Part I

A Complete Foundation







Intensionality

Intensionality in logic and language is a phenomenon that has been
recognized for over two millennia, and still there is no adequate
theory for it. My investigations of intensionality will begin with an
elementary inquiry into the origins of intensionality in natural
language. Some surprisingly simple arguments will expose defects in
what is today the leading treatment of intensionality, the multiple-
operator approach. The best representation of intensionality, it will
turn out, is one that explicitly appeals to properties, relations, and
propositions. In this, the theory of PRPs is seen to be undeniably
part of logic.

6. Intensional Abstraction
Consider the following intuitively valid argument:
(I) Whatever x belicves is necessary.
Whatever is necessary is true.
.. Whatever x believes is true.

Suppose that ‘is necessary’ and ‘is true’ are treated as 1-place
predicates and ‘believes’, as a 2-place predicate.* Then, the above
argument can be represented as valid in any standard quantifier
logic:

I (Vy)(xB?y > N1'y)

(Yy)(N'y > T'y)
S (Vy)(xB2y o Tly).

Now in theoretical matters, if a currently accepted theory can be
easily and naturally employed to account for new data, then other

*In this work when I mention linguistic expressions I will usually follow the
convenient convention of autonymous use, by which a simple expression names itself
and a concatenation of simple expressions names their concatenation. But where
clarity demands, I will shift to the use of single quotes; when I do this, I will sometimes
take the liberty to use them for the kind of variable quotation achieved more properly
by Quinean corner quotes. I reserve double quotes for use as scare quotes.
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things being equal it is desirable to do so. In the science of logic, the
currently accepted theory includes quantifier logic. By treating ‘is
necessary’ and ‘is true’ as l-place predicates and ‘believes’ as a
2-place predicate, we can easily and naturally account for the
validity of (I) in a currently accepted theory, namely, quantifier
logic. Other things being equal, it is therefore desirable to do so.!

Now consider another intuitively valid argument, where A is any
formula:

(In) Whatever x believes is true.
x believes that A.
". It is true that A.

Suppose, as was just suggested, that we do treat ‘is true’ as a 1-place
predicate and ‘believes’ as a 2-place predicate. In this case, we seem
to be left with no alternative but to parse the second and third lines
of (IT) as follows:

X Dbelieves that 4
It is true that A

where ‘that A4’ is counted as a singular term syntactically. 1 do
not wish to beg any questions here about the philosophical treat-
ment of ‘that’-clauses. For this reason, I will introduce a philo-
sophically neutral notation. I have in mind the bracket notation
introduced by Quine for somewhat similar purposes (§35 Word and
Object). For the moment I leave open what semantical significance
the bracket notation will have, and the possibility of indirectly
defining the bracket notion will also be left open here.? When this
bracket notation is adopted, (II) can be naturally represented as
follows:

ar) (Vy)(xB%y = T'y)
xB2[A]
. TA].

The conclusion of (II') is straightforwardly derivable from the two
premises by an application of universal instantiation (UI) and
modus ponens (MP), two rules of inference valid in standard
quantifier logic. Thus, one can bring argument (II) within the
scope of standard quantifier logic simply by adopting the hypoth-
esis that ‘that’-clauses are singular terms representable with the
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bracket notation. To successfully represent (1I), one needs no new
logical principles, and one needs no knowledge about the logic of
expressions occurring within [4]. It would seem, therefore, that
relative to the framework of quantifier logic, (IT') is the simplest way
to represent (II). Thus, on the assumption that the logic for the new
singular terms [A] can be satisfactorily worked out, I conclude that
it is desirable to treat ‘that’-clauses in natural language as singular
terms that may be represented by means of the bracket notation.?

Summing up, I conclude that it is desirable to treat ‘is true’ and
‘is necessary’ as 1-place predicates, ‘believes’ as a 2-place predicate,
and ‘that’-clauses as (defined or undefined) singular terms. (This
conclusion is just desideratum 16 from §4.)

7. Quantifying-in
Consider the following argument:

(I11) x believes that he believes something.

.. There is someone v such that x believes that v
believes something.

