Class

The notion of class is so fundamental to thought that we
cannot hope to define it in more fundamental terms.

W.V.0. Quine
Set Theory and Its Logic

The above passage typifies the attitude most set theorists take
towards their subject. From the point of view of the theory of
properties, relations, and propositions, however, this attitude has
two flaws. First, the notion of class is not fundamental to thought.
And secondly, insofar as the notion of class is useful in mathematics
and empirical science, it can be defined in more fundamental terms,
namely, in terms of the predication relation. These are striking
criticisms not likely to be accepted without support. The purpose of
the present chapter is to provide that support.

What justifies the ontology of sets? In chapter 1, I argued that
the theory of PRPs is part of logic. Since logic always belongs to the
best comprehensive theory of the world, the ontology of PRPs is
justified. In view of the youthfulness of set theory, however, it
would be unwise to assume that the same is true for sets. We should
entertain the hypothesis that set theory is the result of conflating
certain constructions that, although they do play a role in the logic
of natural language, do not play the role that set theory presumes. I
am inclined to this hypothesis and, indeed, to the proposition that
there is simply no sound justification for the ontology of sets. How
might the set theorist attempt to justify his ontology? There are
three strategies open to him. The first is to show that sets are
included in what might be called our naturalistic ontology. If they
are, then we may assume that whatever justifies our naturalistic
ontology also justifies the ontology of sets. The second strategy is to
show that, like the theory of PRPs, set theory is part of logic. In this
case, the ontology of sets would be justified in the same way as the
ontology of PRPs. And the third strategy is to show that set theory




102 CLASS

plays some unique role in mathematics or in empirical science. If it
does, then its ontology would be justified pragmatically. None of
these strategies is successful, however, as I will now explain.

27. The Unnaturalness of Sets

Paul Halmos begins his popular book Naive Set Theory with this
observation:

A pack of wolves, a bunch of grapes, or a flock of pigeons are all
examples of sets of things.

Perhaps it is true that the idea of a set is somehow “‘genetically”
related to ideas of such naturalistic objects as packs, bunches, and
flocks.! Nevertheless, it is certain that sets are not the same sort of
thing as packs, bunches, flocks, etc. Here are a few of the many
reasons. First, packs, bunches, flocks, tribes, and so on, displace
volumes, have mass, and come into and pass out of existence. Sets,
by contrast, are non-physical and eternal. Secondly, sets cannot
change their members; packs, bunches, flocks, etc. can. If a wolf in*
a given pack dies (or gives birth), the pack is still the same pack.
But the set of wolves-before-the-death (birth) is not the same set as
the set of wolves-after-the-death (birth). Thus, a set of wolves and a
pack of wolves are different. Thirdly, packs, bunches, flocks, etc. do
not exist if nothing is in them; this is not so for sets. If there were no
wolves, there would be no packs of wolves. But the set of wolves
would exist nonetheless, for it would just be the null set. Indeed, if
sets exist, the null set is a set that exists necessarily.?

If sets are not the same sort of thing as packs, bunches, flocks,
etc., what are they? It is now commonplace to say that sets are
collections or classes. What is meant by this? Art collections, social
classes, sets of dishes: is it true that these are cases of the kind of
sets posited in set theory? No, definitely not. They are no more the
kind of sets posited in set theory than are packs, bunches, and
flocks, etc., and for much the same reasons. First, art collections
and sets of dishes can displace volumes, have mass, and come into
and pass out of existence. And social classes, although they seem
not to displace volumes or have mass, can come into and pass out
of existence. Secondly, art collections, social classes, sets of dishes,

* Note that in order not to bias the discussion I will use the natural and, I hope,
neutral locution ‘is in’ (and its cognates) rather than the technical locution ‘€’. A

moment’s reflection will show that in adopting this practice I do not commit any
fallacies of equivocation.
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etc. can change their members.®> Thirdly, ordinary collections,
social classes, and ordinary sets do not exist if nothing is in them.
(If China has no aristocrats, it has no aristocracy.)

