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Predication

21. The First-Order/Higher-Order Controversy

First-order quantifier logic is complete; higher-order quantifier
logic is not. A few formally minded philosophers of logic—such as
Quine and some of his followers—appear to believe that this is
sufficient grounds for concluding that the only legitimate quantifier
logic is first-order, not higher-order. However, most leading
formally minded philosophers of logic over the past hundred
years—Frege, Russell, Church, Carnap, Henkin, Montague,
Kaplan—believe that the higher-order approach is a natural
generalization of the first-order approach and therefore that
quantifier logic is properly identified with higher-order quantifier
logic. I depart from this majority opinion. In §10 I gave several
formalistic reasons (including completeness) for preferring the first-
order approach over the higher-order approach. But formalistic
reasons tell us little about the issues of naturalness and generality.
In this chapter I will discuss the underlying philosophical
differences between the two approaches to quantifier logic.! My
hope is that the greater naturalness and generality of the first-order
approach will become evident in the course of the discussion.
Consider the following intuitively valid argument:

x is red and y is not red.
.. There is something that x is and that y is not.
There are two approaches to the representation of this argument—
the first-order approach and the higher-order approach. On the
higher-order approach the argument is represented as an instance
of second-order existential generalization:
Rx & 7Ry
S @Ux & )

where R is a name of the color red and fis a predicate variable for
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which R is a substituend. On the first-order approach the
argument is represented as an instance of first-order existential
generalization:

xAr&yAr
S (@) xAz&y A z)
where r is a name of the color red and A is a distinguished 2-place
logical predicate that expresses the predication relation, a relation
expressed by the copula in natural language.?

There are analogous examples involving relations rather than
properties:

x and y are husband and wife, and u and v are not husband
and wife.

.. There is something which x and y are that u and v are not.
On the higher-order approach this intuitively valid argument is
represented as an instance of second-orde: existential generali-
zation:

H?(x,y) & 7 H?(u,v)

S G20 ) & P, v))
where the 2-place predicate H? is construed as a name for the
relation holding between husband and wife and f2 is a 2-place

predicate variable. On the first-order approach the argument is
represented as an instance of first-order existential generalization:?

<%, y> ATH*(x, y)1ay & <u, v) A [H?(X, y)],y
SO @), y> Az & (u,v) A 2).
Philosophically speaking, how do the higher-order and first-

order approaches differ? In the next few sections I suggest an
answer to this question.

22. Expressive Power

It is often thought that a higher-order language has greater
expressive power than the first-order counterpart. However, for
appropriate first-order languages (such as L, with A and =), this
is not so, and indeed the situation is typically the other way around.
In fact, since the variables in L, are free to range over all the objects
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falling within the range of any given higher-order variable, higher-
order notation can be contextually defined in L, with A and ~y.

For illustrative purposes I will show how this can be done for
a sample second-order language. More complex higher-order
languages can be dealt with on analogy.* 1 begin with some
preliminary definitions:

Individual Particular (x) iff; D(Vy)(y Ax =y = x)
Proposition (x) iffy; (Ay)(x =~y [x A y})

Property (x) iff Gy)x ~n [z A yE)

N-ary Relation (x) iffe Qy)x & [<215 -5 2.0 A Y], L2)

True (x) iffy Ay)x &n [[@2)z A y) & (32)z A y)

L Ax )iy @YW WwAZz=(w=xVvw=Yy)&...2...)

where z is a new variable not occurring in . . .

1) =401
vy, 03 =4 {{U1}a {Ul > Uz}}

TP R R ST N 2

The definition of individual particular has interesting historical
roots as far back as works by Peter Abelard and Leibniz and,
more recently, in Lesniewski’s ‘Ontology’ and Quine’s ‘New
Foundations’ and Mathematical Logic. The definition says that x is
an individual particular if and only if it is necessary that x is
predicable of itself and itself only. What is particular about
particulars is that necessarily they are predicable of themselves and
themselves only. The definition of truth says that x is true if and
only if there is a property y such that x is necessarily equivalent to
the proposition that y has an instance and y does in fact have an
instance. So, for example, let y be the property of being something z
such that x is true (i.e., [x is true]). Then, x is a proposition if and
only if x is necessarily equivalent to the proposition that y has an
instance. And, in turn, x is true if and only if y in fact has an
instance. Incidentally, although this definition of truth is logically
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adequate, it is not the official definition that I will offer in §45.
It is given here for illustrative purposes. Finally, if our back-
ground theory should be T1 instead of T2', then = should replace
~y in the above definitions.