There is a reading according to which (III) is intuitively valid. This
reading provides an example of the logical phenomenon of
quantifying-in. It is desirable that all valid cases of quantifying-
in should be representable by an ideal logical theory. (This is
desideratum 5 from §4.)

Putting desiderata 5 and 16 together, one obtains an important

derived desideratum. Consider the following instance of argument
(I):

vy Whatever x believes is true.
x believes that v believes something.

.. It is true that v believes something.

In view of desiderata 5 and 16 it is desirable to represent (IV) as
follows:

v (Vy)(xB%y > T'y)
xB2[(JuvB?u]
. T (Qu)B2u].
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I conclude by analogy that it is desirable to represent (III) in the
following way:

1119)] xB2[(Ju)xB*u]
. @Qu)xB?[(u)vB3u].

What is important about this is that the occurrence of v in the
singular term [(Ju)vB?u] is an externally quantifiable occurrence of
a variable.* I am thus led to conclude that ‘that’-clauses ought to be
treated as singular terms which may contain externally quantifiable
occurrences of variables.

It will be convenient to represent in some perspicuous way which
variables within [A] are externally quantifiable. Let 6 be the
sequence of externally quantifiable variables in [A]. Then, I will
rewrite [A] as [A]°. So, for example, I will rewrite (III') as
follows:

xB2[(Qu)xB*u]*
. (F0)xB2[(Qu)vB2u]’.

This allows the externally quantifiable variables to be spotted at a
glance.

8. Informal Interpretation

I have concluded that it is desirable to represent ‘that’-clauses
with the bracket notation. Up to now I have left open how this
bracket notation should be interpreted and, in particular, what sort
of entity corresponds semantically to a given singular term [4]. In
order to answer this question we must consider desideratum 1 from
§4, which concerns prima facie failures of substitutivity of co-
extensive expressions within ‘that’-clauses.
Consider the following argument:

V) x believes that everything runs.
Everything runs if and only if everything walks.

". x believes that everything walks.

Argument (V) is prima facie an instance of the principle of the
substitutivity of materially equivalent formulas. However, (V) is
intuitively invalid. Thus, it constitutes a prima facie violation of the
principle of the substitutivity of materially equivalent formulas.
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Now consider the following related argument:

A x wonders whether y is the author of Waverley.
y = the author of Waverley.

". x wonders whether y = y.

(VI) is a prima facie instance of the principle of the substitutivity of
co-referential singular terms. However, there is a reading of (VI)
according to which it too is invalid. Thus, we have a prima facie
violation of this substitutivity principle. Desideratum 1 is simply
that arguments containing prima facie violations of these two
substitutivity principles ought to be represented as invalid in an
adequate logical theory.
In the bracket notation (V) would be represented as follows:

4 xB2[(Vy)Ry]
(Yy)Ry = (Yy)Wy
. xB*[(Yy)Wy].

And the invalid reading of (VI} would be represented as follows:

(V) xW?[y = (iz)(4z)]’
y = (z)(4z)

L xWy =yP

where in the first premise the definite description (1z)(4z) has
narrow scope. Now in order for (V') and (VI') to qualify as invalid
arguments, what sort of entities must correspond semantically
to the singular terms [(Vy)Ry], [(Vy)Wy], [y = (z)(Az)])’, and
[y = y]”? Both here and in what follows my intention is to use
the notion of semantical correspondence in as neutral a way as
possible. By doing so, I wish to avoid committing myself to any
particular semantical method. And also I wish to take into account
the fact that ‘that’-clauses might be contextually defined singular
terms and, hence, that they might bear no simple semantical
relation (e.g., the naming relation) to anything. Even if ‘that’-
clauses are contextually defined singular terms, their use neverthe-
less produces ontological commitments;> thus, in asking what sort
of entity corresponds semantically to the singular terms [ A], we are
at the very least asking to what sort of entity the use of ‘that’-
clauses ontologically commits us.

The nominalistic answer to the above question is that linguistic
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entities—either formulas or inscriptions of formulas—are what
correspond semantically to ‘that’-clauses. Generally speaking, there
are two methods by which one can develop the nominalistic answer
in detail. According to the first method, a formula such as
xB2[(Vy)Ry] is treated in such a way that it contains—at least when
fully analysed—either a name for, or a structural description of, a
particular formula or inscription. On the second method, a formula
such as xB2[(Vy)Ry] is treated in such a way that even when fully
analysed it does not contain any such metalinguistic name or
structural description. Carnap’s approach and Quine’s syntactical
approach are instances of the first method. Scheffler’s approach
is an instance of the second method.