These three differences suffice to show that ordinary collections,
social classes, and ordinary sets are different from set-theoretical
sets.. However, there might be a fourth difference, having special
philosophical interest. This difference concerns a transitivity
property. Consider a billionaire who collects art collections in the
style in which Howard Hughes used to collect companies. This man
purchases outright entire art collections. Now if his, say, ten art
collections contain one Cezanne each, then we would say that there
are ten Cezannes in his collection of art collections. And in general,
if a.painting is in an art collection that is itself in a collection of art
collections, then we would say that the painting itself is in the
collection of art collections. The sets of set theory are not like this
at all. No individual paintings are in the set of art collections; only
art collections are.* Thus, the set of art collections and the
collection of art collections are different. This sort of difference also
seems to hold between set-theoretical sets, on the one hand, and
social classes and ordinary sets, on the other. For example, if Jones
is in the intelligentsia and the intelligentsia is in the upper class,
then we would say that Jones is in the upper class. Or if a saucer is
in a matched cup-and-saucer set that is itself in a set of eight
matched cup-and-saucer sets, then we would say that the saucer is
in the set of cup-and-saucer sets. And we say that there are four
socks in a pair of pairs of socks. None of these things hold for the
set-theoretical counterparts—the set of upper classes, the set of sets
containing a cup and a matching saucer, the set consisting of
{sock, sock,} and {sock;, sock,}. Put formally, the difference here
is that ordinary collections, social classes, and ordinary sets seem
transitive whereas the sets of set theory typically are not. That is,
the following transitivity principle seems to be valid for ordinary
collections, social classes, and ordinary sets whereas it is not valid
for the sets posited in set theory:

xisin y > (Vz)(zis in x © z is in y).

This transitivity principle is equivalent to the following: (3Ix)(z is
in x & x is in y) > z is in y. Ordinary collections, social classes, and
ordinary sets would thus seem to be closed under a union
operation.
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There might be yet another difference between the sets of set
theory and ordinary collections, social classes, and ordinary sets,
one which concerns a corresponding power operation. Consider an
example. If the individual cup and individual saucer in a matched
cup-and-saucer set are themselves in a full set of dishes, then we say
that the matched cup-and-saucer set itself is in the set of dishes. The
sets posited by set theory are not like this. The set-theoretical set of
dishes contains only individual dishes, not cup-and-saucer sets. For
another example, suppose that I have a collection of famous rare
stamps known as the First Issue Collection. This collection contains
rare stamps from a wide variety of countries. Suppose further that I
have a particularly valuable collection of rare Dutch stamps. Now if
every stamp in my collection of Dutch stamps is in the First Issue
Collection, we would say that my Dutch stamp collection is in the
First Issue Collection. But the set-theoretical set of stamps that I
own contains only stamps; it does not contain, e.g., the set of Dutch
stamps that I own. To put this formally, the following power
principle might be valid for ordinary collections, social classes,
and ordinary sets whereas it is not valid for the kind of sets posited
in set theory:

(Vz)zisinx>zisiny) D> xisin y

for all x and y, where x # y.

It is commonplace among historians of logic and mathematics to
remark that it was not until well into the nineteenth century that
people became clear about the significant difference between
membership and inclusion. However, given the above principles of
transitivity and power, it follows that for ordinary collections,
social classes, and ordinary sets these relations are virtually
equivalent; i.e., for ordinary collections, social classes, and ordinary
sets x and y:

xisin y=(Vz)(zisin x D zisin y)

where x # y. In addition, this principle would seem to hold for at
least certain ordinary collections and ordinary sets x and y, where
x = y. In view of this, it might be more accurate to say that it was
not until well into the 19th century that people became confused
about the nature of membership and inclusion relations. For it was
not until the set theorists’ distinction was thought up that the
commitment to the new, extraordinary kind of collection was made
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official. For that matter, it was not until the set theorists’ distinction
was thought up that it became possible to generate the paradoxes of
naive set theory. Without the set-theoretical distinction between
membership and inclusion there would be no set-theoretical
paradoxes. What I mean by this will become clearer below.

By abstracting from the intuitive notions of ordinary collections,
social classes, and ordinary sets as characterized in the foregoing
discussion, one arrives at the general notion of what I will call
an aggregate. Aggregates are like sets in that whenever a thing w
satisfies a formula A4, w is in the set of As, and w is in the aggregate
of As. That is, the following schemas hold for sets and aggregates,
respectively:

(a) A(w)>o wis in the set of things y such that A(y)
(@) A(w)> wis in the aggregate of things y such that A(y).

Furthermore, whenever something is in the set of As it also satisfies
the formula A. That is, the following converse of (a) holds for sets:

(b) wis in the set of things y such that A(y) o A(w).

Here aggregates part company with sets, however. Recall that
membership and inclusion are virtually equivalent for aggregates.
Thus, if a thing w is in the aggregate of As it does not follow that w
satisfies 4; w may instead be in something else that satisfies 4, or
something else that satisfies 4 could be in w, or something else that
is in w could be in some third thing that satisfies A—any of these
alternatives would do equally well. So, the schema for aggregates
that corresponds to (b) offers several alternatives:

(b’) wisin the aggregate of things y such that A(y) o (4(w) or
(Ju)(w is in u & A(u)) or
(Fu)(u is in w & A(u)) or
Gu,v)uisin w& u is in v & A[®))).