Now in order to contextually define any given second-order
sentence C in the first-order language L, with A and =, simply
convert C into the sentence C’ of L, by means of the following
conversion rules:

(1) Second-order atomic formulas (where p; is a sentential
variable and f7 is a predicate variable):
pi = True (p;).

iy, . t) =y, ASE

Restricted quantifiers (where v; is a new variable not
occurring in A(a;)):

(Ya;)A(a;) = (Vv;){(v; is an individual particular > A(v;)).

(Yp:)A(p;) = (Yv;)(v; is a proposition > A(v;)).

(VfHA(S ) = (Vv;)(v; is a property > A(v;)).

(VAT = (Yu;)(v; is an n-ary relation > A(v;)).

To apply these conversion rules to a given higher-order sentence C,
begin with the innermost formula in C and apply rules (1) and (2) in
that order; then, working outward in C, repeat this process until no
higher-order notation remains. The result is the sentence C’ of L,
with A and ~. C'is then contextually defined as follows: C iff;; C'.

Since L, with A and = has a single sort of variable that ranges
over everything, it is actually more expressive (and in this sense,
more general) than the typical higher-order language. Yet it is
possible, though quite uncommon, for a higher-order language to
have just one sort of variable. Therefore, greater expressive power
cannot be used as a fail-safe criterion for distinguishing the first-
order approach to logic from the competing higher-order approach.
For such a criterion we must look to the subject/predicate
distinction.
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23. The Subject/Predicate Distinction

The first-order approach adopts the traditional linguistic
distinction between subject and predicate, between noun and verb;
the higher-order approach does not. That is, on the first-order
approach an absolute distinction is made between linguistic
subjects and linguistic predicates such that a linguistic subject
(noun) cannot except in cases of equivocation be used as a linguistic
predicate (verb) and conversely. The higher-order approach does
not impose such a restriction.’

The distinction between linguistic subject and linguistic predicate
is evident in the surface syntax of natural language. To see the
distinction there, notice that English predicates, e.g., the verbs
‘repeats’ and ‘cycles’, can never (without equivocation) occur as
subjects: e.g., ‘repeats = cycles’ is just not a sentence. Likewise,
subjects, like the noun phrases ‘1/3° and °.333...”, can never
(without equivocation) occur as predicates: e.g., ‘1/3 .333..." is not
a sentence either. By contrast, subjects and predicates, when
combined with each other in the proper order, do form sentences:
e.g., .333... repeats’ and ‘1/3 cycles’ are sentences. Thus, at least
as far as the surface syntax of English is concerned, there does seem
to be a sharp distinction between linguistic subjects and linguistic
predicates. And this is the distinction that is built into the syntax of
first-order languages. In the syntax of higher-order languages,
however, this distinction is glossed over.

Although in natural language predicates cannot be used as
subjects, it is possible to transform predicates into legitimate
subjects by means of certain abstraction operations. (The resulting
linguistic subjects are complex abstract noun phrases.) So by
nominalizing the verb ‘repeats’, we may transform it into the
gerund ‘repeating’, and by nominalizing the verb ‘cycles’, we may
transform it into the gerund ‘cycling’. Since these nominalized
expressions are legitimate linguistic subjects, they can be combined
with verbs (e.g., ‘=’ and ‘is’) to form sentences. Hence, e.g.,
‘repeating = cycling’, <. 333 ... is repeating’ and ‘1/3 is cycling’ are
sentences. Nominalizations are naturally represented in first-order
language by means of the bracket notation. These three sentences
may thus be represented by ‘[Rx], = [Cx],’, *.333...A[Rx],’, and
‘1/3 A [Cx],’, respectively. By contrast, in a higher-order language,
where the distinction between a predicate and its nominalization is
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glossed over, the above three English sentences would typically be
represented by ‘R = C”, ‘R(.333...), and ‘C(1/3)’, respectively.

What function does the subject/predicate distinction have? First,
in speech the distinction shows up as follows. A subject expression
is the kind of expression that functions to identify a thing about
which something is to be said. A predicate expression, by contrast,
functions to say something about things so identified. As Strawson
might put it, subjects fix the subject matter, and predicates (verbs)
do the saying. Secondly, the subject/predicate distinction plays a
role in syntax. For example, in the syntax for first-order extensional
language there are three primitive syntactic categories—subject,
predicate, operator—and one defined syntactic category—sentence
(open or closed). The definition of sentence is roughly this: subjects
combine with predicates to form sentences, and operators combine
with sentences to form sentences. Hence, a very natural syntax.5
Thirdly, the subject/predicate distinction plays a role in the
construction of a natural, economical semantics that tallies with the
intuitive concept of meaning. Let me explain.

