the noise
traders and fund managers have the same notion of value. A representative bank loans
money to the fund managers to allow them to leverage. In the Basle II, and the perfect-
hedge scheme fund managers pay fees for receiving loans, see Eqs. (??) and (??). Investors
place or withdraw money from the funds based on their historical performance. Funds are
heterogeneous based on the aggression of their investment strategy; more aggressive funds
tend to use more leverage. For fund manager profits see figure ??(c). In the model no
actual fees are paid. The plot corresponds to a hypothetical situation, which is certainly
correct for small hedge funds.
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They are value investors who ‘buy low and sell high’. They use a strategy
that translates a mispricing signal into taking a long position (buying a
positive quantity of the asset) when the asset price p(t) at time t is below a
perceived fundamental value V . We generalize the model of Thurner et al.
by also allowing them them to take a short position when the asset is over-
priced, i.e. one for p(t) > V . The demand of fund managers is denoted by
Dh(t), where the subscript h refers to the fund manager. The fund managers
are heterogeneous agents who differ in the aggressiveness with which they
respond to buy and sell signals.

The second type of agent is a representative noise trader. This agent can
be thought of as a weakly informed value investor, who has only a vague
concept of the fundamental price, and thus buys and sells nearly at random,
with just a small preference that makes the price weakly mean-revert around
V . The demand of noise traders at time t is Dn(t). The noise trader is a
representative agent, representing the pool of weakly-informed investors that
cause prices to revert toward value.

The third type of agent is a bank. Fund managers can increase the size
of their long positions by borrowing from the bank by using the asset as
collateral. The bank limits lending so that the value of the loan is always
(substantially) less than the current price of the assets held as collateral.
This limit is called a minimum margin requirement. In case the asset value
decreases so much that the minimum margin requirement is no longer sus-
tained, the bank issues a margin call and the fund managers who are affected
must sell assets to pay back their loans in order to maintain minimum margin
requirements. This happens within a single timestep in the model. This kind
of transaction is called margin trading and has the effect of amplifying any
profit or loss from trading. If large price jumps occur and fund managers
cannot repay the loan even by selling their complete portfolio, they default.
In the baseline model, for simplicity interest rates for loans are fixed to zero
and the bank sets a fixed minimum margin requirement, denoted by λmax.

The fourth type of agent is a representative fund investor who places or
withdraws money from a fund according to performance. This agent should
be viewed as a representative agent characterizing all investors, both private
and institutional, who place money with funds that use leverage. The amount
invested or redeemed depends on recent historical performance of each fund
compared to a fixed benchmark return rb. Successful fund managers attract
additional capital, unsuccessful ones lose capital.
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Figure 2: Demand function Dh(t)p(t) of a fund manager as a function of the mispricing
signal m(t) = V − p(t). If the asset is underpriced the fund manager starts buying more
and more assets as the price decreases, until the maximum margin requirement (leverage
limit) is hit at m = mcrit. Above this mispricing the demand remains flat. If short selling
is banned (dashed line) the fund manager holds no assets if the asset is overpriced, whereas
when short selling is allowed (solid line) the fund manager takes a negative position on
the asset when it is overpriced.

2.1. Price formation

At each timestep t asset prices p(t) are formed via market clearing by
equating the sum over the demand of the fund managers Dh(t) and the noise
traders Dn(t) to the fixed total supply N of the asset, which represents the
number of issued shares. The market clearing condition is

Dn(t) +
∑

h

Dh(t) = N. (1)

At every timestep the fund managers must decide how much of their total
wealth Wh(t) they are going to invest. The wealth of a fund manager is the
sum of her cash position Mh(t) and the current (dollar) value of the asset
Dh(t)p(t),

Wh(t) = Dh(t)p(t) +Mh(t). (2)

When a fund manager borrows cash for leveraging positions, the cash Mh(t)
is negative, representing the fact that she has spent all her money and is
in debt to the bank. Leverage λh is defined as the ratio between the fund
manager’s portfolio value and her wealth,

λh(t) =
Dh(t)p(t)

Wh(t)
=

Dh(t)p(t)

Dh(t)p(t) +Mh(t)
. (3)
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In case of short selling leverage is defined as the ratio of the asset side in the
balance sheet and the wealth,

λh(t) =
Wh(t)−Dh(t)p(t)

Wh(t)
=

Mh(t)

Dh(t)p(t) +Mh(t)
. (4)

The fund managers are value investors who base their demand Dh(t) on a
mispricing signal, m(t) = V −p(t). For simplicity the perceived fundamental
value V is fixed at a constant value, which is the same for all fund managers
and noise traders. Figure ?? shows demand Dh(t) for a fund manager h
as a function of the perceived mispricing. As the mispricing increases, the
fund manager wants a linear increase of the value of the portfolio, Dh(t)p(t).
However, this is bounded when it reaches the maximum leverage level λmax,
set by the bank. Fund managers differ in their aggression parameter βh,
which quantifies how strongly they respond to the mispricing signal m(t).
When short selling is allowed2, the fund manager’s demand function, Dh(t) =
Dh(t, p(t)), can be written as

Dh(t) =











(1− λmax)Wh(t)/p(t) if m(t) ≤ mshort
crit

λmaxWh(t)/p(t) if m(t) > mlong
crit

βhm(t)Wh(t)/p(t) otherwise.

(5)

The parameter mcrit > 0 is the critical value of the mispricing signal above
which the fund manager is forced to flatten demand when short selling is
not allowed, and similarly mshort

crit < 0 and mlong
crit > 0 are the corresponding

parameters when short selling is allowed. Notice that λmax > 1 is strictly
required for short-selling.

To summarize, consider the case where short selling is allowed. When
the asset is strongly overpriced the value of the fund manager’s position is
constant at the value Dh(t)p(t) = (1− λmax)Wh(t). Similarly when the asset
is strongly underpriced the value is constant at λmaxWh(t). Anywhere in
between the value is βhm(t)Wh(t), i.e. it is proportional to the aggression
parameter βh, the mispricing m(t), the wealth Wh(t).