Membership and inclusion are quite distinct in set theory, of
course. So the consequent of (b) contains none of the
supplementary alternatives that we had to add in (b’); whatever is
in the set of As must satisfy A—there is no alternative. This
dissimilarity of schemas (b’) and (b) is, of course, one more
difference between ordinary aggregates and sets. But what is more
important is that this feature of naive set theory is the very feature
that renders it inconsistent. Schema (b) requires that all things in
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the set of things satisfying a given formula (e.g., the formula ‘y is
not in y’) must themselves satisfy the formula, and this is what
plunges naive set theory into contradictions. Because (b’) does not
likewise restrict the identity of the things that are in ordinary
aggregates, the theory of ordinary aggregates avoids the fate of
naive set theory.?

The theory of aggregates is from a formal point of view rather
like Lesniewski’s mereology (i.e., the part/whole calculus);6 each of
the principles for aggregates also holds for mereological sums. In
this, ordinary collections, social classes, and ordinary sets are far
closer to mereological sums than to abstract sets. Set theory just
does not get its motivation from the naturalistic ontology of
ordinary collections, social classes, and ordinary sets.

The moral is that sets are not in evidence in any of the above
naturalistic ontologies. Those who persist in the attempt to
motivate the concept of class along such naturalistic lines sooner or
later find themselves offering the “invisible-plastic-bag” conception.
But this, I think, only confirms the point that sets do not fall within
our naturalistic ontology.

28. No Basis in Logic

The second candidate strategy for justifying the ontology of sets is
to attempt to show that set theory is grounded in logic. The most
promising line is to look for evidence that set theory is embedded in
the logical syntax of natural language. I can think of only one
syntactic construction in natural language that might fill the bill,
namely, pluralization.” Let us see how the set theorist might try to
show that set theory has a special role to play in the treatment of
plurals.
Consider the following sentences:

(1) The walnuts outweigh the pecans.
(2) The counties outnumber the states.

These sentences are not transformed universal conditionals:

(1) (¥x, y)((Walnut(x) & Pecan(y)) = Outweigh (x, y))
(2") (¥, y)((County(x) & State(y)) > Outnumber (x, y)).

For whereas (1') and (2') are false, (1) and (2) are true.
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Provisionally, then, let us represent (1) and (2) as 2-place relational
sentences:

(1”) Outweigh (the walnuts, the pecans)
(2”) Outnumber (the counties, the states).

Here the plurals are provisionally treated as (defined or undefined)
singular terms. It becomes appropriate, then, to ask what the
primary semantical correlates of these provisional singular terms
are. A natural hypothesis is that in (1) the primary semantical
correlates of ‘the walnuts’ and ‘the pecans’ are aggregates of the
ordinary sort characterized earlier (specifically, the aggregate of all
walnuts and the aggregate of all pecans). On the face of it, this
hypothesis seems successful. This gives rise to the presumption that
the plurals in (2) should be treated analogously; i.e., this suggests
that the primary semantical correlates of ‘the counties’ and ‘the
states’ in (2) are also aggregates. But what kind of aggregate? Not
ordinary aggregates, certainly. Since the ordinary aggregate of the
counties is identical to the ordinary aggregate of the states, (2)
would be false. Yet on its primary reading (2) is true. Therefore, if
one continues to be swayed by the presumption that the primary
semantical correlates of ‘the counties’ and ‘the states’ are
aggregates, then a new, extraordinary kind of aggregate must be
hypostasized. These new, extraordinary aggregates should differ
from ordinary aggregates in at least the following respect: the
things in the extraordinary aggregate of Fs must be exactly those
things that satisfy the predicate F. But this is precisely what is
required of sets according to the abstraction principle of naive set
theory (recall schemas (a) and (b) in §27). This gives rise to the
further presumption that the extraordinary aggregate that is the
primary semantical correlate of the plural ‘the Fs’ in sentences akin
to (2) is a set, specifically the set of Fs.

Although the above line of reasoning has a certain appeal, it
leads immediately to a fatal dilemma. Consider the following
problematical sentences:

The walnuts both outweigh and outnumber the pecans.

Although the counties occupy exactly the same territory as the
states, they outnumber the states, and, in addition, they resent
federal intervention more than the states do.

These French stamps were once in the First Issue Collection;
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however, after a while they outnumbered the Dutch stamps and,
for that reason, they were moved to another collection.

The whales once outnumbered the human beings; now, however,
they are nearly extinct.