Consider the kind of semantics that I call Russellian semantics. In
this semantics, unlike a Fregean semantics, there is just one

fundamental kind of meaning, and the familiar semantic relations of
naming and expressing are defined in terms of it, together with the
syntactic notions of subject and predicate. Naming is just the
restriction of the meaning relation to syntactically simple linguistic
subjects:

x names y iffy; x is a syntactically simple linguistic subject
and x means y.

And expressing is the restriction of the meaning relation to
linguistic predicates and syntactically complex expressions:

x expresses y iffy; x is a linguistic predicate or a syntactically
complex expression and x means y.

In a first-order language, since no linguistic predicate or formula is
a linguistic subject, linguistic predicates and formulas do not,
according to a Russellian semantics, name at all. This result tallies
with the intuitive notion of naming. For according to the intuitive
notion, predicates and sentences do not name. (What do ‘runs’,
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‘equals’, ‘is’, ‘x runs’, ‘Everything equals something’, etc. name?
Intuitively, they name nothing at all.) By contrast, in higher-order
languages all predicates and sentences are also linguistic subjects.
Thus, by suppressing the distinction between linguistic predicates
(and sentences) and linguistic subjects, the higher-order approach
yields the counterintuitive consequence that all linguistic predicates
(and sentences) name something.

A related difficulty arises in connection with Frege’s question of
‘how a true sentence ‘a = b’ can differ in meaning from ‘a = a’.
Frege’s two-kinds-of-meaning semantics is expressly designed
to answer this question. In §38, however, I show that for an
idealized representation of natural language Russellian semantics is
every bit as adequate as Fregean semantics. The argument makes
use of the fact that strings such as ‘F = G’ and ‘F = F’ are ill-
formed in a first-order language (since linguistic predicates are not
counted as linguistic subjects). But such strings are well-formed in
higher-order language (since linguistic predicates are there counted
as linguistic subjects). Thus, in a higher-order setting, unlike a first-
order one, we need special assurances that strings such as ‘F = G’
and ‘F = F’ do not constitute problematic new instances of Frege’s
puzzle. (This is Church’s worry about Russellian semantics; see
§38.) In this way, our simple and natural Russellian semantics
becomes problematic when we move to a higher-order setting from
a first-order one. This then is one more way in which the traditional
subject/predicate distinction, as it is incorporated in first-order
language, plays a role in linguistic theory.

The distinction between linguistic subjects and linguistic
predicates is, of course, reminiscent of Frege’s distinction between
object-names and function-names. There are important differences,
however. One of these differences is ontological in character.
According to Frege’s theory, object-names name things called
objects, and function-names name things called functions. Objects
are what Frege calls complete (or saturated); functions are what he
calls incomplete (or unsaturated). (He further distinguishes
ordinary functions from functions whose values are truth values.
The latter he calls concepts. 1 will suppress this distinction in the
present remarks.) However, in the framework of the first-order
theory of PRPs there is a far more natural ontological distinction
that does much the same job as Frege’s function/object distinction.
What I have in mind is the distinction between things that are
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ontological predicates and things that are not. Something is an
ontological predicate if and only if in principle it could be expressed
by a linguistic predicate. Now let us agree that an object is anything
that could be named by a linguistic subject. While it is true that any
ontological predicate is ontologically distinctive (for it is either a
property or relation), it is also true that each ontological predicate
is an object. Indeed, any property or relation can simply be
assigned as the value of a first-order variable.” Herein lies the
difference between ontological predicates and Frege’s functions, for
on Frege’s theory no function can ever be an object. And so Frege
must say that the concept horse is not a concept!

How did Frege arrive at this bizarre distinction? My suspicion is
that the distinction had its origin in none other than Frege’s
proclivity to treat the logical syntax of natural language as higher-
order and, specifically, in his proclivity to treat all constants in
natural language as names, including even those constants that
were traditionally identified as linguistic predicates. Let me explain.

Frege was well aware of natural language phenomena such as the
following: for all linguistic subjects b and all linguistic predicates F
if T...b...7 has a truth value (or makes sense), then barring
equivocation ... F...7 does not have a truth value (or sense). For
example, ‘Cycling is a property’ has a truth value (makes sense),
but ‘Cycles is a property” does not. (See p. 50, Frege, ‘On Concept
and Object’.) When Frege sought to explain such linguistic phenom-
ena, he arrived at an ontologically based semantical explanation.
‘Cycling is a property’ has a truth value (sense) because ‘cycling’
and ‘is a property’ name (express) things that by their nature
combine together to yield something else; that thing is the nomi-
natum (sense) of ‘Cycling is a property’. By contrast, ‘Cycles is a
property’ does not have a truth value (sense) because ‘cycles’ and ‘is
a property’ name (express) things that cannot by their nature
combine together to yield something. Hence, there is nothing with
which to identify the nominatum (sense) of ‘Cycles is a property’.