Every fund manager is required by the bank to maintain λh(t) ≤ λmax. If
this condition would be violated the fund manager must adjust her demand

2If short selling is not allowed mshort
crit = 0 and in the first line Dh(t) = 0. See ?: p. 6

for fund manager’s demand when short selling is allowed.
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to buy or sell assets to ensure that such a violation does not happen. This
is known as meeting a margin call. The cause of a margin call can be either
because the price drops from p(t − 1) to p(t), causing Wh(t) to fall by a
larger percentage than the asset price (because of leverage), or because the
wealth drops from Wh(t−1) to Wh(t) due to withdrawals (redemptions) from
investors, as will be discussed below. Fund managers adjust their positions
within each timestep to make sure that this condition is never violated.

The noise trader demand is formulated in terms of the value ξn(t) =
Dn(t)p(t), whose logarithm follows an Ornstein–Uhlenbeck random process
of the form

log ξn(t) = ρ log ξn(t− 1) + σnχ(t) + (1− ρ) log(V N), (6)

where χ is independent and normally distributed with mean zero and stan-
dard deviation one, and where 0 < ρ < 1. The Ornstein-Uhlenbeck process
is a widely used approach to model currency exchange rates, interest rates,
and commodity prices stochastically. In the limit as ρ → 1, i.e. without the
mean reversion, the log-returns r(t) = log p(t+1)− log p(t) of the asset price
are normally distributed. We choose a value of ρ close to one so that without
fund managers the price is weakly mean reverting around the fundamental
value V and the log-returns are nearly normally distributed.

2.2. Defaults

If the fund manager’s wealth ever becomes negative, i.e. if Wh(t) < 0,
the fund manager defaults and goes out of business. The fund manager must
then sell all assets (Dh(t) = 0) and use the revenue to pay off as much of
the loan as possible. All remaining loss is born by the bank, causing capital
shortfall, which has to be provided by the government or a bailout fund. For
simplicity we assume banks always receive the necessary bailout funds and
they continue to lend to other fund managers as before. Tre−intro timesteps
later the defaulting fund manager re-emerges as a new fund manager, as
described below.

2.3. Wealth dynamics of the fund managers

Initially each fund manager has the same endowment, Wh(0) = W0. The
wealth of the fund manager then evolves according to

Wh(t) = Wh(t− 1) +Dh(t− 1)[p(t)− p(t− 1)] + Fh(t), (7)
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where Dh(t− 1)[p(t)− p(t− 1)] reflects the profits and losses from trading of
the fund manager’s portfolio and Fh(t) quantifies the deposits or withdrawals
of the fund investor (see the Appendix).

The fund investor deposits or withdraws from each fund manager based
on an exponential moving average of the recent performance with smoothing
parameter a. This is measured by the rate of return in comparison to a
benchmark return rb, as described in the Appendix. This prevents the wealth
of the fund managers from growing indefinitely, and makes possible well
defined statistical averages for properties such as returns and volatility. This
process is well documented, see e.g. ?????. Fund investors cannot take out
more cash than the fund manager has.

In case a fund manager’s wealth falls below a critical threshold, Wcrit,
the fund manager goes out of business. This avoids the possibility of “zom-
bie funds”, which persist for many timesteps with nearly no wealth and no
relevance for the market. After Tre−intro timesteps, funds that default are
replaced with a new fund with initial wealth W0 and the same aggression
parameter βh.

3. Implementation of regulatory measures

We now introduce two regulatory policies. The first is the regulatory
measure to reduce credit risk encouraged by the Basle II framework. The
second regulation policy is an alternative proposal in which all risk associated
with leverage is required to be perfectly hedged by options.

3.1. Basle II

The Basle II scheme that we employ here models the risk control policies
used by banks regulated under the Basle II framework. These banks use
internal models to determine the value of their risk-weighted assets. The
banks are allowed discretion in their risk control as long as it is Basle II
compliant. We implement a Basel compliant model that is used in practice
by banks.

3.1.1. Credit exposure

According to the Basle II capital adequacy rules banks have to allocate
capital for their credit exposure. The capital can be reduced through credit
mitigation techniques, such as taking collateral (e.g. securities or cash) from
the counterparty on the loan. This reduces their net adjusted exposure.
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However, to provide a safety margin haircuts are also applied to both the
exposure and the collateral. Haircuts are percentages that are either added
or subtracted depending on the context in order to provide a safety buffer. In
the case of a collateralized loan, in the absence of haircuts, the net exposure
taking the risk mitigating effect of the collateral into account is E∗ = E − k,
where k is the value of the collateral. However, when haircuts are applied the
value of the raw exposure E is adjusted upward to E(1+He), where He ≥ 0
is the haircut on the exposure, and the value of the collateral k is adjusted
downward to k(1 − Hcol), where Hcol ≥ 0 is the haircut on the collateral.
Thus the net exposure taking the risk mitigating effect of the collateral into
account is3

E∗ = max[0, E(1 +He)− k(1−Hcol)], (8)

The ‘max’ is present to make sure the exposure is never negative.

3.1.2. Haircuts

The basic idea is that undervaluing the asset creates a safety buffer which
decreases the likelihood that at some point in the future the value of the
collateral will be insufficient to cover possible losses. Increasing collateral
has the dual effect of decreasing the chance that the collateral might be
insufficient to cover future losses, and of decreasing the size of loans when
collateral is in short supply. In general the size of the haircut, and hence the
size of the exposure and collateral, depends on volatility.

Haircuts can either be standard supervisory haircuts, issued by regulatory
bodies4, or internal estimates of banks. Permission to use internal estimates
is conditional on meeting a set of minimum standards5. Here we use a simple
approach – used in practice by banks for their own internal estimates satis-
fying the Basle II standards – and compute the haircuts Hcol using a formula
that sets a minimum floor on the haircut Hmin with an additional term that
increases with the historical volatility σ(t), measured in terms of standard
deviation of log-returns over τ time steps. We assume a loan of time duration
T and a fixed cost c. The haircut is given by the formula

Hcol(t) = min
[

max
(

Hmin,Φσ(t)
√
T + c

)

, 1
]

, (9)

3See ?: §147.
4See ?: §147 for recommendation on supervisory haircuts, e.g. haircut for equities

listed on a recognized exchange is 25%.
5See ?: §156-165 for qualitative and quantitative standards.

