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1.  Introduction

In the analysis of economic environments 
in which information is dispersed amongst 

agents, the paradigm of mechanism design 
has been developed to analyze questions of 
optimal information collection and resource 

allocation. The aim of these models is to 
come up with a framework that is sufficiently 
flexible to treat applications in various fields 
of economics yet precise enough to yield con-
crete insights and predictions. Over the last 
decade, the mechanism design approach has 
been applied to a variety of dynamic settings. 
In this survey, we review the basic questions 
and modeling issues that arise when trying to 
extend the static paradigm to dynamic set-
tings. We do not aim at maximal generality 
of the results that we present, but we try to 
bring out the main ideas in the most natural 
settings where they arise.

By far the best-understood setting for 
mechanism design is the one with inde-
pendent private values and quasi-linear 
payoffs. Applications of this model include 
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negotiations, auctions, regulation of public 
utilities, public goods provision, nonlinear 
pricing, and labor market contracting, to 
name just a few. In this survey, we concen-
trate, for the most part, on this simplest 
setting.

It is well-known that in dynamic principal–
agent models, private information held by 
the agent requires the optimal contract to 
be a long-term arrangement, one that cannot 
be replicated by a sequence of short-term 
contracts. This is due to the “ratchet effect.” 
We follow the literature on static mechanism 
design by allowing the principal to commit at 
the beginning of the game to a contract that 
covers the entire length of the relationship.

The leading example for this survey is the 
problem of selling a number of goods—pos-
sibly limited—over time as the demand for 
the goods evolves. The dynamics that arise in 
such problems pertain both to the evolution 
of the willingness to pay as well as to the set 
of feasible allocations over time—through a 
variety of natural channels: 

	 (i)	 The sales problem may be 
nonstationary because the goods have 
either a fixed supply or an expiration 
date like airline tickets for a particu-
lar flight date and time. The key fea-
ture here is that the opportunity cost 
of selling a unit of the good today is 
determined by the opportunities for 
future sales. Markets where such con-
cerns are important, such as for air-
line tickets, have recently witnessed a 
number of new pricing practices: fre-
quently changing prices and options 
for buyers to reserve a certain price 
for a given period of time. A vast lit-
erature under the heading revenue 
management in operations research 
tackles applied problems of this sort.

	 (ii)	 Realized sales today help predict 
future sales if there is uncertainty 

about the rate at which buyers enter 
the market. Professional and college 
sports teams base their prices for 
remaining tickets on the sales to date. 
This form of dynamic pricing is used 
for concert tickets, hotel booking, and 
transportation services, such as the 
surge pricing of Uber.

	 (iii)	 The valuations of the buyers may 
evolve over time as they learn more 
about the product by using it or by 
observing others. Cheap trial periods 
for online services are a particular 
form of intertemporal price discrim-
ination in this setting.

	 (​​​iv)	 The cost of serving the market may 
change over time due to exoge-
nous improvement in technology or 
through learning by doing.

The general model that we consider will 
encompass all of these different trading envi-
ronments. We cover the optimal timing of a 
single sale as well as repeated sales over the 
time horizon. In all of the above applications, 
the types of some agents and/or the set of 
allocations available change in a nontrivial 
manner across periods. For us, this is the 
distinguishing feature of dynamic mecha-
nism design.

The techniques of dynamic mechanism 
design have become more prevalent in many 
markets over the past decade, often under 
the term “dynamic pricing.” The essence of 
dynamic pricing is to frequently adjust the 
price of the object over time in response to 
changes in the estimated demand. The opti-
mal price is commonly adjusted through an 
algorithm that responds to temporal supply 
and demand conditions, time, competing 
prices, and customer attributes and behavior. 
The adoption of dynamic pricing strategies 
(particularly in e-commerce, e.g., Amazon) is 
facilitated by the rapid increase in real-time 
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data on market conditions and customer 
behavior, which are used to condition the 
price and allocation policies.

Beyond the dynamic pricing of individual 
items, sophisticated dynamic contracts are 
becoming more common. Airlines now fre-
quently offer option contracts to allow cus-
tomers to secure a certain fare for a fixed 
time period before they purchase the prod-
uct, a “fare lock.” Many subscription services 
offer a trial period with a low price before the 
price resets at a higher level.

A different class of applications of 
dynamic mechanism design arises in such 
common situations as the pricing of mem-
berships, such as fitness clubs, or long-term 
contracts, such as mobile phone contracts 
or equipment service contracts. At any 
given point in time, the potential buyer 
knows how much she values the service, but 
is uncertain about how future valuations for 
the service may evolve. From the point of 
view of the service provider, the question 
is then how to attract (and sort) the buyers 
with different current and future valuations 
for his services. The menu of possible con-
tracts presumably has to allow the buyers to 
express their private current willingness to 
pay as well as their expectations over future 
willingness to pay. A variety of dynamic 
contracts are empirically documented, for 
example in gym memberships and mobile 
phone contracts, as described in DellaVigna 
and Malmendier (2006) and Grubb and 
Osborne (forthcoming), respectively. These 
include ​​(i)​​ flat rates, in which the buyer only 
pays a fixed fee regardless of her consump-
tion; ​​(ii)​​ two-part-tariffs in which the buyer 
selects from a menu of fixed fees and vari-
able prices per unit of consumption; and ​​
(iii)​​ leasing contracts where the length of 
the lease term is the object of choice for the 
consumer. We will highlight, in section 5, 
how these and other features of observed 
contract varieties may arise as solutions to 
dynamic mechanism design problems.

Since we insist on full commitment power 
throughout this survey, we bypass the vast 
literature on Coasian bargaining that has the 
lack of commitment at its heart. Similarly, we 
do not consider contract dynamics resulting 
from renegotiation. Since both the seller and 
the buyer commit to the mechanism, we also 
restrict the type of participation constraints 
that we allow. In particular, we do not try to 
give full analysis of models where the buyer’s 
outside option changes over time as in Harris 
and Holmström (1982). Dynamic games 
where the players engage in interactions 
while their payoff relevant types are subject 
to stochastic changes are closely related to the 
material in this survey.1 Since the analysis of 
such games requires sequential rationality on 
the part of all players, our focus on the opti-
mal commitment solutions for the designer 
rules them out of the scope of this survey. This 
survey will also not include a comprehensive 
review of the recent work on dynamic taxation 
and dynamic public finance, a line of research 
that has a strong focus on strictly concave, 
rather than quasi-linear, payoffs. However 
in section 7, we shall provide connections 
between theses two classes of payoff environ-
ments and comment on the similarities and 
differences in the analysis and the results.

Our aim in writing this survey is twofold. 
We want to give an overview of the tools 
and techniques used in dynamic mechanism 
design problems in order to give the reader 
an understanding of the scope of applications 
that can be tackled within this framework. We 
give a number of examples where the opti-
mal solution can be fully characterized. For 
many interesting dynamic contracting prob-
lems, finding optimal incentive compatible 
mechanisms is beyond the scope of the cur-
rently available techniques. In such cases, one 
must look for partial solutions or approximate 

1 In repeated and dynamic games, the vector of continu-
ation payoffs plays the role of monetary transfers in mecha-
nism design problems.
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solutions. Second, we want to present and 
discuss the recent literature in this area. 

We begin with mechanisms that achieve 
a socially efficient allocation. A dynamic 
version of the pivot mechanism gives each 
agent a private payoff equal to her marginal 
contribution to the utilitarian social sur-
plus. A mechanism that has this property 
is attractive, since it gives each agent the 
societally optimal incentives to make pri-
vate investments. In a dynamic context, such 
investments could generate more accurate 
valuations or reduce future costs. We give 
a simple formula for the periodic payments 
that support the efficient allocation rule. In 
contrast to optimal or revenue maximizing 
mechanisms, the dynamic pivot mechanism 
does not rely on strong assumptions about 
commitment or constant outside options.