In contrast to Frege’s ontologically based higher-order
semantical explanation, the first-order explanation of the above
natural language phenomena is syntactic. Complex expressions
have truth value (make sense) if and only if they are syntactically
well-formed formulas. To be a syntactically well-formed formula a
complex. expression must be built up according to the syntactic
formation rules. However, the syntactic formation rules prohibit
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using linguistic predicates as linguistic subjects. This simple
syntactic line of explanation was unavailable to Frege, for on his
theory both linguistic subjects and predicates are names. Thus,
Frege could explain the failure of the substitutability of linguistic
predicates for linguistic subjects only by positing a bizarre
ontological distinction between the kind of things named by
linguistic predicates and the kind of things named by linguistic
subjects, i.., by positing the distinction between functions and
objects.

24. The Property/Function Distinction

Frege’s bizarre ontological distinction between functions and
objects has not had much impact historically. Nevertheless, the
Fregean doctrine that predicates name functions has had a
persistent influence on subsequent higher-order formulations of
logic. Here, of course, the theory that functions cannot be objects is
suppressed. The practice of treating predicates as naming functions
has been taken up by Russell (in Principia Mathematica), Church,
Henkin, Montague, Kaplan, and David Lewis, to name a few. I will
now make some criticisms of this practice.

Consider the following intuitively valid argument:

x is red and red differs from blue.
.". There is something that x is and it differs from blue.

The standard higher-order representation of this argument is:

R(x)&R # B
oGNS (x) &S # B)

where the predicates R and B are construed as names of the
properties red and blue, respectively, and f is a 1-place predicate
variable. Now if in accordance with the common higher-order
practice (n-ary) predicates are also construed as naming (n-ary)
functions, then the properties red and blue must be identified with
1-ary functions.® Indeed, all properties (i.e., all 1-ary intensional
entities) must on this higher-order approach be identified with 1-ary
functions. And similarly, n-ary relations (i.e., n-ary intensional
entities, for n > 2) must be identified with n-ary functions.
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But how unnatural such identifications are. Joy, the shape of my
hand, the aroma of coffee—these are not functions. When 1 feel
joy, see the shape of my hand, or smell the aroma of coffee, it is not
a function that I feel, see, or smell. (For more on sensing and
feeling, see §49.) Indeed, from the intuitive point of view n-ary
functions are just a special kind of n + l-ary relations, namely,
those n + 1-ary relations that are univocal. Thus, the higher-order
practice results in an identification of properties with 2-ary
relations, 2-ary relations with 3-ary relations, 3-ary relations with
4-ary relations, etc. This outcome is entirely unintuitive.

On the first-order approach, this unintuitive outcome is easy to
avoid. The above argument, for example, is straightforwardly
represented as

xAr&r#b
S (@w)xAw & w # b)

where r and b are singular terms denoting the properties red and
blue, respectively. On this approach properties are just what they
should be—1-ary intensional entities. Likewise, n-ary relations-in-
intension are just what they should be—n-ary intensional entities.
And propositions are just what they should be—0-ary intensional
entities.

The higher-order practice of identifying properties with functions
has often led to another difficulty. To dramatize this difficulty con-
sider the following propositions, where x is some particular:

[Fx]*

[xA[Fyl, ]
[xA[uA[Fy],T

[[Fyl, A [x Av];T*

[{x, [Fyl,> A[uAv],I*
[K[Fyly, x> A[uAv,]* ...

Although on conception 1 these propositions are identical, on
conception 2, which concerns intentional matters, these
propositions are all distinct. Now consider any higher-order
functional approach to intensional logic that does not avail itself of
a primitive A-predicate. (If a theory does avail itself of a
A-predicate, one can hardly see the point of making the theory
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higher-order; recall §22.) On such a higher-order functional
approach, the above propositions would be represented:

F,.(x)

(Ay)F,, (y))x.)

(Au)(Ay )F,, (y)(@))(x)

(#., ), x)Ay)(F, (1))

(A, )AL, )y )(F,, (1)), x)
(Au)(H,, ), )N, (Ap)(F, (1)) ...

