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Abstract

We develop and estimate a model of consumer search with spatial learning.

Consumers make inferences from previously searched objects to unsearched ob-

jects that are nearby in attribute space, generating path dependence in search

sequences. The estimated model rationalizes patterns in data on online con-

sumer search paths: search tends to converge to the chosen product in attribute

space, and consumers take larger steps away from rarely purchased products.

Eliminating spatial learning reduces consumer welfare by 13%: cross-product

inferences allow consumers to locate better products in a shorter time. Spa-

tial learning has important implications for product recommendations on retail

platforms. We show that consumer welfare can be reduced by unrepresentative

product recommendations and that consumer-optimal product recommenda-

tions depend both on consumer learning and competition between platforms.
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1 Introduction

An ever-increasing share of consumer activity takes place online. The dominance of

online platforms means that, in many markets, consumers have access to choice sets

containing hundreds or thousands of alternatives.1 Consumers may have limited prior

knowledge of a product category, and are unlikely to consider every available alterna-

tive before making a purchase decision. Search-mediating platforms such as Amazon,

Net�ix, and AirBnB therefore play a signi�cant role in guiding consumers' search

paths through product recommendations and other information provision. Under-

standing the process of search - how consumers choose their path through alternatives

and how this path in�uences purchase decisions - is therefore increasingly important

to understanding consumer markets and the role of platforms.

In most classic models of sequential search, an agent wants to choose one item from

a set of heterogeneous objects (products, jobs, etc.) that appear identical (perhaps

up to some observable characteristics) prior to search (McCall 1970, Rothschild 1974,

Weitzman 1979). Sampling an alternative allows the searcher to learn the payo� from

that option, resulting in an optimal stopping problem. Crucially, these models impose

independence of the ex-ante unobserved part of utility across alternatives (conditional

on observables). What a searcher learns from one alternative does not diferentially

a�ect the expected payo�s of other alternatives.

This paper starts with the observation that, in many real life settings including on-

line consumer search, it is possible that learning about the payo� from one alternative

may change the consumer's beliefs about the payo� from other, similar alternatives.

We introduce the idea of spatial learning : when a searcher samples an option and

observes an unexpectedly high or low payo� from that option, they update on the

payo�s to other options that are close in the space of observables.2 For example, a job

seeker receiving an attractive o�er at Microsoft might infer that a potential Google

o�er would be better than they had expected, but not update on the value of an o�er

from McKinsey; a student deciding which colleges to apply to may cancel their cam-

pus visits to liberal arts colleges after a bad experience with one of them; a consumer

looking for a camera who reads negative reviews for a model with low resolution will

probably update her beliefs about all low resolution cameras.

This paper makes three contributions to understanding spatial learning and the

1At the time of writing, there were 577 di�erent microwave ovens available on Amazon.com.
2Note that spatial here refers to product attribute space, and not geographical space. A similar

model has been applied to search in geographical space by Hodgson (2019).
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role it plays in online consumer markets. First, we develop a model of search with

spatial learning and argue that it is identi�ed by data on search paths. Second,

we estimate the model using data from online consumer search and show that it

can rationalize patterns in consumer search sequences. Third, we show how spatial

learning changes the e�ect of information provision on search paths and a�ects the

design of consumer-optimal recommendations.

The building blocks of the model are a characteristic space consisting of ex-ante

observable characteristics of the options, and utility functions modeled as a Gaussian

process over that characteristic space, speci�ed by a mean function (giving the ex-

pected payo� to any unsearched option) and a kernel function (giving the covariance

between pairs of options). The kernel function takes as inputs the locations of any two

options in characteristic space, and outputs a covariance between them. Searchers

will update more about close-by options than far-away options. The kernel speci�es

the distance metric, and encodes the mental model that searchers use to extrapolate.

We show that this model of learning leads to path dependence in search � a consumer

who has a bad experience when sampling some part of the product space will tend to

focus their search elsewhere in the future.

We apply our model to data which records the search paths of consumers shopping

online for digital cameras, originally collected by Bronnenberg, Kim and Mela (2016).

We document a series of stylized facts that are consistent with spatial learning. Con-

sumers tend to take signi�cantly larger steps in attribute space after viewing rarely

purchased products, the products searched by consumers converge in attribute space

to the product ultimately purchased, and step size in attribute space and the variance

of product attributes searched declines as search progresses.

We argue that these search path patterns identify the parameters that control

spatial learning - the variance and spatial correlation of the ex-ante unobserved part

of utility. The use of search sequences to identify cross-product covariance in utility

is novel. With the increasing availability of clickstream data, we expect that this type

of identi�cation strategy will become increasingly feasible.

We estimate the model using an approximate dynamic programming approach

similar to Keane and Wolpin (1997) and Bertsekas and Tsitsiklis (1996). The esti-

mated model suggests that consumers are spatial learners and make inferences about

the utility of unsearched objects that guide their search paths. Search paths simulated

using the estimated model �t the data well, and in particular replicate the patterns

we highlight as being suggestive of spatial learning - convergence to the chosen at-

2



tribute levels over the search path and jumps away from rarely purchased products.

These patterns cannot be replicated by a constrained version of the model estimated

under the assumption of no learning. Simulated search paths also show that learning

is quantitatively important to consumer welfare. Expected consumption utility is

about 12% lower for simulated consumers who do not make inferences across prod-

ucts than for consumers with correct beliefs. Non-learning consumers have to extend

their search length by about 25% to obtain the same utility as consumers with correct

beliefs.

The path dependence generated by spatial learning implies that product recom-

mendations can a�ect consumers' search paths and purchases by changing their beliefs

about unsearched alternatives. For example, by highlighting worse-than-expected

products in some parts of the product space a search intermediary can steer con-

sumers away from those areas and towards a desired purchase. We investigate this

novel mechanism through simulations of the estimated model under di�erent informa-

tion provision scenarios. We show that recommending products with idiosyncratically

high or low utility reduces consumer welfare by providing misleading information

about the utility of nearby options, shifting search paths and purchases toward or

away from the recommended product in attribute space.

Finally, we demonstrate the importance of spatial learning for platforms' infor-

mation provision problem by computing consumer-optimal recommendations. The

platform faces an explore-exploit trade-o� in choosing which products to recommend.

When the variance of the spatially correlated part of utility is high, learning is im-

portant, and optimal recommendations will push consumers towards products in un-

explored parts of the product space that are informative about other unsampled

products. Conversely, when there is no spatial learning, optimal recommendations

will direct consumers to high expected utility products. The platform's incentive to

help consumers explore is moderated by competition. When consumers are likely to

switch to another platform, the incentive to recommend high expected utility products

dominates, even if spatial learning is important.

Related literature. Search is a well-studied topic in microeconomic theory, em-

pirical industrial organization and marketing. Theory papers have examined how

consumers learn product payo�s through search, and how this a�ects the resulting

equilibrium on the supply side (Branco, Sun and Villas-Boas 2012, Branco, Sun and

Villas-Boas 2016, Ke and Villas-Boas 2019). Generally speaking, the ex-ante unob-
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servable payo�s are assumed independent across products. An important exception

is Adam (2001), who analyzes a model which allows for payo�s to be sampled from a

discrete set of nests so that searchers who sample an option from one nest will update

their posterior on the distribution for all other items on this nest.

Empirical work in this area has proceeded in several directions. Some of this work

has studied the identi�cation and estimation of some of the classic search models

(Koulayev 2014, De Los Santos, Hortaçsu and Wildenbeest 2012). A second strand

has taken the Weitzman (1979) model to data, including Kim, Albuquerque and Bron-

nenberg (2010), Honka and Chintagunta (2017), and Ursu, Zhang and Honka (2023)

Ursu (2018). A third area of research has followed Rothschild (1974) in allowing

for learning. In these models, consumers update their beliefs about the distribution

from which searched objects are drawn (De Los Santos et al. 2012, Koulayev 2013,

Dickstein 2018, De Los Santos, Hortaçsu and Wildenbeest 2017, Ursu, Wang and

Chintagunta 2020).

Among these papers, Gardete and Hunter (2018) is most closely related but focuses

on within-product rather than across-product learning. Jindal and Aribarg (2021)

provide experimental evidence that consumers update their beliefs about product

attributes as they search.

This paper is also related to the literature on platform design and optimal infor-

mation provision, including Dinerstein, Einav, Levin and Sundaresan (2018), De Los

Santos and Koulayev (2017), Ellison and Ellison (2009), Hagiu and Jullien (2011),

and Fradkin (2018). Our �ndings on product recommendations identify cross-product

learning as an additional channel through which a platform can in�uence search. Our

results on the optimal design of recommendations complement the theoretical and

simulation based results of Dzyabura and Hauser (2019) who show formally that it

may not be optimal to recommend the products with the highest ex ante expected

utility when consumers learn about their weighting of product attributes.

The Gaussian process model of beliefs builds on the literature on Gaussian pro-

cesses in machine learning, as summarized by Rasmussen and Williams (2005). Gaus-

sian processes have been widely used as predictive models in �elds such as geostatis-

tics (Cressie 1992), real estate (Xu, Zhang and Li 2021), and �nancial time series

(Andersen, Davis, Kreiÿ and Mikosch 2009). In the economics literature, Gaussian

processes (including Brownian motion) have been used to model Bayesian priors in

theoretical and empirical studies of study of optimal experimentation in product de-

velopment (Callander 2011) policymaking (Callander and Hummel 2014), and oil and
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gas exploration (Covert 2015, Hodgson 2019). In each of these papers, the agent faces

an exploration problem in similar to the spatial search problem in this paper.

Finally, Korganbekova and Zuber (2023) builds on our model, applying it to data

from an online furniture retailer and documenting similar evidence of spatial learning.

They combine our model with experimental variation in recommendations to design

an optimal personalization algorithm.

Paper outline. The remainder of the paper proceeds as follows. Section 2 provides

an illustrative example of spatial learning and path dependence. Section 3 outlines

a general model and derives implications for consumer search behavior. Section 4

describes the data on consumer search paths we use to test our model, and presents

stylized facts from this data that match model predictions. Section 5 describes the

estimation of the model using data on search paths. Sections 6 and 7 present the

results of the estimation and counterfactuals, and Section 8 concludes.

2 An Illustrative Example

We begin with an example that illustrates the main forces present in our model.

Consider a world with 3 products, A, B and C. A consumer has to buy one of the

three (we add an outside option in the main model, but omit it here for simplicity).

Their payo� from consumption depends on price and quality according to:

uj = qj − pj

Quality is unknown to the consumer ex-ante; all they observe are the prices, which

are ordered as pA < pB < pC . By searching a product, they learn the payo� uj. Each

search costs c > 0, and products must be searched before purchase.

Assume that consumers know that q ∼ N(pµ,Σ) where q = (qA, qB, qC), p =

(pA, pB, pC). µ > 1 is a known scalar. Because µ is positive, price acts as a signal of

quality, and because it is greater than one, consumers believe that increasing price

implies higher expected utility. The variance-covariance matrix Σ is also known ex-

ante. Consistent with the spatial logic o�ered in the introduction, we assume that it

takes the form Σij = λ exp(
−(pi−pj)2

ρ
). This means that, for example, cov(uA, uB) >

cov(uA, uC). The ex-ante unobserved part of utility (quality in this example) is more

highly correlated between products that are closer in terms of ex-ante observable
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Figure 1: Optimal Search Strategies

Notes: The left panel shows the optimal search strategies when there is no correlation in quality
across products, and observing uj only provides information about product j. The right panel
illustrates how search strategies change when consumers believe that there is positive cross-product
covariance in quality. The x-axis is the realized utility of the �rst product searched, and the y-axis is
the realized utility of the second product searched. Each region records the order in which products
are searched before the consumer stops searching. In this example, pA = 2, pB = 3, and pC = 4.

µ = 1.3, c = 0.4, Σii = 1.4, and Σij = 1.4 exp(
−(pi−pj)2

ρ ). In the left panel, ρ ≈ 0 and in the right
panel ρ = 0.8.

attributes (price in this example).

As an initial baseline, consider a model where ρ ≈ 0, so that all the o�-diagonal

elements of Σ are zero and there is no spatial correlation in payo�s. The consumer's

optimal policy is illustrated graphically in the left panel of Figure 1 for a speci�c

numerical example.3 After searching product C, consumers will stop if the observed

value of uC is above the reservation utility zB, and otherwise will search product B.

If the observed utilities uC and uB are both below zA, then the consumer will then

search product A. Notice that there is no path dependence; regardless of the utility

realizations, consumers will search products in the order C, B, A.

Next consider a model in which ρ > 0, so that payo�s are spatially positively

correlated. Since |pA − pC | > |pA − pB| = |pB − pC |, consumers will update more

about B than A the after sampling C. There is no straightforward characterization of

the optimal search strategy, and we solve for it numerically by backward induction.

The right panel of Figure 1 illustrates the results of this exercise. As before, the

3This is a special case of the Weitzman (1979) model. The optimal search algorithm assigns each
option a score zj � which in our example satis�es zA < zB < zC � and requires searching those in
decreasing order of score, stopping if the maximum payo� found thus far exceeds the search index
of the next option to be searched.
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consumer starts by searching product C. But the next product they search depends

on the observed value of uC . If uC is su�ciently high, they stop and buy it. If uC is

intermediate, they move on to product B, buying either B or C if B is good enough,

and only searching A if the max of B and C is low.4 If uC is low, they infer that µ is

also low, and instead target product A next, moving onto product B if the maximum

payo� of A and C is su�ciently low, and otherwise stopping.

This example exhibits the basic logic of spatial learning in consumer search. The

di�erential correlation of utility between products, which is a function of the distance

between products in the ex-ante observable attribute space, induces path dependence:

each successive outcome determines not only whether to stop but where to go next.

This example is a special case of the general model of search with spatial learning

which we develop in the next section.

3 Model

3.1 Environment

A consumer i with unit demand faces a �nite set J of available products. Each

product has a set of characteristics Xj ∈ X ⊆ RK that are observable to consumers

before search. Each product also has an associated search cost cj. In online search,

search costs may di�er across products j because of, for example, product rankings

of results pages. By paying the search cost, the consumer may learn the payo� uj

from buying product j. Consumers may search as many products at they like. After

terminating search, they may consume any product they have searched (they may

not purchase a product without searching it �rst) or choose to consume the outside

option instead, with payo� u0 = 0. Their �nal utility is the payo� from the product

consumed, less the sum of the search costs.

We assume that the payo�s have the following structure:

uij = mi(Xj) + ξj + εij (1)

where mi : X → R is a function that maps a vector of characteristics to aver-

4The values of uB and uC matter individually too. The downward sloping line at the top of the
blue region indicates that for a �xed uB just above 0.8, the decision to search A depends on whether
the news about C was good. If it was good, then the posterior µ is higher and price is a stronger
signal of quality, so it is optimal not to search A; whereas if it was bad the converse applies.
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age payo�s, ξj is a product-level random e�ect drawn iid across products from a

distribution N(0, σξ) common to all consumers, and εij is an idiosyncratic shock sam-

pled iid across consumers and products from a distribution N(0, σε). The function

mi(X) is sampled from a Gaussian process with prior mean function µi(X) and co-

variance function κi(X,X
′). We assume that µ is a continuous function, and that

κ(X,X ′) ≡ fκ

(
‖X−X′‖

ρ

)
for some weakly positive, continuous and decreasing function

fκ, where ‖ · ‖ is the Euclidean norm and ρ is a parameter that controls how covari-

ance declines with distance.5 Draws of mi(X) are therefore continuous functions of

X centered around µi(X). After searching a product j, consumers observe uj but do

not observe values of ξj or εij, or the function mi(X). We assume that the consumers

know the observables Xj ∈ X, the prior mean and covariance functions, µi(X) and

κi(X,X
′), and the distributions of ξj and εij prior to search.