In view of the earlier discussion about the nature of set-theoretical
sets, if the plurals in these problematical sentences are treated in the
same kind of naive surface-syntactical way adopted above in
connection with sentence (2), then their primary semantical
correlates clearly cannot be sets. (For example, the set of walnuts
cannot outweigh the set of pecans since no set weighs anything.)
These primary semantical correlates would have to be some further
kind of entity. But in this case, uniformity requires us also to
identify the primary semantical correlates of the plurals in (2) not
with sets but with this further kind of entity. So if the plurals in the
above problematical sentences get the naive surface-syntactical
treatment that we provisionally gave to (2), then what initially
seemed to be a justification for set theory in the natural logic of (2)
evaporates. On the other hand, suppose the plurals in the above
problematical sentences are treated in a sophisticated deep-
structural way.® In this case, we nullify the original presumption
that the plurals in (2) ought to be treated on analogy with the
plurals in (1) (i.e., the presumption that the plurals in (2) are
singular terms whose primary semantical correlates are some sort of
aggregates). This makes (2) fair game for alternate sophisticated
treatments; the various treatments of (2) must compete on their
own terms. But if the contest is to take place in this stark arena,
then, as I show next, set theory cannot win for itself a place in
natural logic. Thus, either way, set theory fails to find motivation
in the treatment of plurals in sentences like (2) in natural language.

To complete the above argument I must show that, if there is no
presumption in favor of a set-theoretical treatment of sentences
such as (2), then the set-theoretical treatment succumbs to superior
competitors. So as not to bias the argument, let us agree to
represent (2) provisionally along the following lines:

(2"7) Outnumber({x: Cx}, {x: Sx}).

Here {x: Cx} and {x: Sx} are extensional abstracts; that is, they are
(defined or undefined) abstract singular terms for which the
following general law holds:
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(3) {x:Ax} = {x: Bx} = (Vx)(4x = Bx).®

Further, let us allow that for all non-paradox-producing formulas
Ax in which y is free for x: (4) y € {x: Ax} = Ay. And finally, let us
allow that (2') is true if and only if there is no 1-1 function from
{x: Sx} onto {x: Cx} though there is a 1-1 function from {x: Sx}
into {x: Cx}. In this case (2"’) comes out true, as desired. Next
consider briefly what seems to me to be the intuitive picture of the
semantics for natural language. According to this picture, pred-
icates and formulas do not refer to anything; they simply ex-
press.'® A formula A, for example, expresses the property, relation,
or proposition denoted by a certain associated gerundive phrase,
infinitive phrase, or ‘that’-clause formed from A. Specifically, it
expresses the property, relation, or proposition denoted in L, by
the normalized singular term [A],. Now for all non-paradox-
producing formulas 4, the following law holds: (S)a A[A], = A.In
view of this, the extensional abstract {v;: A} can be contextually
defined in terms of the predication relation:

6) ... {vi A} iffy Qo) Avj=,, A& ...v5...)

where v; is a new distinct variable.'! And € may be contextually

defined as follows: (7) uev iffyuAv. To be convinced of the
adequacy of these contextual definitions, notice that, for all non-
paradox-producing formulas A and B, the above law (3) follows
directly from (5) and (6), and law (4) follows directly from (5), (6),
and (7). However, these laws are all that are needed for an adequate
treatment of sentences such as (2').}? Thus, extensional abstracts,
and sentences such as (2”’), can be adequately treated within the
logic for the predication relation, a theory already part of natural
logic. And, this is accomplished without having to hypostasize the
extraordinary aggregates of set theory. So if there is no presump-
tion in favour of the set-theoretical treatment of sentences such as
(2), then as far as natural logic is concerned the outlined alterna-
tive treatment wins hands down.

It might be objected that no economy follows from adopting this
contextual treatment of extensional abstracts since sets have
already entered the picture through an independent pathway,
namely, through extensional semantics.'® According to Frege’s
semantical theory, all meaningful expressions have two kinds of
meaning: sense and nominatum. Frege identified the nominata of
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predicates (and open sentences) with what he called functions. But
since at least the time of Tarski’s work in extensional semantics, it
has been common instead to view the nominatum of a predicate
(open sentence) as a set, namely, the set of things that satisfy the
predicate (open sentence). That is, on this view the nominatum of
the predicate F is the set of Fs. Since extensional semantics already
makes use of sets here, no economy of theory is gained (so someone
might argue) by giving extensional abstracts such as {x: Fx} the
alternative treatment. In fact, for those persuaded by this set-
theoretical semantical theory, it is only natural to identify the
primary semantical correlate of the extensional abstract {x: Fx}—
and thus that of the plural ‘the Fs—with the nominatum of the
predicate F, i.e., with the set of Fs.

This objection, it seems to me, has gotten the proper order of the
argument turned around. What good reason is there for accepting
the extensional semantical theory? After all, the natural, intuitive
picture of the semantics for predicates and formulas is Russell’s,
not Frege’s. According to this picture predicates and formulas do
not name anything; they simply express. The primary semantical
correlate of predicates and formulas are just the properties,
relations, and propositions expressed by them. What point, then, is
there in having a Fregean two-kinds-of-meaning semantics rather
than the simpler, more natural Russellian one-kind-of-meaning
semantics? Surely something is gained at least theoretically? No, in
fact, as I will show in §38, a Fregean theory provides no more
semantical information than its simpler Russellian counterpart. So
one can hardly justify a set-theoretical treatment of extensional
abstracts and plurals by appealing to the set-theoretical content in
an unnatural and informationally superfluous semantical theory.