However, given the usual laws for 4, if the above propositions are
represented in this way, they would all have to be identical.
Therefore, intensional distinctions relevant to the logic for
intentional matters are lost on the above kind of higher-order
functional approach. Where does this approach go wrong?

Without attempting a detailed analysis, I think that I can in a
rough way indicate the source of the problem. Consider the first
two propositions [Fx]* and [x A [Fy],J*. Given the algebraic
methods developed in chapter 2, we have the following:

[Fx]* = Predo([Fy],, x)
[x A [Fyl,]* = Pred,(Pred,([u A v],,, [F¥],), x).

Thus, whereas the proposition [Fx]* is obtained by applying the
predication operation to the property [Fy], and x, the proposition
[x A [Fyl,]J* involves not only the predication operation but also
the predication relation (the A-relation). The error in the above sort
of higher-order functional approach is something like this. It in
effect collapses the predication operation and the predication
relation into the single Fregean operation of application of function
to argument.

In view of the difficulties facing the functional approach to
higher-order logic, why do higher-order theorists persist in treating
predicates as names of functions rather than as names of
properties? Beyond mere tradition and preoccupations with
mathematics rather than natural logic, the major impetus for this
practice is that it makes possible a relatively simple kind of
semantics for higher-order language. A property-theoretic
semantics, which would be more natural than a function-theoretic
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semantics, has to my knowledge never been accomplished for
higher-order language. My conjecture is that the simplest way to
construct one is, ironically, to translate the higher-order language
into a first-order language, perhaps along the lines of §22, and then
to do the property-theoretic semantics for the first-order language,
perhaps along the lines of §§13-14.

25. The Origin of Incompleteness in Logic

We now return to the issue of incompleteness in logic, the issue with
which this chapter began. Godel showed that first-order number
theory is incomplete. Since first-order number theory can be
modeled within first-order set theory, first-order set theory is
incomplete as well. A thesis of the next chapter is that first-order set
theory can in turn be modeled within the first-order logic for the
predication relation.® It follows that this logic is incomplete. Thus,
in view of the results of chapter 2 we obtain the following fuller
picture of the stages of completeness and incompleteness in first-
order theories.°

COMPLETENESS AND INCOMPLETENESS IN FIRST-ORDER THEORIES

first-order quantifier logic with identity
and the numerals

first-order quantifier logic with identity
and extensional abstraction Complete

first-order quantifier logic with identity
and intensional abstraction

first-order quantifier logic with identity,
the numerals, addition, and multiplication

first-order quantifier logic with identity
and set membership and with or without Incomplete
extensional abstraction

first-order quantifier logic with identity
and predication and with or without
intensional abstraction

What is the origin of the incompleteness in logic? In view of (1),
(2), and (3) in the above picture, the ontology of abstract entities
clearly is not responsible. So in view of (4) in the above picture, one
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might be inclined to the view that the standard number-theoretic
operations are responsible. However, if this answer is not
elaborated, it is unconvincing. For on the face of it, operations from
number theory do not even belong to logic per se, i.e., to the science
of valid thinking. Similarly, in view of (5) in the above picture, one
might be inclined to identify the relation of set membership as the
source. However, as with operations from number theory, the
relation of set membership does not on the face of it belong to the
domain of logic per se.!?

A thesis of chapter 6 is that all the usual operations from number
theory are definable in L,, in terms of the predication relation. And
a thesis of chapter 5 is that, insofar as set theory has any utility in
mathematics or empirical science, an e-relation having all the
properties attributed to € in axiomatic set theory is definable in
terms of the predication relation. Therefore, if these theses are
correct and if the predication relation indeed falls within the
domain of logic per se, then the incompleteness in logic can in this
sense be traced to defined number-theoretic operations or to a
defined e-relation. However, since the logical character of these
defined notions derives from their definability in terms of the
predication relation, this relation, if it indeed belongs to the
domain of logic per se, must be identified as the ultimate source
of the incompleteness in logic. (See (6) in the picture opposite.)

Does the predication relation belong to the domain of logic per
se? That is, is the theory for the predication relation truly part of
the science of valid thinking? The answer to this question is
obvious: if any theory at all ever qualifies as part of logic, the
theory for the predication relation does; the predication relation is
the very paradigm of a purely logical relation. This point, which has
been neglected by virtually all twentieth century philosophers of
logic,'? cannot be stressed enough. The copula is a logical constant
par excellence, and the theory for the copula is part of logic.