6

3.2 Beliefs and Learning

As consumers search through alternatives, they update their beliefs about the joint

distribution of utility for the remaining alternatives. When the consumer searches

an alternative j, they observe uj and updates their beliefs according to Bayes' rule.

Their posterior beliefs about m(X) are a Gaussian process with mean and covariance

functions:

µ′(X) = µ(X) +
κ(X,Xj)(uj − µ(Xj))

κ(Xj, Xj) + σ2
ξ + σ2

ε

(2)

κ′(X,X ′) = κ(X,X ′)− κ(X,Xj)κ(Xj, X
′)

κ(Xj, Xj) + σ2
ξ + σ2

ε

(3)

Notice that κ(Xj, Xj) is the variance of the �signal� in observed utilities, the part

of utility that comes from m(X), and σ2
ξ + σ2

ε is the variance of the �noise�, the

part of the observed utility that comes form product-level and idiosyncratic shocks.

Figure 2 illustrates an example of the consumer's learning process. Panel A represents

a consumer's prior beliefs their preferences over products on a a one-dimensional

characteristic space X ∈ [0, 100]. The consumer's prior mean function, µ(X) = 0,

5Where here we use X and X ′ to denote two di�erent locations in product space.
6One could imagine a model in which the common utility shock, ξj , is also spatially correlated.

For example, uij = mi(X) + ξ(X) + ξ̃j + εij , where ξj = ξ(X) + ξ̃j and ξ(X) is drawn from a
Gaussian process. Although such a model would have interesting implications, it is not likely that
the correlation structure ofmi(X) and ξ(X) could be separately identi�ed following the identi�cation
arguments in Section 5 below.
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Figure 2: Gaussian Process Learning

0 10 20 30 40 50 60 70 80 90 100
-8

-6

-4

-2

0

2

4

6

0 10 20 30 40 50 60 70 80 90 100
-8

-6

-4

-2

0

2

4

6

(A) Prior Beliefs (B) Posterior Beliefs

Notes: This �gure illustrates Bayesian updating in a single dimensional Gaussian process with mean
0. In Panel A, the dashed line is the prior mean, and the shaded area is a one standard deviation
interval around the mean. The solid line is the �true� function which is drawn from the Gaussian
process, and the cross is the value observed by an agent, which is equal to the value of the Gaussian
process draw plus noise. In Panel B, the dashed line re�ects the mean of the agent's posterior beliefs.
The shaded area is a one standard deviation interval of the posterior beliefs.

is indicated by a dashed line. The shaded area is a one standard deviation band

of consumer's prior. The solid line is the consumer's utility function m(X) which

is drawn from the Gaussian process. The consumer searches a product j at location

Xj = 20 and observes the utility uj, indicated by the by the point in Panel A. Panel B

shows the consumer's posterior beliefs. Notice that the observation has revised down

the consumer's expected utility and reduced the consumer's uncertainty, especially

for products close to Xj in product attribute space.7

There are at least two ways to interpret this model. Under one interpretation,

consumers do not know their preferences over characteristic space, m(X). As they

search, they get noisy signals of the function. Under the other interpretation, con-

sumers know their preferences over the observable characteristics X, µ(X), but there

are other unobservable product characteristics whose values are unknown without

7Notice that the type of learning in this model is di�erent from that modeled by Koulayev
(2013) and De Los Santos et al. (2017). In those papers, the ex-ante unobservable part of utility is
distributed iid across products, and consumers learn about the common distribution of utility. In
our model, products are ex-ante di�erentiated and utility is di�erentially correlated across products,
so inference from one product's observed utility to beliefs about other products depends on the
covariance structure. Our model does not formally nest these models, which use Dirichlet priors.
However, when ρ→∞, the spatial covariance in our model becomes uniform, reducing to model to
one in which utilities are drawn iid from a normal distribution with an unknown mean.
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search, m(X)− µ(X). As they search, consumers re�ne their model of the mapping

between the observable and the unobservable characteristics. Under either interpre-

tation, consumers are aware of some set of observable characteristics X which they

use to direct their search. In applications, the X can be thought of as those product

features that are most salient and likely to be observable to consumers ex-ante.

Two special cases are worth noting. As ρ → 0, the correlation in average payo�s

between any two points goes to zero, so that each product has independent and

unknown payo�s prior to search. This is the model of Weitzman (1979), specialized

to the case of normally distributed payo�s (see Appendix A.2). As ρ → ∞, the

correlation in average payo�s goes to one, so that learning the payo�s at any one

point is equally informative for all other points.8

3.3 Consumer Behavior

The search process is a Markov Decision process. We model the state as a tuple

S = (µ(X), κ(X,X ′), û, J), where µ(X) are the current mean beliefs, κ(X,X ′) is the

current covariance, ĵ is the best product found so far, û is the payo� to the best

product found so far and J are the available products remaining to be searched. The

transitions on the state variables (û, J) are straightforward, and the transitions on

(µ(X), κ(X,X ′)) are given by equations 2 and 3 above.

The consumer's problem is described by the Bellman equation:

V (S) = max

{
û− c0,max

j
(E [V (S ′)|S]− cj)

}
(4)

Given state S, the consumer chooses whether to stop searching and obtain con-

sumption utility û or continue searching, in which case they chooses the alternative

j that maximizes the expected continuation value, less the cost of search, cj. The

expectation is over the realization of uj with respect to the consumer's current beliefs,

which together with the current state, S, determines next period's state, S ′, according

to the Bayesian process described above.

Unlike in the case of Weitzman (1979), it is not possible to solve the consumer's

8Under independence, the beliefs never update and consequently the order of search is pre-
determined. The optimal order of search and stopping rule is given by Weitzman (1979). Under
perfect correlation, the mean beliefs update everywhere symmetrically so that each update µ′−µ is
constant in X. In this case, consumers are learning about the average level of utility as they search.
This can be thought of as learning the common distribution from which utilities are drawn iid across
products, as in Rothschild (1974).
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problem analytically. It is, however, possible to obtain some intuition about optimal

consumer behavior under the assumption that conusmers are myopic, and only look

one search ahead. Under this assumption, we can derive a closed form solution for

the optimal search rule, which allows us to illustrate some of the forces in the model.9

The myopic policy scores the available options based on their expected marginal

contribution over the current best option û. De�ne sj =
√
κ(Xj, Xj) + σ2, the stan-

dard deviation of the payo� of product j (which includes the idiosyncratic shock).

De�ne aj = (û − µ(xj))/sj, the current best option normalized by the mean and

variance in payo�s for item j. Then we score option j according to:

zj = Φ(aj)û+ (1− Φ(aj))µj + φ(aj)sj − cj (5)

where the �rst term captures the chance that product j is worse than the current

best, the second two are the expected value of product j conditional on being better

times the probability of that event, and the last term subtracts the product-speci�c

search cost. That is, the score for product j is the expected value of û, the best

utility searched so far, after searching product j, less the search cost. The optimal

myopic policy is to search the option with the highest score zj, so long as it exceeds

û; otherwise to stop and buy the current best option because the expected increase

in û is less than the search cost. We provide a derivation of zj in Appendix A.1.

It is straightforward to prove some useful comparative static properties using the

analytical characterization of the score in (5).

Proposition 1 (Comparative statics).

∂zj
∂û

= Φ(aj) > 0 ,
∂zj
∂µj

= 1− Φ(aj) > 0 ,
∂zj
∂cj

= −1 < 0 ,

Moreover the impact of the payo� to the last search uk on current scores is given by:

∂zj
∂uk

=
∂zj
∂µj

∂µj
∂uk

+ 1(uk = û)
∂zj
∂û

= (1− Φ(aj))(κ(Xj, Xk)/s
2
k) + 1(uk = û)Φ(aj)

These properties are intuitive, but have some interesting implications. First, an

improved current best option a�ects the score of a product at a rate that depends

on whether its payo� may fall below the best option - i.e. based on the tail risk

9This myopic or �one-period look ahead� assumption is common in the literature on Gaussian
processes, which typically employ n-period look ahead assumptions (Osborne, Garnett and Roberts
2009).
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of an option. It follows that consumers score risky options more highly when they

have better existing options. Second, the comparative static on search cost implies

an important role for product rankings and visibility in driving search paths.

Finally, the main bene�ciaries of a higher payo� for the last search are options that

have high covariance, κ(Xj, Xk), with the last search location. Since the consumer's

prior κ(Xj, Xk) is decreasing in the distance between Xj and Xk, this means that

observing a high (low) utility draw from a product k will increase (decrease) the

search index zj of products j that are close to k in attribute space more than products

that are far from k in attribute space.10 Thus, di�erential covariance across products

induces path dependence in search - a low draw of uk will make a consumer less likely

to search similar products in future.

While the myopic policy is not generally optimal, it can provide a close approx-

imation to the optimal policy in certain cases. Frazier, Powell and Dayanik (2009)

provides explicit bounds on the suboptimality of the myopic, or �knowledge gradient�

policy in the case of Gaussian process beliefs. They show that the this policy is close

to optimal when κ(X,X ′) varies little across pairs of products and is exactly optimal

when the mean payo�s are perfectly correlated (ρ = ∞) or independent (ρ = 0).

Intuitively, the myopic policy does not allow consumers to search products because

they are di�erentially informative about other products that may be searched in fu-

ture. If consumers are forward-looking, it may be optimal to search some product j

with a low value of zj if the expected continuation value after searching this product

is high. Our empirical application in Section 6 below will use approximate dynamic

programming techniques to allow for such forward looking incentives.

4 Empirical Evidence from Online Search

4.1 Data

We apply our model of consumer search with spatial learning to data which records the

search paths of consumers shopping online for digital cameras. The data comes from

ComScore, who track the online browsing behavior of panelists who have installed

10This is precisely true when k is the �rst product searched. For later searches, κ(Xj , Xk) is
not only a function of distance but also of past searches. Intuitively, variation in κ(Xj , Xk) should
largely be a function of distances between products in areas of the search space that are less well
explored. This is not the case in models without di�erential correlation across products, including
Weitzman (1979) and Rothschild (1974).
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ComScore's tracking software. The sample we use was constructed by Bronnenberg

et al. (2016) (henceforth BKM), and comprises the browsing activity of 967 ComScore

panelists who were searching for digital cameras between August and December 2010.

Although this is a selected sample and not necessarily representative of the population

of consumers, it covers search across all domains and covers a product category that

is a good candidate for the application of our model. Digital cameras are infrequent

purchases and heterogeneous is quality and features. There are hundreds of models

of digital camera available, so consumers are unlikely to know their mapping from

models to utility before searching. However, there are several salient attributes such as

zoom and pixel that many consumers are likely to understand and use to direct their

search. In this section we illustrate patterns in this data that are suggesting of spatial

learning, before discussing how these patterns identify learning in the structural model

in the next section. 11

For an individual panelist, we observe the sequence of products viewed, the prod-

uct eventually purchased (if any), and the date and time of each observation. Product

views were detected by scraping the sequence of URLs visited by consumers for prod-

uct information. The data covers all browsing behavior and therefore is not limited

to one retailer. A product �view� or �search� (we use the terms interchangeably) in

the data is recorded when a product listing page on a retail site (e.g. Amazon) is

loaded. Searches are therefore recorded at the product-retailer level. Purchases are

identi�ed using a second ComScore dataset that tracks online transactions carried

out by panelists. For each product search, the data records the product make, model,

and four continuous product attributes - price, zoom, display size, and pixels. The

conversion of the raw ComScore browsing data and the matching of this data to prod-

uct attributes was performed by BKM, and extensive details on the preparation of

the data are provided in that paper.

De�ning a product as a unique combination of brand, pixel, zoom, and display,

and taking the average price recorded for that combination results in 357 products

and 1022 product-retailers. The left panel of Table 1 records summary statistics on

the distribution of four continuous attributes (price, zoom, display size, and pixels)

11Similar search patterns to those documented here have been found in work by Korganbekova
and Zuber (2023), who use a data set covering all consumers on Wayfair. One could apply our model
to other setting where we do not expect consumers to have limited information or to make cross
product inferences, for example frequently purchased household staples. As discussed in Section 5
below, we would expect to estimate learning parameters (λ, ρ) close to 0 in a setting where we do
not observe these search patterns.
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Table 1: Summary Statistics

Products Searches

Mean SD Mean SD Min Max

Price 299.52 431.00 Length 5.86 7.46 1 69

Zoom 6.47 5.95 Purchase Discovered 0.84 0.26 0.03 1

Pixel 11.13 2.79 Price Searched 275.30 365.18 16.99 5250.09

Display 2.73 0.37 Zoom Searched 6.40 5.95 1 35

Availability 2.88 1.44 Pixel Searched 12.04 2.29 1 21

Display Searched 2.79 0.29 1.1 3.5

Retailers Searched 1.87 1.03 1 5

Notes: Left panel records statistics on products from the digital camera data. An observation in the
�rst four rows is a product-retailer. Availability is the number of retailers at which we observe the
product being searched. An observation in the �fth row is a product. Right panel records statistics
on search paths from the digital camera data. Search path length is the number of product-retailer
combinations viewed. Product discovered is recorded in terms of search percentile, as de�ned in the
text. Product attributes searched record the distribution over all consumer-product observations.

attributes across products. Products may be sold by multiple retailers (i.e. domains)

at di�erent prices. The �fth row of this panel indicates that the average product is

available at 2.88 retailers, where we treat the top four retailers separately and combine

all other retailers into a composite �other�. Appendix Table A.2 records the share of

products for each retailer and brand.

The right panel of Table 1 records summary statistics on the 967 consumer search

paths. Recall that search paths are a sequence of product-retailers. In our discussion

of search paths we will refer to product-retailers as �product:s for brevity, where

retailer can be thought of as one of the product attributes. The �rst row of the

records path length - the number of unique product combinations searched.12 The

average consumer views about 5.9 products. There is a tail of consumers with very

long search paths, the longest of which is 69 products. The second row documents the

search percentile at which the ultimately purchased product is �rst discovered. If a

consumer searches T products in total, then the search percentile of the tth product

is t
T
. Note that the T th product is not necessarily the product purchased. The

chosen product is typically discovered towards the end of search.13 The remaining

12Note that we include only a consumer's �rst visit to a product URL in the analysis data, and we
therefore drop any revisits to the same product after that product has been searched once. These
revisits represent around 24% of the URL queries recorded in the raw data. The model described
in Section 3 cannot rationalize revisits, since the consumer learns their utility for a product after
searching it once.

139.6% of recorded search paths end in no purchase. These paths are omitted from the statistic
�purchase discovered� in Table 1. When we apply our model to the data, we treat these consumers
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rows documents the distribution of attributes among products searches. Comparing

these distributions to the distributions of product attributes in the top panel indicates

that products which are less expensive are searched more. Similarly, products have

higher resolution and a larger display are searched more often.

