Intensional Logic

Intensional logic has never been completely and adequately for-
mulated. To be convinced of this, consider two representative
arguments:

Whatever x believes y believes.
x believes that A.

‘. y believes that A.

Being a bachelor is the same thing as being an unmarried
man.
It is necessary that all and only bachelors are bachelors.

". Itis necessary that all and only bachelors are unmarried men.

Neither of these intuitively valid arguments is even expressible in
standard first-order predicate logic, even when epistemic and modal
operators are adjoined. And while it is true that both of these
arguments can be expressed in certain higher-order intensional
logics, such higher-order logics are essentially incomplete, to men-
tion just one of their shortcomings. But things are better than they
might seem. When an intensional abstraction operation is adjoined
to first-order logic, the result is an intensional logic that is equipped
to represent the above arguments—and indeed, nearly all prob-
lematic intensional arguments. At the same time, unlike higher-
order intensional logics, this first-order intensional logic is, surpris-
ing as it might seem, provably complete.

In what follows I will show how to construct such a logic. The
construction requires the development of both a new formal lan-
guage and a new semantic method. The new semantic method does
not appeal to possible worlds, even as a heuristic. The heuristic
used is simply that of properties, relations, and propositions, taken
at face value. And unlike the various possible-worlds approaches to
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intensional logic, the approach developed here is adequate for
treating both modal and intentional matters. Initially, the inten-
sional logic will have two parts, one for each of the traditional
conceptions of PRPs identified in §2. At the end of this chapter
the two parts will be integrated.

12. A Formal Intensional Language

I begin by specifying the syntax for a first-order language with
intensional abstraction. This language will be called L,,. Primitive
symbols:

Logical operators: &, —,3
Predicate letters:  F,F},..., F2
Variables: X, Vs Zyun
Punctuation: ,)nL.1

Simultaneous inductive definition of term and formula of L,,:

(1) -All variables are terms.

(2) Ifty,...,t; are terms, then Fi(sy, ..., ;) is a formula.

(3) If A and B are formulas and v, a variable, then (4 & B),
A, and (Jv,)A are formulas.

4) If Ais a formula and v,, ..., v,, 0 < m, distinct variables,
then [A4],, , 1is a term.

In the limiting case where m =0, [A] is a term. All and only
formulas and terms are well-formed expressions. An occurrence of a
variable v; in a well-formed expression is bound (free) if and only if
it lies (does not lie) within a formula of the form (3v;)4 or a term of
the form [A4],, . . . A variable is free (bound) in a well-formed
expression if and only if it has (does not have) a free occurrence in
that well-formed expression. A sentence is a formula having no free
variables. The predicate letter F? is singled out as a distinguished
logical predicate, and formulas of the form F2(t,, t,) are to be re-
written in the form t, =¢,. ¥, >, o, . v, =, =, ,, are to be
defined in terms of 3, &, and — in the usual way. If v; occurs free in
4 and is not one of the variables in the sequence of variables «, then
v; is an externally quantifiable variable in the term [A4],. Let the
sequence & be, in order, the externally quantifiable variables in
[A],; then [A], will sometimes be rewritten as [A]% so that these
variables can be identified at a glance.

Some observations are in order. First, on the intended informal
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interpretation of L,, a singular term [4], , denotes a prop-
osition if m =0, a property if m =1, and an m-ary relation-in-
intension if m > 2. Secondly, L, differs from a standard first-order
language only in having these singular terms [A4],, ., . Thirdly, L,
has a finite number of primitive constants, and hence, it satisfies
desideratum 13, Davidson’s learnability requirement. Of course, for
purely mathematical purposes, one 1s free to adjoin an infinite
number of additional primitive constants to L. Yet if Davidson is
right, such infinitistic extensions of L, will not qualify as idealized
representations of natural language. Fourthly, L, contains no
primitive names. My strategy with regard to names will be to pro-
ceed in two stages. First, I will study the logic of intensional lan-
guage without names; that is, I will study the logic of L, as its
stands. Once this task is completed, I will take up the question of
how to treat names. There are two main competing theories of
names—Frege’s theory and Mill’s theory. According to Frege’s
theory, names have descriptive content; according to Mill’s theory,
they do not. In §§38-9 it is shown that, given either theory, names
can be successfully treated in the setting of L,. And finally, L,
contains no functional constants: these are superfluous in L, since
they can be contextually defined in terms of = and appropriate

auxiliary predicates.!

Now let us reconsider the intuitively valid arguments mentioned
at the outset of the chapter. In L, they can be represented as
follows:

(Vz)(B(x, z) > B(y, z))
B(x, [4])
. B(y,[4])

[B(x)], = [U(x) & M(x)],
N([(¥x)(B(x) = B(x))])
" N(LVx)(B(x) = (U (x) & M (x)))]).*

Of course, to guarantee that these and other intuitively valid
arguments come out valid in L_, I must first specify the semantics
for L.

*In order to enhance readability, I take the liberty here and elsewhere to use
predicate letters (with or without indices) that do not strictly speaking belong to L,,,
and 1 occasionally delete some parentheses and commas.
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13. A New Semantic Method

By what means should one characterize the semantics for L, ? Since
the aim is simply to characterize the logically valid formulas of L,
it will suffice to construct a Tarski-style definition of logical validity
for L,,. Such a definition will be built on Tarski-style definitions of
truth for L. The latter definitions will in turn depend in part on
specifications of the denotations of the singular terms in L,. As
already indicated, every formula of L, is just like a formula in a
standard first-order extensional language except perhaps for the
singular terms occurring in it. Therefore, once one has found a
method for specifying the denotations of the singular terms of L,,,
the Tarski-style definitions of truth and validity for L, may be
given in the customary way. What is being sought specifically is
a method for characterizing the denotations of the singular terms of
L, in such a way that a given singular term [A4],, , will denote an
appropriate property, relation, or proposition, depending on the
value of m.