Therefore, my conclusion is this. It is not the infinite abstract
ontology of logic, i.e., the infinite ontology of properties, relations,
and propositions, that is responsible for the incompleteness in first-
order logic. Rather, the ultimate source of the incompleteness is a
fundamental logical relation on that abstract ontology, the
predication relation. The logic for properties, relations, and
propositions, the logic for L, is provably complete as long as no
predicate is singled out as a distinguished logical predicate
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expressing the predication relation. However, as soon as a predicate
is singled out in this way, the resulting logic is rendered incomplete.
What is the source of the incompleteness in  higher-order
theories? In higher-order settings, unlike the first-order setting,
philosophically relevant stages of completeness and incompleteness
evidently cannot be isolated,!® for higher-order quantification
theory is incomplete from the very start. Given the hypothesis that
the predication relation is the source of the incompleteness in logic,
we can explain the inability to separate philosophically relevant
stages of completeness and incompleteness in higher-order
quantification theory. This theory is incomplete from the start
because the notation for the predication relation is built into the
syntactic structure of higher-order languages'* and, thus, the
semantic import of this notation is never permitted to vary from
one standard model to another. However, if higher-order
quantification theory is treated as a derived theory constructed
within the first-order logic for the predication relation (as in §22),
then the source of the incompleteness in higher-order quantification
theory—namely, the predication relation—becomes transparent.

26. The Logical, Semantical, and Intentional Paradoxes

The source of incompleteness in first-order logic, I have argued, is
traceable to the predication relation. It should be no surprise, then,
that I also hold that the predication relation lies at the heart of the
familiar paradoxes that have plagued logicians over the years, e.g.,
the paradoxes of Russell, Cantor, Burali-Forti and the paradoxes of
Epimenides, Berry, Grelling, and Richard. Specifically, I hold that,
when properly analysed, each of these paradoxes involves some
kind of self-refuting predication.

How do the paradoxes arise? The algebraic semantic technique
provides a new perspective on this question. Consider the standard
model structure .# for L, with A:

(9,2, 4,%,1d, A, Conj, Neg, Exist, Exp, Inv,
Conv, Ref, Pred,, Pred,, Pred,, ...>

Here A is the relation-in-intension in &, that is expressed by the
predicate A on its standard interpretation. Now, what would one
think is the extension of the predication relation A? Intuitively, one
would think that a pair x, y is in the extension of the predication
relation A if and only if x is in the extension of y. That is, one would
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think that 9(A) = {xye 2:x e ¥%(y)} and, more generally, that
(VHe A)H(A) = {xye 2: x € H(y)}. But this is impossible, as the
following model-theoretic analogue of Russell’s paradox shows.
Suppose that 4(A) = {xye 2: x € 9(y)}.

(1) Neg(Ref(A)) e ¥(Neg(Ref(A))) Premise
(2) Neg(Ref(A)) ¢ 4(Ref(A)) By (1) & Neg-rule!®
(3) (Neg(Ref(A)), Neg(Ref(A))) ¢ 4(A) By (2) & Ref-rule

(4) (Neg(Ref(A)), Neg(Ref(A)))
¢{xye2:xe%(y)} By (3) & hypothesis

(5) Neg(Ref(A)) ¢ ¥(Neg(Ref(A))) By (4) & set theory

(1') Neg(Ref(A)) ¢ 4(Neg(Ref(A))) Premise
(2') Neg(Ref(A)) e ?(Ref Ay By (1') & Neg-rule
(3") (Neg(Ref(A)), Neg(Ref(A))> e 4(A) By (2') & Ref-rule
(4) (Neg(Ref(A)), Neg(Ref(A)))

e{xye2:xe¥%(y)} By (3') & hypothesis
(5') Neg(Ref(A)) e 4(Neg(Ref(A))) By (4') & set theory

Thus, given the law of the exluded middle, the hypothesis that
Y(A) = {xye 2: x € 9(y)} leads to a contradiction.

Another way to see the difficulty is this. Given the algebraic
semantics for L, the following holds for ail formulas A:

A1), .o, ;) €G(Dyy (AL, 0)) W TyoulA)-

Therefore, if 4(A) = {xye Z:x e %(y)}, then v A[A4], = A would
have to be true for all formulas A. But this is just the
principle of predication from which the property-theoretic analogue
of Russell’s paradox follows immediately:

[vav],AlvAv],=[vA0v], &A[vAv],.