4.2 Convergence in Product Space

In this section we present several stylized facts that describe how consumers move

through the product attribute space as they search. We argue that these descriptive

statistics suggest that consumers begin search with some uncertainty about their

preferences over these four attributes, and that they update their beliefs about their

preferences for un-searched items after viewing each product in their search path.

Figure 3 replicates one of the main �ndings of BKM - that the attributes of

products searched get closer to the attributes of the product eventually purchased

as search progresses. The left panel plots search percentile on the x-axis against

the distrance in log price between the product searched at that search percentile

and the product eventually purchased. This Figure shows that the attributes of the

product being viewed get closer to those of the product eventually purchased over

time. Products considered, but not purchased, in late search are more similar in price

to the purchased product than products considered in early search. The right panel

shows that the same is true of log zoom. The same pattern can be observed in other

product attributes (pixels, and display size), as documented in Appendix Figure A.6.

Note that this result is not driven by the fact the the purchased product tends to be

�rst discovered towards the end of the search path, since the purchased product is

excluded from the data.14

In addition to getting closer to the purchased product on average, consumers

search a wider variety of products and take larger �steps� through attribute space

early in the search path than later in the search path. We document these additional

facts in Appendix C.1. Taken together, these patterns suggest that consumers explore

a wider variety of products early in their search before narrowing in on close substi-

tutes to the product that is ultimately purchased. This behavior is not predicted

by standard models of sequential search. In contrast, correlated Gaussian process

as choosing an outside option.
14In Appendix Table A.3 we present these results as linear regressions including consumer �xed

e�ects, showing that distance to the chosen product decreases signi�cantly with search percentile.
These regressions also show that consumers do not get further from the chosen product after switch-
ing domains.
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Figure 3: Convergence to Chosen Attribute Level

Notes: The y-axis for each panel records, for the relevant product attribute, the absolute di�erence
in standard deviations of the attribute between the searched product and the product ultimately
purchased. The x-axis reports the search percentile, as de�ned in the text. The product ultimately
purchased is excluded from the data for each consumer. The solid line is a kernel regression using
an Epanechnikov kernel, and the shaded area is 95% con�dence interval. The estimation sample
includes all search paths from the ComScore data on search for digital cameras, with revisits to the
same product dropped.

learning has been shown to exhibit this type of convergence behaviour. Frazier et al.

(2009) show that agents following a myopic policy searching over alternatives with

payo�s drawn from a multivariate normal will tend to explore the search space early

on, and then concentrate later search in high-payo� regions. These �ndings are di�-

cult to rationalize without a model in which there is a spillover of information between

searched and un-searched objects.

4.3 Step Size and Path Dependence

In this subsection we test a direct implication of the model of search with spatial

learning developed in Section 3. Proposition 1 implies that when an object is observed

to have a higher than expected utility, other objects that are nearby in attribute space

move up the search ranking more than objects that are distant in attribute space.

Likewise, when a searched product had lower than expected utility, objects that are

closer in attribute space move down the search ranking more than distant objects.

These implications of the model are di�cult to test directly, since we do not ob-

serve consumer preferences. An ideal experiment would randomly expose consumers

to one of two objects, j and k, with Xj = Xk, but ξj > 0 > ξk. That is, two objects at

the same location in the ex-ante observable product space, but with di�erent unob-
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servable product e�ects. After viewing object j, consumers should, on average, make

the inference that similar objects also yield higher utility than expected, and should

be more likely to subsequently search nearby products. Consumers that view object

k should, on the other hand, be less likely to subsequently search nearby products.

To approximate this experiment we rely on the observation that di�erent values

of ξj not only generate di�erent search path patterns, but also generate di�erent

purchase patterns. In particular, products with high values of ξj should be pur-

chased more frequently than similar products, conditional on being searched. We test

whether this is true: do products that are purchased less (more) often, relative to

observably similar products, also induce larger (smaller) �jumps� in attribute space?

To do this we construct a product level index θ̂j which measures how much more or

less likely a product is to be purchased than other products with similar attributes

Xj. High values of θ̂j mean that a product is purchased more, conditional on being

searched, than similar products. Vice versa for low θ̂j. In the context of our model,

variation in θ̂j across products is explained by variation in product e�ects, ξj. Details

on the construction of this measure are in Appendix C.2. We then regress a measure

of the �step size� of search after a consumer observes product j on this index.15

Let j(i, t) be the product searched by consumer i on the tth search (we will

sometimes write this jit to make expressions easier to read). To test for consumer

learning, we regress measures of step size, for example ∆priceit = |priceit− priceit−1|
on the estimated index of the last product viewed, θ̂j(i,t−1). If consumers are spatial

learners, Proposition 1 implies that the size of the consumer's tth search step should

be negatively correlated with θ̂j(i,t−1). We run this regression for four observable

attribute dimensions - log price, log pixels, log display size, and log zoom - and

record coe�cients in Table 2. All regressions include controls for search percentile,

an indicator for whether product j(i, t − 1) is the product ultimately purchased,

product density controls, and consumer �xed e�ects.16 θ̂j(i,t−1) is standardized so

that the �rst row reports the e�ects of one standard deviation changes of θ̂j(i,t−1).

θ̂j(i,t−1) has a signi�cant, negative e�ect on step size for each of the four attribute

15Note that the index θ̂j does not have a structural interpretation. It is a descriptive statistic that
captures how frequently a product is purchased compared to other products with similar observables.
The results in Table 2 should therefore be thought of as descriptive regressions that are consistent
with the behavior predicted y the model.

16Product density is the average distance between j(i, t−1) and all other products in the relevant
observable attribute dimension. If �surprisingly bad� products tend to be located in regions of the
attribute space that are sparsely populated by other products, then step size after searching one of
these products will mechanically be larger.
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Table 2: E�ect of Product Residuals on Step Size

∆priceit ∆pixelit ∆zoomit ∆displayit ∆domainit ∆brandit

θ̂j(i,t−1) -0.197*** -0.255*** -0.118** -0.244*** 0.037 0.036

(0.042) (0.045) (0.060) (0.048) (0.036) (0.038)

SearchPercentileit -0.130*** -0.020 -0.026 -0.015 0.178*** -0.091***

(0.036) (0.038) (0.051 (0.041) (0.031) (0.032)

Purchasedit−1 -0.076*** 0.031 -0.085* -0.011 -0.096*** -0.080***

(0.034) (0.037) (0.049) (0.039) (0.030) (0.031)

N 3976 3976 3976 3976 3976 3976

Consumer FE Yes Yes Yes Yes Yes Yes

Density Controls Yes Yes Yes Yes Yes Yes

Mean of Dep. Var. 0.569 0.550 0.667 0.598 0.365 0.491

Notes: Table presents regressions of search step size on the product residual index θ̂j(i,t−1). Values of

θ̂j(i,t−1) are standardized so that estimated coe�cients are the e�ect of one standard deviation. Any

product observations where jit−1 is never purchased, and hence a value θ̂j(i,t−1) is not computed,
are omitted from the regression. All regressions include consumer �xed e�ects. The data includes all
search paths in which at least two products are searched, with revisits to the same product dropped.
*** indicates signi�cance at the 99% level. ** indicates signi�cance at the 95% level. * indicates
signi�cance at the 90% level.

dimensions. A one standard deviation decrease in θ̂j(i,t−1) increases step size in log

price by 0.093, which is 18% of the average step size in log price recorded in the

�nal row of Table 2. Similarly, a one standard deviation decrease θ̂j(i,t−1) increases

step size in in log pixels by 30% of the average, in log zoom by 15% of the average,

and in log display by 18% of the average. The results indicate that consumers take

larger than average steps in attribute space after viewing products that are rarely

purchased (those with low values of θ̂j(i,t−1)). That is, purchase behavior associated

with a speci�c product predicts search behavior after consumers have viewed that

product. This �nding is strongly suggestive of learning, and is in line with what we

would expect to observe if consumers made inferences about nearby products after

each search, per Proposition 1. When consumers view products with �surprisingly

low� utility (those with low values of ξj), they jump further away in attribute space.
17

The �fth and sixth columns of Table 2 report the results of analogous regressions

of ∆domainit and ∆brandit on θ̂j(i,t−1) . ∆domainit is an indicator that is equal to 1

when the consumer switches domain, or retailer, between search t − 1 and search t,

for example from eBay.com to Amazon.com. ∆brandit is an indicator that is equal to

17In Appendix Table A.6 we run examine the robustness of these results to the de�nition of θ̂j
using alternative binary classi�cation of products as �frequently� or �infrequently� purchased. The
results are consistent with the pattern in Table 2.
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1 when the tth and t− 1th products searched are of di�erent brands. In both cases,

the coe�cients on θ̂j(i,t−1) are not statistically signi�can. These results are consistent

with a model in which consumers learn about the value of product attributes, and not

about the value of brands or retailers. This is perhaps reasonable if brand reputation

is established through advertising before search begins, and the value of retailers is

ex-ante known from prior shopping experience.

These e�ects suggest that the information consumers obtain from search a�ects not

only their purchase decisions but also the direction of their search paths. If the e�ects

recorded in Table 2 persist, then they induce path dependence in search. Viewing a

product with a low value of ξj rather than an otherwise identical product with a high

value of ξj could permanently divert the consumer's search path by pushing search

to another area of the attribute space. On the other hand it could be that the e�ects

in Table 2 are transient, and any change in the step size is undone by subsequent

search.

To determine the extent to which jumps in step size are persistent, we regress two

and three step di�erences in product attributes, for example |priceit − priceit−2|, on
two and three step lags of θ̂j. The results of these regressions are recorded in Appendix

Table A.7. The estimated coe�cients indicate that the correlation between θ̂j and

step size persist. The coe�cients are mostly negative and slightly lower in magnitude

than the one-step coe�cients in Table 2.18

Together, the results discussed in this subsection indicate that consumers jump

away from from low-θ̂j products and tend to stay away in subsequent search, although

this e�ect fades with subsequest steps as consumers obtain more information. This

pattern is consistent with a persistent e�ect of observing low-ξj products on con-

sumers' beliefs generating path dependence in search. To quantify the importance of

these e�ects to consumer welfare, and to further investigate the implications of path

dependence in search for platform power we next turn to estimating the structural

parameters of the model.

18In Appendix Table A.8 we report further regressions of forward one-step di�erences, for example
|priceit+1−priceit| and |priceit+2−priceit+1|, on lags of θ̂j . We �nd no signi�cant e�ects of θ̂j(i,t−1)
on any one-step di�erence size except the tth. We also �nd no e�ect of θ̂j(i,t−1) on past step sizes.
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5 Structural Estimation

In order to take the model developed in Section 3 to the data on consumer search

paths, we make several additional assumptions.

5.1 Multiple Retailers

The empirical setting deviates from the model described in Section 3 because search

take place over multiple retailers that may sell overlapping sets of products. To deal

with this, we let each alternative j denote a combination of product and retailer. Let

j̃j denote the product identity (e.g. Nikon P100) corresponding to alternative j and

rj denote the retailer ( e.g. Amazon.com). This has two implications for the model.

First, we assume that the alternative-speci�c random e�ects, ξj, are identical at

the product level, so ξj = ξj′ if j̃j = j̃j′ . Because of this, learning across alternatives

takes place not only because of the correlation in m(X) but also because multiple

alternatives share the same ξj. This is accommodated through an appropriate mod-

i�cation of the Bayesian updating rules in equations 2 and 3. See Appendix D for

details.

Second, we introduce a retailer switching cost. Let r̃ indicate the retailer of the last

viewed alternative. If the consumer chooses to search an alternative with rj 6= r̃ they

pay cswitch in addition to the search cost cij. Because this introduces a dependency

between r̃ and the value of searching each alternative, j, r̃ must be included in the

consumer's state variables.

5.2 Empirical Speci�cation

We assume that consumers' prior means are linear in product characteristics:

µ(Xj) = α +Xjβi + γr(j) + δb(j) (6)

Where γr(j) are retailer �xed e�ects and δb(j) are brand �xed e�ects. Notice that

we allow for consumer heterogeneity in the prior mean functions through consumer-

speci�c coe�cients βi. The model therefore nests the random coe�cients discrete

choice model of Berry, Levinsohn and Pakes (1995).19 We assume that the coe�cients

19In particular, when γ = 0 and cijt = 0 the model collapses to a probit choice model with linear
utility and random coe�cients.
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βi, are normally distributed according to equation 7, where we restrict Ω to be a

diagonal matrix and denote the kth diagonal element ωkk.
20

βi ∼ N (β,Ω) (7)

We assume that that consumers' prior covariance function κi(Xj, Xl) is of the form

given by equation (8). This is similar to the square exponential covariance function

introduced earlier in the text but allows the covariance between mi(Xj) and mi(Xl)

to decay with distance at di�erent rates along di�erent dimensions of the product

characteristic space. In particular, there are K parameters ρk that control spatial

correlation in utility along the K dimensions. The parameter λ controls the overall

variance level of the prior Gaussian process.

κ(Xj, Xl) = λ2exp

(
K∑
k=1

− (Xjk −Xlk)
2

2ρ2k

)
(8)

Let ρ be the vector with kth entry ρk.
21 To further simplify the consumer's

problem, we suppose that consumer i's cost of searching product j at period t, cijt,

is given by equation 9, where c is a parameter, and ζijt is a logit error term that is

drawn independently across t, i, and j. The logit assumption simpli�es subsequent

computation, and captures variation in search costs across consumers and products

due to, for example, variation in page rankings. We do not observe page ranking in

our data, but in applications where such data is available costs could be conditioned

on page ranking or other variables capturing product salience.22

cijt = c+ ζijt (9)

ci0t = ζi0t

20Due to the standard price endogeneity concern, the parameters β should be interpreted as the net

e�ect on expected utility of changes in characteristics, βprice = ∂E(u)
∂price , �xing consumer beliefs. This

is not a problem for the counterfactual exercises we perform, which focus on information provision
rather than price changes. We provide a discussion of this issue in Appendix F.1.

21Note that κ(Xj , Xl) is not a function of retailer, r(j), or brand, b(j). This amounts to assuming
that consumers know the brand's and retailer's contribution to utility ex-ante. This assumption is
made for computational tractability, but is consistent with the results in Table 2.

22Costs could also be conditioned on demographic variables. Prior work has shown that search
costs are related to consumer demographics (De Los Santos et al. 2017). For simplicity, we have
chosen not to project search costs onto demographics here, though this could be accommodated at
some computational cost.
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Finally, we normalize the level of utility by giving consumers an outside option

with utility zero, setting ûi0 = 0 for all i. Note that in our application to digital

cameras we only observe an individual if they make at least one search. To deal

with this, we assume that consumers must make at least one search, and afterwards

can choose to stop searching without purchasing a product and obtain outside option

utility ûi0 = 0.

Thus the parameters to be estimated comprise those determining the prior mean,

{β, α,Ω, γrj , δrj}, those determining the prior covariance function, {λ,ρ}, the search
cost parameters c and cswitch, and the parameters the control the �noise� in consumers'

learning process - the variances {σξ, σε} and the values of the product e�ects, ξj. Let

ψ be the set of parameters to be estimated. Given ψ and a K dimensional vector of

product attributes for each of the J products, the model generates a distribution of

search paths and purchase decisions.