13



where Φ is a confidence interval set by the bank in accordance with the
regulatory body6. The use of the ‘min’ and ‘max’ guarantees that the haircut
is always in the range Hmin ≤ Hcol ≤ 1.

The choice of a haircut implies a variable maximum leverage λadapt
max (t).

Suppose a bank makes a loan of size L to a fund that pledges the shares of
the asset it buys as collateral. Then the raw exposure is E = L and the value
of the shares of the asset is k. By definition the leverage is

λadapt
max (t) =

k

k − E
. (10)

Since the exposure is cash no haircut is required and He = 0, but the col-
lateral is risky, so Hcol > 0. If the net risk mitigated exposure E∗ = 0, then
combining Eqs. (??) and (??) implies

λadapt
max (t) =

1

Hcol(t)
. (11)

For short selling the fund borrows the asset (which is risky) and gives cash
as collateral, so the situation is reversed, and Hcol = 0 with He > 0. In this
case He is set according to Eq. (??) with He on the lefthand side instead
of Hcol, and through similar logic λadapt

max (t) = 1/He(t). This shows explicitly
how the haircuts impose a limit on the maximum leverage. For example if
the haircut is 0.5 the maximum leverage is 2, whereas if the haircut is 0.1
the maximum leverage is 10.

To make correspondence with the unregulated case we set Hmin = 1/λmax

and Φ = 1/λmaxσb, where σb is a benchmark volatility that serves as an
exogenous parameter. Furthermore, for simplicity we set transaction costs
to zero, i.e. c = 0, and the holding duration of the collateral to one timestep,
T = 1. Then by combining Eqs. (??) and (??) we see that the adaptive
maximum leverage explicitly depends on volatility,

λadapt
max (t) = max

[

λmax min

(

1,
σb

σ(t)

)

, 1

]

. (12)

If the historical volatility σ(t) ≤ σb then full maximum leverage λmax can
be used by the fund managers. When the simulation is operating under the
Basle II scheme the λmax in the fund manager’s demand of equation (??) is
replaced by λadapt

max (t) in equation (??).

6According to the Basel framework Φ must be chosen such that given a historical
volatility σ(t) the haircut is sufficient in 99% of cases. See ?: §156.
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3.1.3. Spreads

To determine interest rates on loans to fund managers, banks add a risk
premium (spread) S to a benchmark interest rate ib. Usually S is determined
by rating a customer, but in many cases such as margin trading a fixed risk
premium is used for all customers of a given type. We use a fixed spread S
for all fund managers. The interest rate for the fund manager h is

ih = ib + S. (13)

To implement borrowing costs in the agent-based model we set the bench-
mark interest rate ib = 0 and add a term accounting for the spread S to
equation (??). Fund managers always pay the borrowing costs for the pre-
vious timestep. The details of the accounting are given in the appendix.
Obligations to banks are satisfied before those of investors, as is the usual
practice.

3.2. The perfect-hedge scheme

The idea behind the perfect-hedge scheme is that, in addition to holding
the shares of the asset as collateral, banks require all loans to be hedged
by options. Thus barring default of the issuer of the option, the loan is
completely secure.

3.2.1. Hedging

We first consider the case where the fund is long, in which case the bank
requires it to buy a put with strike price Kput. For simplicity we treat the
loan as an overnight loan and thus the put has a maturity of one day. To
make sure that the loan can be repaid, the value of the asset must equal the
value of the loan. If the price of the asset when the loan is made is p(t), from
Eq. (??) the fraction by which it can drop in price before the value of the
collateral is less than that of the original loan is (k − E)/E = 1/λh(t). The
strike price is thus

Kput(t) = p(t)

(

1− 1

λh(t)

)

, (14)

and via similar reasoning, in the case where the fund is short it buys a call
option with strike price

Kcall(t) = p(t)

(

1 +
1

λh(t)− 1

)

. (15)
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Option prices are assumed to obey the Black-Scholes formula (?). The
option price is calculated based the following parameters: The spot price of
the underlying asset is p(t), the risk-free interest rate r = 0, and the volatility
σ = θσ(t), where σ(t) is the historical volatility7. When the fund is long the
strike price Ph of the put option is K = Kput and when it is short the strike
price Ch of the call option is Kcall. Note that the option prices depend on
the leverage through the strike prices; as the leverage increases the options
get closer to be in the money and so their price increases.

To implement the hedging costs in the model we add a term for the option
costs to equation (??). In case the fund manager holds a long position whose
hedging cost is Ph(t)Dh(t−1). The details of the accounting are given in the
Appendix. Note that under this scheme the only risk for the bank is that
in case the fund defaults, it will not be able to pay for the hedging costs
Ph(t− 1) at the previous timestep.

To make a correspondence to the spreads defined under the Basle II agree-
ment, the effective spreads are8

S
[long]
h (t) =

Ph(t)

p(t)
(

1− 1
λh(t)

) and S
[short]
h (t) =

Ch(t)

p(t)
. (17)

3.2.2. Limit on hedging costs and maximum leverage

Absent any other constraints, under the above scheme there is the pos-
sibility that the maximum leverage could become arbitrarily large, and con-
sequently the hedging costs could become very high. We prevent this by
limiting leverage. To compute the limit on leverage needed to keep the hedg-
ing cost below a given threshold, for long positions we impose a maximum

7We use the historical volatility σ(t), defined as the standard deviation of the log-
returns of the underlying asset over τ timesteps. Volatility is multiplied by an arbitrary
factor θ to gauge the length of one timestep. In the simulations we set θ = 5

8To see this, note that Dh(t)Ph(t) or Dh(t)Ch(t) is the effective interest the funds have
to pay for being long or short, respectively. To calculate an interest rate we divide the
interest by the loan size, i.e.