One wonders, then, why set theory and set-theoretical semantics
have caught on. Sociology of knowledge aside, one might give a
“genetic” account something like the following. We have seen that
there is prima facie evidence that plurals behave rather like singular
terms. If they are singular terms, though, what are their primary
semantical correlates? Some plurals seem to have ordinary concrete
aggregates as their primary semantical correlates. (Recall (1)
above.) This fosters the presumption that the primary semantical
correlates of all plurals are aggregates. If this were so, however,
then for some uses of plurals a new kind of abstract aggregate
would have to be hypostasized—or so the set-theorist reasons—a
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kind of aggregate whose members are exactly the things satisfying
the predicate from which the plural is generated. (Recall (2) above.)
Thus, unlike ordinary concrete aggregates, this new abstract
aggregate must wear on its sleeve the satisfaction conditions of the
generating predicate. Since the new aggregate, the set of Fs, appears
to bear such a simple and direct semantical relation to the
generating predicate F, there is a further tendency to identify the set
of Fs as the primary semantical correlate of the predicate F itself, as
well as of the plural ‘the Fs’. And so one might arrive at the full
logico-semantical belief that the set of Fs is the primary semantical
correlate of the predicate F.

On this account set theory and set-theoretical semantics appear
to be fostered by a compulsion to concretize; that is, they appear
to spring from a compulsion to think of the primary semantical
correlates of predicates on analogy with ordinary concrete
aggregates. Yet, as I have said, intuitively the primary semantical
correlates of predicates are simply the properties or relations they
express. All other semantical correlates of predicates are derivative
and, furthermore, are typically natural or social:’* packs, bunches,
flocks, tribes, races, species, kinds, etc., or ordinary collections,
social classes, ordinary sets, etc. Against this background set theory
is seen to be an artifice out of place in the natural logical world.
How ironic that a compulsion to concretize gives birth to the most
abstract artifice ever produced by the human mind.

What then is the overall conclusion so far? On the basis of the
foregoing critical survey it appears that the ontology of sets does
not fall within our naturalistic ontology and also that set theory is
not embedded in natural logic. Thus, contrary to received opinion,
the notion of class does not appear to be fundamental to thought.

There remains one more strategy by which one might try to
justify the ontology of sets: perhaps set theory, while not natural, is
at least uniquely useful in mathematics or in empirical science. To
this pragmatic issue I turn next.

29. The Dispensability of Sets

If the concepts of set theory are grounded neither in our naturalistic
ontology nor in natural logic and if concepts of set theory arise
from a conflation of the concepts of ordinary aggregate and
property, why should one take set theory seriously? Evidently the
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only remaining reason is that set theory might nevertheless play
some unique role in pure mathematics or in the empirical sciences.

Consider pure mathematics first. Here set theory is used in an
entirely abstract way to aid and to unify the study of such matters as
cardinality, order, mapping, etc. Let x be an arbitrary non-empty
set. I will say that x, is an ultimate element of x if and only if
Xo € Xy € X, € ... € x and nothing is in x, itself. Now, it is a matter
of complete indifference what the ultimate elements are of any set
that might be contemplated in pure mathematics. Hence, as far as
pure mathematics is concerned, the study of sets can be limited to
those sets whose only ultimate element is the null set. The theory of
such sets is called pure set theory. We may conclude, therefore, that
if set theory should turn out to have a unique role to play in pure
mathematics, that role can be filled by pure set theory.

Now consider the empirical sciences. Let us suppose that in the
service of classification and measurement there are occasions when
it is useful to consider collectively (as well as individually) the
individuals with which a given empirical science deals. Let us call
the sets postulated for these purposes empirical sets. In connection
with measurement there might, in addition, be a call for certain
key relations, such as equinumerosity, that hold between pure and
empirical sets. The theory that characterizes empirical sets and
those key relations holding between pure and empirical sets may be
called applied set theory. If set theory has any role to play in the
empirical sciences, that role can be filled by applied set theory.

So, to repeat our earlier question, why should set theory be taken
seriously? The answer stated more precisely is this: pure set theory
might have a unique role to play in pure mathematics, or applied
set theory might have a unique role to play in the empirical
sciences.

I think that pure and applied set theory have no such unique
roles. In fact, this claim can be proved. Specifically, it can be proved
that first-order pure and applied set theory can be modeled within
the first-order logic for the predication relation. (Since first-order
pure set theory countenances sets of sets, sets of sets of sets, etc.,
this result goes well beyond Russell’s no-class construction, which
works only for sets of non-sets. In what follows I will give no-class
constructions for both of the leading first-order pure set theories,
Zermelo-Fraenkel (ZF) and von Neumann-Gédel-Bernays (GB).!3)
This result shows that any theoretical tasks that pure and
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applied set theory perform can be accomplished equally well by a
theory that, unlike set theory, has a legitimate origin in natural
logic.1®

Thus, my larger conclusion is that neither naturalistic ontology,
natural logic, pure mathematics, nor the empirical sciences provide
any ground for believing that sets exist: there is neither naturalistic,
logical, nor pragmatic warrant for set theory. Set theory does not
belong in a rational view of reality.