5.3 Estimation

We estimate the model by constructing the likelihood of the observed consumer search

paths and choices. Under the assumption that search costs are given by equation (9)

with logit errors, we can write the expectation of the value function as,

V (S, ψ) = log

(
exp(û) +

∑
j

exp (E [V (S ′)|S]− c)

)
. (10)

Which is equal to the expectation of Bellman equation 4 with respect to cj.
23 Note

that here we make explicit the dependence of the value function on the parameters

ψ. The probability of a consumer choosing to search product j ∈ J conditional on

being at state S, but unconditional on the realizations of the logit cost shocks is then

given by:

Pi(j|S, ψ) =
exp (E[V (S ′, ψ)|S]− c)

exp (û) +
∑

l∈J exp (E[V (S ′, ψ)|S]− c)
(11)

The expectations are over realizations of the sampled utility, uj, which determines

the evolution of the state variable. In particular, after sampling uj, û
′ = max{û, uj}.

Suppose consumer i searches Ti times before stopping. Let jit be the tth product

23The is the expected value up to the additive Euler-Mascheroni constant. Because V (S ′, ψ) and
c enter linearly in the lkelihood below, we can think of this constant as part of c.
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searched. Let jit = 0 indicate stopping and purchasing the highest utility sampled

product (or the outside option). Finally, let ĵi indicate the product purchased. If

the consumer's state variable, S, was fully observable to the econometrician, the

likelihood of the consumer's search path would then be given by equation 12.

Li({jit}Tit=0, ĵi|{St}
Ti
t=0, ψ, βi) =

(
Ti−1∏
t=0

Pi(jit|St)

)
Pi(0|STi)1

(
uĵi = ûjiTi

)
(12)

Since the econometrician does not observe the utility draws that enter S, it is neces-
sary to integrate them out of the likelihood function. Conditional on ψ, the vector

of utilities observed by consumer i, ui =
(
ui,j(i,t=1), ..., ui,j(i,t=Ti)

)
, is distributed ac-

cording to a multivariate normal distribution, G(ui) = N(ūi,Σi). The vector of mean

utilities, ūi, has a τth entry given by µ(Xj) + ξj(i,τ). The covariance matrix Σi has

diagonal elements κ(Xj(i,τ), Xj(i,τ)) + σ2
ε and o�-diagonal elements κ(Xj(i,τ), Xj(i,τ ′))

for τ 6= τ ′.The likelihood function for consumer i unconditional on utility draws is

given by equation 13.

Li({jit}Tit=0, ĵi|ψ) =

� �
Li({jit}Tit=0, ĵi|{St}

Ti
t=0, ψ)dG(ui)dF (βi) (13)

The inner integral is taken over the distribution of ui given βi. In practice, we

approximate these integral by averaging over draws from G(ui). The outer integral

is taken over the distribution of βi, given by equation 7. We search over parameter

vectors ψ to maximize the objective function,

L(ψ) =
N∏
i=1

Li({jit}Tit=0, ĵi|ψ)
J∏
j=1

φ(ξj, 0, σξ) (14)

Which is the product of the likelihood of N conusmer search paths, and the prior

ξj ∼ N(0, σξ). We multiply the likelihood with the prior on ξj to obtain a maximum

a posteirori objective function. This helps discipline the estimates of ξj in �nite

sample, for example for products j that are rarely viewed, and can be thought of as

a regularization or shrinkage term. Notice that as N → ∞ the prior drops out of

the log likelihood. The esimates are therefore asymptotically equivalent to maximum

likelihood.
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5.4 Approximating the Value Function

To compute the likelihood for a candidate parameter value, ψ, we need to solve for the

consumer's continuation value, V (S ′, ψ), in equation 11. Observe that the consumer's

state variable S includes current beliefs, which are described by a vector of J means

with elements µ(Xj) and a J × J covariance matrix with (j, j
′
) element κ(Xj, Xj′).

The state variable therefore has dimension at least J + 1
2
J(J − 1),with J ≈ 1000

alternatives in the data. Rather than solving for the value function at every possible

state point for every candidate ψ, we instead adopt an approximation to the value

function that allows us to interpolate between states as in Keane and Wolpin (1997)

and Crawford and Shum (2005).

We perform value function iteration on equation 15. On the kth iteration, we use

this equation to compute the value function at a set SW of W simulated states and

parameter vectors. We then estimate a neural network regression of Vk+1(S, ψ)) on

(S, ψ), generating an approximated value function, V̂k+1(S, ψ). The approximated

value function is then used as the continuation value in the next iteration of the

Bellman Equation. This procedure, which alternates between iterating the Bellman

equation and approximating the value function using a neural net, is based on the

�approximate value iteration� procedure described by Bertsekas and Tsitsiklis (1996),

who provide results on the conditions required for convergence.

Vk+1(Sit, ψ) = log

(
exp(û) +

∑
j

exp
(
E
[
V̂k(Sit, ψ)|S̃iτ

]
− c
))

. (15)

The function approximation in is necessary because computing the expectation in

equation 15 requires evaluating the value function at states outside SW . The neural

network regression thus serves as a means of extrapolating the value function from

a �nite number of sampled states, allowing for forward looking incentives without

forcing the researcher to choose an arbitrary functional form for the value function.

For large enough W and a su�ciently rich neural network speci�cation, the approxi-

mation V̂k can be made arbitrarily accurate (Park, Yun, Lee and Shin 2020). Details

of the implementation of this method, including a discussion of further state space

reduction, are provided in Appendix E.

We substitute V̂ (S ′, ψ) into equation 11 in place of V (S ′, ψ) and �nd ψ that

maximizes the likelihood in equation 14. Notice that since all the parameters that

are relevant for the consumer's problem enter V̂ (S ′, ψ), it is not necessary to repeat
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the value function iteration for each candidate value of ψ.24

5.5 Identi�cation

Our model di�ers from standard models of sequential search because of the presence

of the spatially correlated beliefs controlled by the parameters {λ, ρ, σξ, σε}. The

identi�cation argument we outline below relies on patterns in the search sequences to

identify the parameters {λ, ρ, σξ, σε}. Note that we do not normalize any of the three
variance parameters {λ, σξ, σε} that control the variance of the spatially correlated,

within product, and iid components of utility respectively. We argue that our model

puts su�cient structure on the covariance of utility across products that each of these

variance parameters is identi�ed from data on sequential search25

The heuristic argument is as follows. The probability of each possible search and

purchase sequence is identi�ed directly from the data as the number of consumers

grows large. The probability that each product is searched �rst identi�es the param-

eters of the prior mean, β. The variance, Ω, of the random coe�cients is identi�ed

by the relative variation in search product attributes across and within individuals.

If there is more variation across individuals than within individual search paths in

the attributes of searched products, this suggest greater heterogeneity in βi. This

is similar to the standard argument for identi�cation of preference heterogeneity in

discrete choice panel data as in Keane (1997). The intercept α is identi�ed by the

share of consumers choosing the outside good, and the search cost parameter, c, is

identi�ed by the by the distribution of search lengths. The probability that product

j is purchased, conditional on being searched, identi�es ξj. Note that the argument

so far makes no use of the sequence of search.

The identi�cation of the variance and covariance parameters, {λ, ρ, σξ, σε}, is novel
and merits a more detailed argument. These parameters are identi�ed by cross-

product variation in ξj and second search probabilities. To see this, suppose for

simplicity that βi = 0 and αi = 0 and that the observable product attribute space is

one-dimensional. Consider, for example P (ji2 = B|ji1 = A), the probability that a

consumer searches product B second conditional on searching product A �rst. This

24One concern is that the approximation may be poor at values of ψ that are far from any that
appear in SW . We discuss this issue in Appendix E.

25To provide additional supporting evidence for this heuristic argument, we present additional
Monte Carlo exercises in Appendix F.3 in which we show that attempting to �normalize� one of
the variance parameters reduces the �t of the model. Appendix F.2 also includes discussion of the
reliance of identi�cation on functional form.
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probability depends on consumers' posterior beliefs about the distribution of util-

ity from product B. Following equations 2 and 8, the average (Across consumers)

expected utility of product B after searching product A is

E(uB|ji1 = A) =
κ(XA, XB)(ξA)

λ2 + σ2
ξ + σ2

ε

κ(XA, XB) =λ2exp

(
− (XA −XB)2

2ρ2

)
. (16)

Which depends on ξA and (XA −XB)2. Thus, variation in distance between pairs

of products, (Xj −Xk)
2 and variation in ξj across products will generate variation in

the expected utility of product k after searching product j, and therefore variation

in the second search probabilities probabilities P (ji2 = k|ji1 = j).26 This allows

us to identify ρ from di�erential second search probabilities for products at di�erent

distances from the �rst searched product, and λ2

λ2+σ2
ξ+σ

2
ε
from variation in second search

probabilities after �rst searching products with di�erent values of ξj. Intuitively, if

there is no spatial correlation in beliefs, λ2

λ2+σ2
ξ+σ

2
ε

= 0, and variation in ξj should not

a�ect beliefs after the �rst search. If there is spatial correlation, then the extent to

which consumers �jump� away from nearby products after searching a product with

ξj < 0 depends on ρ.

Recall that the data includes searches in which consumers view the same product

across multiple retailers. Product A yields the same utility across all retailers (up to

retailer �xed e�ects). Therefore, the average expected utility of product A on retailer

2 after the consumer �rst searches product A on retailer 1 is

E(u ˜ji2=A,rj=2|j̃i1 = A, rji2 = 1) =

(
σ2
ξ + λ2

)
(ξA)

λ2 + σ2
ξ + σ2

ε

. (17)

Following a similar argument to that above, the extent to which the probability

of second searches for the same product at di�erent retailers varies with ξj identi�es
λ2+σ2

ξ

λ2+σ2
ξ+σ

2
ε
. Intuitively, the lower λ2 + σ2

ξ , then the less correlated is utility within

product across retailers, and therefore the less likely to view products with high ξj at

multiple retailers.

Consider now the variance across consumers of the expected utility of product B

26Proposition 1 formalizes this in the case of the myopic model. With forward looking consumers,
the link between posterior beliefs and search probabilities is more complex and does not have an
analytic expression.
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after �rst searching product A. Cross consumer variation in utility realizations comes

through εij. This variance is given by

V ar(uB|ji1 = A) = σ2
ε

(
κ(XA, XB)

λ2 + σ2
ξ + σ2

ε

)2

. (18)

Since ρ and λ2

λ2+σ2
ξ+σ

2
ε
are already identi�ed, the variance in second search proba-

bilities across consumers identi�es σ2
ε . Consumers with the same prior make di�erent

second search choices because of their idiosyncratic draws εij and search cost shocks

ζijt, the variance of which is normalized. Thus, σ2
ε rationalizes the overall variance

in second search probabilities. Putting equations 16, 17, and 18 together, identi�-

cation of ρ, λ2

λ2+σ2
ξ+σ

2
ε
,

λ2+σ2
ξ

λ2+σ2
ξ+σ

2
ε
, and σε can be combined to identify the parameters

{λ, ρ, σξ, σε}.27

The path dependence patterns in search path data that this model seeks to explain

are therefore the source of variation in the data that helps identify {λ, ρ, σξ, σε}.
Crucially, a model without learning could be identi�ed without data on the sequence

(i.e. the order) of searches, and it is this sequential variation that we lean on to

identify the novel components of our model.28

To provide additional evidence of identi�cation we run a Monte Carlo exercise.

Appendix Table A.4 reports the mean and standard deviation of the estimated pa-

rameters for 150 simulated data sets with N = 1000 search paths each. Estimated

parameters are close to the true values and covered by 95% con�dence intervals.

27The argument above relies on second search probabilities only, but the data includes the full
search sequence, providing additional identifying variation. Intuitively, consider the population of
consumers who search a sequence of products (1, 2, ..., J) in that order. Suppose there are two
observably identical products A and B. The distribution of utilities among consumers who search
(1, 2, ..., J, A) and (1, 2, ..., J, B) are identical. However, if ξA 6= ξB then the distribution of sub-
sequent searches will di�er between the two groups, providing variation that helps to identify the
learning parameters. With su�ciently large data it may also be possible to identify heterogeneity in
consumer uncertainty, λ. For instance, if some consumers consistently take larger steps away from
bad products than other consumers, they may have more prior uncertainty. We do not pursue this
due to computational limitations and the small size of the data.

28Note that without the learning component (λ = 0), our model is based on a standard linear
random coe�cients utility speci�cation (e.g. Berry, Levinsohn and Pakes (1995)). The identi�cation
argument o�ered here demonstrates how a random utility speci�cation with a richer cross-product
covaraince structure can be identi�ed using sequential search data under assumptions about con-
sumer learning.
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6 Results

6.1 Parameter Estimates

We estimate the model on the digital camera search path data from BKM using the

approach discussed above. Observable characteristics known to the consumer before

searching are log price, pixels, display size, and log zoom. All characteristics are

standardized to have mean 0 and standard deviation 1 across products.

The estimated parameters are presented in Table 3. The coe�cient on price is

negative and statistically signi�cant and the coe�cients on pixels and display are

positive and statistically signi�cant. The coe�cient on zoom is negative but small

is magnitude. In particular, the estimated variance of the prior expected marginal

utility of zoom, ω2,is high relative to the mean, β2, suggesting signi�cant heterogeneity

in prior preference for zoom across consumers. This is consistent with zoom being

an important dimension of horizontal di�erentiation - with some consumers searching

for larger professional cameras with a higher zoom and others compact, low zoom

cameras. There is also signi�cant heterogeneity in prior divisibility of price.

The standard deviation of the Gaussian process m(X) from which consumers'

preferences are drawn, λ, and the covariance parameters ρk for all four attribute

dimensions are positive and signi�cant. Recall that as ρk → 0, the model converges

to a standard sequential search model without learning. The data on search paths

therefore provides evidence that consumers update their beliefs about un-searched

objects as they search.

The estimated value λ is of the same order of magnitude as the the standard

deviations of the product e�ects, σξ, and the idiosyncratic error, σε. That is about

one third of the ex-ante unobservable variation in utility is attributable to the spatially

correlated component, m(X), and consumers therefore make meaningful inferences

about the utility of unsearched products from observed utilities.29

Table 4 illustrates the �t of the model to the data. The �rst two columns record

the mean and standard deviation of various statistics across search paths in the data.

The third and fourth column record these same statistics across 5,000 search paths

simulated using the estimated parameters. For each simulation, we draw a new value

of m(X) from the Gaussian process and new values of the idiosyncratic errors εij.