For the case of revenue maximizing mech-
anisms, the central trade-off in the static case 
is between social surplus and information rent 
going to the agent. We investigate how far 
the well-known results from the static model 
extend. In particular, we try to stay as close as 
possible to the best understood model where 
a principal offers a contract to a privately 
informed agent with a single-dimensional 
type and supermodular preferences over allo-
cations and types. We see conditions where 
the usual results of no distortions for the 
highest-type agent and downward distortions 
for all other agents hold. But sometimes the 
direction of the distortions may be reversed 
due to the type dynamics.

On the more dynamic implications, one 
might guess that the part of private informa-
tion held by the bidders at the moment of 
contracting is the only source of information 
rent. The rest of the stochastic type process 
is uncertain to both the seller and the buyer, 
and after the initial report the two parties 
share a common probability distribution on 
future types. We discuss a way of formalizing 
this line of thought and we will see the extent 
to which this result holds.

One of the key implications for the reve-
nue-maximizing allocation stems from this 
intuition. For most stochastic processes 
(e.g., ergodic and strongly mixing processes), 
knowing the value of the process in period ​t​ 
tells us little about the value of the process 
in period ​t + k​ for ​k​ large. Hence, one might 
conjecture that the private information ​​θ​0​​​ 
held by the agent at the moment of signing 
the contract provides little private informa-
tion about the valuation ​​θ​t​​​ for large ​t​. As a 
result, distortions from the efficient alloca-
tion path should vanish as ​t​ becomes large. 
This property of the optimal allocation path 
is, in fact, quite robust. Whereas most of 
the analysis that we present relies on argu-
ments based on the envelope theorem (i.e., 
arguments depending on local optimality of 
truthful reporting in the mechanism), the 
property of vanishing distortions holds also 
for a much wider class of models where the 
so-called first-order approach fails.

The third part considers models with 
changing populations of agents over time. 
Obviously, this part has no counterpart on 
the static side. It allows us to ask new ques-
tions relating to the properties of the payment 
rules. For example, with changing popula-
tions, it makes sense to require that agents 
receive or make transfers only in the periods 
when they are alive. These restrictions lead 
to interesting new findings about the settings 
where efficient outcomes can be achieved. 
Another novel finding in this literature is that 
having forward-looking buyers may some-
times be good for the revenue maximization. 
This is very much in contrast with the typical 
Coasian reasoning and also represents a novel 
finding relative to the literature on revenue 
management.

In the last substantive section of this sur-
vey, we briefly consider related models from 
public finance and financial economics. The 
key departure in these models is the lack 
of quasi-linearity. The models in dynamic 
public finance are primarily concerned with 
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consumption smoothing over risky out-
comes. Hence, the models feature agents 
with strictly concave utilities in consump-
tion and leisure. In addition to the possibil-
ity of having risk-averse decision makers, the 
models in financial economics often feature 
a limited liability constraint on the transfer 
rules: owners can pay the managers, but 
managers cannot be asked to make (arbi-
trarily large) payments to the owners. We 
discuss the similarities in the analysis and 
contrast the results of these models with the 
models under quasi-linear utility. Finally, we 
make some connections to the rapidly grow-
ing computer science literature on mecha-
nism design. Rather than concentrating on 
the properties of the optimal mechanism 
for a fixed stochastic model, this literature 
seeks mechanisms that guarantee a good 
payoff across a variety of different stochastic 
models.

The interested reader will find comple-
mentary material and more technical detail 
in the recent textbooks by Börgers (2015) and 
Gershkov and Moldovanu (2014). We have 
also included a few more technical obser-
vations in the appendix. The earlier survey 
by Bergemann and Said (2010) focuses on 
dynamic auctions, and the more recent survey 
by Pavan (2017) focuses on issues of robust-
ness and endogenous types. Bergemann 
and Pavan (2015) provide an introduction 
to recent research in dynamic mechanism 
design collected in a symposium issue of the 
Journal of Economic Theory. The textbook by 
Talluri and Van Ryzin (2004) is a classic intro-
duction into revenue management from the 
operations research perspective.

2.  The Dynamic Allocation Problem

2.1	 Types, Allocations, and Preferences

In this section, we present a dynamic and 
stochastic payoff environment that is general 

enough to cover all the later sections. We 
consider a discounted discrete-time model 
with a finite or infinite ending date ​T​. Each 
agent ​i  ∈ ​ {1, 2, … , I}​​ receives in each 
period ​t  ≤  T​ a payoff that depends on the 
current physical allocation ​​x​t​​  ∈ ​ X​t​​​, the 
current monetary payment (or transfer) ​​
p​i,t​​  ∈  ℝ,​ and the private information

	​​ θ​t​​ = ​(​θ​i,t​​, ​θ​−i,t​​)​ ∈ ​ ∏ 
i=1

​ 
I
  ​​ ​Θ​i​​ = Θ ⊂ ​핉​​ I​​. 

Throughout this survey, we assume private 
values and quasi-linear utilities. As a result, 
the Bernoulli utility function ​​u​i​​​  of agent ​i​ 
takes the form:

	​​ u​i​​​(​x​t​​, ​p​t​​, ​θ​t​​)​  ≜ ​ v​i​​​(​x​t​​, ​θ​i,t​​)​ − ​p​i,t​​ .​

We assume that the type ​​θ​i,t​​​  of agent ​i​ fol-
lows a controlled Markov process on the 
state space ​​Θ​i​​​. The flow payoffs of the social 
planner are defined by: 

	​​ u​0​​​(​x​t​​, ​p​t​​, ​θ​t​​)​  ≜ ​ v​0​​​(​x​t​​)​ + ​ ∑ 
i=1

​ 
I

 ​​ ​ p​i, t​​ .​

The set ​​X​t​​​ of feasible allocations in period 
​t​ may depend on the vector of past allocations 

	​​ x​​ t−1​  ≜ ​ (​x​0​​ ,  .  .  . , ​x​t−1​​)​  ∈ ​ X​​ t−1​ .​

For example, the seller may only have ​K​ 
units of the object for sale, and a sale today 
diminishes the number of available objects 
tomorrow. The dependence of the set of fea-
sible allocations tomorrow on the current 
feasible set and current allocation is denoted 
by a transition function ​g​: 

	​​ X​t+1​​  ≜  g​(​X​t​​, ​x​t​​)​.​

There is a common prior c.d.f. ​​F​i,0​​​(​θ​i,0​​)​​ 
regarding the initial type ​​θ​i,0​​​ of each agent ​i​. 
The current type ​​θ​i,t​​​ and the current action ​​
x​t​​​ determine the distribution of the type ​​
θ​i,t+1​​​ in the next period. We assume that 
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this distribution can be represented by a 
Markovian transition function (or stochastic 
kernel):

	​​ F​i​​​(​θ​i,t+1​​ ​|​​ ​θ​i,t​​, ​x​t​​)​.​

The utility functions ​​u​i​​​ and the transition 
functions ​​F​i​​​ are all common knowledge at ​
t = 0​. At the beginning of each period ​t​, each 
agent ​i​ observes ​​θ​i, t​​​ privately. At the end of 
each period, an allocation ​​x​t​​ ∈ ​X​t​​​ is chosen 
by the principal and payoffs for period ​t​ are 
realized. The asymmetric information is 
therefore generated by the private observa-
tion of ​​θ​i, t​​​ in each period ​t​. To ensure that 
all the expectations in the model are well 
defined and finite, we assume that 

	​​ |​v​i​​​(x, ​θ​i​​)​|​  <  K,​

for some ​K  <  ∞​ for all ​i, x​, and ​​θ​i​​​.

2.2	 Possible Interpretations of Types

Up to now, we have been very general 
about the interpretation of ​​θ​i,t​​.​ There are at 
least three separate cases that deserve men-
tion here. In the first, all agents are present 
in all periods of the game, and their types 
evolve according to an exogenous stochastic 
process on ​​Θ​i​​.​ In the second, all agents are 
present in all periods, but their future types 
depend endogenously on current allocations. 
In the third case, not all agents are present in 
all periods.