Since L, has infinitely many complex singular terms [A4],, what
is called for is a recursive specification of the denotation relation for
L,. To do this I will arrange these singular terms into an order
according to their syntactic kind and complexity. So, for example,
just as the complex formula ((Ix)Fx & (3y)Gy) is the conjunction of
the simpler formulas (3x)Fx and (3y)Gy, I will say that the
complex term [(Ix)Fx & (3y)Gy] is the conjunction of the simpler
terms [(dy)Fx] and [(3y)Gy]. Similarly, just as the complex for-
mula —(3x)Fx is the negation of the simpler formula (Ax)Fx, I
will say that the complex term [ (3x)Fx] is the negation of the
simpler term [(3x)Fx]. The following are other examples: [Rxy],,
is the conversion of [Rxy],,; [Sxyz],,, is the inversion of [Sxyz],,,;
[Rxx], is the reflexivization of [Rxy],,; [Fx],, is the expansion of
[Fx].; [(3x)Fx] is the existential generalization of [Fx],; [FyJ)’
is the absolute predication of [Fx], of y; [F[Guow],,.] is the
absolute predication of [Fx], of [Guww]l,,,; [FLGuvw]}], is
the unary relativized predication of [Fx], of [Guww],,.;
[F[Guvw];"],, is the binary relativized predication of [Fx],
of [Guvw],pw; [FLGuow]*™],,. 1s the ternary relativized predica-
tion of [Fx], of [Guvw],,,, and so on. In this way I isolate the
following syntactic operations on intensional abstracts: conjunc-
tion, negation, conversion, inversion, reflexivization, expansion,
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existential generalization, absolute predication, unary relativized
predication, binary relativized predication, ..., n-ary relativized
predication, ....?

Those intensional abstracts whose form is [Fi'(vy, ..., Un)],, .0,
are syntactically simpler than all others. I will call them elementary.
And the denotation of an elementary intensional abstract
[FR(vy, ..., 04)]s, ., s just the property or relation expressed by
the primitive predicate Fj. The denotation of a more complex
abstract [A], is defined in terms of the denotation(s) of the
relevant syntactically simpler abstract(s). However, to state this
definition, one must have a general technique for modeling PRPs.

Suppose that one were to use one of the previous approaches to
this subject—namely, the approach of Russell, of Church, or of the
possible-worlds theorists Montague, Kaplan, D. Lewis, et al. In
that case one would be led to identify properties and relations with
certain functions. I find such identification unintuitive. (The taste of
pineapple, the missing shade of blue—are these functions?)
Furthermore, the identification of properties and relations with
functions leads naturally—and perhaps inevitably—to a hierarchy
of artificially restricted logical types. (See desideratum 14, §4.) Since
the thesis that properties and relations are functions is linked in this
way to type theory, it proves to be more compatible with the
higher-order approach to the logic of PRPs than it is with the first-
order approach. In a first-order setting, such as that provided by
L., the identification of properties and relations with functions
generates unwanted and unnecessary complications and restric-
tions. The alternative is to take properties and relations, as well as
propositions, at face value, i.e., as real, irreducible entities. This is
what I will do.

The identification of intensional entities with functions lies at the
heart of the possible-worlds semantic method. If, as I have pro-
posed, intensional entities are taken at face value and not as covert
functions, then the possible-worlds semantic method will be of no
use to us. But how, then, is the denotation of a given complex term
[A], to be determined from the denotation(s) of the relevant
syntactically simpler term(s)? My answer is that the new denotation
is determined algebraically. That is, the new denotation is de-
termined by the application of the relevant fundamental logical
operation to the denotation(s) of the relevant syntactically simpler
term(s). Let me explain.
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Consider the following propositions, for example: [(3x)Fx],
[3y)Gy], [(@x)Fx & (3y)Gy]. (Note: in this paragraph and the
next I will be using—not mentioning—terms from L, .) What is the
most obvious logical relation holding among these propositions?
Answer: the third proposition is the conjunction of the first two.
Similarly, what is the most obvious logical relation among the
properties [Fx],, [Gx],, and [Fx & Gx],? As before, the third is
the conjunction of the first two. And what is the most obvious
logical relation holding between the propositions [(3x)Fx] and
[~ (3x)Fx]? Answer: the second is the negation of the first.
Similarly, what is the most obvious logical relation holding between
the properties [Fx], and [ Fx],? As before, the second is the
negation of the first. In a like manner 1 arrive at the following
fundamental logical relationships: [Rxy],, is the converse of
[Rxyl,,; [Sxyz],., is the inverse of [Sxyz],,.; [Rxx], is the
reflexivization of [Rxy],,; [Fx],, is the expansion of [Fx],;
[(@x)Fx] is the existential generalization of [Fx],; [Fy]® is the
absolute predication of [Fx], of y; [F[Guvw],,,] is the absolute
predication of [Fx], of [Guww],,,; [F[Guvw]},], is the unary
relativized predication of [Fx], of [Guwwl],,,; [F[Guww};"],, is
the binary relativized predication of [Fx], of [Guow],,,;
[F[Guvw]*"],,. is the ternary relativized predication of [Fx], of
[Guvw],,.» and so on. Thus, in one-to-one correspondence with the
earlier syntactic operations on intensional abstracts there are
fundamental logical operations on intensional entities: conjunction,
negation, conversion, .. ..

The first two fundamental logical operations are intensional
analogues of the two operations from Boolean algebra. A Boolean
algebra having two elements (T and F) is an extensional model of
first-order sentential logic. The next four operations are intensional
analogues of operations from the algebra of relations, whose origins
are found in the work of Peirce and Schroder. The algebra of
relations, or transformation algebra as it is called, is the algebra for
extensional relations. A transformation algebra is an extensional
model of first-order predicate logic without quantifiers. The next
operation, existential generalization, is an intensional analogue of
the special new operation found in polyadic algebra. Polyadic
algebra is just the algebra for extensional relations with quantifi-
cation. A polyadic algebra is an extensional model of first-order
predicate logic with quantifiers.® Finally, the predication oper-
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ations, absolute predication and n-ary relativized predication,
n > 1, are further operations that I have isolated for the purpose of
modeling first-order quantifier logic with distinguished singular
terms, including in particular intensional abstracts. Absolute pred-
ication is straightforward. As indicated above, the absolute pred-
ication of [Fx], of y is [Fy]’, i.c., the propositicn that y is F.
Similarly, the absolute predication of [Fx], of [Gy], is [F[Gy],],
i.e., the proposition that the property of being G is F. Relativized
predication differs somewhat from absolute predication. It also
predicates a property of an intension, but it involves in addition a
simultaneous predication of which that intension is the result. So,
for example, the unary relativized predication of [Fx], of [Gy]l, is
[F[Gy)’],, ie., the property of being something y such that the
proposition that y is G is F. To give a concrete example, the unary
relativized predication of the property being believed of the property
being a spy is the property being believed to be a spy. The other
relativized predication operations behave analogously; of course,
their second arguments must be intensions of appropriately higher
degree.