We hold ξj �xed across simulations at their estimated values. The results in the �rst

29The �signal to noise ratio� is approximately 1 : 3.
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Table 3: Estimated Parameters

Estimate SE Estimate SE

β1 (log price) -2.452 0.086 cswitch 1.988 0.040

β2 (log zoom) -0.224 0.098 c 7.860 0.025

β3 (pixels) 2.602 0.090 ρ1 (log price) 1.066 0.029

β4 (display) 0.444 0.090 ρ2 (log zoom) 0.608 0.015

ω1 (log price) 2.386 0.081 ρ3 (pixels) 1.920 0.036

ω2 (log zoom) 1.960 0.097 ρ4 (display) 2.213 0.033

ω3 (pixels) 0.925 0.072 λ 22.321 0.005

ω4 (display) 0.966 0.100 σξ 25.840 0.496

α -44.559 0.121 σε 22.820 0.007

γ1(Amazon) -1.486 0.097 δ1(Canon) 3.372 0.130

γ2(BestBuy) -1.347 0.106 δ2(Kodak) 2.880 0.135

γ3(eBay) -3.983 0.132 δ3(Nikon) 4.545 0.142

γ4(Other) -2.163 0.190 δ4(Other) 2.221 0.205

Notes: Table reports estimated parameters and standard errors computed using the observed Fisher
information. For more details on the estmiation procedure, see Appendix D.

two rows indicate that the average search percentile at which the purchased product

is �rst discovered and the share of consumers choosing the outside option in the

simulated paths match the data reasonably well. The next four row rows record the

average observable characteristics of the products searched. For each attribute, the

average characteristic searched in the data is close to the simulated value. The �nal

two rows show that the simulated paths are somewhat longer than the paths in the

data, and consumers sample products from more platforms in the simulations. The

imperfect �t to search length is likely the result of numerical imprecision in computing

the integrals in equation 13.30

6.2 Search Path Patterns

As discussed in Section 4, the model of search and learning is motivated by descrip-

tive patterns from the search data. First, as recorded by Table 2, consumers take

systematically larger steps in attribute space after viewing products that are rarely

30The integrals are computed using Monte Carlo draws of mi(X) and βi. Simulated search length
is further from the data for estimation results that use fewerMonte Carlo draws. We suspect that,
for any �nite number of draws, c will tend to be underestimated because reducing the search costs
increases the likelihood of any particular search sequence up to the stopping decision.
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Table 4: Model Fit

Data Simulations

Mean SD Mean SD

Outside Option Share 0.041 0.199 0.047 0.212

Chosen Product Discovered 0.835 0.262 0.784 0.252

Average Price Searched 275.299 365.179 277.521 421.358

Average Zoom Searched 6.404 5.954 6.177 5.706

Average Pixel Searched 12.045 2.292 11.743 2.608

Average Display Searched 2.792 0.289 2.774 0.341

Search Length 5.862 7.459 7.917 5.787

Outlets Searched 1.873 1.035 2.516 1.171

Notes: The �rst two columns report statistics on search paths from the data used in estimation, as
in Table 1. The second two columns records analogous statistics for 5,000 simulated search paths,
holding all parameters at their estimated level and redrawing mi(X) and εij for each simulated
consumer.

purchased. Second, as recorded by Figures 3 and A.2, consumers get closer to the

purchased product as they search. We now show that our estimated model can repli-

cate these patterns, while a restricted version of our model without spatial learning

cannot. We illustrate this by replicating some of these descriptive exercises with sim-

ulated search paths. Two sets of search paths are simulated: one uses the baseline

parameter estimates, and the other uses �no learning� parameters estimates. The no

learning estimates impose the restriction λ = 0.31 They are recorded in Appendix

Table A.9.

Table 5 replicates the step size regressions recorded in Table 2. At the baseline

parameters, the model matches these step size patterns well. As with the real data, the

coe�cient on θ̂j(i,t−1) for the simulated data is negative and statistically signi�cant for

each of the four dimensions. Data simulated from the model generates these patterns

because products with large or small residuals θ̂j correspond to products with large

or small product e�ects, ξj. Products have large estimated residuals in the simulated

data because they have large product e�ects, and product e�ects ξj a�ect step size

through consumer beliefs. As discussed in Section 5, these patterns are an important

source of identi�cation for the parameters λ and ρ of the Gaussian process beliefs.

Under the no learning restriction, the estimated model cannot replicate these

step size patterns. Indeed, the estimated parameters on θ̂j(i,t−1) in the lower panel of

31We also impose the restriction that consumers do not update their beliefs across listings of same
product at multiple retailers. Estimation of no-learning parameters requires normalizing σε, as the
identi�cation argument above does not apply when λ = 0.
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Table 5: Simulations: E�ect of Product Residuals on Step Size

Baseline Parameters

∆priceit ∆pixelit ∆zoomit ∆displayit

θ̂j(i,t−1) -0.0252*** -0.0129*** -0.0352*** -0.0113***

(0.0035) (0.0034) (0.0035) (0.0035)

N 64403 64403 64403 64403

λ = 0 Parameters

∆priceit ∆pixelit ∆zoomit ∆displayit

θ̂j(i,t−1) 0.0067 -0.0145*** 0.0042 -0.0033

(0.0041) (0.0040) (0.0041) (0.0041)

N 53782 53782 53782 53782

Notes: Table presents regressions of search step size on the product residual index θ̂j(i,t−1). Sample
is 5,000 simulated search paths at the estimated parameter values. The top panel uses simulations
at the baseline parameter estimate. The bottom panel uses simulations at parameters estimated
under the restriction λ = 0. Speci�cations are otherwise identical to those described in Table 2.
*** indicates signi�cance at the 99% level. ** indicates signi�cance at the 95% level. * indicates
signi�cance at the 90% level.

Table 5 are not statistically di�erent from zero for three of the four product attributes.

Without spatial learning, there is no mechanism through which product e�ects ξj can

a�ect beliefs about other products.

Figure 4 replicates the exercise recorded in Figure 3, which records the relationship

between search percentile and distance of the searched product from the purchased

product. The left panel of Figure 4 reports this relationship for log price in simulations

using the baseline parameter estimates. As in the real data, simulated consumers

get signi�cantly closer to the purchased product as they search, along both product

attribute dimensions.32 This pattern is generated by the dynamics of spatial learning

in the model, and is not an artifact of the data. The right panel records the same

relationships in search paths simulated using the λ = 0 parameters. The convergence

in attribute space is eliminated in these simulations. Indeed, when there is no learning

the searched product moves away from the chosen product as search progresses. When

we shut down cross-product learning, all product utilities have the same variance and

so, apart from the e�ects of search cost shocks, consumers will search products in

order of ex-ante expected utility, from high to low.33 Because prior expected utility

is linear is product attributes, consumers will tend to move away from the ex-ante

32The same exercise for price, display and pixels is recorded in Appendix Figure A.8. Price and
display exhibit similar patterns.

33This is a direct implication of Weitzman (1979).
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Figure 4: Simulations: Convergence in Attribute Levels

Baseline Parameters λ = 0 Parameters

Notes: Figures are constructed using 5,000 search paths simulated at the estimated parameters. The
left panels uses the baseline estimates, and the right panel uses the estimates under the restriction
the λ = 0. Speci�cations are otherwise identical to those used in Figure 3.

most preferred product as they search. Our model generates convergence rather than

divergence in attribute space because the variance of the spatially correlated part

of utility, λ, is su�ciently large that consumer's re�nement of beliefs as they search

outweighs the importance of the prior expected utility. The ability of the model to

rationalize these patterns and the step size patterns in Table 5 therefore makes the

presence spatial learning a plausible explanation for several aspects of search behavior

documented by BKM that cannot be rationalized by standard models.

6.3 The Value of Learning

How important is spatial learning to consumer welfare? To answer this, we use the

estimated model to ask how consumer search paths would be di�erent under di�erent

assumptions about consumer beliefs and learning. The model is estimated under the

assumption that consumers know the distribution of the ex-ante unobserved part of

utility, m(X), and use the utilities they observe for searched products to make correct

Bayesian inferences about unsearched products. In particular, the model assumes that

consumers know the true spatial covariance parameters, ρ, that govern the correlation

of the unobserved part of utility along observed attribute dimensions. To quantify the

value of learning to consumers we simulate consumer search paths assuming consumer

utilities are distributed according the to estimated parameters but consumers have

incorrect beliefs about this distribution. In particular, we assume consumers believe
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Figure 5: The Value of Learning
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Notes: In the left panel, the blue solid line records, for values δ along the lower x-axis, the average
consumption utility of 20,000 simulations when consumer beliefs have covariance parameters equal
to δρ̂,with all other parameters are at their estimated value. Search length is held �xed for each
simulated consumer its length in the δ = 1 simulation. The blue point is the limit of the blue line as
δ →∞. The dashed red line records, for values of γ along the upper x-axis, the average consumption
utility for analogous simulations where search length for consumer i is set to γli and the covariance
multiplier is set to δ = 0. The right panel records the average total utility (consumption utility less
search costs) for analogous simulations without �xed search length.

the spatial covariance parameters to be δρ̂. For example, if δ = 0, then although

consumers have correct beliefs about the total variance of unobserved utility, they

do not make inferences across products because they believe the covariance of m(X)

along all dimensions to be 0. We �x search path lengths to isolate the e�ect of

di�erent learning assumptions on the consumption utility of the best product located

in a �xed number of searches. This allows us to benchmark the e�ect of di�erent

beliefs to changes in search length and ask how much more consumers with incorrect

beliefs would have to search to achieve the same level of consumption utility.

The left panel of Figure 5 records the results of these simulations. The solid blue

line plots the mean consumption utility across simulations for di�erent values of of

the covariance multiplier, δ, indicated by the lower x axis. Consumers obtain the best

match to a product in a �xed number of searches when δ = 1. Consumption utility

is highest when consumers have correct beliefs about the covariance parameters, ρ.

When δ < 1, consumers under-extrapolate from observed products to unobserved

products, such that if a consumer obtains a particularly high utility draw or a given

product, they do not update their beliefs about surrounding products as much as a

consumer with correct beliefs, and is therefore more likely to move away from that

region of the product space. this under-extrapolation leads to a monotonic reduction
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in consumption utility as δ → 0. At δ = 0, expected consumption utility is about

13% lower than at δ = 1.

When δ > 1, consumers over-extrapolate, and will, for example, move too far away

from a region of the product space based on a low utility draw. This also results in a

decrease in consumption utility. As δ →∞, the perceived correlation in m(X) across

products tends to 1. At this limit, consumers update beliefs equally at all distances

from an observed product. There is therefore no spatial learning (only learning about

the overall level of utility), and, for �xed search lengths, the expected consumption

utility is about the same as if δ = 0. This is illustrated by the blue dot at the far

right of Figure 5, which simulates a counterfactual in which κ(X,X ′) = λ2, the limit

of the function given by equation 8 as ρ→∞.

To benchmark the value of learning, we ask how much longer a consumer who does

not update their beliefs (δ = 0) would have to search to obtain the same level of utility

as a consumer with correct beliefs (δ = 1). To do this, we run simulations where δ = 0

and each consumer's search length is set to γli for values of γ between 1 and 2. When

search length is extended, consumers obtain better matches even though they do not

update their beliefs as they search. The results of these simulations are recorded by

the red dashed line in Figure 5. Consumers that do not learn as they searches have

to sample about 27.5% more products than consumers who learn optimally to obtain

the same level of utility in expectation.

Similar patterns obtain when search length is not �xed in simulations. The right

panel of Figure 5 repeats the simulations in which consumers believe the spatial covari-

ance parameters to be δρ̂, but does not �x search length. The blue line records average

total utility - consumption utility minus total search costs. As in the �xed length sim-

ulations, utility is maximized when δ = 1 due to over-and under-extrapolation when

δ 6= 0.

7 Path Dependence and Product Recommendations

These �ndings suggest that consumer learning and in particular cross-product infer-

ence plays an economically signi�cant part in determining consumers' search paths.

A�ecting consumer beliefs and search paths through information provision is therefore

a potentially important channel through which online retail platforms can in�uence

purchase decisions. It is well established that (for example, see Ursu (2018)) that

highly ranked, recommended, or salient products on online platforms are more likely
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to be searched �rst. In addition to the direct e�ect of recommendation on search

costs, spatial learning introduces a secondary �path dependence� e�ect on consumer

beliefs. In particular, consider an experiment in which all consumers are forced to

view a particular product before beginning their search through the remaining prod-

ucts. In the model with spatial learning, changing this �recommended product� will

change the beliefs consumers have at the beginning of their search, and therefore

change their subsequent paths.

7.1 Search Diversion

To illustrate the path dependence e�ect of information provision on search and wel-

fare, we use the estimated model to simulate search paths under di�erent information

provision scenarios. We draw 50,000 values of m(X) and simulate search paths. For

each search path, we draw a �focal product�, F ∈ J from the set of existing product

locations, and �show� the consumer the utility they would obtain from this product

before they begin their search.34

The e�ect of this type of information provision on consumers' search paths depends

on the values of the unobserved product e�ect, ξF , for the focal product F . Consumers

do not observe ξF separately from total utility. Particularly large (positive or negative

values) of ξF can therefore divert search away from or towards di�erent areas of the

product space. For example, if consumers view a product with a particularly large

negative value of ξF , they will attribute this partly to the Gaussian process draw

m(XF ) and infer that nearby products will also yield low utility and will divert their

subsequent search path. In this sense, products with large values of ξF are misleading

and not representative of the spatially correlated part of preferences, m(X).

To illustrate this e�ect, we run the information provision simulation for a range of

values of ξF . The left panel of Figure 6 illustrates the e�ects of information provision

on utility. The blue solid line plots the mean utility (consumption utility minus search

costs) across simulations for di�erent values of the focal product e�ect. Expected

utility is maximized locally when ξF is close to 0 because in this case product F is

representative of the part of utility that is correlated across observable dimensions.

When ξF is increased or decreased from 0, average consumption utility falls. This

e�fect is driven by misleading information diverting search paths away from or towards

34To isolate the e�ect of this change in consumers' beliefs on the search path, we require consumers
to pay a search cost and view the focal product again before buying it. This means that we are only
providing information, not reducing the search cost of obtaining a particular product.
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Figure 6: Search Diversion
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Notes: The left panel records the average utility (consumption utility minus search cost) over 50,000
simulated paths for di�eren values of ξF .The right panel records the mean of |logpricej− logpriceiF |
where j is searched by consumer i for simulations using di�erent values of ξF .

the focal product, as illustrated in the right panel of Figure 6 Past some threshold,

expected utility is increasing in ξF . The e�ect of misleading information reducing on

horizontal match quality, m(X) is eventually o�set by the vertical quality component

of F , ξF - in the limit as ξF → ∞, consumers always buy F and obtain in�nitely

high utility. The signi�cant search diversion recorded in Figure 6 imply that if a

retail platform wants to direct consumers towards or away from certain products, the

platform's information provision design should take account of these e�ects.

7.2 Optimal Recommendations and Platform Competition

The results discussed so far have illustrated how information provision can divert

search paths. These e�ects could be exploited by a platform to increase revenue. For

example, if di�erent products are deferentially pro�table to an online retail platform,

the platform may want to choose the set of products which are displayed most promi-

nently on the page to direct consumers towards high margin products.35 However, a

forward looking platform may also have an interest in maximizing consumer utility

to encourage consumers to return to the platform in future.36 We now ask what the

35In Appendix A, we show that it can be optimal for a �rm to recommend a �bad product� in
order to divert search towards a chosen high-margin product using the numerical example of Section
2.

36Indeed, a recent report in the Wall Street Journal described an internal debate at Amazon.com
over the extent to which the search algorithm should highlight more �relevant results� or more
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model tells us about the characteristics of consumer-optimal product recommenda-

tions when consumers are spatial learners.

Let the set of products on platform (retailer) r be Jr = {j ∈ J : r(j) = r}. The

platform has information Iit about consumer i after their tth search. For each con-

sumer i after each search t, the platform scores products j ∈ Jr according to a

recommendation function f(Iit, j). The platform then reduces the search cost of the

alternative with the highest score by a factor ∆ ∈ [0, 1]. That is,

cijt = c

(
1−∆1

(
j = arg max

j∈Jr
{f(Iit, j)}

))
+ ζijt. (19)

Consumers are thus more likely to search the product that is given the highest

score, f(Iit, j), by the platform.37 We suppose that the platform is interested in

maximizing total consumption utility of purchases on the platform. The platform's

problem is therefore,

max
f

Ei

[
P
(
ĵi ∈ Jr

)
E
(
uiĵi |ĵi ∈ Jr

)]
. (20)

Where the outer expectation is taken over consumer types. The expression inside the

square brackets is the probability of a consumer i making a purchase on platform r,

multiplied by their expected utility conditional on making a purchase on platform

i. Notice that the platform is interested in both increasing on-platform sales, and

increasing the quality of the consumer-product match conditional on a sale.