The first case seems appropriate for pro-
curing goods over time from firms whose 
privately known costs follow a stochastic 
process ​F​(​θ​i,t​​​|​​ ​θ​i,t−1​​)​,​ for example, we could 
take ​​θ​i,t​​  ∈  ℝ,​ with

	​​ θ​i,t+1​​  =  γ ​θ​i,t​​ + ​ε​i,t+1​​,​

where the ​​ε​i,t​​​ are i.i.d. shocks.
For an example of the second class of mod-

els, consider an employer, ​i​, who learns pri-
vately about the (firm-specific) productivity  ​​

ω​i​​.​ In this case, a risk-neutral employer 
would compute the posterior distribution on ​
i​’s productivity:

	​​ θ​i, t​​  ≜  Pr​[​ω​i​​ | ​h​i, t​​]​,​

where ​​h​i,t​​​ is the information set of firm ​i​ at 
time ​t.​ It makes sense to assume now that ​​
θ​i,t+1​​​ depends on ​​θ​i,t​​​ and the allocation ​​x​t​​,​ in 
particular whether the worker was employed 
by firm ​i​ in period t or not. Hence, the type 
evolution is endogenous to the allocation 
problem.

At the cost of some notational inconve-
nience, we could have allowed the payoffs 
and the transitions to depend on the full his-
tory of allocations: ​​x​​ t​  = ​ (​x​0​​, … , ​x​t​​)​.​ It will 
become clear that none of the results would 
change due to this more general formula-
tion. Hence, we can accommodate other 
endogenous models such as learning by 
doing, where the production cost of a firm 
decreases stochastically in its past cumula-
tive production, or habit formation and pref-
erence for variability over time. 

The case where not all agents are pres-
ent at all times requires a bit more discus-
sion. An agent may, for example, decide to 
wait in order to get a better deal on a pur-
chase. If all agents are present from the 
start, this case is covered by the previous 
two specifications. If agents arrive stochas-
tically over time, they can enter contracts 
only after arrival. We may then assume 
that the arrivals are either private informa-
tion to the agent or publicly observed. For 
the first case, we assume that each agent ​i​ 
can have a particular type, the null type  
​0  ∈ ​ Θ​i​​​ for all ​i​ that we interpret as indicat-
ing that the agent is not present. We assume 
that ​​v​i​​​(​x​t​​, 0)​  =  0​ for all ​i, ​x​t​​​ and that agents 
with type 0 cannot make or receive any trans-
fers. The interpretation is that ​i​ is born at the 
first time ​t = τ​ where ​​θ​i, t​​  ≠  0​ and hence, 
his arrival time ​τ​ is private information to 
the agent. Alternatively, we can assume each 
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agent’s arrival time ​τ​ is publicly observable. 
In section 6, we analyze and contrast such 
models.

2.3	 Dynamic Direct Mechanisms

In a dynamic direct mechanism, every 
agent ​i​ is asked to report her type ​​θ​i,t​​​ in every 
period ​t​. We say that the dynamic direct 
mechanism is truthful if the reported type ​​
r​i,t​​  ∈ ​ Θ​i​​​ coincides with the true type for all ​
i, t​ after all histories of realized and reported 
types. The dynamic revelation principle as 
first stated in Myerson (1986), and recently 
extended by Sugaya and Wolitzky (2017), 
argued that there is no loss of generality in 
restricting attention to dynamic direct mech-
anisms where the agents report their infor-
mation truthfully.

The mechanism designer chooses how 
much of the information in the reports and 
allocations to disclose to the players. In this 
survey, we assume that the physical allocation ​​
x​t​​  ∈ ​ X​t​​​ is publicly observed.2 It is clear that 
restricting the information available to agent ​
i​ makes it easier to satisfy the incentive com-
patibility constraints for that player. Hence, 
it might be easier to achieve incentive com-
patibility when other agents’ past reports are 
kept secret. In all of the applications covered 
in this survey, we can find an optimal mecha-
nism where all past reports and all past allo-
cations are made public. In what follows, we 
consider dynamic direct mechanisms that 
have this feature.

Let ​​r​i,t​​  ∈ ​ Θ​i​​​ denote the report of agent ​i​  
in period t and let ​​r​t​​  = ​ (​r​i,t​​, ​r​−i,t​​)​​ be the 
vector of reported types in period ​t​. We 
denote the public history ​​(​x​s​​, ​r​i,s​​)​s<t​​​ at period ​
t​ by ​​h​t​​  ∈ ​ H​t​​.​ When agent ​i​ chooses her 
report in period ​t​, she knows her own type ​​
θ​i,t​​,​ and all her past realized types. In the 
Markovian setting, the only payoff relevant 

2 In some cases, such as allocating a fixed capacity over 
time, each player is only informed of her own allocation 
and the number of remaining units may be kept secret.

private information is her current type and 
hence, we let the private history of agent ​i​ be 
​​h​i,t​​  = ​ (​θ​i,t​​, ​h​t​​)​  ∈ ​ H​i,t​​.​ A reporting strategy ​​
r​i​​  = ​​ (​r​i,t​​)​​ t=1​ T  ​​ of agent ​i​ is given by

	​​ r​i,t​​ : ​Θ​i​​ × ​H​t​​  → ​ Θ​i​​.​

A dynamic direct mechanism ​(x, p) 
=​​ ​​​​(​x​t​​, ​p​t​​)​​ t=1​ T ​ ​ assigns physical allocations and 
transfer payments to the agents as a func-
tion of their current reports and the public 
history:

	​​ x​t​​ : Θ × ​H​t​​  → ​ X​t​​,​

	​​ p​t​​ : Θ × ​H​t​​  → ​ ℝ​​ I​.​

Notice that the reporting strategy ​𝐫​ and 
the allocation process ​𝐱​ induce a sto-
chastic process for the sequence of 
types through the transition probability 
​F​(​θ​t+1​​​|​​​θ​t​​, ​x​t​​​(​r​t​​​(​θ​t​​)​)​)​.​ We shall be particularly 
interested in truthful reporting strategies. 
For this purpose, let ​​𝐫̂  ​​ denote the reporting 
strategy profile where

	  ​​r​i,t​​​(​h​i,t​​)​  = ​ θ​i,t​​​ 

for all ​i, t, ​h​i,t​​.​
The physical allocation rule ​𝐱,​ and any 

vector ​​𝐫​−i​​​ of reporting strategies for agents 
other than ​i​ induce a Markovian decision 
problem for agent ​i​ with the dynamic pro-
gramming formulation:

​​V​i,t​​​(​θ​i,t​​, ​h​t​​; ​r​−i​​)​ 

	= ​ max​ ​r​i,t​​
​ ​  E​[​v​i​​​(​x​t​​​(​r​i,t​​, ​r​−i,t​​​(​​θ ̃ ​​−i,t​​, ​h​t​​)​, ​h​t​​)​, ​θ​i,t​​)​ 

	 − ​p​i,t​​​(​r​i,t​​, ​r​−i,t​​​(​​θ ̃ ​​−i,t​​, ​h​t​​)​, ​h​t​​)​

�​ +  δ ​V​i,t+1​​​(​​θ ̃ ​​i,t+1​​, ​​h ̃ ​​t+1​​; ​r​−i​​)​​|​​ ​θ​i,t​​, ​h​t​​​]​​.
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We designate random variables, such as 
​​​θ ̃ ​​i, t​​​, by tilde. The expectation above is 
taken with respect to the stochastic pro-
cess ​{​​θ ̃ ​​t​​}​ induced by the transition prob-
ability ​F,​ the allocation rule ​x​, and the 
reporting strategy ​r​. For the remainder of 
the paper we shall suppress the time index 
when the conditioning variable implic-
itly defines the time index for the relevant 
function. Thus, for example, we will write 
​​V​i​​​(​θ​i, t​​, ​h​t​​; ​r​−i​​)​​ rather than ​​V​i, t​​​(​θ​i, t​​, ​h​t​​; ​r​−i​​)​​,  
and ​x​(​r​i, t​​, ​r​−i, t​​​(​​θ ̃ ​​−i, t​​, ​h​t​​)​, ​h​t​​)​​ rather than 

​​x​t​​​(​r​i, t​​, ​r​−i, t​​​(​​θ ̃ ​​−i, t​​, ​h​t​​)​, ​h​t​​)​​.
We define

	​​ V​i,t​​​(​θ​i,t​​, ​h​t​​)​  ≜ ​ V​i,t​​​(​θ​i,t​​, ​h​t​​; ​​r ˆ ​​−i​​)​​

to be the value function of agent ​i​ under 
truthful reporting by the other agents. We 
say that ​​(x, p)​​ is Bayes–Nash implementable 
if for all ​i, t​, ​​h​i,t​​,​

​​θ​i,t​​ ∈ ​arg max​ 
​r​i,t​​

​ ​  E​[​v​i​​​(x​(​r​i,t​​,​​θ ̃ ​​−i,t​​, ​h​t​​)​, ​θ​i,t​​)​ 

	 − ​p​i​​​(​r​i,t​​, ​​θ ̃ ​​−i,t​​, ​h​t​​)​ 

+ δ ​V​i​​​(​​θ ̃ ​​i,t+1​​, ​​h ̃ ​​t+1​​)​​|​​ ​θ​i,t​​, ​h​t​​]​.​

Thus, taking the expectation over the other 
agents’ true type realization truth telling in 
every period and after every history is an opti-
mal strategy for agent ​i​.