Taken together, these fundamental logical operations have the
following property. Choose any intensional abstract {A], in L, that
is not elementary. If [A], is obtained from [B], via the syntactic
operation of negation (conversion, inversion, reflexivization, expan-
sion, existential generalization), then the denotation of [4], is the
result of applying the logical operation of negation (conversion,
inversion, reflexivization, expansion, existential generalization) to
the denotation of [B];. The same thing holds mutatis mutandis for
abstracts that, syntactically, are conjunctions or predications (ab-
solute or relativized). In this way, therefore, these fundamental
logical operations make it possible to define recursively the deno-
tation relation for all of the complex intensional abstracts [4], in
L.

The algebraic semantics for L, is thus to be specified in stages.
First, an algebra of properties, relations, and propositions—or an
algebraic model structure, as I will call it—is posited. Secondly, an
intensional interpretation of the primitive predicates is given.
Thirdly, the denotation relation for the terms of L, is recursively
defined. Fourthly, the notion of truth for formulas is defined.
Finally, in the customary Tarski fashion, the notion of logical
validity for formulas of L, is defined.




A NEW SEMANTIC METHOD 49

Now a structure f is a Boolean algebra if and only if (i) f is an
ordered set consisting of a universe or domain 2 and two oper-
ations on 2 x 2 and 2, respectively, and (i) the elements of f
satisfy certain specifiable conditions. By analogy, .# is an algebraic
model structure if and only if (i) .# is an ordered set consisting of a
universe or domain 2 and the fundamental logical operations on
D x9D,9, ..., respectively (plus certain supplementary elements),
and (i) the elements of .# satisfy certain specifiable conditions. In §2
I mentioned that historically there have been two competing concep-
tions of intensional entities. According to conception 1, intensional
entities are identical if and only if they are necessarily equivalent.
According to conception 2, each definable intensional entity is such
that, when it is defined completely, it has a unique, non-circular
definition. By suitably adjusting the conditions imposed on the
elements of a given algebraic model structure .#, one can fix the
exact character of the intensional entities that .# is designed to
model. In particular, by suitably formulating the conditions im-
posed on the elements of .#, one can make precise what it takes
for the intensional entities modeled by .# to conform to conception
1 or conception 2.

In this way one actually arrives at two distinct types of algebraic
model structures—type 1 and type 2. In turn, one arrives at two
distinct notions of logical validity for L, ,—validity, and validity,,
ie., truth-in-all-type-1-model-structures and truth-in-all-type-2-
model-structures.

With these preliminary remarks in mind I will now use the new
semantic method to lay out in detail the formal semantics for L,,.

14. The Formal Semantics*

Algebraic model structures. An algebraic model structure (or model
structure, for short) is any structure

{D, P, A4 ,%,1d, Conj, Neg, Exist, Exp, Inv,
Conv, Ref, Pred,, Pred,, ..., Pred,, ...>

whose elements simultaneously satisfy the conditions set forth
below. 2 is the domain of discourse and is non-empty. £ is a
relation on & that serves to partition 2 into a denumerable number
of disjoint subdomains: 2_,, @, 2,, 2,, 95, ....* The elements

* Readers secking a quick overview may skip this section.
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of _, are to be thought of as particulars; the elements of &, as
propositions; the elements of &, as properties, and the elements of
9;, for i > 2, as i-ary relations. Although 2;, i > 0, may not be
empty, I do permit & _, to be empty. A" is a set of functions on 2.
These functions are to be thought of as telling us the alternate or
possible extensions of the elements of 2. Specifically, they tell us
that the extension of a particular is itself, that the extension of a
proposition is a truth value, that the extension of a property is a
subset of 2, and that the extension of an i-ary relation is a set of
ordered i-tuples of members of 2.° Thus, for H e # and x € 2, the
following hold: if x € @_,, then H(x) = x;if xe @, then H(x) =T
or Hx)=F;if xe2,, then H(x) < 2; if, for i > 1, x € &;, then
H(x) € '9. The next element of a model structure is the function %.
% is a distinguished element of 2" and is to be thought of as the
function that determines the actual extensions of the elements of 2.
The element Id of a model structure is a distinguished element of
2, and is thought of as the fundamental logical relation-in-
intension identity. Id must satisfy the following condition:

(VH e ' )H(1d) = {xy e D: x = y}).

That is, for every H e 4", H singles out the extensional identity
relation on 2 to be the extension of the intensional identity relation
Id. The remaining elements of a model structure are functions
which are thought of as fundamental logical operations on inten-
sional entities. The domains and ranges of these operations are as
follows:©

Conj: i ;= 9, for each i > 0
into

Neg: ;= D,

13

foreachi >0

D4 fori>1

fori>0

fori>3
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i = 9, fori>2

into

i = Dy fori=?2

into

- Dy fori>1

into

;= 9, fori,j>1
= Dy fori>landj=>2

i = Dis fori>1landj>3

The following conditions specify how the extensions of elements in
2 are affected by each of these operations. For all H € # and all
Uy Uy Xygy ooy Xiy Xig1s Viserory VWED:

H(Conj(u,v))=T =
Hu=T&H@)=T) (for u,ve D)

{Xy,:.., %y € HConj(u,v)) =
(Kxyyeonx;peHW) & (x1,...,x;> € H(v)) ‘
(foru,ve2,,i > 1)

H(Negu))=T=H@u)=F (for ue 2,)

(X1, ..., %y € HNeg(u)) =
Xqs oo X0 ¢ Hu) (for ue 2;,i = 1)

H(Existu)=T=H{u)=T (for ue 2,)

H(Exist)) =T = (@x;)(x,€e Hu)) (forue2,)

{Xyy.usx;_ 1y € H(Exist(u)) =
(@x)(Kxg5 .o Ximq,x; )€ Hu)) (forue2;,i>2)
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x, e HExpw) =Hu)=T (for ue 2,)

Xy oves X5 X1 € H(Exp(u)) =
Xy vy Xy € H(u) (forue 2;,i=1)

Xpseees Xio2, Xg5 X1 € H(Inv(w)) =
Xy ey Xizgs Xi—1s X1 € H(u) (forue 2;,i = 3)

{Xi» Xg5 -5 X1 € H(Conv(u)) =
Xy X1, X0 € H(u) (forue 2;,i = 2)

(X1, ..., x;_1> € HRef(u)) =
{X1seves Ximqs X1 € H(u) (forue 9;,i = 2)

H(Predy(u,y,))=T = y, € H(u) (forue 2,)

(X1, ..., X-1) € H(Predo(u, y,)) =
Xy ersXi_1> Y1 €H(U) (forue 2;,i = 2)

8.1 (xy,...,%_1, ¥y € H(Pred,(u,v)) =
{Xys ... Xi—q, Predo(v, y1)> € H(u)
(forueg;,i=1,
andve%;,j=>1)

82 {Xyy...sXiz1, V1> Y2y € H(Pred,(u,v)) =
{Xyy..0,X;_1, Predg(Pred,y(v, y,), y1)> € H(u)
(forue2;,i=1,
andve %;,j=2)

8

This completes the characterization of what a model structure is.