To simplify the problem assume that f(Iit, j) is linear in: product quality, ξj,

the average distance from product j to the set of products that have already been

searched by consumer i, DistSijt, and the average distance from product j to the

remaining unsearched products, DistUijt.
38 The platform can therefore choose to

direct consumers towards high-ξj products, towards products in unexplored parts of

the product space, or towards products that are similar to what they have already

�pro�table results� (Mattioli 2019), with a spokesperson for the company emphasizing that the
algorithm's historical focus on relevant results was in the interest of �long-term pro�tability�.

37We assume that consumers are unsophisticated in that they do not use the identity of the rec-
ommended product to update their beliefs. That is, they behave as if they believe cj = c+ζijt. This
means, for example, they cannot use the fact that product j was recommended to infer something
about ξj , nor can they choose to search alternatives in order to manipulate future recomemenda-
tions.We also omit the potential reoptimization of prices after a change in recommendations, which
would require an additional model of price setting.

38DistSijt is de�ned as DistSijt = 1
|JS |

∑
`∈JS

√∑
k (Xjk −X`k)

2
where k indexes the four ob-

servable product attributes, and JS is the set of searched products. DistUijt is de�ned analogously.
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Table 6: Optimal Sequential Recommendation: Amazon.com

Speci�cation

Coe�cient on: Baseline No Learning βi = β cswitch = 10ĉswitch cswitch = 0

ξj 1 1 1 1 1

DistSijt -0.182 -1.085 -0.322 -0.246 -0.983

DistUijt -0.477 0.222 -1.042 -1.064 0.394

At Baseline Model:

On-Platform Purchases 1306 1302 1301 1302 1312

On-Platform Utility 37.825 37.104 37.832 37.765 36.997

Utility 33.723 33.326 33.763 33.763 33.390

Notes: Top panel records the coe�cnets on ξj , DistSijt, and DistUijt is the linear recommendatoion
function f(Iit, j) that maximized the platform's objective for each speci�cation. Bottom panel
records statistics from simulations of the baseline model using the recommendation coe�cneis in
each column. Each simulatio uses 3,000 search paths.

searched. These variables are representative of the type of data typically available

to online platforms: ξj could be measured by aggregate sales data, and DistSijt and

DistUijt are functions of a conumer's search history.
We �nd the coe�cints on these variables that solve the problem in equation 20

under various model speci�cations. The results for Amazon.com, the largest platform
in the data, are reported in Table 6. Since the function f(Iit, j) is used to rank prod-
ucts, we normalize the magnitude of the coe�cient on ξj to 1 (allowing it to be either
positive or negative). Each of the three variables is standardized so that the magni-
tudes of the coe�cients are comparable. For these simulations, we set ∆ = 0.5, so
recommendations reduce the search cost by half, and we restrict recommendations to
each consumer's �rst 10 searches. We simulate 3,000 search paths for each candidate
recommendation function f(Iit, j).

The �rst column records the optimal recommendation coe�cients for the baseline

model. The results illustrate the �explore-exploit� incentives faced by the platform in

choosing which product to recommend. The coe�cient on product quality, ξj, is pos-

itive. By pushing consumers towards high-ξj products, the platform generates higher

expected utility. The coe�cient on DistSijt is negative. This means that alternatives

that are closer in product space to previously searched alternatives are more likely

to be recommended. Although the platform does not know consumers' idiosyncratic

prior coe�cients, βi, they do know what each consumer has searched so far. Since

consumers are likely to search products with high prior expected utility, initial search

provides a signal of the consumer's prior preferences, and pushing consumers towards
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similar products raises expected utility.39

The platform therefore exploits its information about ξj and consumers prior

searches to push consumers to high ex-ante expected utility products. However, when

consumers are spatial learners, the platform also has an incentive to help consumers

explore the product space to learn their preferences more quickly, in order to gener-

ate better matches on the ex-ante unknown part of utility, mi(X). This is re�ected

by the negative coe�cient on DistUijt. This means that products that are close to

more unsearched alternatives are more likely to be recommended. Because utility is

spatially correlated, products that are near more unsearched alternatives are more

informative.

Optimal recommendations therefore balance two incentives, to direct consumers

to high expected utility products and to help them explore. Which of these dominates

depends on the importance of the di�erent components of utility. When λ = 0, there

is no cross-product learning, and there is no informational advantage to searching

products that are close to unsearched alternatives. In this case, as illustrated in

the second column, the coe�cient on DistUijt is positive. On the other hand, when

βi = β, and there is no heterogeneity in consumers' priors, then variation in past

searches is less informative about consumer utility. In this case, illustrated in the third

column, exploration is more important, and the coe�cient on DistUijt is negative and

larger in magnitude.

Ignoring learning incentives in optimizing recommendations lowers consumer util-

ity. In particular, when the no-learning recommendations are applied in the baseline

model (with learning), average consumption utility for on-platform purchases is about

2% lower than is obtained under the baseline recommendations. Applying the rec-

ommendations from the βi = β speci�cation to the baseline model actually increases

consumption utility, since consumers are encouraged to explore more than under the

baseline recommendations. These recommendations are sub-optimal from the plat-

form's perspective because they reduce the number of on platform purchases (and

thus the objective given by equation 20).40

39This is similar to the intuition behind the familiar �you might also like� suggestions on Ama-
zon.com, and more generally the collaborative �ltering algorithms that are widely used in online
platforms(Schafer, Frankowski, Herlocker and Sen 2007).

40Although these utility di�erences appear small, it is not possible to quantify how important
they are for the platform, as we do not model the platform's dynamic pro�t maximization problem
directly but rather assume an objective function. If small utility di�erences lead to signi�cant long
run platform switching, then ignoring learning in recommendations could have signi�cant e�ects on
the present discounted value of platform pro�t.

39



The fact that recommendations which encourage more exploration also lead to

fewer on-platform purchases highlights the explore-exploit trade-o� faced by the plat-

form. Pushing consumers towards high ex-ante expected utility products is more likely

to generate an immediate sale at the cost of allowing the consumer to explore and

learn about their preferences, while helping consumers explore by putting more weight

on DistUijt can generate better matches but will lead to more consumers leaving the

platform in expectation. This suggests that a platform's optimal recommendations

will also depend on the level of competition between platforms.

We illustrate this e�ect in the fourth and �fth columns in Table 6. The fourth

column presents results from a model in which we multiply the estimated platform

switching cost by 10, limiting platform switching so that each platform is e�ectively a

monopolist. In this case, optimal recommendations put more weight on DistUijt com-

pared to the baseline. The platform encourages consumers to explore because they

are unlikely to switch to another platform. The �fth column presents results with

cswitch = 0, so that platform switching is free. In this speci�cation the coe�cients are

similar to those in the no learning speci�cation: the coe�cient on DistUijt is positive

and the coe�cient on DistSijt is negative and large. In this case it is optimal for the

platform to direct consumers towards high expected utility products and away from

unexplored parts of the space. The high probability of platform switching means

that the platform is incentivised to prioritize immediate sales rather than encourage

exploration. This has the surprising implication that increasing competition between

platforms can result in recommendations that reduce consumer welfare. More com-

petition generates optimal recommendations that discourage exploration, resulting in

lower consumption utility: applying the cswitch = 0 recommendations to the baseline

model lowers on-platform utility by 2%. This result depends on the model of spatial

learning: when λ = 0 the platform faces no explore-exploit trade o�.

8 Conclusion

In this paper, we develop a model of search with spatial learning and investigate

its implications for information design in online platforms. Consumers are initially

uncertain of the utility yielded by the set of available products, which they learn

about through search. Searching a particular product not only provides information

about that product, but provides a signal about how much the consumer is likely to

value similar products - those that are �nearby� in product attribute space. Learning
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induces path dependence: the decision of which product to search next depends on

past observations. We establish some simple comparative statics on the consumer's

�search ranking� of products under a one period look ahead assumption that formalize

this intuition.

We argue that our model is identi�ed by data on sequential search paths. The

use of search sequences to identify covariance of utility across products is novel, and

contributes to the broader literature on demand estimation. In particular, our model

is based on a random utility speci�cation that allows for a richer cross-product co-

variance structure than standard random coe�cients models. This suggests that

incorporating search sequence data, together with variation in prices induced by in-

strumental variables, could result in the estimation of more �exible cross-product

elasticities. This is beyond the scope of this article, but a potentially valuable di-

rection for future research as sequential search data in online retail becomes more

widespread.

The path dependence induced by spatial learning has important implications for

the role of search intermediaries such as online retail platforms. We use simulations

to show that platforms can exploit spatial learning using product recommendations

of idiosyncratically high or low payo� products to divert search towards or away from

regions of the search space. We then show that consumer-optimal recommendations

depend on the extent of learning and cross-platform competition. Our �ndings suggest

that studies of online search and the design and analysis of recommendation systems

should account for cross-product learning, and our methodology provides a framework

for future research. One possible direction is combining our model with a supply

model to investigate how spatial learning a�ects price setting and product positioning

in equilibrium.
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Appendix - For Online Publication

A. Proofs

A.1 Optimality of Myopic Search Rule

The myopic consumer's expected value at state S is,

V (S) = max

{
û,max

j
(E [max(û, uj)|S]− cj)

}
Note that there is no continuation value on the right hand side. The myopic con-

sumer compares the vlue of stopping, û, to the maximum over all remaining products

of the expeted value of searching once more and then stopping, maxj (E [max(û, uj)|S]− cj).
Let xj ∼ N(µj, s

2
j) be the posterior distribution of xjat state S. Let aj =

û−µj
sj

. De�ne

zj(û) = E [max(û, uj)|S]− cj

=

� û

−∞

û

sj
φ

(
x− µj
sj

)
dx+

� ∞
û

x

sj
φ

(
x− µj
sj

)
dx− cj

� û

−∞

û

sj
φ (aj) dx+

� ∞
û

x

sj
φ (aj) dx− cj

= ûΦ (aj) + (1− Φ (aj))

� ∞
û

x
sj
φ (aj)

(1− Φ (aj))
dx− cj

= ûΦ (aj) + (1− Φ (aj))µj + φ (aj) sj − cj

Where Φ(·) and φ(·) are the CDF and PDF of the standard normal distributionand

the �nal line uses the expected value of the truncated normal.

It therefore follows that, given state S, the myopic consumer's optimal policy is

to stop if û > maxj (zj − cj), and otherwise search the product with the highest value

of zj.

A.2 Equivalence to Weitzman

Suppose that κ(X,X ′) = 0 for X 6= X ′, which is the case in the limit as ρ → 0. We

can then write utility as,

uij = mi(Xj) + ξj + εij

= µi(X) + δij
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Where δij = mi(Xj) − µ(X) + ξj + εij is iid normal over products for a spei�c con-

sumer, i. This is a special case of the model in Weitzman (1979), in which uj ∼ Fj

independently across alternatives j.

A.3 Proof of Proposition 1

We take the derivatives of the score zj in turn:

∂zj
∂û

= (φ(aj)/sj)û+ Φ(aj)− (φ(aj)/sj)µj + φ′(aj)sj/sj

= φ(aj)(û− µj)/sj + Φ(aj) + φ′(aj)

= φ(aj)aj + Φ(aj)− ajφ(aj)

= Φ(aj)

where on the third line we use the fact that φ′(x) = −xφ(x). Similarly:

∂zj
∂µj

= −(φ(aj)/sj)û+ (1− Φ(aj)) + (φ(aj)/sj)µj − φ′(aj)

= 1− Φ(aj)

The partial on costs is immediate. Finally, notice that from the transition equa-

tions (2) and (3) the last observation's payo� only in�uences mean beliefs and po-

tentially the current highest payo� û (if it was better than the prior best option).

Applying the chain rule, we can use the partial derivatives derived above, along with

the derivative
∂µj
∂uk

from (2) to get the result.

B. Search Rankings and Manipulation of Beliefs in the Illustra-

tive Example

In the example in Section 2, we assumed equal costs of searching all products. How-

ever, it is well documented (for example, see Ursu (2018)) that the ranking or salience

of products on online platforms a�ects the order in which consumers search through

those products. We thus allow for di�erent search costs, where higher-ranked prod-

ucts have lower search costs. The direct e�ect of this is to ensure that higher-ranked

products are more attractive to search. But under spatial learning, there are also

spillover e�ects: what consumers learn from searching a highly-ranked product can

a�ect consumers' beliefs about other products. Product rankings can therefore be used
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Figure A.1: Belief Updating

Notes: Black crosses indicate the location of the three products, A, B,and C, in price-utility space.
The blue dashed line is the consumer's prior expected utility of hypothetical products at di�erent
price levels. This is given by E(uj) = (µ− 1)pj . The red dashed line indicates the consumer's pos-
terior expected utility at di�erent price levels after searching product B. The posterior is computed
using the Bayesian updating rule described in the text. Parameters are as described in the notes to
Figure 1.

to manipulate both search costs and beliefs.

To show the ways in which rankings can be used to change purchase behavior, we

modify our example from before by setting pB = 3.5 so that product B is closer in

price space to product C than product A. We set the search cost for product B to

zero, so that searching it is free � and therefore it is optimal to search B �rst (this

is an attempt to model it being heavily promoted by the platform). Last we assume

that the latent payo� for B is uB ≈ 0.2, much worse that expected.

Figure A.1 illustrates how the consumer's beliefs about uA and uC are updated

after she searches product B. This bad initial experience drags down the posterior

mean beliefs about C more than product A, so that after the �free� search of B, the

consumer believes that A is a better option.

This �belief manipulation� can be e�ective in driving consumers towards a desired

option. Suppose for example that the search intermediary wants the consumer to
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buy product A, perhaps because it earns the highest commission on sales from that

seller or because it is a �house brand�. Intuitively, one might expect that the best

the intermediary can do is to promote product A, driving its search cost to zero and

ensuring it enters the consumer's consideration set. Yet it turns out the answer is

more subtle and depends on the search costs.

Table A.1 records the consumer's purchased product as a function of the product

they are shown �rst, and the search cost, c. For low search costs (c < 0.05), the

consumer will search every product and ultimately purchase C, the highest utility

product. In this search cost regime, the platform cannot control the purchase out-

come. On the other hand, for very high search costs (c > 0.91), the consumer will not

search beyond the product initially shown to them by the platform. The platform has

complete control over the purchase decision, and therefore should show product A �rst

so that it is purchased. The surprise is that in intermediate cases (c ∈ (0.05, 0.78]),

the platform can achieve its aim of getting product A purchased only by showing

product B �rst. If the consumer views either A or C �rst, the observed utility will be

equal to the prior expected utility, and the consumer will not update their expectation

about the other products. Thus, if the consumer is shown product A �rst, she will

search product C second, since E(uC |uA) = (µ−1)pC > (µ−1)pB = E(uB|uA). After

viewing C she will purchase it. However, if she is shown the inferior product B �rst

she will infer that product C is likely to be low quality since it is close to product B

in price space, and will therefore search product A second. With intermediate search

costs, it is then optimal to stop and purchase product A.