Dh(t)Ph(t)

Dh(t)p(t)−Wh(t)
=

Dh(t)Ph(t)

−Mh(t)
. (16)

Note that Mh(t) is negative because the fund owes cash to the bank. By substituting
Wh(t) = Dh(t)p(t)/λh(t) in Eq. (16) we obtain Eq. (??). In case of short selling the
interest rate divided by the loan size is (Dh(t)Ch(t))/(Dh(t)p(t)) = Ch(t)/ph(t).
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hedging cost Pmax. The corresponding dynamic maximum leverage λhedge
max (t)

can then be found by solving

P (p(t), σ(t), λhedge
max (t)) = Pmax(t), (18)

for λhedge
max (t). Similarly, just as in the Basle II scheme, there is the possibility

that historical volatility (Eq. (??)) could become arbitrarily low. To prevent
this we solve the same equation assuming a fixed volatility floor σb, which
gives the maximum leverage as the solution of

P (p(t), σb, λmax) = Pmax(t), (19)

for λmax. Finally, the leverage maximum λadapt
max (t) is their minimum, i.e.

λadapt
max (t) = min

[

λmax, λ
hedge
max (t)

]

. (20)

The perfect-hedge version of the agent-based model is obtained by replacing
the maximum leverage of equation (??) by equation (??). Analogous equa-
tions hold for the short selling scenario. See figure ?? for the dependence of
λadapt
max (t) as a function of σ(t).

4. Results

4.1. Performance and efficiency indicators

As performance indicators we use return to fund investors, profits to the
fund managers, and probability of default. Since the fund investor actively
invests and withdraws money from fund managers and funds have to cover
for expenses, i.e. interest payments, the rate of return rh(t) does not properly
capture the actual return to fund investors. To solve this accounting problem
we compute the adjusted rate of return radj to fund investors for any given
period from t = 0 to t = T . This is done by adjusting the wealth Wh(t) of
fund managers by the net flow of capital and the expenses within a given
period, according to

radjh (T ) =
W adj

h (T )

Wh(0)
− 1 (21)

with

W adj

h (T ) = Wh(T )−
T
∑

i=0

Fh(i) + f(T ), (22)
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where f is an adjustment for the expenses of the fund manager in a given
period, as detailed in the Appendix. If a fund manager is out of business
at t = T , Wh(T ) is set to zero and radjh (T ) will be close to −1, deviations
coming from the net flow of capital and expenses of the fund manager in the
given period.

For management fees we use a hypothetical 2% fixed fee for assets un-
der management and a 20% performance fee, paid by the fund investor to
the fund managers. These fees are hypothetical and are not used as actual
transactions in the model. They are only to indicate the profitability of fund
managers under various conditions. If a fund manager goes out of business
management fees are not paid.

We also consider the average annualized cost of capital, which is the
effective interest rate ih(t) from equation (??) and (??). By annualized we
mean that one simulation timestep represents five trading days and one year
has 250 trading days. As performance indicators we monitor the standard
deviation of the log-returns r(t) for all timesteps from an entire simulation
run as an asset volatility ‘index’. Additionally we calculated the distortion
as defined in ?, i.e. the average absolute distance between log price and log
fundamental V . Note that in our case the distortion is closely related to
volatility. We explicitly checked that the distortion closely follows the curves
of figure ??(a). As a measure for trading volume we use the average number
of shares traded per timestep, 1/HT

∑H

h=1

∑T

t=1 |Dh(t)−Dh(t− 1)|, with T
denoting the number of timesteps in a simulation run and the number of
fund managers H = 10. Finally, we measure the capital shortfall of banks
by just keeping track of the amount of money they lose when funds default.

4.2. Model Calibration: Choice of Parameters

For all simulations we used 10 fund managers with βh = 5, 10, . . . , 50, and
simulation parameters ρ = 0.99, σn = 0.035, V = 1, N = 1×109, rb = 0.003,
a = 0.1, b = 0.15, W0 = 2 × 106, Wcrit = 2 × 105, Tre−intro = 100, τ = 10,
θ = 5, σb = 0.01175 and S = 0.00015. For most runs we used a range of
λmax ∈ [1, ..., 20].

To test the robustness of the model we tested several different param-
eter sets, varied key parameters and motivated parameter choices in their
economic context. A complete analysis of the robustness of the model is
not feasible because of the large number of parameters, and because several
parameters cannot be set independently.
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Reducing or increasing the number of fund managers H affects the wealth
Wh(t) of individual fund managers. With more fund managers individual
banks accumulate less wealth. Therefore individual bankruptcies of fund
managers become less severe resulting in lower capital shortfall for banks.
Increasing the aggressiveness of fund managers βh causes them to react more
to mispricing, resulting in more margin calls and subsequent defaults.

The parameters ρ, σn, V , N determine the demand of noise traders. σn

is set to reflect typical stock price fluctuations. N , V and W0 are chosen
to guarantee that fund managers have a low market share when they are
introduced in market. We choose to arbitrarily set V = 1 and choose N
and W0 accordingly. The setting of ρ ∼ 1 ensures that the deviation from
the normal distribution is minimal. With ρ = 0.99 the typical fluctuation in
volatility is about 1%, which is a reasonable volume given real stock values.

The benchmark return rb plays the important role of determining the
relative size of hedge funds vs. noise traders. If the benchmark return is set
very low then funds will become very wealthy and will buy a large quantity
of the asset under even small mispricings, preventing the mispricing from
ever growing large. This effectively induces a hard floor on prices. If the
benchmark return is set very high, funds accumulate little wealth and play
a negligible role in price formation. The interesting behavior is observed at
intermediate values of rb where the funds’ demand is comparable to that
of the noise traders. The parameter ”a ” governs the exponential moving
average of the performance of fund managers and the parameter ”b” con-
trols the sensitivity of withdrawals or contributions of fund investors. Both
parameters a and b are set empirically, following work from ?,?, ?, ? and ?.

Using a positive survival threshold for removing funds Wcrit avoids the
creation of zombie funds that persist for long periods of time with almost no
wealth. Setting Tre−intro = 100, which controls the reintroduction of funds
after bankruptcies, corresponds to 2 years under the calibration that one
timestep is five days, which we think is a reasonable value. Higher settings
for Tre−intro result in simulations with few fund managers present at turbulent
times.

The parameter τ is chosen to measure historical volatility over a short
window. Choosing different windows τ 5 < τ < 20 does not substantially
influence the simulations.