An example will help clarify what I meant when I said that first-
order pure and applied set theories can be modeled within the first-
order logic for the predication relation and that this shows that any
of the theoretical tasks that these set theories perform can be
accomplished equally well by the logic for the predication relation.
Consider the miniature theory for ordered pairs:

{u,v) =X, > =u=x&v=y).

It is widely known that this theory can be modeled by set theory.
What this means is that from a syntactical point of view the
notation used in the ordered-pair theory can be introduced into the
language of set theory as an abbreviation for longer set-theoretic
locutions and that this can be done in such a way that the miniature
theory can then be derived as a theorem using just the original
axioms and rules of set theory. Thus, on those occasions in pure
mathematics and empirical science when previously one spoke of
ordered pairs one may now merely speak of certain sets, namely,
those sets singled out by the abbreviation scheme with which the
ordered-pair notation is introduced. Thus, any mathematical or
scientific jobs that ordered-pair theory can do can be done by set
theory equally well.

In an analogous manner, then, I will show that from a syntactic
point of view the notations used in first-order pure and applied set
theory can be introduced into the logic for the predication relation
as abbreviations for longer property-theoretic locutions and that
this can be done in such a way that the set-theoretical axioms and
rules can be derived as theorems using just the logic for the
predication relation. This permits one to speak merely of properties
on those occasions in pure mathematics and in empirical science
when one previously spoke of sets. Thus the logic for the
predication relation may fill perfectly well any of set theory’s
mathematical or empirical scientific roles.
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There are two opposing philosophical purposes one might have
in modeling one theory within another. One purpose is reduction.
In the ordered-pair case, €.g., one’s aim might be to show that no
mathematical or scientific utility is lost if ordered pairs are identified
with a certain kind of set. The other purpose is elimination. Thus, in
the ordered-pair case one’s motive might be to show that no
mathematical or scientific utility is lost if ordered pairs are held not
to exist.

Which of these purposes should one have, reduction or
elimination? The possibility of modeling one theory within another
shows that the modeled theory has no mathematical or scientific
utility not possessed by the modeling theory. Suppose that the
motivation offered for particular axioms in the modeling theory is
at least as strong as the motivation offered for those in the modeled
theory. And suppose that we already have good philosophical or
logical reasons for accepting the ontological framework of the
modeling theory. In this case the decision whether to reduce or
eliminate the entities of the modeled theory should be based on
whether there is any independent philosophical or logical reason to
think those entities exist. Now, in a moment we shall see that the
motivation offered on behalf of the axioms for the predication
relation is at least as strong as the motivation offered on behalf of
the axioms for the e-relation. Further, we have already seen that
there are good philosophical (§5) and logical (§§6-9) reasons for
accepting an ontology of PRPs. And we have seen (in the previous
two sections) that there are no independent philosophical or logical
reasons for accepting an ontology of sets. Therefore, the fact that
set theory can be modeled within the logic for the predica-
tion relation supports the decision to eliminate sets from our
ontology.

This brings us to the motivation for the axioms in formulations of
the logic for the predication relation. The point that needs to be
made here is that, for any credible motivation that can be given for
a particular formulation of set theory, an analogous motivation,
which is at least as satisfactory, can be given for the axioms in a
corresponding formulation of the logic for the predication relation.
To see how this goes for a simple example, consider the usual
motivation offered in support of Zermelo’s axioms for pure set
theory, namely, the motivation provided by the iterative conception
of set. On this conception, sets are thought of as being “formed” in
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stages from the null set § by means of repeated applications of a
power operation:

Stages 1 2 ... o

Pure {0} {0, {0}} .. {y: yis a set and every
Sets element of y belongs to
a set formed prior to «}

If for every stage there is a later stage immediately following no
stage, then the union of these sets is a model for Zermelo’s
axioms.!” However, on analogy with the iterative conception of
set, there are also iterative conceptions of PRPs. The easiest to
describe is the iterative conception of pure L-determinate type 1
properties. (x is L-determinate iff;; O(Yy)(y A x > y A x).) On this
conception such properties may be thought of as being “formed” in
stages from the necessarily null type 1 property A by means of
repeated applications of a power operation:

Stages 1 2 . o

Pure [A] [A,[AT] ... [y is an L-determinate prop-

Properties erty whose instances are
instances of a property
formed prior to o],

If for every stage there is a later stage immediately following no
stage, then the union of these properties is a model for the axioms of
a Zermelo-style theory for pure L-determinate type 1 properties.
Moreover, the same sort of thing can be done for other iterative
conceptions of PRPs.