Type 1 Model Structures

A model structure is type 1 iffy it satisfies the following auxiliary
condition:

(Vx,ye Z,)(VHe X YH(x)=H(y)) > x=y), foralix> —1.

This condition provides us with a precise statement of conception 1.
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Specifically, this condition rules out the possibility of there being
two (or more) elements of any given subdomain &; that are
necessarily equivalent.

Type 2 Model Structures

A model structure is type 2 iffy; its operations Conj, Neg, Exist,
Exp, Inv, Conv, Ref, Pred,, Pred,, Pred,,... are (i) one-one,
(ii) disjoint in their ranges, and (iii) non-cycling. Auxiliary con-
ditions (i)-(ii1) provide us with a precise formulation of conception
2. For, taken together, (i) and (ii) guarantee that the action of the
inverses of the fundamental logical operations in a given type 2
model structure .# is to decompose the elements of & into unique
(possibly infinite) trees. And condition (iii) insures that, for each
item u in such a decomposition tree, u cannot occur on any path
descending from u. So the following is the sort of situation ruled out
by condition (iii):

u

Hence, whereas conditions (i) and (ii) insure that the elements of &
have at most one complete definition in terms of the elements of 2
plus the fundamental logical operations, condition (iii) insures that
such definitions are never circular.

Notice by the way that in the formal characterizations of what it
is to be a type 1 or type 2 algebraic model structure no use is made
of any of the following intuitive notions: particular, property,
relation, proposition, alternative or possible extension, actual ex-
tension, complete definition. For what it is worth, type 1 and type 2
model structures are characterized formally in exclusively set-
theoretic terms.?

At the close of §2, I mentioned that there are various intermediate
conceptions of PRPs between conceptions 1 and 2. To model such
intermediate conceptions, one need only appropriately adjust the
auxiliary conditions imposed on algebraic model structures.
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Consider, for example, the conception that is like conception 2
except that it imposes less strenuous identity conditions on conjunc-
tions so that [Ao & Bo], = [Bx & Aa], and [(Ax & Ba) & Cul, =
[Ao & (Ba & Cu)],. The model structures appropriate to this con-
ception are just like type 2 model structures except for the aux-
iliary conditions imposed on the conjunction operation Conj.
Specifically, we exempt Conj from condition (i) and instead require
that items in its range (i.e., conjunctions) can be decomposed under
its inverse into a unique set of items (i.e., conjuncts) but in no
special order. Accordingly, the inverse of Conj behaves rather like
the operation of prime factorization in number theory: every
natural number is factorable into a unique set of primes, yet there is
no special order in which these prime factors must be multiplied in
order to obtain the original number.

The field here is very rich. But conceptions 1 and 2 are the
motherlode, and we should be happy to explore there for quite a
while.

Truth and Validity

An interpretation .# for L, relative to model structure .4 is a
function that assigns to the predicate letter F? (i.c., =) the element
assigns to F{ some

Id € .# and, for each predicate letter F{ in L,
element of the subdomain &; c @ € .#. An assignment <7 for L,
relative to model structure .# is a function that maps the variables
of L, into the domain & ¢ .#. Truth T, , is defined in terms
of denotation D, , ,, which will be defined subsequently:

w?>

TJ&/J/(A) ifﬁif g(Dh///([A])) =T.

That is, formula A is true on interpretation .# and assignment .o/
relative to model structure .# if and only if the actual extension of
the proposition denoted by the term [A] is the truth value T. (Of
course, T, , could instead be given a standard Tarski-style
recursive definition (see lemma 6 in §15), but in the algebraic setting
a direct definition suffices. A recursive definition is needed only in
the definition of D, ,.) Then I define the two notions of validity
for L,:

a formula A is valid, iff; for every type 1 model structure .# and
for every interpretation .# and every assignment .o/ relative to .4,
Tf.mi‘,li (A )
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a formula A4 is valid, iffy; for every type 2 model structure .# and
for every interpretation .# and every assignment .of relative to ./,
T]&/u/( (A)

Denotation

It remains to define the denotation function D, ,, which was
referred to in the truth definition. To do this, I must first define
the basic syntactic operations on intensional abstracts that were
mentioned informally in §13.* T begin by introducing some pre-
liminary syntactic notions.

I will say that a term [A], is normalized if and only if all the
variables in the sequence of variables a occur free in A and a
displays the order in which these variables first occur free in A. If a
variable occurs free in more than one of the terms ¢, ..., ¢; in the
atomic formula Fi(t,...,t;), then this variable will be called a
reflected variable in Fi(t,, ..., t;). If the formula 4 is atomic and if
the variables in the sequence of variables « are all free in A, then the
term [ A], will be called a prime term. If « contains a variable that is
reflected in atomic formula A, then a prime term [ 4], will be called
a prime reflection term. Let [Fi(t,,...,[B13,...,t;)], be a prime
term that is not a prime reflection term. Then, if some variable

occurs in both & and J, the primie term will be called a prime
relativized predication term, and the variable will be called a
relativized variable.

Every term [A], has associated with it a certain permutation of
the variables in « that I will designate as primary relative to [A],.
(I admit the possibility that « itself can be primary relative to
[A],.) There are three cases.

Case (I): prime reflection terms [A],. Suppose that « is some
permutation of the sequence of variables v,,...,v, and that
[A4],,...,, is normalized. Suppose further that, among the variables
in a that are reflected in A, v, is the one that has the right most free
occurrence in A. In this case, the sequence v,,...,U,_q,
Dgs1s -+ -» Up, Uy 18 primary relative to [A],.

* In doing this, I encounter certain intricacies, which arise because of the need to
keep track of the various permutations of the subscripted variables a in the terms
[A],. Most of the intricacies could be avoided here by adopting the alternate
technique developed in my ‘Completeness in the Theory of Properties, Relations,
and Propositions’. In any event my general algebraic approach is wedded to no
particular treatment of this matter.
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Case (2): [A], is a prime relativized predication term
[Fi(ty,...,[BY,...,t;)],- Let a be a permutation of the sequence of
variables u,...,u,, vy,...,0, Wy,...,w, such that the latter
sequence displays the order in which these variables first occur free
in A. Let [B]? be the left most argument of F{ containing relativized
variables. Finally, let v,, ..., v, be all such relativized variables in
[B];’,. Then the sequence u, - Uy, Wy, ..., W, Uy, ..., 0,18 primary
relative to [A],.