The parameter θ is an arbitrary factor that sets the length of one timestep.
We choose to use a calibration in which one timestep is five days and a year
has 250 trading days. This calibration seems reasonable considering several
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Figure 4: The distribution of log-returns r. (a) Return distributions of the baseline model
(with parameters from subsection ??) in semi-log scale. The un-leveraged case (blue
circles) practically matches the case with only noise traders (blue curve). When the
maximum leverage is raised to λmax = 15 (red squares) the distribution becomes more
leptokurtic, and negative returns develop a fat tail. With short selling (demand equation
(??)) the distribution becomes even thinner and tails turn fat on both sides. (b) Return
distributions for the three regulation schemes at λmax = 15.

factors such as the average rate of return to fund investors, which would be
∼ 8% (for high leverage scenarios, not considering defaults) or the benchmark
rate of return, which would be 15%.

The benchmark volatility σb is set empirically to a very low volatility that
is only reached in tranquil times. Alternatively it would be possible to refrain
from using σb and set Hmin and Φ or Pmax directly.

The parameter S is a risk premium (spread) to a benchmark interest rate
ib, see above. We use a fixed spread S for all fund managers of 0.75%. This
low risk premium of approximately 1% reflects the fact that loans are fully
collateralized in the model.

4.3. Returns and correlations

The statistical properties of asset price returns change considerably with
increasing leverage. Figure ?? shows the distribution of log-returns r(t) for
four cases: (i) For the case of noise traders only, log-returns are almost
normally distributed. (ii) With un-leveraged fund managers, volatility is
slightly reduced but log-returns remain nearly normally distributed. (iii)
When leverage is increased to λmax = 15 and no short selling is allowed, the
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distribution becomes thinner for small r(t) but the negative returns develop
fat tails. The asymmetry arises because with a short selling ban in place
fund managers are only active when the asset is underpriced, i.e. when
the mispricing m(t) > 0. Finally, when short selling is allowed (iv), the
distribution becomes yet more concentrated in the center and fat tails develop
on both sides. Due to higher risk involving short selling, the distribution
becomes slightly asymmetric. This higher short selling risk arises because
of the different risk profile of long and short positions. The potential losses
from long positions are limited, since the price cannot go below zero. This is
not the case for short positions, where the loss potential has no limit. Note
that in all cases the autocorrelation of signed returns is very small, whereas
the autocorrelation of absolute returns is strongly positive and decays slowly.

4.4. Timeseries

The timeseries shown in figure ?? are computed for the perfect-hedge
scheme when short selling is allowed at λmax = 15. Figure ??(a) shows the
wealth Wh(t) for all 10 fund managers over time, figure ??(b) shows the his-
torical asset volatility and figure ??(c) shows the timeseries of the asset price
p(t). The leverage cycle can be observed in this figure. Initially, all fund man-
agers start with Wh(0) = 2 and have a marginal influence on the market. As
they gain more wealth their market impact increases, mispricings are damped
and the asset volatility decreases. The decrease in volatility results in lower
borrowing cost for the fund managers. Lower borrowing cost allows them to
use a higher leverage, which further lowers volatility, resulting in even lower
borrowing costs etc.. This leads to seemingly stable market conditions with
low volatility and low borrowing costs for fund managers; such stable periods
can persist for a long time. Occasionally the stable periods are interrupted
by crashes. These are triggered by small fluctuations of the noise trader de-
mand. As shown in ?, if one or more of the funds is at its leverage limit,
a downward fluctuation in price causes the leverage to rise. This triggers a
margin call, which forces the fund to sell into a falling market, amplifying
the downward fluctuation. This may cause other funds to sell, driving prices
even further down, to cause a crash. Such crashes can trigger price drops
as large as 50%, which cause the more highly leveraged fund managers to
default. After a crash noise traders dominate and volatility is high. Fund
managers are reintroduced; as their wealth grows volatility drops, and the
leverage cycle starts again. In situations where a crash wipes out all but the
least aggressive fund managers, as happens around t = 29, 000 and at about
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Figure 5: Timeseries for perfect-hedge scheme for 10 fund managers with βh =
5, 10, . . . , 50, for λmax = 15. The simulation was done for the perfect-hedge scheme with
maximum leverage equation (??) and wealth equations (??) and (??). Simulation param-
eters are listed in subsection ??. (a) Wealth timeseries Wh(t) of the fund managers. (b)
Historical volatilities over a τ = 10 timestep window. For reference, in a market with
noise traders only, the volatility is about σ(t) ≈ 17.5 percent. For comparison the inset
shows the VIX (Chicago Board Options Exchange Market Volatility Index), a measure of
the implied volatility of S&P 500 index options from 2004 to 2012. Our model reproduces
the asymmetric profile in which volatility bursts are initiated by a rapid rise followed by
a gradual fall. (c) Timeseries of the asset price p(t).
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t = 47, 000, the surviving less aggressive fund managers become dominant
for extended periods of time.

4.5. Volatility profile

One of the interesting aspects of our model is that it reproduces the
asymmetric profile of volatility bursts. The inset of figure ??(b) shows the
VIX (Chicago Board Options Exchange Market Volatility Index), which is
a measure of the implied volatility of S&P 500 index options, from 2004
to 2012. As can seen by eye in this figure, in our model, as in the real
data, volatility bursts rise rapidly and damp out gradually, forming a very
characteristic asymmetric peak.

To see this more quantitatively in Figure ?? we compare the peak behav-
iors of the VIX, our model and a GARCH(1,1) model. Two example time
series around a peak are shown for each. The data is normalized so that the
peaks are all of the same height. The time axis is shifted so that peaks occur
at t = 500. Otherwise, the time axis is not normalized or gauged to real
time. We fit the rise and decay around the peaks as a power law of the form
σ(t) ∝∼ tk, characterizing the rise by k = k1 and the decay by k = k2, and take
the average for the largest peaks in the time series, both from the VIX and
from our model. To determine which peaks to fit, we selected local maxima
that are at least (max(VIX)−min(VIX))/4) or (max(σ(t))−min(σ(t)))/4)
above the surrounding data. The fitted values for the rise of the VIX are
k1 ∼ 16.39 and for our model k1 ∼ 9.19. The VIX gradually falls with
k2 ∼ −2.34 and for our model with k2 ∼ −1.18. GARCH models do not
exhibit power-law behavior and k1 and k2 cannot be fitted. Note that while
the form of the peaks is the same for the VIX and our model, the magnitude
is not; also the VIX follows the profile with less noise than our model does.
A possible reason for this is that the VIX shows the implied volatility of S&P
500 index, while our model shows the volatility of a single asset.