A fatal difficulty in the first method is that it leads to violations of
desideratum 12, the Langford-Church translation test. The argu-
ment that these nominalistic analyses lead to faulty translation is
familiar enough that I will not go over it here.®

The nominalist’s second method, by contrast, does satisfy de-
sideratum 12. However, it evidently must do so at the price of
violating desideratum 13, Davidson’s learnability requirement.
(Davidson’s learnability requirement is that an idealized represen-
tation of natural language should have a finite number of undefined
primitive constants.) To see why this is so, let us consider
Scheffler’s approach as an example. According to this approach, a
singular term [A] would be contextually analysed as follows:

[A] ... iffy (3vy) (v, is-an-A-inscription & . .. v, .. .)

where ‘is-an-A-inscription’ is an undefined primitive predicate that
is satisfied by all and only inscriptions synonymous to A. However,
since there are an infinite number of distinct ‘that’-clauses in
natural language, there must be an infinite number of distinct
singular terms [A]. Therefore, Scheffler’s approach requires an
infinite number of undefined primitive predicates ‘is-an-A-
inscription’. The fact that Scheffler’s approach requires an infinite
number of undefined primitive predicates not only blocks learn-
ability but also blocks the systematization of the internal logic
of ‘that’-clauses.

The above considerations, together with a number of others,’
lead me to conclude that linguistic entities, whether formulas or
inscriptions of formulas, are not the sort of entity that correspond
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semantically to the singular terms [4]. And the same conclusion
goes for sequences or sets of linguistic entities, or indeed any other
kind of object that is linguistic in character.

So what sort of entities do correspond semantically to the
singular terms [A]? Whatever they are they must render arguments
such as (V') and (VI') invalid. Further, they must lead to no
violations of the Langford-Church translation test. And finally,
they must make possible the kind of finitistic treatment of language
called for by Davidson’s learnability requirement. Now we shall see
that these features are had by propositions, which are one kind of
intensional entity. (Intensional entities are ones that need not be
identical even if they are identical in extension.) To be sure, these
features are also had by certain other entities that are not in
themselves intensional. But upon analysis these other entities seem
always to involve some sort of appeal to intensional entities. (For
example, these alternate objects might be sets—or sequences or
mereological sums—of intensional entities.) So of the choices
available, propositions taken on their own make for the most
natural answer to the question. Therefore, other things being equal
one may conclude that propositions should be identified as the
semantical correlata of the singular terms [A4].

Why do propositions meet our needs? Why, for example, does
argument (V') come out as invalid when propositions are identified
as the semantical correlata of the singular terms [(Vy)Ry] and
[(Vy)Wy]? The answer is simply that the propositions semantically
correlated with these two singular terms are not the same. And this
is so even though these propositions have the same extension, i.e.,
even though they have the same truth value. And why do prop-
ositions make it possible to pass the Langford-Church translation
test? The answer is that propositions are extralinguistic entities.
And thus, when ‘that’-clauses are given the recommended interpre-
tation, they can be translated into other languages independently of
problematic names for, or structural descriptions of, linguistic
entities. Finally, how do propositions make it possible to meet
Davidson’s learnability requirement? The answer to this question is
by no means obvious. Indeed, all previous theories of propositions
have failed on this score. (See desideratum 13 on the chart.) This is
one of the outstanding problems that a new theory of PRPs must
surmount. But it turns out that the syntactic and semantic con-
struction in §§12-14 solves it.
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9. The Origin of Intensionality in Language

Intensional entities are, as I have said, entities that can be different
from one another even though they are identical in extension.
Propositions are 0-ary intensional entities; properties, 1-ary inten-
sional entities; and relations, n-ary intensional entities, for n > 2. In
view of this, there is a natural generalization of the bracket notation
which provides singular terms for intensional entities of any finite
degree. Let A be any well-formed formula, and let v,,...,v, be
distinct variables, where m > 0. (I permit there to be free vari-
ables in A that are not among these variables v,, ..., v,.) Then,
[4],,..., is a singular term whose semantical correlate is an
intensional entity of degree m. If m = 0, the semantical correlate of
this singular term is the proposition that 4; if m = 1, the semantical
correlate is the property of being something v, such that A; if
m > 1, then the semantical correlate is the relation among v, ..., v,
such that A.