We will sometimes refer to a stronger 
notion of implementability, called periodic 
ex post implementability. To define this 
notion, we let 

​​V​i,t​​​(​θ​t​​, ​h​t​​)​ 

  ≜ ​ max​ ​r​i,t​​
​ ​​ {​v​i​​​(x ​(​r​i,t​​, ​θ​−i,t​​, ​h​t​​)​, ​θ​i,t​​)​ − ​p​i​​​(​r​i,t​​, ​θ​−i,t​​, ​h​t​​)​ 

� + ​δE ​[​V​i​​​(​​θ ̃ ​​t+1​​, ​​h ̃ ​​t+1​​)​​|​​​θ​t​​, ​h​t​​]​​}​.​

Observe that the value function is now 
defined on the set of type vectors, ​​
θ​t​​​,​​​ and public histories, rather than just the 
individual type ​​θ​i,t​​​. A mechanism ​​(x, p)​​ is 
periodic ex post implementable if for all 
​i, t, ​θ​t​​, ​h​t​​:​

​​θ​i,t​​  ∈ ​ arg max​ 
​r​i,t​​

​ ​​ {​v​i​​​(x​(​r​i,t​​, ​θ​−i,t​​, ​h​t​​)​, ​θ​i,t​​)​ 

	 − ​p​i​​​(​r​i,t​​, ​θ​−i,t​​, ​h​t​​)​ 

	 + ​δE​[​V​i​​​(​​θ ̃ ​​t+1​​, ​h​t+1​​)​​|​​​θ​t​​, ​h​t​​]​​}​.​

Whenever ​​(x, p)​​ is periodic ex post imple-
mentable, no agent wants to change her 
report after learning the contemporaneous 
reports of the other agents. This means that 
as in the static setting, ex post implementa-
tion is a solution concept that is stronger than 
Bayes–Nash implementation but weaker 
than dominant strategy implementability.

3.  Efficient Dynamic Mechanisms

We begin the analysis by describing 
three dynamic mechanisms that attain the 
intertemporally efficient allocation in the 
presence of private information arriving 
over time: ​(i)​ the team mechanism, ​​(ii)​​ the 
dynamic pivot mechanism, and ​​(iii)​​ the 
dynamic AGV mechanism. We illustrate 
these mechanisms by considering allocating 
a fixed number of objects over time.

3.1	 The Team Mechanism

We start by constructing a simple mecha-
nism that makes truthful reporting incentive 
compatible in the sense of periodic ex post 
incentive compatibility. In this mechanism, 
called the team mechanism, the agents have 
the right incentives to report their types 
truthfully as their payoff is the entire social 
surplus generated in the allocation problem. 
Hence, the right place to start the construc-
tion is the social planner’s optimal allocation 
problem with publicly observable types. The 
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utilitarian welfare maximization, including 
all agents and the principal, solves the fol-
lowing program: 

​W​(​θ​0​​, ​X​0​​)​ ≜ ​  max​ 
​​{​x​t​​∈​X​t​​}​​ t=0​ T  ​

​​ E​{​ ∑ 
t=0

​ 
T

  ​​​δ​​ t​ ​ ∑ 
i=0

​ 
I

  ​​​v​i​​​(​x​t​​, ​θ​i,t​​)​}​,​

where the expectation is taken with respect 
to ​F​(​θ​t+1​​​|​​​θ​t​​, ​x​t​​)​​ and the feasibility condition ​​
x​t​​ ∈ ​X​t​​​ for all ​t​. Notice, that we allow the 
value function in period ​0​ (and in all future 
periods) to depend explicitly on the set of 
feasible allocations. We define the social flow 
payoff as:

	​ w​(​x​t​​, ​θ​t​​)​  ≜ ​  ∑ 
i=0

​ 
I

  ​​​ v​i​​​(​x​t​​, ​θ​i,t​​)​.​

We can write this in terms of a dynamic 
program:

​W​(​θ​t​​, ​X​t​​)​ = ​max​ 
​x​t​​∈​X​t​​

​ ​​{w​(​x​t​​, ​θ​t​​)​ + δE W​(​θ​t+1​​, ​X​t+1​​)​}​​

subject to the transition function of the state

​​θ​t+1​​  ∼  F​( ⋅ ​|​​ ​θ​t​​, ​x​t​​)​,​

and the feasibility constraint:

​​X​t+1​​  =  g​(​X​t​​, ​x​t​​)​.​

Let ​​x​ t​ ∗​​(​θ​t​​, ​X​t​​)​​ denote an optimal policy for 
this program.

As in the static setting, periodic ex post 
incentive compatibility follows if we give 
each agent the entire social surplus. By the 
one-shot deviation principle, it is sufficient 
to set for all ​i​ and all ​​θ​t​​:​

​​p​ i​ ∗​​(​r​i,t​​, ​r​−i,t​​)​  =  − ​∑ 
j≠i

​ 
 

  ​​ ​v​j​​​(​x​​ ∗​​(​r​i,t​​, ​r​−i,t​​)​, ​r​j,t​​)​ 

	 ≜  − ​w​−i,t​​​(​r​t​​)​.​

In other words, each agent is paid in each 
period the efficient gross surplus that 
the other agents receive at the efficient 
allocation.

Up to now, we have allowed correlated 
types, and in fact, ​​(​x​​ ∗​, ​p​​ ∗​)​​ is periodic ex post 
incentive compatible for correlated as well 
as for independent types. Strengthening the 
notion of incentive compatibility to dominant 
strategies is, unfortunately, not possible. The 
easiest way to see this is to notice that oppo-
nents’ future reports depend on past alloca-
tions (and possibly also on other agents’ past 
reports). To ensure the implementability 
of efficient allocations in future periods, a 
Vickrey–Clark–Groves (VCG) term, ​​w​−i​​​(​r​s​​)​​, 
must be included in all future transfers.

We emphasize that we only ensure peri-
odic ex post incentive compatibility, but not 
dominant strategy incentive compatibility. 
We illustrate by means of an example in sec-
tion 3.3 that the notion of dominant strat-
egy incentive compatibility is typically too 
demanding in dynamic settings.

For periodic ex post incentive compati-
bility, we can also allow for interdependent 
types between the players as long as the pay-
off consequences to ​i​ resulting from infor-
mation of player ​j​ become observable at 
some later point in time.3 Unfortunately, the 
team mechanism results in a deficit  of size 
​​(I − 1)​ ​W​0​​​(​θ​0​​, ​X​0​​)​.​ In the next two subsec-
tions, we consider efficient mechanisms that 
reduce and sometimes eliminate this deficit. 
We shall see that modified versions of the 
pivot mechanism and the and D’Aspremont–
Gérard–Varet (AGV) mechanism in the static 
setting perform well within the dynamic 
model.

3.2	 Leading Example: Sequential Allocation 
of Fixed Capacity

Throughout this survey, we illustrate 
the results with the following sequential 
allocation problem. There is a fixed sup-
ply of K identical indivisible goods at t = 0 

3 In this way, the team mechanism can be extended to 
cover the mechanisms first displayed in Mezzetti (2004).
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and there is uncertainty about the demand, 
which is realized stochastically over time.