Notice that this �intermediate case� is likely to be the most prevalent in practice,

since we think of platforms as having some but not perfect control over what is

purchased on their sites. They also often have considerable prior data on purchasing

decisions which may allow them to predict with high accuracy which products are

�surprisingly bad� and may therefore be used to steer consumers in this way (we

ourselves do such prediction using a relatively small Comscore dataset later in the

paper). So belief manipulation is a realistic possibility, depending on the motivation

and sophistication of the search intermediary.
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Table A.1: Purchase as a Function of Starting Product and Search Cost

Starting Product c∈ [0, 0.05] c∈ (0.05, 0.78] c∈ (0.78, 0.91] c∈ (0.91,∞]
A C C C A
B C A B B
C C C C C

Notes: Each cell records the product purchased by a consumer with search cost c given by the
column headers who is shown the starting product indicated by the �rst column before starting to
search. Parameters are as described in the notes to Figure 1.

C. Additional Descriptive Statistics

C.1 Narrowing of Search

Figure 3 shows that consumers search a wider variety of products early in the search

path than later in the search path. The left panel of Appendix Figure A.2, which

also replicates a �nding from BKM, shows that consumers are not only getting closer

to the purchased product in attribute space, but are focusing on smaller areas of

the attribute space as search progresses. This narrowing of search is illustrated by

plotting the distribution of prices searched in each decile of the search path, where

the tth search of a search path of length T is in search decile d if d−1
T
< t

T
≤ d

T
. Prices

are normalized by taking the di�erence in log price from the price of the product

eventually purchased. The �gure shows that the distributions of prices searched in

the �rst search deciles are more spread out than in later deciles. For example, the

interquartile range in normalized log price is 2.62 for the 1st decile and 1.83 for the

10th decile.

The right panel of Appendix Figure A.2 supports the �nding that consumers

gradually narrow the scope of their search. The y-axis records the average �step

size� in log price. For example, a consumer's nth search has a step size in price of

∆pricet = |pricet − pricet−1| where pricet is the price of the consumer's tth searched

product. The x-axis records search percentile, as in Figure 3. The results indicate

that step size is declining. For example, in early search the average step size in price

is around 60% of the cross product standard deviation in log price, falling to less than

50% by the end of the search path.41

41This pattern is documented for other product attributes in Appendix Figure A.7. These step
size patterns are not documented by BKM.
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Figure A.2: Narrowing of Search

Notes: The left panel displays box plots that record the distribution of the log di�erence in searched
price from the price of the product ultimately purchased, for each search decile as de�ned in the
paper. The Box records the 25th, 50th, and 75th percentiles of the distribution and the whiskers
record the upper and lower adjacent values. The y-axis of the right panel records the absolute
distance in standard deviations of log price between the product searched and the previous product
searched. The x-axis reports the search percentile, as de�ned in the text. The solid line is a kernel
regression using an Epanechnikov kernel, and the shaded area is 95% con�dence interval. For both
panels, the estimation sample includes all search paths from the ComScore data on search for digital
cameras, dropping revisits to the same camera and excluding consumers who do not make a purchase.

C.2 Estimation of θ̂

The index θ̂j for each product j is constructed as follows. Let Ji be the set of products

that are searched by consumer i. We �nd the values θ̃j that maximize the likelihood

of observed purchases when the probability that consumer i purchases product j ∈ Ji
is given by:

Pij =
exp(θ̃j)

1 +
∑

k∈Ji exp(θ̃k)
(21)

θ̃j is an index that measures the probability of purchase conditional on search.

Note that this is not a structural object but a convenient statistical device for classi-

fying products, and that equation 21 is not derived from the model.42 We use OLS to

decompose θ̃j into part that can be explained by product attributes and a residual:

θ̃j = Xjγ + θj (22)

The estimated residuals, θ̂j, are our measure of how much more or less likely

product j is to be purchased relative to products with similar attributes Xj. High

42Some objects are never purchased, we omit these objects from Ji and do not construct an index
θ̂j for them. They are omitted from the regressions in Table 2.
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values of θ̂j mean that a product is purchased more, conditional on being searched,

than similar products. Vice versa for low θ̂j. In the context of our model, variation in

θ̂j across products is explained by variation in product e�ects, ξj. Products that are

purchased more frequently that others with similar observable attributes must have

higher unobservable utility across consumers.

D. Learning with Multiple Retailers

The Bayesian updating rules in equations 2 and 3 apply when correlation across

alternatives is determined only by product chatacteristics Xj. In the empirical appli-

cation, there is additional correlation across alternatives j because two alternatives

(j, j′) may represent the same product at two di�erent retailers. That is j̃j = j̃j′ and

rj 6= rj′ . In this case, it is useful to de�ne

m̃i(Xj) = mi(Xj) + ξj, (23)

which is distributed as a Gaussian process with mean µ̃(X) = µ(X) and covariance

function

κ̃(Xj, Xj′) = κ(X,X ′) + σ2
ξ1(j̃j = j̃j′). (24)

Consumers update their beliefs according to,

µ̃′(X) = µ̃(X) +
κ̃(X,Xj)(uj − µ̃(Xj))

κ̃(Xj, Xj) + σ2
ε

(25)

κ̃′(X,X ′) = κ̃(X,X ′)− κ̃(X,Xj)κ̃(Xj, X
′)

κ̃(Xj, Xj) + σ2
ε

. (26)

Notice that the σξ terms in the denominator of equations 2 and 3 do not appear in

equations 25 and 26 , becuase the variance of the product e�ects, ξj, are incorporated

in κ̃(Xj, Xj′).

E. Estimation Algorithm

E.1 Overview of Value Function Approximation

In this appendix we describe in detail the estimation algorithm outlined in Sections

5.3 and 5.4 above. First, we provide an overview of the value function approximation

procedure.

51



To restate the problem, observe that the consumer's state variable S includes

current beliefs, which are described by a vector of J means with elements µ(Xj) and

a J×J covariance matrix with (j, j
′
) element κ(Xj, Xj′). The state variable therefore

has dimension at least J + 1
2
J(J − 1),with J ≈ 1000 alternatives in the data.

To make progress, we represent the consumer's state more e�ciently by de�ning

an augmented state variable,

S̃iτ =
(
(uj(i,t))t<τ , (Xj(i,t))t<τ , (rj(i,t))t<τ , ψi, r̃, c, cswitch

)
(27)

ψi = (βi, α, γo(j), δb(j), λ,ρ, σξ, σε).

For a consumer i who has searched τ alternatives so far. The �rst three elements

of the state variable are a list of τ utilities, τ locations Xj in attribute space, and

τ retailers of the products that have already been searched. The fourth element,

ψi, is a list of parameters that control the distribution of utilities for consumer i,

including the consumer-speci�c random e�ects βi. Together, these three elements of

the state variable uniquely de�ne consumer beliefs µ(Xj) and κ(Xj, Xj′) through the

prior mean and covariance functions given by equations 6 and 8 and the Bayesian

updating rules in equations 2 and 3. Note however, that S̃iτ has dimensionality of

only 6τ +19, which is several orders of magnitude smaller than S even for the longest

observed search path.

S̃iτ contains all the information relevant for the consumer's problem, so we can

write we can write the value function as V (S̃iτ ) rather than V (S, ψ). Notice in

particular that, conditional on S̃iτ the consumer's problem does not depend on the

distribution of βi, de�ned by parameters (β,Ω), or the draws of the product e�ects,

ξj. (β,Ω) enter the likelihood through the outer integral in equation 13. ξj a�ect the

means ūi of the inner integral in equation 13.

We solve the consumer's problem using this lower dimensional representation of

the state using a value function iteration and approximation routine. The steps are

as follows:

1. Initialize the value function to V̂0(S̃iτ ) = 0 ∀S̃iτ

2. Draw W values of S̃iτ from a proposal distribution. Call the set of sampled

states SW

3. Iterate the Bellman equation once at each state S̃iτ ∈ SW . On the k + 1th
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iteration,

Vk+1(S̃iτ ) = log

(
exp(û) +

∑
j

exp
(
E
[
V̂k(S̃iτ+1)|S̃iτ

]
− c
))

. (28)

4. Estimate a neural network regression of Vk+1(S̃iτ ) on S̃iτ . Denote the predicted

values of the neural network at a generic state V̂k+1(S̃).

5. Return to step 2 and repeat to convergence. Let V̂ (S̃) be the �nal approxima-

tion.

The following subsections provide further details.

E.2 Obtain myopic estimates

To obtain initial parameter values, we de�ne myopic choice probabilities,

Pi(j|S, ψ) =
exp (E[max{û, uj|S]− c)

exp (û) +
∑

l∈J exp (E[max{û, ul|S]− c)
, (29)

which correspond to the optimal choice probabilities of consumers who always behave

as if they can only search once more before stopping, as in theoretical results in Section

3. The expected value of an alternative j is just the expectation of the max of uj and

û, with continuation value set to 0. Using these choice probabilities, we �nd the value

of the parameters ψ that maximizes the likelihood 14. Call these �rst step estimates

ψ1.

E.3 Draw augmented states

Recall the augmented state variable, S̃iτ , de�ned in equation 27. S̃iτ comprises data on
the set of products a consumer has viewed up to time τ ,

(
(uj(i,t))t<τ , (Xj(i,t))t<τ , (oj(i,t))t<τ , õ

)
,

and a vector of parameters, (ψi, c, cswitch). Recall that this augmented state variable

contains all the information relevant to the consumer's problem, so we can write the

value function as V (S̃iτ ). Because the state space is continuous, it is impossible to

evaluate the value function at each possible value of S̃iτ . Therefore we must generate

a sample set of state points, SW , at which to evaluate V (S̃iτ ).

The �rst step in generating SW is to draw values of the parameters, (ψi, c, cswitch).

Let ψ̃1 = ψ1\{ξ1} be the �rst step estimates of all the parameters except the product
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e�ects, ξ = {ξj}Jj=1 . We draw n parameter vectors indexed by w, ψ̃w from a distribu-

tion ψ̃w ∼ N
(
ψ̃1,Σψ

)
, where Σψ is diagonal. Then, for each sampled parameter vec-

tor, ψ̃w, we draw a value of the individual random coe�cients βiw ∼ N(βw,Ωw). Thus,

we generate n individual-speci�c parameter draws indexed by w, (ψiw, cw, cswitch,w) ,

centered around the �rst step estimates, ψ1. In practice we simulate n = 500 such

parameter vectors.

We then simulate search paths of length 100 for each parameter vector. Given

some initial value of the function V (S̃iτ ), we can generate search paths using the choice

probabilities in equation 11, where we draw the realizations of utilities according to

the model. In practice, we add noise to the choice probabilities so that the probability

of simulated consumer w searching alternative j is:

P̃w(j|S, ψw) = ∆0Pw(j|S, ψw) + ∆1
1

J
, (30)

where ∆0+∆1 = 1 and we shut down the outside option. This generates search paths

with a greater coverage of the state space than the optimal search paths, which follow

choice probabilities Pw(j|S, ψw).

These simulated search paths are then recorded as a sequence of observed utilities

and product locations,
(
(uj(w,t))t<τ , (Xj(w,t))t<τ , (rj(w,t))t<τ , ˜rwt

)
, for each simulated

consumer w, corresponding to the consumer's state after their t'th search.

SW is then the collection of these simulated states with the corresponding simu-

lated parameter vectors. In practice, SW contains 50,000 simulated states.

E.4 Compute approximation to the value function

To compute the approximated value function, we start by initializing the value func-

tion to V̂0(S̃iτ ) = 0∀S̃iτ . Using this initial value, we draw the set of augmented states,

SW , as described above. For every state point S̃wτ ∈ SW , we compute V1(S̃iτ ) using

Bellman equation 28.

Notice that we have iterated the Bellman equation once at the points in SW . To

solve for the value function, we would like to continue iterating the Bellman equation

until we achieve convergence. However, on the k+1th iteration, the evaluation of the

Bellman equation at a state in S requires that we know Vk(S ′) at all states S ′ that
the agent could reach after one more search, including states that are outside SW .

In order to extrapolate to states outside states outside SW , we run a neural network

regression of V1(S̃iτ ) on S̃iτ for the points in SW .
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Figure A.3: State Representation for Neural Network
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The neural network regression procedure is as follows. First, we further reduce the

dimensionality of S̃wτ . We reduce the four dimensions (price, zoom, pixels, display)

of the location of products in attribute space, (Xj(i,t))t<τ , to two dimensions using

principal component analysis. We then construct a 5 × 5 grid over the dimension-

reduced product space and for each S̃wτ record the number of products searched in

each grid square and the average utility sampled in each grid square. This procedure

generates 50 features describing the location and utilities of the products already

searched. An example of this representation is illustrated in Figure A.3.

We append to these features the highest utility observed so far, û, the number

of unsearched alternatives at the current outlet and at all other outlets, and the

parameter vector (ψiw, cw, cswitch,w) . The result is a representation of the state with

a total of 221 dimensions (or �features� in the language of neural networks).

We regress V1(S̃iτ ) on these features of the state using a single layer neural net-

work with a single fully connected layer with 20 neurons and a �recti�ed linear unit�

activation function (see e.g. Schmidt-Hieber (2020)). The estimated function V̂1(S̃)

is an approximation to the value function after one iteration that can be evaluated at

any state point. Note that because of the dimension reduction described above, we

are are averaging over di�erent states before we estimate the neural network.

We iterate the sampling of SW , application of the Bellman equation 28, and the

neural network approximation until we achieve convergence. We say that convergence

has been achieved when
∑
SW

(
V̂k(S̃iτ )− V̂k−1(S̃iτ )

)2
falls below a critical value.

In Figure A.4 below, we plot V̂k(S̃iτ ) against V̂k−1(S̃iτ ) for the �nal iteration of

this algorithm at the set of sampled state points.

55



Figure A.4: Convergence of Value Functions
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Notes: Scatter plot of V̂k(S̃iτ ) against V̂k−1(S̃iτ ) over 500,000 sampled state points for the �nal
iteration of the Bellman fucntion iteration.

E.5 Obtain dynamic estimates

The �nal step is to obtain parameter estimated using the dynamic model. We plug the

approximated value function, V̂k(S̃iτ ) into the choice probabilities given by equation

11, and use these to construct the likelihood of the data. We then �nd the value of

ψ that maximizes the likelihood. Notice that we do not need to recompute V̂k(S̃iτ )

for each candidate parameter vector, since the consumer's parameter vector is an

argument of the approximated value function.

One might be concerned about candidate values of ψ drifting too far away from

values in SW , reducing the accuracy of the approximation. This is why we center

the sampling of parameter vectors on ψ1.We also start the parameter search for the

dynamic estimates at ψ1. In practice, the dynamic estimates do not di�er too much

from the myopic �rst step estimates (except for the search cost, c, which is higher

when consumers are forward looking). In principle, one could iterate this procedure,

repeatedly obtaining dynamic estimates and the re-estimating the approximation to

the value function at states centered around the new estimates.
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F. Identi�cation Details

F.1 Parameter Interpretation and Price Endogeneity

The standard price endogeneity concern applies here. Prices may be positively cor-

related with product quality that is unobserved by the econometrician. However, we

can still meaningfully interpret the estimated coe�cients, β, in light of our model. We

assume that consumers have rational beliefs about the distribution of utility, and we

explicitly model this distribution. βprice therefore measures the net e�ect on expected

utility of price and any positive correlation between price and unobserved quality,

�xing beliefs. That is, βprice = ∂E(u)
∂price

, where the expectation is taken with respect to

consumers' prior beliefs.