In §6 and §7 it was argued from the point of view of logical syntax
that certain complex nominative expressions in natural languages—
namely, ‘that’-clauses—are best represented by singular terms of
the sort provided by the bracket notation [A4], ., , where m = 0.
There are analogous arguments to show that certain other complex
nominative expressions in natural language—namely, gerundive
and infinitive phrases—are best represented as singular terms of the
sort provided by our generalized bracket notation [4], , , where
m > 1. By this route, then, the theory of PRPs is found to be part
of the logic for natural language.

What is logically distinctive about these singular terms [A4], is
that expressions occurring within them do not obey the substi-
tutivity principles of extensional logic. Thus, when a formula A is
enclosed within square brackets (followed by appropriate sub-
scripts), an intensional context is generated. This bracketing
operation may therefore be viewed as a generalized intensional
abstraction operation.

According to the now dominant tradition of C. I. Lewis, Carnap,
Hintikka, Kripke, et al., intensionality in natural language orig-
inates with a diverse, open-ended list of primitive operators,
including, e.g., a strict-implication operator, modal operators,
deontic operators, epistemic operators, an assertion operator, a
causal-explanation operator, a would-be-fact operator, probability
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operators, . ... The intensional abstraction approach to intension-
ality is different. Suppose that a multiple-operator theorist has the
need for a primitive n-place intensional operator @". In this case,
the advocate of intensional abstraction will instead have an as-
sociated n-place primitive predicate 0". Thus, where the operator
theorist has a new category of operator sentences 0"(4,,..., 4,),
I will simply have the atomic sentences O"([4],...,[4,]). (As
I will show, it is as easy to state the semantics for O" and [4,] as it
is to state the semantics for (".) The intensional-abstraction
approach has two distinct advantages over the multiple-operator
approach. The first has already been discussed: since these diverse
primitive operators cannot take singular terms as arguments, there
are infinitely many intuitively valid arguments that cannot be
represented by this approach. (Argument (I) in §6 is one such
argument.) The second advantage is that the general theory of inten-
sionality that emerges on the operator approach is eclectic and
incomplete at best. On the intensional-abstraction approach, how-
ever, there is a simple and general theory of intensionality: all
intensionality in natural language (or at least all intensionality
treatable by some operator or other) has a single origin, namely, a
generalized intensional abstraction operator. Because of the sim-
plicity and generality of this approach, I conclude that it provides
the best provisional representation of intensionality in natural
language.®

10. First-Order Language

Early in §6 I asserted that in the science of logic the currently
accepted theory includes quantifier logic. At that time I chose to
defer the question of whether we ought to adopt a first-order or a
higher-order formulation as our standard quantifier logic. I will
now take up this question. In chapter 4 I will defend the position
that the first-order approach is the more natural and general of the
two. Here, I will simply list my reasons for thinking that, from the
point of view of formal logico-linguistic theory, the first-order
approach is superior to the higher-order approach.

First, first-order quantifier logic is complete; higher-order quan-
tifier logic is not. At the same time, the consistency of first-order
quantifier logic is less open to doubt than that of the higher-order
counterpart. Other things being equal, it is desirable to construct a
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new theory within a theoretical framework that is complete and
whose consistency is as little open to doubt as possible. Thus, other
things being equal, it is desirable to construct a new theory within
the framework of a first-order quantifier logic as opposed to higher-
order quantifier logic.®

Secondly, if the first-order approach to quantifier logic is taken,
then, as I will show, it is possible to construct a sound and com-
plete logic for the intensional abstraction operation and, hence, for
modal matters and for intentional matters (see desideratum 11).
Such a result is out of reach if the higher-order approach is taken.