As a further statistical comparison we calculated the standardized mo-
ments skewness and kurtosis. The skewness of the VIX (∼ 2.02) is virtually
identical to our model (∼ 2.01), however the kurtosis of the VIX (∼ 8.13) is
lower compared to our model (∼ 14.59). Note that the VIX shows even in
tranquil times quite substantial volatility in comparison to our model, where
extended periods with almost no volatility can be observed. The reason for
this is that in times of high market share of the fund managers, the effect
on the asset price of the noise traders is negligible. All fund managers have
the same perceived fundamental value V and thus stabilize the asset price
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Figure 6: Peak behavior of the VIX (a), our model (b) and a GARCH(1,1) model (c). We
find that the rise and fall of volatility during a peak follows roughly a power law of the
form σ(t) ∝∼ tk. The fitted values for the rise of the VIX are k1 ∼ 16.39 and for our model
k1 ∼ 9.19. The VIX gradually falls with k2 ∼ −2.34 and for our model with k2 ∼ −1.18.
GARCH models do not exhibit power-law behavior, and k1 and k2 can not be fitted. In
each case we show two characteristic time series in blue (solid line) and red (dashed line),
normalized to have the same peak height. The time axis is shifted so that peaks occur at
t = 500. Otherwise, the time axis is not normalized or gauged to real time.
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to a point where almost no volatility can be observed. With a different fun-
damental value Vh for every fund manager the behavior would become less
synchronized and therefore, even in tranquil times, volatility would remain at
a substantial level. We have explicitly checked this in a series of experiments.

4.6. Comparison of regulatory schemes

In the following we illustrate the impacts of the three regulatory schemes:

1. The unregulated baseline scheme from section ?? with fixed maximum
leverage λmax, corresponding to demand equation (??).

2. The Basle II scheme, which has the same demand equation but with
λmax replaced by λadapt

max (t) of (??) and the wealth update given by (??)
and (??).

3. The perfect-hedge scheme, where λadapt
max (t) is given by (??) and the

wealth update is (??) and (??).

For all simulations we used the parameters listed in subsection ?? and enabled
short selling. λmax was varied from 1 to 20. For each parameter set we
compute 5 × 104 timesteps and average over 100 independent runs. The
following indicators are annualized using a calibration in which one timestep
is five days and a year has 250 trading days. This calibration seems reasonable
considering several factors such as the average rate of return to fund investors,
which would be ∼ 8% (for high leverage scenarios, not considering defaults)
or the benchmark rate of return, which would be 15%.

Figure ?? provides a panel of results that show how market characteristics
such as (a) price volatility, (b) trading volume, (c) average leverage and (d)
the effective interest rate are affected by the varying the maximum leverage
parameter λmax under each of the three regulatory schemes. For the unregu-
lated case the volatility drops monotonically as λmax increases, dropping by
almost a factor of two for 1 < λmax < 10 and then reaching a plateau. The
reason the volatility drops is that the presence of value investors ordinarily
damps volatility, since they buy when prices fall and sell when prices rise.
Larger leverage means more trading and it also means higher profits for a
given level of trading, which means investors place more money in the funds
and they have more market power. The resulting increase in trading is evi-
dent in Figure ?? (b): Between λmax = 1 and λmax = 3 the trading volume
increases by more than a factor of three, and then more or less levels off.

Volatility is not significantly influenced by failures of fund managers.
Bankruptcies of the most aggressive fund manager occur on average every
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Figure 7: Impacts of regulatory measures on market indicators as λmax varies. (a) Volatil-
ity of the underlying asset. (b) Market volume of the underlying asset, measured by the
average amount of shares traded by a fund manager per timestep. (c) Average effective
leverage of fund managers (d) Average annualized effective interest rate. For all simula-
tions we used 10 fund managers with βh = 5, 10, . . . , 50 over 5×104 timesteps. Simulation
parameters listed in subsection ??, short selling was allowed. For all indicators it is as-
sumed that one timestep takes five days and a year has 250 trading days. Blue, green,
and red curves indicate the unregulated, the Basle II, and the perfect-hedge scheme, re-
spectively. Standard deviations computed over 100 independent runs are below symbol
size.

27



1 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

λ
max

<
pr

ob
ab

ili
ty

 o
f f

un
d 

fa
ilu

re
>

 

 

(a)

unreg.
basel
perfect. h.

1 5 10 15 20
−0.01

0

0.01

0.02

0.03

0.04

0.05

λ
max

av
g.

 p
er

fo
rm

an
ce

 <
rad

j
h

>
 

 

(b)

unreg.
basel
perfect. h.

1 5 10 15 20
0

2

4

6

8

10

12
x 10

5

λ
max

<
fu

nd
 m

an
ag

er
 p

ro
fit

s>

 

 

(c)

unreg.
basel
perfect. h.

1 5 10 15 20
0

0.5

1

1.5

2

2.5

3
x 10

6

λ
max

<
lo

ss
es

 to
 b

an
ks

>

 

 

(d)

unreg.
basel
perfect. h.

Figure 8: Impacts of regulatory measures on performance indicators for the most aggressive
fund manager with βh = 50 as λmax varies. (a) Average annual probability of fund failure.
(b) Average annual adjusted rate of return radj to fund investors. (c) Average annual
profits to the fund managers. (d) Annual capital shortfall of banks. For all simulations
we used the same setup as in the previous figure. Standard deviations computed over 100
independent runs are about 0.01, 0.01, 2.7 × 105 and 5.4 × 105 for (a), (b), (c) and (d),
respectively.
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800 time steps for λmax > 7. Therefore the subsequent price drops or jumps
do not occur frequently enough to substantially influence volatility.

The behavior of the volatility under the Basle II scheme is more compli-
cated, as is evident in Figure ?? (a). The volatility initially rises, reaching a
maximum at λmax ≈ 2 and then falls, although never to the low level of the
unregulated case.