Case (3): [A], is neither a prime reflection term nor a prime
relativized predication term. Let o« be a permutation of the sequence
of variables vy, ..., Uy, Uy 1, - - s U4 Where [A], ., 1s normalized
and v,.,, ..., 0,4y are in order of their occurrence in « the variables
pot occurring free in A. Then the sequence vy, ..., Up, Vpi 1, -+ -5 Upsy
is primary relative to [A4],. (I allow that v, ..., v, 0T Uy 41, ..oy Vpyy
is an empty sequence.)

I am now prepared to define the basic syntactic operations on
intensional abstracts of L,,.

(1) If[(4 & B)], is normalized, it is the conjunction of [4], and
[Bl..

(2) If [ A], is normalized, it is the negation of [A],.

(3) Let [(3v,)A], be normalized. Then, if v, is free in A,
[(3v,)A4], is the existential generalization of [A4],,,; other-
wise, [(Jv,)A4], is the existential generalization of [A],.

(4) 1If [A4], is normalized and if v,,, is the alphabetically
earliest variable not eoccurring in [4],, ,, then
[4],,. 00,,, 18 the expansion of [A],,, ., -

(5)-(6) Suppose that the sequence v,,v,,...,05_;, Vs IS not
primary relative to [A],,,,...»,_,»,- Suppose instead that the
sequence uy, ..., Us_,, U is primary relative to [A],,,, o, o,-
In this case if, for some A, k > 1, 4y, ..., Uy = Uy, oo, Uppr—1
and uy .y = vg # Uy, then [A], ,, ., _,,, is the inversion of
[4],,0,..00, , Otherwise, [A], ,, .. _,, 15 the conversion
Of [, or_ o
Let [Fi(t, ..., t4(,), ..., t;)],, be a prime reflection term
relative to which the sequence oaw, is primary. Suppose that
t,(v,) is the right most argument of F{ in which the reflected
variable v, has a free occurrence. And suppose, finally, that
v, is the alphabetically earliest variable not occurring in
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ty,...,t;. Then [Fi(ty, ..., 54(v,), ..., ;)] is the reflexivi-
zation of [Fi(ty, ..., t,(vy), ..y t))wyo, -

Suppose that [FI(t;,...,tx— 15tk tys1s---»tj)], IS @ norma-
lized non-prime-reflection term. Let the terms ¢,, ..., f,_, be
variables all of which occur in the sequence a. Suppose that
no variable that occurs free in ¢, also occurs in the sequence
o, and let v, be the alphabetically earliest variable not oc-
curring in ¢,,...,t;. Then, [Fi(ty,.. ,t—1,tetisrs-- )],
is the predicationy of [Fi(ty, ..., t— 1,0y, i1y - ostj)]aw, Of
t;. Alternatively, let [F{(t;,.. ., t— 1, [BY, tiv 15 > 1) Juv,...0
be a prime relativized predication term, where m > 1. Sup-
pose that the terms ¢,, ..., t,_, are variables that occur in
the sequence «. And suppose that the sequence «, vy, ..., v,
is primary relative to this prime relativized predication term
and that v,, ..., v, are the relativized variables occurring
in [B]. Then, this term is the predication, of
[F{(tl seeslg—15U15 k15 - ens tj)]awl of [B]‘;;l...um, where ¢’
is the result of deleting the relativized variables v, ..., v,
from §.

For each non-elementary intensional abstract in L, either it or
one of its alphabetic variants'® falls into the range of one of these
syntactic operations, and no two non-elementary abstracts that are
alphabetic variants fall into the range of more than one of them. In
this sense, these operations serve to partition the class of non-
elementary abstracts into denumerably many disjoint syntactic
kinds: conjunctions, negations, existential generalizations, expan-
sions, inversions, conversions, reflexivizations, predications,, pred-
ications,, predications,, .... Using these notions, I inductively
define the denotation function D, ,:

Variables: D, , ,(v;} = < (v;)

Elementary complex terms: D, ,([Fi(v,, ..., V)loy..0) = S (F))

Non-elementary complex terms:

If ¢ is the conjunction of r and s, then

Dy a(t) = Coni(Dysy 4 (r), Doy .als))-

If ¢ is the negation of r, then D, ,(t) = Neg(D,, ,(r)).
If ¢ is the existential generalization of r, then

D ua(t) = Exist(D 5 (1))
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If ¢ is an alphabetic variant of the expansion of r, then
D, yu(t) = Exp(D .4 (r)).

If t is the inversion of r, then D, ,(t) = Inv(D,, ,(r)).

If ¢ is the conversion of r, then D, ,(t) = Conv(D,,, ,(r)).
If ¢ is the reflexivization of r, then

D, yu(t) = Ref(D,,, ,(r)).

If ¢ is the predication, of r of s, then

Dyyu(t) = Pred(Dy, 4(r), Dy y(s)).

This completes the semantics for L.

15. A Complete Logic for the First Conception

On conception 1 intensional entities are identical if and only if
necessarily equivalent. Thus, on conception 1 the following abbrevi-
ation captures the properties usually attributed to the modal
operator O:

04 iffy [A] = [[4] = [4]].

That is, necessarily A iff the proposition that 4 is identical to a
trivial necessary truth. Since on conception 1 there is only one
necessary truth, this definition is adequate. For the purpose of
formulating the logic of L, on conception 1, this abbreviation will
be adopted as a notational convenience. The modal operator ¢ is
then defined in terms of 0 in the usual way: O A iffy "0 A. By
adopting these notational conventions, I am not reversing my
earlier position on the parsing of natural language sentences such as
‘it is necessary that A’. I would represent this sentence as N ([4]).
The 1-place predicate N may on conception 1 be defined as follows:
N(x) iffy x = [x = x]*.

The logic T1 for L, on conception 1 consists of the axiom
schemas and rules for the modal logic S5 with quantifiers and
identity and three additional axiom schemas for intensional
abstracts.

Axiom Schemas and Rules of T1

Al: Truth-functional tautologies

A2: (Vv)A(v;) > A(t) (where ¢ is free for v; in A)'!