What is going on? The language L, is semantically complete in
the sense that, for every formula A, there is a singular term (namely,
the normalized intensional abstract [4],) that denotes the meaning
of A. That is, all expressible properties, relations, and propositions
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are denotable. To my mind any language that provides an ideal
treatment of modal and intentional matters ought to be
semantically complete in this sense. Now consider a semantically
complete language (e.g., L) whose sentential and quantificational
logic is classical. If such a language has a predicate (e.g., A) that
expresses the predication relation, then necessarily the extension of
the predication relation is different from what one would naively
take it to be. If classical logic is sound, then, paradoxes in a
semantically complete language originate in a mistake concerning
the extension of the predication relation.

If classical logic is not to be tampered with,'® then a resolution of
the paradoxes in semantically complete languages must involve
modifications in what one naively takes to be the extension of the
predication relation. So it is quite pleasing to see that this is
precisely what happens when the standard resolutions of the
paradoxes in naive first-order set theory are adapted to first-order
intensional logic with predication. Until we find an ideal resolution
of the paradoxes of predication, we may therefore follow this
maxim: to obtain a workable resolution of these paradoxes,
determine the best resolution of the paradoxes in first-order set
theory and then adapt it to the setting of intensional logic with
predication.

For illustrative purposes I will now sketch how such adaptation
works in the case of the two most familiar resolutions of the first-
order set-theoretical paradoxes, namely, Zermelo’s resolution and
von Neumann’s resolution.!” In connection with the von
Neumann-style resolution I will say that an object is safe if and only
if it has properties, i.e.,

S(v;) iffyy Qo;)v; A v;.

As a notational convention, let the letters a, b, ¢, . .. be introduced
as special restricted variables that range over safe things.
Accordingly, (Va;)A(q;) is short for (Vu;)(S(v ;) 2 A(v;)), and
(34;)A(a;) is short for (Jv;)(S(v;) & A(v;)) where v; is a new distinct
variable. Now, as I have said, the following is the naive principle of
predication that is responsible for the paradoxes:

(Naive Principle of Predication)
For any formula A,
vy, .00 A [A]')l-u”j = A.
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According to the Zermelo-style and the von Neumann-style
resolutions of the logical paradoxes, the naive principle of predica-
tion is modified as follows:

(Zermelo-Style Principle of Predication)
For any formula 4 having the form (vy,...,v;Au& B),
F <U1’ R j> A [A]vl...vj = A.

(von Neumann-Style Principle of Predication)
For any formula 4 where, for all h, 1 < h <}, q, is free for v,
in A and conversely,
F<ay, .. a0 ALA@y, .., 07)),,..0, = Alay, - - o, a;).'®

The L, counterparts of the remaining Zermelo-Fraenkel (ZF)
and von Neumann-Gddel-Bernays (GB) axioms—minus extension-
ality—are formulated on analogy.!® By adding the ZF-style axioms
or the GB-style axioms to T1 or T2', we obtain the rudiments of
four logics for L, with A.

Now what about the logical paradoxes? Evidently, the closest we
can come to, e.g., Russell’s paradox in the two ZF-style logics for
L, with A is

[xAu&x AxJA[xAu&x & x]"
=([xAu&xAx]“Au
&xAu&x Ax12A[xAu&x L x]%)

from which it follows merely that

Vu)[x Au & x K x]% A u).

And the closest we can come to Russell’s paradox m the two
GB-style logics for L, with A is

S(x Ax])=>([xAx]Alx & x], =[x &x], &[x&x],)

from which it follows merely that

S([x & x],).

Thus, we may tentatively conclude that the above logics for L, with
A are free of contradiction.?®

But what about the semantical and intentional paradoxes? To set
the stage for the discussion of these paradoxes, note the following
surprising fact. In each of the above logics for L, with A it is
possible to define a truth predicate T for propositions such that the
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following condition of adequacy is provable for all formulas A:

T[A] = 4.2

In view of Tarski’s theorem on the undefinability within a given
language of a truth predicate for the sentences of that language, the
definability within the logic for propositions of a truth predicate for
propositions might appear paradoxical. But it is not. To get a
semantical paradox something more is required, specifically, a
special interpretation of L,,. Suppose that L is interpreted in such
a way that one of its primitive predicates (let it be M ?) expresses the
meaning relation for L. In that case a truth predicate Tr for the
sentences in L, could be defined in L, as follows:

Tr(x) iffa T(Oy)M*(x, y))
ie.,
x is a true sentence iffy; what x expresses is true.

Given this definition and the above condition of adequacy for T,
the following condition of adequacy for Tr would hold for all
sentences A in L,,:

TrTAT = A.2?

And this does contradict Tarski’s theorem. Therefore, if L, can be
interpreted in such a way that one of its predicates expresses the
meaning relation for L, the ZF-style and GB-style principles
of predication must be modified further.