The explanation for the initial rise in volatility comes from the fact that
for λmax = 1 there is no short selling possible, see Eq. (??). In this case there
are long-only funds only. As λmax = 2, funds now also engage in short selling
and we experience an effective regime-shift from a long-only to a long-and-
short model. Note that the average leverage for the Basle II regime (Fig. ??
(c)) is below 1, meaning that there are often cases where there is no leverage.
In those situations where a leverage reduction from λ > 1 to λ = 1, fund
managers are forced out of short positions leading to do extra trading activity
(that does not exist for the λmax = 1 case) that slightly raises the volatility.

The behavior of the perfect hedge scheme is also more complicated; it
initially falls until λmax ∼ 10, but then rises again. The reason for the increase
in volatility for large λmax under the perfect hedge scheme is that for high
maximum leverage the effective borrowing costs are large, as illustrated in
Figure ?? (d). This is also the reason why in this scheme the trading volume
drops for λmax > 10. (See equations (??) and (??)). For the unregulated case
the borrowing costs are zero (since for convenience we set the base interest
rate to zero), whereas under the Basle II scheme they are fixed. In the perfect
hedge scheme the costs are near zero for small leverage and then grow sharply
starting at about λmax ≈ 5, and exceed the costs for the Basle II scheme at
about λmax ≈ 12. Thus the perfect hedging scheme is cheaper than the Basle
II scheme for low leverage and more costly for high leverage.

Figure ?? (c) shows the average effective leverage of fund managers, de-
fined as

〈λh(t)〉 =
1

HT

H
∑

h=1

T
∑

t=1

λh(t).

For the unregulated case, as expected, the average leverage initially increases
as λmax increases. It rises from 〈λh(t)〉 ≈ 0.4 when λmax = 1 to a little less
than two when λmax ≈ 5. Surprisingly, however, it then decreases until about
λmax ≈ 10, settling into a plateau for λmax > 10 with 〈λh(t)〉 ≈ 1.5. The
reason for the decrease is the drop in volatility, which means that there are
fewer mis-pricings and less opportunities to use leverage. The Basle II and
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perfect hedge schemes behave similarly, except that they drop very little after
their peaks, which are reached at larger λmax, and their plateau leverage is
higher, with 〈λh(t)〉 ≈ 2.

Figure ?? shows a variety of diagnostics about market performance, in-
cluding (a) the probability of fund default, (b) return to investors, (c) profits
for fund managers and (d) capital shortfall of banks.

Figure ?? (a) shows the average annual probability of default for the most
aggressive fund manager. In the unregulated scheme the annual probability
of default initially grows rapidly, but then reaches a plateau at λmax ≈ 8.
The reason for this is that under the unregulated scheme the use of leverage
is automatically self-limiting due to dropping volatility, as demonstrated in
Figure ??(c). For the Basle II and perfect hedge schemes the initial rise
in defaults is slower, but unlike the unregulated case the default rate never
plateaus, and default exceeds the unregulated scheme for roughly λmax > 11.
The reason that there are more defaults in both regulated schemes is that
the maximum leverage is adjusted dynamically. If the maximum leverage
is suddenly decreased when funds are at their maximum leverage, they are
forced to sell en masse, and the resulting market impact can trigger a crash9.
In figure ??(b) we show the average adjusted rate of return radj to fund in-
vestors for the most aggressive fund manager. The return to fund investors is
influenced mainly by three factors: effective leverage, mis-pricing opportuni-
ties and probability of fund default. In each of the three regulatory schemes
the investor returns behave similarly, initially increasing with λmax, reaching
a peak, and then decreasing. Under the Basle II and perfect hedge schemes
the peaks come later: For the unregulated scheme the peak is at λmax ≈ 4,
for the perfect hedge scheme it is at λmax ≈ 6, and for Basle II it is at roughly
λmax ≈ 8. The primary reason there is a peak is the rising default rate10.
Another important factor is decreased volatility, and hence fewer mispricings
and lower effective leverage. For large λmax the perfect hedge case behaves
increasingly poorly due to sky-rocketing borrowing costs (see Figure ??(d)).

Figure ??(c) shows the fund managers’ profits. We assume a hypothetical
2% fixed fee for the assets under management and a 20% performance fee.

9For λmax < 10 the perfect-hedge scheme performs a bit better than the Basle II scheme
because of the stronger limit to lending based on historical volatility illustrated in figure
??.

10If funds that have gone bankrupt are excluded the performance reaches a maximum
at λmax ∼ 7.
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Profits to funds are consistently higher in the unregulated scheme than in ei-
ther of the alternatives. The discrepancy is exaggerated relative to investors’
profits due to the fact that under the unregulated scheme the assets under
management by the funds are much larger. It is perhaps not surprising that
fund managers clearly prefer less regulation. Surprisingly, as λmax increases
from one to two, fund managers’ profits initially drop; for the unregulated
case it reaches a minimum about 30% less than the unleveraged case, which
for the regulated schemes is almost 75%. The origin of this problem is the
same as mentioned above, that for λmax = 1 it is not possible to short sell,
see Eq. (??). In this case we have long-only funds. As soon as we bring
leverage to λmax = 2, funds engage in short selling and we have a shift from
a long-only to a long-and-short model. We have explicitly checked this issue
by tests, where we make the demand function for short selling Eq. (??) fully
symmetric to the long-part, by removing the 1 in Eq. (??). In this case
no more drop in the managers’ profits from λmax = 1 to λmax = 2 occurs.
Note that this symmetric implementation is of course not the correct one.
Profits are consistently higher for the perfect hedge scheme than they are in
the Basle II scheme.

Finally, in Figure ??(d) we show the capital shortfall of banks. As ex-
pected the shortfall is the largest for the unregulated case, and for the perfect
hedge case it is zero by definition.

5. Discussion

We studied an agent based model of a financial market where investors
have different degrees of information about the fundamental value of finan-
cial assets. Fund managers leverage their investments by borrowing from
banks. These speculative investments based on credit introduce a systemic
risk component to the system. When the collateral backing the involved loans
are composed of the same financial assets themselves, the model reproduces
the various stages of the leverage cycle, ????, and the systemic prerequisites
leading up to crashes can be studied in detail, ?. In this work we have stud-
ied the role of Basle II-type regulations, which define the conditions under
which banks can provide leverage. These regulations basically require Banks
to apply haircuts to the collateral accepted, and to take spreads. This raises
the capital costs for the leverage takers, so that they take less effective lever-
age than they would in the unregulated case. We find that this is indeed the
case for situations of low leverage in the system; regulation makes the system
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more secure. On the other hand regulation reduces the market share of fund
managers in general, with the consequence that they take less volatility from
the markets than they would in the unregulated case. In this sense there is
no optimal level of leverage or optimal level of regulation. Regulation makes
the markets more secure in the sense that it reduces the frequency of large
price jumps, but renders markets more volatile in general.