There are I potential bidders, each with 
unit demand, over two periods, ​t ∈ ​{1, 2}​​. For 
each ​i ∈  ≜ ​{1, … , I}​,​ we let ​​x​i,t​​ = 1​ denote 
the event that a good is allocated to agent ​i​ 
in period ​t,​ otherwise ​​x​i,t​​ = 0.​ The allocation 
is once and for all: after one of the goods has 
been allocated to ​i,​ it cannot be taken away 
and allocated to another bidder. By ​​x​t​​​, we 
denote the vector of allocation decisions in 
period ​t​. The capacity constraint states that ​​
∑ t​   ​​ ​∑ i​   ​​ ​x​it​​  ≤  K.​

At the beginning of period 1,​​​ each bid-
der observes his type ​​θ​i,1​​ ∈ ​[0, 1]​​. The type 
​​θ​i,2​​ ∈ ​[0, 1]​​ in period ​t = 2​ depends on the 
vector of realized types in period 1, ​​θ​1​​.​ In 
a dynamic direct mechanism, the agents 
report their realized types in each period. 
The allocation rule depends on both of these 
announcements. The payoff of agent ​i​ in the 
mechanism is ​​∑ t​   ​​ ​δ​​ t−1​​(​θ​i,t​​ ​x​i,t​​ − ​p​i,t​​)​.​

We denote the number of unallocated 
goods in period ​t = 2​ by ​​K​2​​ = K − ​∑ i​   ​​ ​x​i1​​​. 
Efficient allocation in ​t = 2​ requires allo-
cating the ​​K​2​​​ units to those bidders that 
have the highest ​​θ​i,2​​​ amongst the ones with ​​
x​i,1​​ = 0​. Solving for the efficient allocation in ​
t = 1​ is not trivial even in this simple alloca-
tion problem. Let ​​​1​​​ denote the set of bid-
ders that receive the good in period ​1​ and let ​​
K​1​​​ denote the number of goods allocated in ​
t = 1​. Let ​​​2​​ =  \​​1​​​, and we can write the 
value function for the efficient period 2 allo-
cation as:

	​​ W​2​​​(​θ​2​​, ​​2​​, ​K​2​​)​  = ​ max​ 
​{​x​i,2​​}​

​ ​ ​ ∑ 
i∈​​2​​

​ 
 

 ​​​ θ​i,2​​ ​x​i,2​​,​

subject to ​​∑ i​   ​​ ​x​i,2​​ ≤ ​K​2​​​. Similarly, for the first 
period, we can write

​​W​1​​​(​θ​1​​, , K)​ 

= ​ max​ 
​{​x​i,1​​}​

​ ​ E​[​ ∑ 
i∈

​ 
 

 ​​ ​ θ​i,1​​ ​x​i,1​​ + ​δ ​W​2​​​(​​2​​, K − ​K​1​​)​​|​​ ​θ​1​​​]​​

subject to ​​∑ i​   ​​ ​x​i,1​​  = ​ K​1​​​.
The first-period decision fixes first the 

number ​​K​1​​​ to be allocated in ​t = 1​ and 
then asks how to optimally choose the iden-
tities of the ​​K​1​​​ agents to receive the goods 
in ​t = 1.​ The next step optimizes over ​​K​1​​.​  
The hard step is obviously in determining 
the set of agents to receive the goods in the 
first period. Unless we specify the model fur-
ther, little can be said in general about the 
features of the optimal allocation decision. 
The first-period decision incorporates a few 
dynamic considerations. Bidder ​i​ may be 
present only in ​t = 1,​ in which case ​​θ​i,2​​ = 0,​ 
or alternatively she could only arrive in ​t = 2,​ 
in which case we could take ​​θ​i,1​​ = 0.​ Bidder ​
i​’s true valuation may be learned in ​t = 2,​ 
in which case, we could set ​​θ​i,2​​ ∼ ​F​i​​​( ⋅ ​|​​ ​θ​i,1​​)​​.  
Nevertheless, since the allocation choices 
are finite in the above problem, an optimal 
allocation policy ​​x​​ ∗​​ exists and it is easy to see 
that by setting

	​​ p​ i,t​ ∗ ​​(​r​i,t​​, ​r​−i,t​​)​ ≜ − ​w​−i​​​(​r​t​​)​,​

the mechanism (​​x​​ ⁎​​, ​​p​​ ⁎​​) is periodic ex post 
incentive compatible.

3.3	 Impossibility of Dominant Strategy 
Implementation

We first illustrate the impossibility of 
implementing the efficient allocation rule in 
dominant strategies by specifying the above 
example even further.

We consider two bidders, thus ​I = 2,​ who 
compete for a single object, thus ​K = 1​, in 
a two-period model. We suppose further 
that bidder 1 draws a valuation ​​θ​1​​​ uniformly 
from ​​[0, 1]​​ in period ​1​. Her valuation for the 
good remains unchanged (but is discounted) 
in period ​2​. Bidder ​2​ is active only in period ​
2​, in the sense that her valuation for allo-
cation in ​t = 1​ is 0 with probability 1. Her 
valuation ​​θ​2​​​ in period ​t = 2​ is independent 
of the valuation of bidder ​1​ and also drawn 
from the uniform distribution on ​​[0, 1]​​. The 
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allocation decision is nontrivial in ​t = 2​ only 
if the good was not allocated in ​t = 1​, i.e., if 
​​K​2​​ = 1​. In this case, ​​x​ 1,2​ ∗ ​​ (r)​ = 1​ and 
​​x​ 2,2​ ∗ ​​ (r)​ = 0​ if ​​r​1,1​​ ≥ ​r​2,2​​,​ otherwise ​​x​ 1,2​ ∗ ​​ (r)​ = 0​ 
and ​​x​ 2,2​ ∗ ​​ (r)​ = 1​.

The efficient allocation in ​t = 1​ gives:

	​​ x​​ ∗​​(​θ​1​​)​ = 1  ⇔ ​ θ​1​​  ≥  δE​[max​{​θ​1​​, ​​θ ̃ ​​2​​}​]​,​

which results in a threshold value ​​θ​​ ∗​​ to allo-
cate the object to the first bidder in the first 
period if:

	​​ θ​1​​  >  ​θ​​ ∗​  = ​  1 _ δ ​ − ​√ 
_

 ​ 1 _ 
​δ​​ 2​

 ​ − 1 ​.​

The threshold ​​θ​​ ∗​​ is strictly increasing in the 
discount factor ​δ​ as the future realization 
of ​​θ​2​​​ provides a greater option value with a 
higher discount factor.

Green and Laffont (1977) and Holmström 
(1979) show that the transfer rules for effi-
cient mechanisms are uniquely pinned 
down (up to a constant) when the type sets 
are path-connected. Combining this with 
the logic of VCG mechanisms allows us to 
conclude that in ​t = 1​, the expected transfer 
of bidder ​1​ depends on her reported type ​​
r​1,1​​​ only through its impact on the efficient 
allocation:

(1) ​ E​[​p​1​​​(​r​1,1​​, ​r​2,2​​)​]​ 

= − E​[δ ​r​2,2​​ ​x​ 2,2​ ∗ ​​ (​r​1,1​​, ​r​2,2​​)​ + ​ϕ​1​​​(​r​2,2​​)​]​​

where the (arbitrary) component function 
​​ϕ​1​​​(​r​2,2​​)​​ that enters the price ​​p​1​​​ depends only 
on the report of bidder ​2​.

The payment ​​p​1​​​ of bidder ​1​ displays no 
interaction between her report and the 
report of bidder ​2​ beyond their joint effect 
on the payoff to bidder 2 in the efficient allo-
cation rule, the first term on the right-hand 
side of (1). Now, in order to secure the effi-
cient decision in period ​t = 1​, the transfer 
in equation (1) must be calculated using the 
truthful reporting strategy for bidder 2 (and 
hence the true distribution of ​​θ​2​​​) in ​t = 2​.