A3: (Vv;)(4A > B)> (A > (Vv;)B) (where v; is not free in 4)
Ad: v, =,
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v; =v; o (A(v;, v;) = A(v;, v;))  (where A(v;,v;) is a for-
mula that arises from A(v;, v;) by replacing some (but not
necessarily all) free occurrences of v; by v;, and v; is free for
the occurrences of v; that it replaces)

A6: [A],, ., #[Bl,.., (wherep#q)

AT: [A(uy, ..., up)lu,...u, = [A(vy, ..., vp)o, ..o, (Where these
two terms are alphabetic variants)

A8: [A],=[B],=0(4 =, B)

A9: DA 4

A10: O(A > B) o (DA > OB)

All: gA>o0d4

R1: if A4 and (4 o B), then B.
R2: if HA, then F(Vv;)A.
R3: if +A, then HDA.

Al is, of course, concerned with the truth-functional sentential
connectives & and —. A2 and A3 are familiar axioms for first-order
quantifiers. A4 asserts the reflexivity of identity. A5 is Leibniz’s
law. A6 asserts the distinctness of intensional entities having
different degrees. A7 asserts the validity, of a change of bound
variables within intensional abstracts. A8 asserts the necessary
equivalence of identicals and the identity of necessary equivalents.
This principle is, of course, the hallmark of conception 1. A9-A11
are the standard S5 axioms for 0 and ¢. R1 is modus ponens. R2 is
universal generalization. R3 is the necessitation rule from $5.12

Given the definition 0 and < in terms of identity and intensional
abstraction, modal logic may be viewed as the identity theory for
intensional abstracts. In this connection, notice that, whereas the
principle of necessary identity

X=y>0Ox=y

is an immediate consequence of Leibniz’s law (AS5) (given the
reflexivity of identity (A4)), the S5 axiom (A11) is just an instance of
the principle of necessary distinctness

xX#y>0x #y.

In fact, the S5 axiom and the principle of necessary distinctness are
actually equivalent. For, given A1-A10 and R1-R3, not only is A1l
derivable from the principle of necessary distinctness, but also the
principle of necessary distinctness is derivable from All.
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Now I will state the primary result for T1:

Theorem (Soundness and Completeness)
For all formulas 4 in L, A is valid, if and only if 4 is a theorem
of Tt (ie., &, A iff -4, A).

Proof (Soundness). First, the following lemmas are proved.
Lemma 1: T1 is equivalent to the theory that results when A3,
A8, and A11 are replaced with the following simpler versions:

AS* v; = v; O (A(v;, v;) © A(v;, v;)) (where A(v;,v;) and
A(v;, v;) are as in A5 except that 4 is atomic)

A8*(a) n(A = B)=[A] =[B]

A8*(b) (Vv )([A(v)], = [B(:)]s) = [A(W)]a, = [B(v:)]a,

All* v # v; D Oy # v;.

Lemma 2: Let v, be an externally quantifiable variable in
{B(v;)]., and let ¢, be free for v, in [B(v,)],. Consider any model
structure .4 and any interpretation .# and assignment o relative
to 4. Let o/’ be an assignment that is just like o/ except that

' (v,) = Dy 4(t;). Then, D,y u([B(vi)],) = Dy u([B(ti)]2)-

Lemma 3: For all 4, o/, # and for all 9, «cZDeH, k=0,
DJ.Q(.,I{([A]t!l...L'k) € ‘@k‘

Lemma 4: For all #, o/, .# and for all terms ¢t and t’, if 4 is
type 1, then D, ,([t = t]) = D, .([t' = t']).

Lemma 5: Let v, be free in [A(v,)],- Then, for all #, o/, 4, if M
is type 1, D, ,([A(v,)],) = PredO(D.Id../{([A(vr)]au,): A (v,)).

Lemma 6: For all .4, o/, M,

@) TypaFity, ..., 1)) iff .
Dyulty)s .. Dyyalty)) € 9(F(F)).

(b) Tyuu((A& B))iff T, 4(A)and T, ,(B).

(c) T,,.(—A)iffit is not the case that T, ,(A4).

(d) T,.,.(@v,)A) iff there is an assignment ./’ relative to .4
such that .7’ is just like .o/ except perhaps in what it
assigns to v, and T, ,(A).
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Then, given these lemmas, which are in most cases proofs by
induction on the complexity of terms or formulas, the verification of
the soundness of T1 is straightforward. (For example, the sound-
ness of A6 follows directly from Lemma 3; the soundness of A8*(b),
from Lemma 35, etc.)

Proof (Completeness). The proof is Henkin style. Let L be any
extension of L. A sentence A is said to be derivable in T1 from set
I' of Lk-sentences if, for some finite subset {B,,...,B,} of T,
Fi (B &...& B,) @ A). A set o/ of sets of L¥-sentences is said to
be perfect; if (1) every set in ./ is maximal, consistent, and
w-complete; (2) for every identity sentence t = t’, if this sentence is
in any set in ./, it is in all sets in of; (3) for every sentence
[4]1,,...., # [Bl,,...., (p = 0), if this sentence belongs to some A € o/,
then there is some set A’ € of (where possibly A = A’) such that the
sentence (Iv,)...(3v,) 77 (4 = B) belongs to A’; (4) for every closed
term [B], ...v,> there is a primitive predicate letter F§ such that the
sentence [B], , =[Fi(@,,...,v,)],, ., €A, for some Ae . The
completeness of T1 follows from two lemmas.

Lemma 1: For every consistent set I" of sentences in L, there is a
(denumerable) extension of L, relative to which there is a perfect,
set .o/ one of whose members A includes I'.

Lemma 2: For every extension of L, relative to which o is a
perfect, set, every set A in o/ has a type 1 model (whose
cardinality is that of A).