The situation changes drastically when the general level of leverage is
high in the system, which is the case for phases of low-volatility. When the
leverage is greater than about 10, investors in the regulated schemes take
more effective leverage than they would in an unregulated world. This is
easy to understand: in the unregulated situation the fund managers become
bigger (in the model up to twice as big in terms of assets under management)
and hence reduce volatility more effectively. In this scenario the regulated
system becomes less stable than the unregulated one, which is for example
reflected in a higher default rate of regulated investors than unregulated
ones. Also the regulated system does not manage to reduce the frequency
of crashes. In terms of capital shortfall of banks, the regulated system is
superior to the unregulated one for all leverage levels in the system.

We next designed a hypothetical regulation system, where banks require
their investors to hedge against the risk of loss of collateral value. Under
the assumption that the writers of options never default, by construction
the capital shortfall of banks is zero. This regulation scheme tests the effect
of making the capital costs (effective interest rate) for the fund managers
dependent on the actual leverage taken; capital for higher leverage (and thus
more systemic risk) is more expensive. This is not the case for Basle II-type
regulation, where the interest rate is independent of leverage.

Even under the perfect hedging scheme the system does not get much safer
on a systemic level. The effects are qualitatively and quantitatively similar
to the Basle II-type scenario. However, in terms of volatility reduction the
perfect-hedge scheme is shown to be superior to the Basle II scheme.

We have thus demonstrated that even under the assumption of a perfect-
hedge scheme, systemic risk originates from a source that is not addressed
by present regulation mechanisms. Systemic risk arises due to a synchro-
nization of the agents’ behavior in times of high leverage. Such synchronized
behavior can become worse under regulation. This is because a lowering of
the maximum leverage at a point where some of the funds are fully leveraged
can cause a wave of selling, driving prices down and triggering even more
selling, and in some cases leading to a crash.
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As pointed out in ? systemic risk is not only related to network proper-
ties but it is a multiplex network concept. By this we mean that systemic
risk happens on various layers of the financial system, which can all influ-
ence each other. The networks involved include: borrowing and lending
relationships (which can be further broken down into explicit contractual
obligations, i.e. counterparty exposures, and implicit relationships, such
as roll-over of overnight loans), insurance (derivative) contracts, collateral
obligations, market impact of overlapping asset portfolios and network of
cross-holdings (holding of securities or stocks of fellow banks).

In this paper we do not propose a solution to the problem of credit reg-
ulation. However, our belief is that a key element of any such regulation
should be greater transparency. As argued in ?, one can imagine a system
where every credit provider has to disclose the amount of its loans and the
identity of the borrower on their homepage, and borrowers would have to
disclose their leverage. In this way there would develop a transparent credit
market with emerging lending rates, depending on the riskiness of the cred-
itor and the borrower. Consequences of such schemes are presently under
investigation.
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Appendix on accounting

Fund withdrawals

The detailed accounting formulae for funds flowing in and out of funds
are as follows: Let

rh(t) =
Dh(t− 1)[p(t)− p(t− 1)]

Wh(t− 1)
, (23)

be the rate of return of fund manager h. The fund investors base their
decisions on the recent performance of fund h, measured as an exponential
moving average of the rate of return

rperfh (t) = (1− a) rperfh (t− 1) + a rh(t). (24)

33



The amount of cash a fund manager would have if selling all assets at the
current price is

M̃h(t) = D(t− 1)p(t) +M(t − 1). (25)

The flow of capital in or out of fund h is given by

Fh(t) = max
[

−1, b
(

rperfh (t)− rb

)]

max
[

0, M̃h(t)
]

, (26)

where b is a parameter controlling the fraction of capital withdrawn or in-
vested, a is the moving average parameter, and rb is the benchmark return
of the investors.

Spreads under Basle II

In case the fund manager takes a leveraged long position (Mh is negative)
her wealth is

Wh(t) = Wh(t− 1) +Dh(t− 1)[p(t)− p(t− 1)] + Fh(t) +Mh(t− 1)S, (27)

and in case of short selling, where the demand is negative,

Wh(t) = Wh(t−1)+Dh(t−1)[p(t)−p(t−1)]+Fh(t)+Dh(t−1)p(t−1)S. (28)

The maximum amount the fund investor can redeem from the fund manager
has to be adjusted from equation (??) to

M̃h(t) = D(t− 1)p(t) +M(t− 1)[1 + S] [long]

M̃h(t) = D(t− 1)p(t) +M(t− 1) +Dh(t− 1)p(t− 1)S [short].(29)

Hedging costs under the perfect hedging scheme

Under the perfect hedging scheme the wealth becomes

Wh(t) = Wh(t−1)+Dh(t−1)[p(t)−p(t−1)]+Fh(t)−Dh(t−1)Ph(t−1), (30)

and similarly for short selling

Wh(t) = Wh(t−1)+Dh(t−1)[p(t)−p(t−1)]+Fh(t)+Dh(t−1)Ch(t−1). (31)

The maximum redemption of fund investors is adjusted for long positions

M̃h(t) = D(t− 1)p(t) +M(t− 1))−Dh(t− 1)Ph(t− 1), (32)

and for short selling is

M̃h(t) = D(t− 1)p(t) +M(t− 1)) +Dh(t− 1)Ch(t− 1). (33)
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Adjustments for the expenses of the fund manager

Under the risk control schemes the expenses of the fund manager are
adjusted as follows: For a long position under the Basle II scheme

f(T ) =

T
∑

i=0

Mh(i)S, (34)

and in the perfect hedge case

f(T ) =
T
∑

i=0

Dh(i)Ph(i). (35)

Expenses of fund managers for short positions are calculated in a similar way
as described in section ?? and ??.
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