Now the general point is this. Whenever motivation is offered for
the axioms in a given set theory, it is never stronger than an
analogous motivation for the axioms in an associated property
theory. For this reason, general philosophical and logical
considerations (such as those given earlier in this chapter) should
every time guide us to choose the property theory—with its no-class
construction—over the set theory.

Before I proceed to the no-class constructions for ZF and GB a
general point of clarification is in order. Many of the formal
metatheoretic constructions in this book are given within a set-
theoretic framework, and one might wonder whether it is consistent
to conduct metatheoretic constructions within a set-theoretic
framework while denying that sets really exist. It is. For each of
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these metatheoretic constructions may be viewed as only a
convenient shorthand for a metatheoretic construction within a
property-theoretic framework. That is, in the last analysis my
underlying metatheoretic framework is really property theory, not
set theory.

30. Pure Set Theory Without Sets

There are many attractive no-class constructions of pure first-order
set theory, some better suited to one philosophical view than
another. The construction I will give, however, is the simplest I can
find. I begin with the following definitions:

x ultimately comprehends y iffy
(Vo) (x Sz & (VW) wAzowSz))DyAz)

x is a pure L-determinate property iffy
x is an L-determinate property & whatever x ultimately
comprehends is an L-determinate property.!®

Thus, x ultimately comprehends y if and only if y is an instance of x
or y is an instance of an instance of x or y is an instance of an
instance of an instance of x or.... And x is a pure L-determinate

property if and only if x is an L-determinate property whose
instances are L-determinate properties and whose instances have as
instances only L-determinate properties and so on. Now consider
any sentence A in the standard language of pure first-order set
theory,?® and let A’ be the sentence that arises from A by replacing
all occurrences of € with A and by relativizing all quantifiers to pure
L-determinate properties. Then I contextually define 4 in L, with
A as follows: A iff;; A’. Next take the standard axioms of Zermelo-
Fraenkel set theory; drop the axiom of extensionality, and rewrite
the remaining axioms using A, =, and intensional abstraction.?!
TZF~ is the intensional logic obtained when these axioms are
adjoined to T1.22

Metatheorem: Every sentence that is a theorem of Zermelo-
Fraenkel set theory is, given its contextual definition in terms of
A, =, and intensional abstraction, a theorem of the intensional
logic TZF~ (i.e., for every set-theoretical sentence 4, if F,¢ A,
then b, A4).23

Proof. First, we prove in TZF ~ that each property is included (<)
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in some A-transitive property. Take the union of the original
property, the union of the result, the union of that union,.... The
union of all these unions is a A-transitive property that includes the
original property. To prove that this new property exists, we form
an appropriate function on an intensional w by means of a
recursion principle (whose proof in TZF~ does not require
extensionality). This function’s range, which we obtain by means of
the replacement axiom, is the desired A-transitive property. Using
this theorem, we can then prove in TZF ~ that each L-determinate
property whose instances are all pure L-determinate properties is
itself a pure L-determinate property. After this, we show by
induction that b1~ A = DA for formulas 4 whose constituent
predicates are A or = (or both A and =) and all of whose
constituent terms are variables whose ranges are restricted to pure
L-determinate properties. With these facts at hand, the derivation
of each ZF set-existence axiom is straightforward; we simply use
the associated TZF~ property-existence axiom plus appropriate
instances of the TZF~ comprehension schema. To derive the ZF
extensionality axiom, we first prove in TZF~ that u = [z A u]! for
all properties u. From this we may derive in T1 that, for all
properties x and y, O(Vz)cAx=zAy)> x = y. And from this
plus the theorem that every instance of a pure L-determinate
property is a pure L-determinate property, we derive

(¥x, y)(x and y are pure L-determinate properties o
((Vz)(z is a pure L-determinate property o
CAx=zAy)>x=y)).

But given the contextual definition of the sentences of ZF in terms
of A, =, and intensional abstraction, this sentence is just the
expanded form of the ZF principle of extensionality:

Vx, y)(Vz)(zex=zey) o x = y). End of proof.

Next take the axioms of von Neumann-Goédel-Bernays class
theory, drop the axiom of extensionality, and rewrite the remaining
axioms using A, =, and intensional abstraction.?* TGB~ is the
intensional logic obtained when these axioms are adjoined to T1.2°

Metatheorem: Every sentence that is a theorem of von Neumann-
Godel-Bernays class theory is, given its contextual definition in
terms of A, =, and intensional abstraction, a theorem of the
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intensional logic TGB™ (i.e., for every set-theoretical sentence A,
if gy A, then Fgg- A4).26

The proof of this is analogous to the previous proof.