To prove Lemma 1, I first form an extension L* of L, that has
denumerably many primitive names and denumerably many i-ary
primitive predicates for each i > 0. The sentences of L* are then
arranged into a sequence of consecutive sentences A, A,, Az, ...,
having the following property: A, = A, and for every closed term
[B]vl...vp in LY, there is at least one j such that 4; is the sentence
[B]vl...v,, =[F¥vy, ..., vp)ly,..0, Where F{ is a primitive predicate
letter that does not occur in B, I', or any A4,, h <j. Relative to this




62 INTENSIONAL LOGIC

sequence, 1 use certain rules to construct an array of sets of
LZ-sentences:

Bpzypin
Ap2ypt2

Ap2ints

Ap242p

Ap2pr Apapy Apagge o 2 Bpayy, At 12

The rules are these. (1) A, =T. 2) If 4,, n > 1, is [4], # [B], and
A,€A,z, then Az, = {(x)— (A4 = B)}; otherwise, A2, = A,z.
(3) Let A,,, m> 1, be in column i> 1 and row k > 1. Then if
m*um*u{A4;} is consistent, A, =m"um U{A4;}; otherwise,
A, =mt um'. The sets m*, m*, and m’ are:

m*t =, the set in row k and column i-1
m* =4 {[B1, = [Cy: 3n < m)(A, =1, [B1, = [CTp)}

m, =dr {Cl(a'l)’ e Cs(as)}

where the sentences C,(a,), ..., C,(a,) are determined as follows: in
the order in which they first occur in the sequence
Ay, Ay, ..., A, ..., the sentences (Jv,)Cy(vy), ..., (Fv,)Cilv,) ex-
haust the existential sentences in m* that occur before A;, and
C,(ay),...,Cya,) are the earliest substitution instances of
(Fv,)C,y(vy), ..., Fv,)C,(v,) occurring after A; such that in order
each C,(a,), 1 <r <'s, contains the first occurence of the primitive
name a, anywhere in the sequence A, A,, ..., 4;,.... Now the set
A is defined to be the union of all sets in row j,; > 1. And the set .o/
is defined to be the set of all sets A/, j > 1. Claim: &/ is perfect,.
This claim, which entails Lemma 1, can be proved once we have the
following sublemma: for all m > 1, A, um* is consistent. This
sublemma is proved by induction on m.

Lemma 2 is proved as follows. Let L* be any extension of L,
relative to which .o/ is a perfect, set. For each A € o/, I construct a
separate type 1 model {.#,, .#,>. Choose some well-ordering < of
the union of the class of individual constants and the class of
primitive predicate letters in L¥*, where = is the least primitive

w3
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predicate letter in this well-ordering. The domain 2, is then
identified with the following union:

{Fle L%: there is no F¥e L* such that F¥ < FJ and the sentence
[F’;(Ul’ rre vk)]vl.,.v,, = [F{(ula tees uj)]ul...uj € A} v

{a; € L}: there is no Ft e L* such that the sentence
[Fk,,..., Ui)lv,..., = @; € A, and there is no a; € L} such
that a; < a; such that the sentence g; = a; € A}.

The subdomain & _, is the set of primitive names in 2,, and the
subdomain 2;, i = 0, is the set of primitive i-ary predicates in Z,.
The prelinear ordering 2 is defined as follows: 2(x, y) iff;; for some
iand j, i<j, xe2; and y€ 9;. The set A of alternate extension
functions H,., is determined by the atomic sentences belonging to
the various sets A’ belonging to /. The actual extension function
% =4 H,. The identity element Id € .#, is just the identity predi-
cate =. And the fundamental logical operations Conj,, Neg,,
Exist,, . .. are determined by the identity sentences in A. Finally, the
interpretation .#, may be defined as follows:

J a(‘a’) =4 the individual constant ‘a;’ € 2 such that
‘a;=a €A

J\(‘FI’) =4 the primitive predicate ‘F{’ € @ such that
‘[F{(Ula LR Uj)]vl...vj = [Fi(vl’ s vj)]ul...uj, €A.

With .#, and .#, so specified, it is then shown by induction on the
complexity of formulas that {.#,,.#,> is a model of A, for all
Aed.

By the way, the completeness theorem for T1 yields an interest-
ing corollary. Notice that L, is a notational variant of a first-order
extensional language that is fitted out with identity and extensional
abstracts {v; ...v;: A}, for j > 0. Let an extensional type I model
structure be defined to be a type 1 model structure in which the
class 4" of alternate extension functions is just {%4} (i.e., the
singleton of the actual extension function). Thus, in an extensional
type 1 model structure the following holds for all i > —1:

(Vx, y € D)% (x) = 4(y) > x = y).

And hence, the elements of & behave as extensional entities do. The
semantics is done in precisely the same way in which the semantics
for L, is done except that only extensional type 1 model structures
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are considered. This yields the notion of extensional validity. And
the formal logic consists of the axiom schemas and rules for
standard first-order quantifier logic with identity (i.e., A1-AS5, R1-
R2) plus three axioms schemas for extensional abstracts:

(i) {uy...u,:A}# {v,...v,: B} (wherep#q)
() {uy...uyt Auy, .. u,)) = {v; ... 0,0 Ay, ..., 0,)}
(where the externally quantifiable variables in these two
complex terms are the same and, for each k, 1 < k < p, u,
1s free in A for v, and conversely)
(iii) (4 =,,..0,B)={vy...v,: 4} ={v;...0,: B}.

Schema (i) asserts the distinctness of truth values from sets and
relations-in-extension, the distinctness of sets from relations-in-
extension, and the distinctness of m-ary relations-in-extension from
n-ary relations-in-extension (m # n). Schema (ii) asserts the validity
of a change of bound variables within extensional abstracts. And
schema (iii) asserts the equivalence of identicals and the identity of
equivalents. This property is the hallmark of extensional entities.
The primary result for this extensional logic is the following
corollary of the completeness and soundness theory for T1:

Corollary (Soundness and Completeness)
For all formulas A in a first-order extensional language with
identity and extensional abstraction, A is extensionally valid if
and only if A is a theorem of the logic for the language.

Thus, when € is treated as an arbitrary first-order predicate, set
theory with identity and extensional abstraction is sound and
complete.

16. A Complete Logic for the Second Conception

On conception 2 each definable intensional entity is such that when
it is defined completely, it has a unique, non-circular definition. The
logic T2 for L, on conception 2 consists of axioms A1-A7 and rules
R1-R2 from T1, five additional axiom schemas for intensional
abstracts, and one additional rule. In stating the additional
principles, I write ¢(F}) to indicate that ¢ is a complex term of
L, in which the primitive predicate F, occurs.
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Additional Axiom Schemas and Rules for T2

A8
A9

10

11

(4], = [B], > (4 = B)

t # r (where t and r are non-elementary complex terms
of different syntactic kinds)

t=r=t =¢ (wheretand r are the negations (existen-
tial generalizations, expansions, inversions, conversions,
reflexivizations) of ¢’ and r', respectively)

t=r=(t'=r & t"=r") (where t is the conjunction
of t' and "’ and r is the conjunction of r' and r”, or ¢
is the predication, of ¢’ of t"” and r is the predication; of r’
of r’, for k > 0)

t(Fi) = r(F¥) o q(Fi) # s(F¥) (where t and s are ele-
mentary and r and q are not)

Let F7, be a non-logical predicate that does not occur in
A(v;); let t(F}) be an elementary complex term, and let ¢’
be any complex term of degree n that is free for v; in A(v;).
If -A(t), then HA(t').

o8 affirms the equivalence of identical intensional entities. Schemas

A9-A11

capture the principle that a complete definition of an

intensional entity is unique. And schema .12 captures the prin-
ciple that a definition of an intensional entity must be non-circular.
%3 says roughly that if A(¢) is valid, for an arbitrary elementary
n-ary term t, then A(t') is valid, for any n-ary term t'.