Thirdly, when the higher-order approach is taken, linguistic
predicates and sentences (open or closed) are treated as linguistic
subjects. This would seem to open up the possibility of new
instances of Frege’s ‘a = a’/‘a = b’ puzzie. (This possibility is what
lies behind Church’s worry about the adequacy of a Russellian
semantics to characterize the semantics for Principia Mathematica.
See §23 and §38.) Thus, in the case of higher-order languages
Russellian semantics is problematic; not so in the case of first-order
languages. (See desideratum 17.)

Fourthly, in order to avoid the logical and intentional paradoxes
(see desiderata 8 and 9), the higher-order approach usually in-
corporates infinitely many distinct sorts of variables which carry
with them an implicit commitment to a theory of logical types. (See
desideratum 14.) Type theory, however, imposes especially im-
plausible existence restrictions on PRPs, restrictions that in most
cases play no direct role in the avoidance of the paradoxes. The
first-order approach, by contrast, can easily avoid the logical and
intentional paradoxes without appealing to type theory.

Fifthly, suppose that, in order to avoid the logical and inten-
tional paradoxes, a given higher-order theory incorporates in-
finitely many distinct sorts of variables. In this case, it will be forced
into a violation of desideratum 13, Davidson’s learnability require-
ment. To see this, consider any ‘“transcendental” predicate in
natural language, i.e., any predicate in natural language whose
extension cuts freely across presumed type boundaries. The
2-place predicate ‘contemplate’ is an example of such a predicate.
Since the open sentence ‘(Ix)x contemplates y’ is satisfiable by
objects in every logical type, ‘contemplate’ would have infinitely
many primitive counterparts C2, one for each sort of variable

"ot ?

v, in the higher-order language.!® The first-order approach, on the




FIRST-ORDER LANGUAGE 33

other hand, needs just one primitive predicate C? to represent the
natural language predicate ‘contemplate’. In fact, the first-order
approach satisfies Davidson’s learnability requirement on all
counts.

Finally, it seems inevitable (especially in connection with stub-
born desiderata such as 3, 8, 9, 23, and 24) that higher-order
theories will be considerably more complex than their first-order
counterparts. This unnecessary complexity is another count against
the higher-order approach.

For all these reasons, it would seem that from the point of view of
formal logico-linguistic theory, one is better off using the first-order
approach.

Summing up, then, I have the following conclusion. The best
representation of intensionality in natural language is provided by a
first-order quantificational language that is fitted out with (defined
or undefined) complex singular terms such as [4],, ., , and de-
pending on the value of m, these complex terms are semantically
correlated with properties, relations, or propositions. A corollary of
this conclusion is one of the underlying tenets of the book, the tenet
that the theory of PRPs is part of the logic for natural language and
as such is part of logic per se with all the attendant privileges and
responsibilities.

With this matter at least provisionally settled I am finally ready
for the first substantive task of this work, the formalization of
intensional logic. The general strategy will be this. Given the above
conclusions about the origin and character of intensionality, it
follows that I shall have succeeded in formalizing intensional logic
if I am successful in spelling out the logical properties of the
special complex intensional terms [A4],. This is to be done in the
two standard phases. First, I give a semantical characterization of
the logical properties of the complex terms [A],. Secondly, I
attempt as nearly as possible to give a syntactical characterization
of the same logical properties; this is done by the formulation of an
axiomatic first-order intensional logic. Since these two tasks are
independent of the question of whether the complex intensional
terms [A], are defined or undefined, I am free to consider them
as if they were undefined. By doing this, I am able to obtain one
of the major results of the book, namely, that this first-order inten-
sional logic is sound and complete and, hence, that the syntactic
characterization of intensional logic is perfectly equivalent to the
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logically prior semantical characterization. It is after obtaining
these results that I will look at the question of whether these com-
plex intensional expressions can be defined and, in particular,
whether they can be defined in a first-order extensional language.

Before moving on to the substantive tasks of the work, however,
I want to make a brief digression on the topic of quantifying-in,
which was considered in §7.

11. Quine and Church on Quantifying-in*

In §31 of Word and Object Quine proposes a way to represent
quantifying-in that is rather different from the one I proposed in §7.
At the heart of Quine’s treatment is a multiplication of the senses of
‘believe’. For example, Quine would provisionally represent the
intuitively valid argument

x believes that x believes something.