But now we can show that these transfers 
can’t possibly implement truthful reporting 
as a dominant strategy for player ​1​. To see 
this, suppose that bidder ​1​ expects that bid-
der 2 does not report truthfully, but rather 
reports ​​r​2,2​​ = 0​ for all ​​θ​2​​​, and thus

	​ E​[​r​2,2​​ ​x​ 2,2​ ∗ ​​ (​r​1,1​​, ​r​2,2​​)​]​  =  0.​

Now truthful reporting does not constitute 
an optimal report in period ​t = 1​. Under this 
candidate reporting strategy of bidder ​2​ and 
given the payment rule, bidder ​1​ would opti-
mally exaggerate her type in period ​t = 1​ and 
report ​​r​1,1​​ > ​θ​​ ∗​​ for all valuation ​​θ​1​​ > 0​ since 
she would prefer an early allocation of the 
object, or

	​​ θ​1​​  >  δ ​θ​1​​,​

and given her expectation about the report-
ing strategy of bidder ​2​, she would not forego 
any compensation she might have received if 
the object were to be allocated to bidder ​2​ 
in period ​2​. Thus, dominant strategy imple-
mentation is impossible to guarantee even 
in this elementary two period allocation 
problem.

Notice that a similar impossibility argu-
ment would emerge if bidder ​1​ would 
expect bidder ​2​ to report ​​r​2,2​​  =  1​ for all ​​
θ​2​​​. In this case, bidder ​1​ would not report 
truthfully, but rather downward misreport 
in order to obtain the compensatory pay-
ments due to the high report of bidder ​2​
since now bidder ​1​ would expect to get 
​E​[​r​2,2​​ ​x​ 2,2​ ∗ ​​ (​r​1,1​​, ​r​2,2​​)​]​  =  1​.

Thus, in dynamic mechanism design prob-
lems, incentive compatibility in dominant 
strategies is too demanding. This example 
also shows that implementing the efficient 
allocation rule will typically not be detail 
free, and in particular will depend on the 
common prior regarding the distribution 
of the types. In the current example, the 
efficient allocation decisions in the initial 
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period (the computation of ​​θ​​ ∗​​) depended 
on the distribution of future types, and as 
a result, the optimal mechanism—in par-
ticular the transfer function—also reflects 
the informational details of the valuation  
process.4

3.4	  The Dynamic Pivot Mechanism

For the remainder of this section, we 
concentrate on two particular efficient 
mechanisms that have further desirable 
properties. We begin with the dynamic 
pivot mechanism, introduced in Bergemann 
and Välimäki (2010), which ensures that 
each agent’s payoff in the mechanism cor-
responds to her marginal contribution to 
the societal welfare after all histories. In the 
dynamic pivot mechanism, all agents have 
the correct societal incentives to engage in 
private investments in, e.g., increasing their 
own payoffs through cost-reducing invest-
ments. In the next subsection, we consider 
the dynamic counterpart of the AGV mech-
anism where the focus shifts toward bud-
get balance. For dynamic bargaining 
processes and dynamic problems of public 
goods provision, these considerations are of 
obvious importance just as they are in the 
static case.

We now construct the dynamic pivot 
mechanism for the general model 
described in section 2 under the assump-
tion of independent private values. We 
give an example in the appendix showing 
that dynamic pivot mechanisms do not 
always exist if the values are correlated. 
We recall that in the static pivot mecha-
nism—introduced by Green and Laffont 

4 The failure of dominant strategy implementability in 
dynamic mechanism is similar to the failure of the static 
AGV mechanism to be dominant strategy incentive com-
patible. In both instances, it is critical to use the same 
expectations regarding the behavior of the other agents in 
the determination of the efficient rule and in the computa-
tion of expected payments for an individual agent.

(1977)—the transfers are constructed as  
follows:

(2)	​ ​p​i​​​(θ)​  =  − ​∑ 
j≠i

​ 
 

 ​​  ​v​j​​​(​x​​ ∗​​(θ)​, ​θ​j​​)​ 

	 + ​∑ 
j≠i

​ 
 

 ​​  ​v​j​​​(​x​ −i​ ∗ ​​ (​θ​−i​​)​, ​θ​j​​)​,​

where ​​x​ −i​ ∗ ​​ (​θ​−i​​)​​ is the optimal allocation if 
agent ​i​ is not participating, thus

	​​ x​ −i​ ∗ ​​ (​θ​−i​​)​  ∈ ​ arg max​ 
​x​t​​∈​X​t​​

​ ​ ​ ∑ 
j≠i

​ 
 

 ​​  ​v​j​​​(​x​t​​, ​θ​j,t​​)​.​

The idea behind the pivotal transfers is to 
equate each agent’s expected payoff to her 
expected contribution to the social value. At 
state ​​(​θ​t​​, ​X​t​​)​,​ we compute the (dynamic) mar-
ginal contribution of agent ​i​:

	​ ​M​i​​​(​θ​t​​, ​X​t​​)​  ≜  W​(​θ​t​​, ​X​t​​)​ − ​W​−i​​​(​θ​t​​, ​X​t​​)​,​

where ​W​ and ​​W​−i​​​ are the value functions 
of social surpluses with and without ​i​ in the 
society (in all future periods), respectively.

In the dynamic pivot mechanism, we show 
that the marginal contribution will also be 
equal to the equilibrium payoff that agent ​i​  
can secure for herself along the socially 
efficient allocation. If agent ​i​ receives her 
marginal contribution in every continuation 
game of the mechanism, then she should 
receive the flow marginal contribution 
​​m​i​​​(​θ​t​​, ​X​t​​)​​ in each period. The flow marginal 
contribution accrues incrementally over 
time and is defined recursively:

(3) ​​ M​i​​​(​θ​t​​, ​X​t​​)​ = ​m​i​​​(​θ​t​​, ​X​t​​)​ + δE ​M​i​​​(​θ​t+1​​, ​X​t+1​​)​.​

A monetary transfer ​​p​ i​ ∗​​(​θ​t​​, ​X​t​​)​​ such that the 
resulting flow net utility matches the flow 
marginal contribution leads agent ​i​ to inter-
nalize her social externalities:

(4) ​​ p​ i,t​ ∗ ​​(​θ​t​​, ​X​t​​)​  ≜  ​v​i​​​(​x​ t​ ∗​, ​θ​i,t​​)​ − ​m​i,t​​​(​θ​t​​, ​X​t​​)​.​
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We refer to ​​p​ i​ ∗​​(​θ​t​​, ​X​t​​)​​ as the transfer of the 
dynamic pivot mechanism. Notice that in 
contrast to the static transfer payment, the 
reported type of agent ​i​ has also an indi-
rect effect through ​δE ​W​−i​​​(​θ​t+1​​, ​X​t+1​​)​​.5 This 
reflects the intertemporal internalization 
of future externalities that is necessary for 
aligning the incentives with the planner’s 
dynamic optimum. Given that we started our 
construction from the requirement that each 
agent receives her full marginal contribution ​
W​(​θ​t​​, ​X​t​​)​ − ​W​−i​​​(​θ​t​​, ​X​t​​)​,​ we are obviously in 
the realm of (dynamic) VCG mechanisms.

THEOREM 1 (Dynamic Pivot Mechanism): 
The dynamic pivot mechanism ​​​{​x​ t​ ∗​, ​p​ t​ ∗​}​​ t=0​ ∞ ​​ is 
ex post incentive compatible and individu-
ally rational.

It should be noted that as in any dynamic 
context, it is hard to pin down the exact tim-
ing of payments. Making a payment of ​p​ in 
period ​t​ has the same payoff consequences 
as making a payment of ​p/δ​ in ​t + 1​. In 
Bergemann and Välimäki (2010), we give 
sufficient conditions for the uniqueness of 
the above payment rule. Similar to the static 
case (Moulin 1986), these conditions require 
a rich domain of possible preferences. In 
the dynamic context, this also requires an 
assumption that amounts to allowing the 
agents to leave the mechanism stochastically. 
By this we mean that after leaving, no more 
transfers can be enacted.