This interpretation limits the counterfactual exercises we can perform. For in-

stance, we cannot think about price changes. Under counterfactual prices, the es-

timated consumer beliefs about the relationship between price an expected utility

would no longer be correct. To recompute counterfactual rational beliefs we would

need to decompose βprice = ∂E(u)
∂price

into the direct e�ect of price on utility and the cor-

relation of price with unobserved quality. In order to separately estimate the direct

defect of price on utility and the correlation of price with expected quality we would

need exogenous variation in prices over which consumers' beliefs about the relation-

ship between price and expected utility can be credibly argued to be held �xed. This

would be an useful exercise but is outside the scope of this paper.

This is not an issue for the exercises we perform using the estimated model, since

we are interested primarily in the e�ect of information provision about products on

search paths and consumption, �xing product locations in attribute space.

F.2 Rational prior restriction

Notice that the identi�cation arguments do not use the assumption that ξj ∼ N(0, σξ).

That is, ξj and σξ are separately identi�ed without imposing rational beleifs about the

distribution of ξj on conusmers. In estimation, we impose this additional restriction

(see equation 14) which implies that the values of ξj contain information about σxi.
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F.3 Alternative covariance function and distance metrics

The identi�cation argument for the variance and covariance parameters, {λ, ρ, σξ, σε},
relies on the functional form of the covariance function (see equation ??). In particu-

lar, the parameters are identi�ed by varying the distance (XA −XB)2 between prod-

ucts, �xing the product e�ect ξA, and varying the product e�ect, �xing the distance

between products.

Note that the structure of the covariance matrix allows this type of identi�cation.

If we instead freely parameterized the covariance as cov(uA, uB) = σAB, the model

would likely not be identi�ed. What is crucial is the assumption that cov(uA, uB)

depends only on some notion measure of distance between products, d(A,B), so that

cov(uA, uB) = λ2g(d(A,B)). It is not essential that d(A,B) is the euclidean norm in

attribute space. For example, one could make a similar identi�cation argument using

κ(XA, XB) = λ2exp

(
−mink

{
(XAk −XBk)

2}
2ρ2

)
.

For a general covariance function cov(uA, uB) = λ2g(d(A,B)) the identi�cation

argument would require �xing ξA and examining the probability of second search

at di�erent distances d(A,B) to identify g(·). Note that to obtain non-parameteric

identi�cation of g(·) would likely require asymptotics in the number of products. In

our case, g(·) depends on a single parameter and thus can be identi�ed from searches

over a �nite number of products.

F.4 Variances cannot be normalized

In Section 5 we argue that the parameters of the model are identi�ed by data on

search sequences. In particular, the variance parameters, σξ, σε, and λ are separately

identi�ed and cannot be normalized. To provide some additional evidence, we sim-

ulate search paths at �xed parameter values and then estimate the model using the

simulated data, with and without imposing an additional �normalization� restriction.

The data is simulated at the parameters listed in Table A.4, with λ = 100. We

estimate the model under the additional restriction λ = 50. If one of the variance

parameters can be normalized, then the maximum likelihood with this restriction

should be equal to the maximum likelihood without it. In Figure A.5 we plot the

constrained and unconstrained maximum likelihood for 200 simulated data sets. The

points almost all lie below the 45 degree line, suggesting that the restriction reduces
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Figure A.5: Comparison of Likelihood with Normalized Variance

Notes: Scatter plot shows the maximum likelihood obtained applying the estimation procedure to
200 simulated datasets. Data was simulated at the parameters listed in Table A.4. Each simulation
contains 1000 search sequences. The x-axis records the unconstrained maximum likelihood. The
y-axis records the maximum likelihood under the restriction that λ = 50. A 45 degree line is plotted
in red.

the �t of the model and is therefore not a normalization.

G. De�nition of KL Divergence

We compute the expected KL divergence for each (j1, j2) according to the following

equation:

KL(j1, j2) =
1

2

� ((
Σ−10 Σ1

)
+ (µ0 − µ1)

′Σ−10 (µ0 − µ1) + ln

(
det Σ0

det Σ1

))
dF0(uj1 , uj2)

(31)

Where Σ0 is the prior covariance of all product utilities, µ0 is the prior mean

vector, Σ1 is the posterior covariance after observing uj1 and uj2 , µ1 is the posterior

mean vector, and F0(uj1 , uj2) is the prior distribution of the utilities of j1 and j2.
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Table A.2: Brand and Outlet Shares

Brand Product Share Domain Product Share
Canon 13.41 Amazon.com 30.23
Kodak 11.45 BestBuy.com 12.82
Nikon 14.68 eBay.com 21.04
Sony 11.64 Walmart.com 12.62
Other 48.83 Other 23.29

Notes: Table records the share of the top four brands and retailers among all product-retailer
combinations observed in the data.

I. Additional Tables and Figures

Figure A.6: Covergence to Chosen Attribute Level

Notes: The y-axis for each panel records, for the relevant product attribute, the absolute di�erence
in standard deviations of the attribute between the searched product and the product ultimately
purchased. The x-axis reports the search percentile, as de�ned in the text. The product ultimately
purchased is excluded from the data for each consumer. The solid line is a kernel regression using
an Epanechnikov kernel, and the shaded area is 95% con�dence interval. The estimation sample
includes all search paths from the ComScore data on search for digital cameras, with revisits to the
same product dropped.
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Figure A.7: Covergence in Step Size

Notes:The y-axis of the each panel records the absolute distance in standard deviations of relevant
attribute between the product searched and the previous product searched. The x-axis reports the
search percentile, as de�ned in the text. The solid line is a kernel regression using an Epanechnikov
kernel, and the shaded area is 95% con�dence interval. For both panels, the estimation sample
includes all search paths from the ComScore data on search for digital cameras, including revisits
to the same camera and excluding consumers who do not make a purchase.
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Table A.3: E�ect of Search Percentile and Retailer Switching on Distance to Chosen
Product

Distance to chosen product in: Log Price Pixel Log Zoom Long Display

∆domainit -0.052*** -0.034** -0.068*** -0.025

(0.014) (0.016) (0.020) (0.0170

SearchPercentileit -0.487*** -0.374*** -0.543*** -0.409***

(0.022) (0.025) (0.031) (0.027)

N 6407 6407 6407 6407

Consumer FE Yes Yes Yes Yes

Notes: The dependent variable in each regression is the absolute distance in standard deviations
of relevant attribute between the tth product searched and the product ultimately purchased.
∆domainit is an idicator that is equal to 1 if the consumer switched domain between the t − 1th
and the tth search. The data includes all search paths in which at least two products are searched.
*** indicates signi�cance at the 99% level. ** indicates signi�cance at the 95% level. * indicates
signi�cance at the 90% level.

Table A.4: Monte Carlo Exercise

True Parameter N = 1000 True Parameter N = 1000

β1 -5 -4.997 cswitch 1 0.842

(0.256) (0.140)

β2 5 5.023 c 7 7.070

(0.253) (0.451)

ω1 1 1.081 λ 100 99.926

(0.204) (3.494)

ω2 2 1.962 ρ1 0.5 0.490

(0.237) (0.085)

α -5 -6.095 ρ2 0.5 0.505

(2.0) (0.065)

γ1 5 4.842 σξ 5 4.459

(0.643) (0.863)

σ2
ε 20 22.341

(5.388)

Notes: Table reports the mean and standard deviation of the estimated parameters across 150 Monte
Carlo replications. For each replication, N search paths are simulated, �xing the parameters are
the values reported in the �True Parameter� column, and �xing Xj and ξj for J = 20 products at
values as described in the text. We draw the locations of 20 products in a two dimensional attribute
space where attribute k is distributed Xk

j ∼ N(0, 1). For each product we then draw product e�ects
according to ξj ∼ N(0, σξ). We repeat the search path simulation and parameter estimation 150
times, �xing the product characteristics and parameters over these iterations.
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Figure A.8: Covergence to Chosen Attribute Level: Simulations

Baseline Parameter Estimates

Notes: Figures are constructed using 5,000 search paths simulated at the estimated parameters.
The y-axis records, for the relevant product attribute, the absolute di�erence in standard devia-
tions between the searched product and the product ultimately purchased. The product ultimately
purchased is excluded from the data for each consumer. The x-axis reports the search percentile,
as de�ned in the text. The solid line is a kernel regression using an Epanechnikov kernel, and the
shaded area is 95% con�dence interval.
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Figure A.9: Covergence to Chosen Attribute Level: Simulations

λ = 0 Parameter Estimates

Notes: Figures are constructed using 5,000 search paths simulated at the estimated parameters un-
der the restriction the λ = 0. The y-axis records, for the relevant product attribute, the absolute
di�erence in standard deviations between the searched product and the product ultimately pur-
chased. The product ultimately purchased is excluded from the data for each consumer. The x-axis
reports the search percentile, as de�ned in the text. The solid line is a kernel regression using an
Epanechnikov kernel, and the shaded area is 95% con�dence interval.
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Table A.5: E�ect of Product Residuals on Step Size: Fewer Controls

∆priceit ∆priceit ∆priceit ∆priceit

θ̂j(i,t−1) -0.037 -0.010 -0.003 -0.148***

(0.022) (0.0253) (0.025) (0.035)

SearchPercentileit -0.181*** -0.176*** -0.156***

(.037) (0.037) (0.036)

Purchasedit−1 -0.094*** -0.122***

(0.035) (0.031)

N 3976 3976 3976 3976

Consumer FE No No No No

Density Controls No No No Yes

Notes: Table presents regressions of search step size on the product residual index θ̂j(i,t−1). Step
sizes are measured using the absolute di�erence in standardized log product attributes between the
tth and the t − 1th search. θ̂j(i,t−1) is constructed as described in the text. Values of θ̂j(i,t−1) are
standardized so that estimated coe�cients are the e�ect of one standard deviation. Any product
observations where jit−1 is never purchased, and hence a value θ̂j(i,t−1) is not computed, are omitted
form the regression. Other covariates are described in the text. The data includes all search paths
in which at least two products are searched. *** indicates signi�cance at the 99% level. ** indicates
signi�cance at the 95% level. * indicates signi�cance at the 90% level.

Table A.6: E�ect of Rarely Purchased Product on Step Size

∆priceit ∆pixelit ∆zoomit ∆displayit

BadProductit−1 0.052** 0.057** 0.067** 0.046*

(0.022) (0.024) (0.031) (0.025)

SearchPercentileit -0.140*** -0.021 -0.012 -0.006

(0.034) (0.036) (0.047) (0.039)

Purchasedit−1 -0.092*** 0.010 -0.101** -0.026

(0.035) (0.038) (0.049) (0.040)

N 4697 4697 4697 4697

Density Controls Yes Yes Yes Yes

Product FE Yes Yes Yes Yes

Notes: Table presents regressions of search step size on an indicator, BadProductit−1, for whether
the last product searched is rarely purchased. BadProductit−1 = 1 if product jit−1 is searched
by at least 5 consumers in the data and purchased with probability less than 10% conditional on
being searched. . Step sizes are measured using the absolute di�erence in standardized log product
attributes between the tth and the t−1th search. All regressions include controls for search percentile,
product density, and consumer �xed e�ects. The data includes all search paths in which at least
two products are searched. *** indicates signi�cance at the 99% level. ** indicates signi�cance at
the 95% level. * indicates signi�cance at the 90% level.
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Table A.7: Path Dependence: Multi-Step Di�erences

Two Steps

∆2priceit ∆2pixelit ∆2zoomit ∆2displayit

θ̂j(i,t−2) -0.110** -0.218*** -0.120 -0.097

(0.053) (0.055) (0.075) (0.060)

N 3348 3348 3348 3348

Three Steps

∆3priceit ∆3pixelit ∆3zoomit ∆3displayit

θ̂j(i,t−3) -0.114* -0.110* 0.080 -0.051

(0.059) (0.061) (0.082) (0.067)

N 2833 2833 2833 2833

Notes: ∆2priceit=|priceit−priceit−2| and ∆3priceit=|priceit−priceit−3| Table presents regressions
of multi-step di�erences in product attributes on the product residual index θ̂j(i,t−2) or θ̂j(i,t−3).
Step sizes are measured using the absolute di�erence in product attributes between the tth and
the t − 1th search. All product attribute are in logs and standardized.θ̂j(i,t−1) is constructed as

described in the text. Values of θ̂j(i,t−1) are standardized so that estimated coe�cients are the e�ect
of one standard deviation. Any product observations where jit−1 is never purchased, and hence a
value θ̂j(i,t−1) is not computed, are omitted form the regression. All regressions include the same
covariates as in Table 2, including consumer �xed e�ects. Two step regressions in the top panel
include all search paths wwith at least three products searched. Three step regressions in the lower
panel include all search paths with at least four products searched. *** indicates signi�cance at the
99% level. ** indicates signi�cance at the 95% level. * indicates signi�cance at the 90% level.

Table A.8: Placebo Tests: Leads and Lags of Product Residuals

θ̂j(i,t−3) θ̂j(i,t−2) θ̂j(i,t−1) θ̂j(i,t) θj(i,t+1)

|priceit − priceit−1| -0.012 -0.027 -0.197*** 0.019 0.021

(0.059) (0.055) (0.042) (0.038) (0.043)

|pixelit − pixelit−1| 0.027 0.080 -0.255*** 0.049 -0.079

(0.068) (0.061) (0.045) (0.044) (0.049)

|zoomit − zoomit−1| 0.053 0.141* -0.118** 0.010 0.026

(0.084) (0.078) (0.060) (0.052) (0.059)

|displayit − displayit−1| -0.058 0.040 -0.244*** 0.040 -0.084*

(0.072) (0.066) (0.048) (0.045) (0.051)

Notes: Each cell in this table is the coe�cient from a regression of step sizes indicated by the row
titles on lagged product residuals indicated by the column headers. Regression speci�cations are
otherwise as rcorded in the notes to Table 2. *** indicates signi�cance at the 99% level. ** indicates
signi�cance at the 95% level. * indicates signi�cance at the 90% level.
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Table A.9: Estimated Parameters with λ = 0

Estimate SE Estimate SE

β1 (log price) -2.734 0.124 cswitch 1.867 0.027

β2 (log zoom) -0.280 0.108 γ1 -1.764 0.220

β3 (pixels) 2.202 0.095 γ2 -1.158 0.180

β4 (display) 0.648 0.103 γ3 -0.604 0.225

ω1 (log price) 3.076 0.105 γ4 -3.170 0.216

ω1 (log zoom) 3.515 0.113 δ1 3.567 0.153

ω1 (pixels) 0.911 0.117 δ2 2.091 0.142

ω1 (display) 0.689 0.120 δ3 4.384 0.138

α -21.681 0.753 δ4 2.481 0.155

c 6.376 0.265 σε 17.489 0.038

Notes: Table reports estimated parameters under the restriction λ = 0 and standard errors. Esti-
mation uses the procedure described in Section 5. Note that, as discussed in Section 5, we adopt the
normalization σξ = 20 when λ = 0. The reported estimates are the mean and standard deviations
computed using the observed Fisher information. For more details on the estmiation procedure, see
Appendix D.
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