Now recall the two intuitively valid arguments mentioned at the
outset of this chapter. As we have seen, these arguments may be
symbolized in L, as follows:

(Vz)(B(x, z) = B(y, z))
B(x, [A])
. B(y,[A4])
[B(x)]: = [U(x) & M(x)],
N([(Vx)(B(x) = B(x))])
" N([(Vx)B(x) = (U(x) & M(x)))]).

These arguments are both valid, and valid,, and relatedly, in both
T1 and T2 the conclusion of each argument is derivable from its

premises.
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To bring out the difference between T1 and T2 (and between
validity, and validity,), consider the following intuitively invalid
argument involving the intentional predicate ‘wonders’:

x wonders whether there is a trilateral that is not a triangle.
Necessarily, all and only trilaterals are triangles.

*. x wonders whether there is a triangle that is not a triangle.

Let this argument be symbolized as follows:

xW[(Qy)(Trilateral (y) & — Triangle (y))]
o(Vy)(Trilateral (y) = Triangle (y))
. xW{[(@y)(Triangle (y) & — Triangle (y))].

In T1, but not T2, the conclusion of this argument is derivable from
the two premises. And relatedly, the argument is valid,, but not
valid,. So only the formal logic and semantics that are based on
conception 2 could be appropriate for the treatment of intentional
matters. The fact that Church’s Alternative (2) and the various
possible-worlds constructions of intensional logic (including
Carnap’s original construction in Meaning and Necessity) are all
based on conception 1 is what lies at the root of their failure to
provide adequate treatments of intentional matters. (See deside-
ratum 2 on the chart in §4.)
The following is the primary result for T2:

Theorem (Soundness and Completeness)
For all formulas 4 in L, 4 is valid, if and only if 4 is a theorem
of T2 (i.e., F, A iff 1, 4).

Proof. The proof of the soundness of T2 is quite straightforward.
For example, the soundness of 78 follows directly from Lemma 6
(stated earlier); /9, from the fact that the fundamental logical
operations Conj, Neg, Exist, ... in a type 2 model structure have
disjoint ranges; /10 and /11, from the fact that these functions
are one-one; /12, from the fact that they are non-cycling. The
soundness proofs for R1 and R2 are standard. For the soundness
of #3, the induction hypothesis yields k, A(¢(F%)). Hence, by
the soundness of R2, A2, and AS5 (Leibniz’s law), we have
E, t(Fr) =1t > A(t'). But since F7, is a non-logical predicate and
does not occur in A(t'), F, A(t'). The completeness proof is again
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Henkin style. A set of L¥-sentences is said to be perfect, if (1) it is
maximal, consistent, wm-complete and (2) for every closed term
[Bl,,. ., in LY, there is a primitive predicate letter F§ such that
the sentence [B]vl...vp =[Fi(,,..., U)oy, belongs to the set. 1
show, first, that every consistent set of L -sentences is included in
some perfect, set of L¥-sentences and, secondly, that every perfect,
set has a type 2 model. The argument, while parallel to the
argument used for T1, is routine.

The completeness problem for T2 is essentially simpler than the
one for T1. This is no reflection on the relative importance of T2,
though, for T2, not T1, provides a logic for intentional matters.

17. A Complete Logic for Modal and Intentional Matters

The conception 1 intensional logic T1 is ideally suited for treating
modal matters. And the conception 2 intensional logic T2 is
ideally suited for treating intentional matters. I will now formulate
a richer conception 2 logic T2’ that is ideally suited for treating
both modal and intentional matters. This simultaneous treatment is
achieved by adjoining to L, a 2-place logical predicate ~, which
is intended to express the relation of necessary equivalence. T2’
succeeds in providing a single logic for both modal and intentional
matters by having what are in effect two sorts of “‘identity”—one
weak and one strong. The former is necessary equivalence; the
latter, strict identity. In §46 I will show that, when conceptions 1
and 2 are synthesized, necessary equivalence (and also necessity)
can be defined. So we should not feel hesitant to adjoin ~y to L,
here.

I begin by defining a new type of model structure. A type 2’
model structure

{2,2,4,9,1d, Eqy, Conj, Neg, Exist,
Exp, Inv, Conv, Ref, Pred,, Pred,,...>

is any structure that satisfies all the conditions imposed on type 2
model structures plus one additional condition. The element Eqy
must be a distinguished element of 2, that satisfies the following
principle:
(VH e A")(H (Eqy) =
{xy: @iz —)x,ye 2, & (YH' € #)H'(x) = H'(y)}).
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Thus Eqy is to be thought of as the distinguished logical relation-
in-intension necessary equivalence. Now an interpretation .# relative
to a type 2’ model structure is just like an interpretation relative to
a type 1 or type 2 model structure except that f(xy)= Eqy.
Then type 2’ denotation, truth, and validity are defined mutatis
mutandis as in §14. The following abbreviations are introduced for
notational convenience: ‘

oA iffy [A] =x [[4] =~ [4]]
OA iffy, "o A.

The intensional logic T2’ simply consists of the axioms and rules for
T2 plus the following additional axioms and rules for xy:

A3 x =y x
Sl xz=yy>dyRNX
15 xxyyo(yrnzDXRY2)
A16: x=yy>0Ox gy

17 (A =, B) = [A], ~n [Bl.
18 OAo A
&#19: 0O(4A > B)> (0A o OB)
#20: DA>oQA

A4: if HA, then HOA.

Notice that these axioms and rules for x are just analogues of the
special T1 axioms and rules for =. Finally, the soundness and
completeness of T2’ can be shown by applying the methods of proof
used for T1 and T2.

Intensional logic constitutes the first stage in the theory of PRPs.
Why is it that complete intensional logics can be achieved in the
setting of a first-order language such as L, but not in the setting of
a higher-order language? The answer lies in the opposing treat-
ments of predication. To this, the second stage in the theory of
PRPs, 1 will soon turn. But first I must address a problem that is
perhaps the major outstanding problem in intensional logic,
namely, the paradox of analysis.