The dynamic pivot mechanism has prop-
erties that other VCG schemes do not nec-
essarily have. All payments are online in the 
sense that once an agent is irrelevant for 
future allocations, she is not asked to make 
any payments. Furthermore, the property of 
equating equilibrium payoffs with marginal 
contributions gives the individual agents 
the socially correct incentives to engage in 

5 Since ​​W​−i​​​(​θ​t​​, ​X​t​​)​  = ​ max​​x​t​​∈​X​t​​​​​{​w​−i​​​(​x​t​​, ​θ​t​​)​ + δE​W​−i​​​(​θ​t+1​​, 
 ​X​t+1​​)​}​.​

privately costly investments in ​​θ​i​​​. For a class 
of dynamic auctions, Mierendorff (2013) 
develops a dynamic Vickrey auction that sat-
isfies a strong ex post individual rationality 
requirement.

We illustrate how the payments in the 
dynamic pivot mechanism are computed for 
the leading example of section 3.3.

EXAMPLE 1 (Dynamic Pivot Mechanism 
for Fixed Capacity Allocation):

We first compute the marginal contribu-
tions of the agents. If agent ​1​ is not present, 
then the expected social surplus is the dis-
counted expected value of the good to bid-
der 2, i.e., ​δ / 2​. The expected social surplus 
at any moment in time when bidder 2 is not 
present is simply ​​θ​1​​.​ If the good has already 
been allocated, then there is no social surplus 
for the continuation problem. Without loss of 
generality, we can restrict attention to inte-
ger allocations, ​x  ∈ ​ {0, 1}​​. The marginal 
contributions of bidder ​1​ in periods ​1​ and ​2​ 
are then:

​​M​1​​​(​θ​1​​, 1)​ = ​​{​​​​θ​1​​ − δ/2,​  if ​x​ 1,1​ ∗  ​​(​θ​1​​)​  =  1,​   δEmax​{​θ​1​​ − ​θ​2​​, 0}​,
​ 

otherwise;
 ​​​

​​M​1​​​(​θ​1​​, ​θ​2​​, 1)​  =  max​{​θ​1​​ − ​θ​2​​, 0}​;​

and similarly for bidder ​2:​

​​M​2​​​(​θ​1​​, 1)​ = ​​{​​​0,​  if ​x​ 1,1​ ∗  ​​(​θ​1​​)​ = 1,​   δEmax​{​θ​2​​ − ​θ​1​​, 0}​,
​ 

otherwise;
 ​​​

and

	​​ M​2​​​(​θ​1​​, ​θ​2​​, 1)​  =  max​{​θ​2​​ − ​θ​1​​, 0}​.​6

6 We recall that, earlier, we adopted the convention that 
we suppress the time index when the conditioning variable 
implicitly defines the time. Thus, ​​M​1​​​(​​θ​1,1​​​) is the marginal 
contribution of player 1 if the object has not been allocated 
yet, i.e., = ​​K​11​​​, in period 1, since the only conditioning 
variable used is the type of bidder 1, which is known in 
period 1.
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Using the implicit definition of the flow mar-
ginal contribution given by (3), we get

 ​​ m​1​​​(​θ​1​​, 1)​  = ​​ {​​​​θ​1​​ − δ/2 ,​  if ​x​ 1​ ∗​​(​θ​1​​)​  =  1,​  
0,

​ 
otherwise.

 ​​​

By equating

	​​ p​1​​​(​θ​1​​, 1)​  = ​ v​1​​​(​x​ i,t​ ∗ ​, ​θ​i,t​​)​ − ​m​i,1​​​(​θ​1,1​​, 1)​,​

we get

  ​​  p​1​​​(​θ​1​​, 1)​  = ​​ {​​​δ/2,​  if ​x​ 1​ ∗​​(​θ​1​​)​  =  1,​  
0,

​ 
otherwise.

 ​​​

Similarly,

 ​​p​1​​​(​θ​1​​, ​θ​2​​, 1)​  = ​ θ​2​​,  if  ​θ​1​​  ≥ ​ θ​2​​, 

 ​p​1​​​(​θ​1​​, ​θ​2​​, 1)​  =  0,  otherwise;​

 ​​p​2​​​(​θ​1​​, ​θ​2​​, 1)​  = ​ θ​1​​,  if  ​θ​2​​  > ​ θ​1​​,

 ​p​2​​​(​θ​1​​, ​θ​2​​, 1)​  =  0,  otherwise.​

This suggests a simple indirect implemen-
tation of the efficient two-period auction. 
Bidder 1 is given the option of purchasing the 
good at the opportunity cost ​δ/ 2​ of allocating 
the good in ​t = 2​. If she does not exercise the 
option, then the good is sold in a second price 
auction without reserve prices in period ​2​. It 
should be noted that finding the right price 
for this indirect implementation is remark-
ably easy in comparison to finding the effi-
cient threshold type ​​θ​​ ∗​.​

More generally, it is quite easy to com-
pute the direct version of the dynamic pivot 
mechanism on the basis of the dynamic 
social surpluses using dynamic programming 
techniques. For example, Bergemann and 
Välimäki (2003, 2006) use the construction 
of the dynamic marginal contribution to solve 
for the equilibrium of dynamic common 

agency problems and dynamic competition 
problems, respectively. These earlier contri-
butions considered symmetric but imperfect 
information environments; Bergemann and 
Välimäki (2010) establish that the underlying 
principles extend to asymmetric information 
environments as well, and then can solve pri-
ority queuing problems as analyzed by Dolan 
(1978).

Since we have assumed independent types, 
additional assumptions on the connectedness 
of the type spaces and payoff functions guar-
antee a dynamic payoff equivalence result via 
the envelope theorem of Milgrom and Segal 
(2002). By imposing an individual rationality 
or participation constraint for the agents, it is 
often possible to show that similar to the static 
setting, the dynamic pivot mechanism maxi-
mizes the expected transfers from the agents 
among all efficient mechanisms. A negative 
surplus in the dynamic pivot mechanism then 
implies an impossibility result mirroring the 
static Myerson–Satterthwaite theorem on 
budget balanced efficient dynamic mech-
anisms that satisfy incentive compatibility 
and individual rationality. Skrzypacz and 
Toikka (2015) consider a model of repeated 
bilateral monopoly with varying degrees of 
persistence for the buyer’s valuations and 
the seller’s costs. With perfectly persistent 
types, the Myerson–Satterthwaite theorem 
applies and efficient trade is impossible. 
With independent types, the expected gains 
from future trades can be used to relax the 
participation constraint and efficient trad-
ing may become possible. Different levels of 
persistence then determine different sets of 
efficient budget balanced trading rules for the  
problem.

3.5	 Balancing the Budget

The static VCG mechanism is defined by ​​
(​x​​ ∗​​(θ)​, p​(θ)​)​,​ and for all ​i​ and all ​θ,​ we have

	​​ p​i​​​(r)​  =  − ​w​−i​​​(r)​ + ​ϕ​i​​​(​r​−i​​)​,​
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where the second component of the trans-
fer function, ​​ϕ​i​​​(​r​−i​​)​​ of agent ​i​ is an arbitrary 
function that only depends on the reports 
of the other agents, ​​r​−i​​​. In other words, 
the transfer of agent ​i​ depends on her own 
announcement only through its impact on 
the other players’ payoffs via the efficient 
allocation rule. The static VCG mechanisms 
are dominant strategy incentive compati-
ble, i.e., they induce truth telling as a best 
response against any reported type vector of 
other agents. As a result, a modified mecha-
nism where

	​​ p​i​​​(r)​  =  − ​E​​θ​−i​​​​​[​w​−i​​​(​r​i​​, ​θ​−i​​)​ + ​ϕ​i​​​(​θ​−i​​)​]​,​

and the expectation is taken with respect the 
marginal distribution on the other agents’ 
types (recall that we have assumed inde-
pendence here) is incentive compatible 
as long as the other agents announce their 
types truthfully. Budget balance is obtained 
by specifying (with the understanding that ​
I + 1  =  1​):

	​​ ϕ​i+1​​​(​r​−​(i+1)​​​)​ ≜ ​E​​r​−i​​​​​[​w​−i​​​(​x​​ ∗​​(​r​i​​, ​r​−i​​)​, ​r​−i​​)​]​.​

Notice that we have to give up on dom-
inant strategy incentive compatibility here. 
If the other players lie about their type, the 
first term in the transfer does not equate the 
bidder’s payments to the social surplus and 
hence it may well be that lying is optimal for ​
i​ too. Observe the similarity of this reasoning 
to the failure of dominant strategy incentive 
compatibility in the dynamic example above. 