The intuitive content of the results is easy to state: Zermelo-
Fraenkel set theory and von Neumann-Godel-Bernays class theory
have an alternate interpretation according to which they are just
theories of pure L-determinate properties, a kind of property that
forms a sub-universe within which there are no intensional
distinctions.

31. Applied Set Theory Without Sets
I will now show how to give a no-class construction for a fairly
elementary applied set theory which countenances empirical sets of
particulars and of type 1 PRPs. The intuitive idea is that notation
that previously had been interpreted as being about such empirical
sets will now be introduced as an abbreviation for a longer
property-theoretic locution that concerns the properties common to
the elements of these empirical sets. (This way of treating set-
theoretical notation is reminiscent of Russell’s no-class construction
of type-stratified set theory.) The construction, however, can be
extended by analogy to more sophisticated applied set theories,
including ones that countenance empirical sets of sets, etc. and that
are fitted out with intensional and extensional abstraction
operations.

& is a first-order language for elementary applied set theory. The
primitive symbols of & are:

Logical operators: &, —,3
Predicates: =,6,A,Fi,... ,F!
Variables: X, V,2Z,...

o,y 0y, Oy, ..

ﬂl’ BZ’ ﬁSs e

Punctuation: (,).

Atomic formulas: v; = v;, o; = o;, ;= B;, ;€ a;, v; €, v; Avy,
Fi{(vy,...,v;). Let complex formulas be built up from these in
the usual way. The variables x, y, z,... are to be thought of as
ranging over particulars and type 1 PRPs; «, , a5, a5, ..., over pure
sets; B, B2, B3, ..., over empirical sets of particulars and type 1
PRPs. And Fi,...,F 2 are non-set-theoretic predicates. Now every
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sentence A of & can be contextually defined in L, with A as
follows: substitute A for all occurrences of €; replace all atomic
formulas g; = B; with (Vx)(x A f; = x A B;); restrict all quantifers
on pure set variables to pure L-determinate properties; replace all
pure and empirical set variables with new distinct non-set variables.
The result A* is a sentence in L, with A. Then adopt the following
contextual definition: A iff;; A*. To see that this definition does the
job, consider the theory TZF which is just like TZF ~ except that
now F! .. F % may occur in the axiom schemas. In TZF, we
can derive, not only all the closures of the axioms of pure Zermelo-
Fraenkel set theory, but also all closures of the following two
axioms for the applied set theory:

{Extensionality)
(Vx)xep=xeB)> =8B
(Comprehension)
@B)(Vo)we B = (v Au & A))

where A is any formula of &% in which 8; does not occur free. Hence,
we have a no-class construction for not only pure first-order set
theory but the applied first-order set theory as well.?’

Summing up, we have seen that both pure and applied first-order
set theories can be modeled within the first-order logic for the
predication relation. Therefore, in view of the conclusion that the
ontology of sets does not fall within our naturalistic ontology and
the conclusion that set theory is not part of logic, there is simply no
justification for positing the extraordinary abstract aggregates of set
theory over and above PRPs and ordinary aggregates.

With this conclusion in hand I want to back up a bit. In the last
three sections I have been operating under the assumption that set
theory has at least a provisional role to play in mathematical
matters. But now I want to challenge even that assumption, at least
as it pertains to the analysis of numbers. For in the next chapter I
will defend the thesis that in a proper construction of classical
mathematics numbers should not even provisionally be identified
with sets. Numbers should boldly be identified with properties.




Number

It was Frege who first forced both philosophers and
mathematicians to acknowledge the lack of any
philosphical account of the nature and epistemological
basis of mathematics. He himself constructed a complete
system of philosophy of mathematics .
[T]he philosophical system, considered as a unltary
theory, collapsed when . ..shown to be incapable of
fulfillment . . . by Russell’s discovery of the set-theoretic
paradoxes. . .. [M]Juch as we now owe to Frege. .., it
would now be impossible for anyone to consider himself
a whole-hearted follower. . . .

Michael Dummett
Elements of Intuitionism

These excerpts express what appears to be the prevalent attitude
toward logicism among leading contemporary philosophers of
mathematics. Despite this, I am still inclined to hold a logicist
position. In what follows I will employ the theory of PRPs to
defend it. Along the way I will reply to the standard criticisms of
logicism, none of which hits its mark in my opinion. I begin by
considering logicism in the context of arithmetic. This after all was
what Frege himself was concerned with, and it is here that the
doctrine is most defensible.

32. A Neo-Fregean Analysis

Ask a practicing mathematician what the Peano postulates for
number theory are. If he does not have a philosophical or historical
ax to grind, in the majority of cases he will state the following:

(1) 0 is a natural number.

(2) Natural numbers have unique successors.

(3) 0 s not the successor of anything.

(4) If the successor of x = the successor of y, then x = y.