.. There is someone v such that x believes that v believes
something.

in the following alternative manner:'!

B3(x, x, [(Qu)B2(x, u)],)
C. (30)B3(x, v, [(Fu)B2(x, u)],).

On analogy, then, Quine would represent the intuitively valid
argument

x believes that x believes y.

". There is someone v and something u such that x believes that
v believes u.

as follows:

B*(x, x, y, [B*(x, y)]s,)
S (Qu, v)B4(x, u, v, [B*(x, y)],,)-

The important thing to notice is that three separate senses of
‘believe—represented by B2, B*, and B*—have already been
posited. Since for arbitrarily high numbers n, there are ‘that’-clauses
containing n distinct externally quantifiable variables, Quine’s ap-
proach leads to infinitely many primitive ‘belief’-predicates—B?2,

* The reader may skip over this section without losing the basic line of develop-
ment of the book.
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B3, B*, ..., B", .. —and, hence, to a violation of desideratum 13,
Davidson’s learnability requirement.

Now perhaps this problem can be remedied simply by getting rid
of B*, B, BS, ... and by doing their work with finite sequences plus
the ‘belief’-predicate B3. There is, however, a further problem in
the Quinean approach, a problem that has no easy remedy.
Consider the following two formulas:

(1) For all y, if x believes y, then x believes that. someone
believes y.
(2) x believes y.

From (1) and (2) one can derive the following infinite list of
formulas:

(3) x believes that someone believes y.

(4) x believes that someone believes that someone believes y.

(5) x believes that someone believes that someone believes that
someone believes y.

In my bracket notation these derivations are represented simply as
follows:

(1) (Vy)(xB?y > xB?[(Ju)uB*y]’)
(2" xB%y
(3) .. xB*[(3u)uB?y]®

By (1), (2'), UL and MP
@) .. xBY(QuwuB?[(3u)uB?y)*’}*

By (1), (3'), UI, and MP
(5) .. xB[(Qu)uB*[(Qu)uB*[(Au)uB?y]"]")’

By (1'), (4'), UL, and MP

On the Quinean approach, by contrast, (1)-(3) would be repre-
sented as follows:

(1) (Vy)xB?y > B3(x, y, [(QujuB?y],)
2" xB%y

(3") .. B(x,y,[(QuuB?y],)

By (1), (2), Ul, and MP.
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So far so good. However, it appears impossible on the present
approach to go on to represent the derivation of (4) from (1) and
(3). For there can be no instantiation of (1") whose antecedent is
(3"). The reason for this is that the antecedent of (1”') is an atomic
sentence with two arguments whereas (3”) is an atomic sentence
with three arguments. One might think that this problem can be
circumvented by somehow using formulas containing B3 in place of
formulas containing B2. But just try. All straightforward attempts
to use this idea to expedite the above derivations just lead to further
difficulties of their own. I leave it to the reader to convince himself
of this.

My conclusion is that, if one adopts quantifier logic as his initial
theoretical framework, there is no reasonable alternative to treating
‘believes’ as a univocal 2-place predicate and ‘that’-clauses as
defined or undefined singular terms in which externally quantifiable
variables may occur. Indeed, if as I have recommended we use my
bracket notation provisionally to represent ‘that’-clauses, then the
treatment that I believe Quine was looking for in Word and Object
can, ironically, be achieved as follows:

[A]ul...vj =4 <<u1, ey Uj>a [A]vl...v,->.

Although painfully unnatural, this treatment avoids all the syn-
tactic difficulties that beset Quine’s actual treatment.!? For ex-
ample, the derivation of (3),(4),... from (1) and (2) can be
represented as follows:

(1) (y)xB2y > xBXCp, [BuuB?],))
Q") _ xBY

(") . xB*Ky), [(BuuB?y],)
By (1), (2""), UL, and MP

@y . xBELLyD, [GuuB?yl,>, [QuuB?y],>
By (1), (3"), UI, and MP

The important thing to notice, however, is that this treatment,
unlike Quine’s official treatment, takes ‘believes’ to be a 2-place
predicate and ‘that’-clauses to be singular terms that may contain
externally quantifiable variables. Thus, the conclusions reached in
§6-7 are sustained. This is all that I wanted to show here.