In a similar vein, although the above logics for L, with A are as
they stand free of intentional paradoxes, intentional paradoxes can
easily be manufactured by suitably interpreting L and by adjoining
certain empirically conceivable auxiliary premises. For example, let
L, be interpreted so that one of its predicates expresses an
intentional relation, e.g., belief. And suppose that there is someone
who believes that he is sometimes mistaken but (with the possible
exception of some of his beliefs that are entailed by this one
together with his true beliefs) all his other beliefs are true.?* From
this supposition it is possible to derive the following logical
falsehood in the above ZF and GB-style logics for L with A:

xB[([y)(xBy & — Ty)]* = 7 xB[(3y)(xBy & " Ty)]".
Hence, an intentional paradox.
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Despite the ease with which semantical and intentional
paradoxes seem to be generated, such paradoxes may be neatly
resolved simply by further adjusting the extension of the
predication relation. Take any formula 4. Consider any quantified
occurrence of a variable v; in 4. Suppose that this occurrence of v; is
bound by an occurrence in 4 of a quantifier (Jv;) or (Vv;) that itself
is not a constituent of an occurrence in A of (the expanded form of)
our definition of the truth predicate T.2* Such occurrences of
variables in A will be called ungrounded. Let A, be the formula that
results from restricting the range of ungrounded occurrences in A4 to
things that have u as a property, and let such formulas A, be
called grounded. Now consider the following modified principles of
predication:

(ZF-Style Predicative Principle of Predication)
If A, has the form (v,,...,v; Au & B), then
= <U19 LR ] Uj> A [Au]vl...vj = Au'

(ZF-Style Impredicative Principle of Predication)
If w is distinct from vy, ..., v; and is not free in 4 and if 4 has
the form (v, ...,v;Au & C), then
F@Aw)Koy, .. 00 Aw Evl“_,,jA).25

(GB-Style Predicative Principle of Predication)
Ifforall h, 1 < h <}, a, is free for v, in A, and conversely, then

Fdag, . ;0 ALADy, - 5 0)],,.0, = Alays -, a;).2¢

(GB-Style Impredicative Principle of Predication)
If w does not occur in A, then
F@Ew)Kay,...,ap Aw= A).

Let the L, counterparts of the remaining ZF and GB axioms
(minus extensionality) be formulated on analogy.?” By adding the
modified ZF-style axioms or the modified GB-style axioms to T1 or
T2', we obtain four logics for L, with A. Evidently, none of the
familiar semantical or intentional paradoxes can be generated. in
these modified ZF-style and GB-style logics even when a univocal
meaning predicate and various intentional predicates are singled
out.?® And at the same time, we still can define the univocal truth
predicate T such that the following modified condition of adequacy
is provable for all grounded formulas A,:

T[A,] = 4,.

ay...q;
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What is the intuitive idea behind this resolution of the semantical
and intentional paradoxes? It is that in all contexts of speech and
thought there is an implicit limitation u on the things that are taken
to be relevant for consideration. That is, in all contexts of speech
and thought an implicit universe of discourse u is invoked, where u
is something less than the totality of all things. In a given context
the identity of u is determined pragmatically by features of the
context. The semantical and intentional paradoxes result from a
failure to notice and keep track of subtle contextual shifts affecting
the implicit universe of discourse.??

The idea that the semantical and intentional paradoxes can be
resolved by making explicit contextually invoked limitations on the
universe of discourse ought to sound familiar. For the ramified
theory of types embodies a special case of this very idea. Indeed, the
modified ZF-style and GB-style logics for L, with A may be viewed
as natural generalizations of ramified type theory.3® However, these
logics for L, with A are generalizations that eliminate most of the
artificiality and rigidity for which ramified type theory is notorious.
The bearing this fact has on the first-order/higher-order
controversy, with which this chapter has been concerned, is that
ramified type theory is typically formulated as a higher-order logic.
So once again the naturalness and generality of first-order logic
comes through.

Is higher-order logic best viewed as a natural generalization of
first-order logic, or is it best viewed as an artificially restricted
theory derived within first-order logic with predication? The
answer, I hope, is evident.

The proposed resolution of the semantical paradoxes depends
essentially on the fact that intensional entities are the primary
semantical correlates of formulas. No analogous resolution is
possible if instead extensional entities—namely, sets—are identified
as the primary semantical correlates.®® This problem in set-
theoretical semantics is just the beginning of the troubles for a
formal philosophy based on set theory. In the next chapter we shall
find many more.