I will next make a few remarks about the inability of the Frege-




QUINE AND CHURCH ON QUANTIFYING-IN 37

Church approach to adequately represent quantifying-in. This fact
is not widely recognized and, therefore, deserves discussion.
Consider the following formula:

(6) x believes that y is a spy.

Is it possible to represent this formula in Church’s system as
follows:

There is an individual concept y, such that y, is a concept of the
individual y, and x, believes the proposition that is the value of
the spy sense-function when applied to the argument y, .

1e.,
@y, Ay, &B, (x,S,, (y.)))?

The answer is negative. To see why, consider the following related
sentence:

(7) Someone is the F and x believes that the F is a spy.

Intuitively, this sentence has two logically independent readings, an
“opaque” reading and a “‘transparent” reading. In my bracket
notation these two readings can be represented, respectively, by the
following:

®) @)y = (z)(Fz) & xB>[S (1z)(Fz)])
©) @y)y = (z)(Fz) & xB>*[Sy]’)

where the definite description (1z)(Fz) has narrow scope. The
opaque reading of (7) is represented in Church’s system as follows:

(10)  GyIy. = v(F,) & B, .(x,, S, (0 (Fo ) )

This seems to be acceptable. However, suppose that the method
suggested earlier for representing quantifying-in within Church’s
system were adopted. Then, it should be possible to represent the
transparent reading of (7) with something like the following:

A1) Gy)Ey )0, = vu(F) &y, = tun(F.,,)
& yr_ A yL] & Buo‘v,(xv,ﬂ SulL‘(yr.l)))'

However, given the intended interpretation of A, v, F,,

and F,  , the following is a logical truth:

(12) @y)y = tey(Fly)) 2 LL(m.)(Fm.) A Lil(ulLlj(FnlLl)-

biern)?
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It follows from this that (10) and (11) are logically equivalent. But
the two readings of (7) are logically independent. Therefore, (11)
cannot be an adequate representation of the transparent reading of
.

Some advocates of the Frege-Church approach to intensional
language are not at all disturbed by this sort of outcome, for they
are basically skeptical about the legitimacy of quantifying-in, at
least as it arises in connection with the usual examples. However,
there are examples of quantifying-in that should move even hard-
line advocates of the Frege-Church approach, examples that ought
to be representable by every treatment of intensional language. The
existence of this sort of example has not, as far as I know, been
discussed in the literature.

The following intuitively valid argument illustrates the sort of
example I have in mind:

(13) For all y, if x believes y, then x believes that someone
believes y.
(14) x believes that A4.

(15) .. x believes that someone believes that A.

Unlike some of the examples of quantifying-in, this example re-
quires no special education of one’s intuitions. Indeed, it is unlikely
that there is a reading of this argument according to which it is not
intuitively valid. Using my bracket notation, I can represent the
argument simply as follows:

(13") (Vy)(xB?y = xB*[(3z)zB*y]*)
(14)  xB2[A]
(15") .. xB*[(3z)zB*[A4]] By UI and MP.

In contrast to this approach, the Frege-Church approach (as it
stands) does not appear to provide any adequate representation of
this intuitively valid argument.

To see what the problem is, consider the following candidate
representations within Church’s system. First, one might attempt to
represent the argument as follows:

(13”) Vp, XVp,)(p, Ap,, > (B, (x.,p,)
> B, .(x,, Gy, )B,,.,., (3,5 P.,))))

(147) B, (x,4,)
(157) . By,dx, Ay (B, (1, 4.,).
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True, the inference from (13”) and (14”) to (15”) is valid—or at
least it is when supplemented with 4, A A, as an additional
premise. However, this way of representing the above argument is
not adequate; for (13”) is too strong. To see why, let p, be some
proposition believed by x, and let (13”) be true. Then, for every
concept p,, of p

the following would have to be true:

01

B, .(x., 3y, B, 0, P.,))

But this is implausible. To dramatize the implausibility, consider an
example given by Church in a different connection (p. 22 n., ‘A
Formulation’). Let p, be the proposition that it is necessary that
everything has some property or other. This proposition is in fact
the proposition mentioned on lines 27-8 of page 272 of Lewis and
Langford’s Symbolic Logic. Consider the following two sentences:

(16) x, believes that someone believes that it is necessary that
everything has some property or other.

(17) x, believes that someone believes the proposition men-
tioned on lines 27-8 of page 272 of Lewis and Langford’s
Symbolic Logic.

Clearly, there is a reading of (16) and a reading of (17) according to
which it is possible for (16) to be true when (17) is false. In my
bracket notation these readings of (16) and (17) would be rep-
resented as follows:

(16')  xB2[(3y)yB*[N'[(Yu)Tv)u A v)]]]
(17")  xB*[@y)yB*(w)(M 'w)]

where M! represents ‘is mentioned on lines 27-8 of page 272 of
Lewis and Langford’s Symbolic Logic’ and (iw)(M 'w) is a definite
description having narrow scope. Let us keep these readings in
mind. Now suppose that x believes our proposition p, . In this
event, (13) requires that (16) on the indicated reading is true; (13),
however, does not require that (17) on the indicated reading is true.
By contrast, (13") requires that on the indicated readings both (16)
and (17) are true. Thus, (13") does not adequately represent (13); it
is too strong.
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The following is a second attempt to represent the inference from
(13) and (14) to (15) within Church’s system:

(13”,) (vPol)(Bwlz(xw pu1) = Gpoz)(p"l A p"z
& Bm'-(x'«’ (ayv,,)(Bonz'-x(y'-l’ p"l)))))

(14™) B, (x,4,)

1

15"y . @p, )4, Ap,&B,, (x,(@y,)B,,.,,(0,, P.,)))

Although this argument is valid, it too fails to adequately represent
the original. The reason for this is that the Churchian represen-
tation of (13) is now too weak. To see why, suppose that x, belicves
the proposition p, discussed earlier, and suppose further that (16)
is false on the reading isolated above. It follows that (13) is false as
well. But notice that on the readings isolated above it is possible for
(17) to be true even when (16) is false. In addition, if (17) on this
reading is true, then so is (13"”). Therefore, from the fact that (13) is
false it does not follow that (13") is false. Hence, (13") fails to
adequately represent (13); it is too weak.

There is a third strategy by which one could attempt to represent
the inference trom (13) and (14) to (15) within Church’s system.
Namely, one could incorporate the moditied Quinean treatment
that I described earlier. According to this rather artificial treatment,
objects of belief are identified with ordered pairs:

(A% =4 oy, .., 05, (Al,, .00

However, incorporating this treatment within Church’s system not
only would violate the spirit of the Frege-Church theory but also
would generate excessive complications in connection with the
matter of type restrictions. It should be noted, moreover, that such
a treatment would be inconsistent with the principle of identity
underlying Church’s Alternative (2), namely, the principle that
necessary equivalence is sufficient for identity. To see this, note that
the following is intuitively valid:

(Vx)(VyN'[x = x =y = y]*.

Therefore, given the principle of identity underlying Church’s
alternative 2, the following should also be valid:

(Vx)Vy)lx = xJ* = [y = y]*.
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However, on the modified Quinean treatment, this sentence is
definitionally equivalent to

(V)Y <xD, [x = x1,0 = K>, [y =yl

But the latter sentence is invalid, for if x # y, then

Kxd, [x = x1,.> # LKy, [y =y1>.°

From the foregoing criticisms it does not follow that there is no
way to construct a unified representation of quantifying-in within
Church’s systems. However, no such unified representation suggests
itself.14

Incidentally, before winding up these comments on quantifying-
in, I should note that, if one were to attempt to develop a treatment
of quantifying-in within Carnap’s framework or Scheffler’s frame-
work, problems involving multiple embeddings of ‘that’-clauses
would arise. However, it appears that, by adapting the artificial
modified Quinean treatment that I described above, one could
surmount these problems at least formally. On the assumption that
this is so, I have given Carnap and Scheffler ‘+° grades for de-
sideratum 5 on the chart in §4.

I hope that this digression on alternate treatments of quantifying-

in has helped to bring out the virtues of my bracket notation for
representing quantifying-in. However, it is now time to leave these
philosophical issues behind and to commence the study of formal
intensional logic.