For the dynamic mechanism,  the trans-
fer payments must be constructed in such a 
way that similar problems do not arise due 
to the dynamic nature of the announce-
ments. Supposing that the incentive pay-
ments are made as above, based on the 
expectations over other players’ types, but 
that the realizations of other players’ types 
can be inferred from the allocations prior 
to one’s  own announcement, the simple 

AGV-mechanism is no longer incentive com-
patible. In order to secure incentive compat-
ibility, Athey and Segal (2013) modify the 
transfers to overcome this problem by align-
ing agent ​i​’s incentive pay with the change in 
the expected externality on the other agents 
resulting from ​i​’s report.

The resulting balanced budget mecha-
nisms can be quite complicated and it may 
not be easy to find natural indirect mecha-
nisms for their implementation. One instance 
where this can be done is in the context of 
dynamically allocating the capacity shares 
in a joint project when private information 
about future profits arrives over time. In a 
dynamic sharing problem, Kuribko et al. 
(2017) find a version of the dynamic mecha-
nism with budget balance that can also han-
dle individual rationality constraints.

3.6	 Interdependent Values and Correlation

In a dynamic setting, it is possible to use 
the intertemporal correlation of the reports 
of the agents and this allows for new types 
of implementations of the efficient allocation 
path. To see this, consider the following sim-
ple version of the famous lemons problem 
with common values.

EXAMPLE 2 (Common Values versus 
Correlated Private Values): 

Two agents decide the allocation of an 
indivisible object in a two-period model. 
The allocation ​​x​t​​ ∈ ​{1, 2}​​ for ​t ∈ ​ {1, 2}​​  
records who gets the object in period ​t​. Agent ​1​  
is privately informed of the quality of the 
object, i.e., ​​θ​1​​  ∈ ​ [0, 2]​​, and her value from 
consuming the good in ​t = 1​ is given by her 
private type ​​θ​1​​​. If the good is allocated to 
agent ​2​ in ​t = 1,​ then agent 2 receives her 
gross utility ​​θ​2​​ = 2​θ​1​​ − 1​ after consuming 
the good in period ​t = 1​. In ​t  =  2​, agent ​2​  
just reports her type ​​θ​2​​​ and transfers are 
made.

If all transactions and transfers take place 
in ​t = 1​, then the efficient allocation rule 
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where agent 1 consumes the good if and only if 
​​θ​1​​ ≤ 1​ is not monotone and hence not incen-
tive compatible in the static mechanism. By 
allowing agent 2 to learn her value after con-
suming the good, the common values lemons 
model becomes a dynamic private values 
model since, conditional on knowing ​​θ​2​​,​  
player 2 does not care about ​​θ​1​​.​ As a result, 
we can compute the efficient team mecha-
nism to support trade here. The reported 
​​θ​1​​​ determines the allocation: there is trade 
if and only if ​​θ​1​​ ≥ 1​ and the reported ​​θ​2​​​ 
determines the payment ​​t​1​​ = ​θ​2​​​ that agent ​1​ 
receives in ​t = 1​.

The idea that incentive constraints can 
be relaxed by using future realizations of 
correlated signals is elaborated further in 
Mezzetti (2004, 2007) and Deb and Mishra 
(2014). For many applications, experienced 
utilities after trade are natural signals of this 
type. It should also be noted that there are 
often quite natural implementations of the 
efficient mechanisms. Contracts with mon-
ey-back clauses can be used to facilitate 
trade that would otherwise be limited by the 
lemons problem.

Dynamic VCG mechanisms have been 
generalized to cover the case of correlated 
and interdependent values in Liu (2013). 
Correlation across agents allows for the use 
of dynamic versions of mechanisms in the 
style of Crémer and McLean (1985, 1988). 
Liu (2013) also covers the case of interde-
pendent values but independently distrib-
uted signals and develops a dynamic version 
of the generalized VCG mechanism along 
the lines of the static version of Dasgupta 
and Maskin (2000).

4.  Optimal Dynamic Mechanisms

We now shift our attention from socially 
efficient mechanisms to revenue-maximizing, 
or (revenue) optimal mechanisms. In static 

environments, the key economic insight 
is the resulting trade-off between effi-
ciency and information rent left to the 
agents. In socially efficient mechanisms, 
this trade-off is absent due to quasi-linear 
preferences. After all, the utilitarian solu-
tion does not preclude information rents. 
By contrast, if a seller tries to maximize 
her sales revenue or if a regulator puts a 
lower weight on profits than on consumer 
surplus in her objective function, then 
this trade-off emerges. Deviations from 
the surplus-maximizing allocations are 
generally optimal, since the reductions in 
information rent to the privately informed 
parties more than compensate for the losses 
in the social surplus. For dynamic mod-
els of mechanism design, the key issue is 
then how information rent accrues to pri-
vately informed agents over the contracting 
horizon.

Consider a model where a privately 
informed agent contracts with an uninformed 
principal at the beginning of a dynamic allo-
cation problem. If the agent knows all her 
future information types, the model is a 
multidimensional mechanism design prob-
lem and as it is well-known, it is very hard 
to characterize the optimal contract in such 
environments. Fortunately, it is often quite 
reasonable that the agent does not know her 
future types. Of course, her current type 
allows her to predict her future types more 
accurately than the principal (except in the 
less interesting case of i.i.d. types). The main 
analytical challenge in optimal dynamic con-
tracting problems is to characterize how the 
initial private information affects the future 
information rents and how the optimal allo-
cation trades off these effects relative to the 
social surplus maximizing allocation.

Optimal dynamic contracting in an envi-
ronment where the agent’s private informa-
tion may change over time appears first in 
Baron and Besanko (1984). They consider 
a two-period model of a regulator facing a 
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monopolist with a privately known mar-
ginal cost in the first period and where the 
second-period marginal cost is unknown to 
both parties (but may depend stochastically 
on the first period cost). Within a similar 
model, Riordan and Sappington (1987) ana-
lyze task assignment in a similar two-period 
principal–agent model. Besanko (1985) cov-
ers a dynamic regulation problem where the 
privately known cost parameter is either i.i.d. 
over time or follows a first-order autoregres-
sive process.

In the past decade, the literature has devel-
oped considerably beyond these early con-
tributions. Much of the early literature was 
focused on the case where the allocation 
problem itself is assumed to be time invari-
ant in the sense that the set of feasible choices 
in ​t​ is independent of allocation decisions for ​
s < t​. These papers also assumed that the 
distribution of future types is independent of 
current allocation decisions. The first assump-
tion is violated in any dynamic problem of 
capacity allocation, and also in models with 
a fixed decision date but a dynamic flow of 
private information prior to the decision. The 
second assumption is violated in models with 
endogenous learning about the payoffs from a 
fixed set of alternatives. Examples of this type 
include dynamic assignment of workers to 
tasks or dynamic sales of experience goods.

The first analysis of the revenue-maximizing 
dynamic sales problem with a fixed selling 
date appears in Courty and Li (2000) under 
the name of sequential screening. Board 
(2007) extended the analysis to the case 
where the sales date itself is also endoge-
nously chosen. Battaglini (2005) considers 
a nonlinear pricing model (with variable 
quantity or quality) in which the buyer’s 
valuation changes over time according to a 
commonly known Markov process with two 
states. In contrast to the earlier work, he 
explicitly considers an infinite time horizon 
and shows that the distortion due to the ini-
tial private information vanishes over time.

Pavan, Segal, and Toikka (2014) present 
a general infinite-horizon model that allows 
for general allocation problems and endog-
enous type processes. Their model encom-
passes the earlier literature with continuous 
type spaces and emphasizes the connec-
tions to static allocation problems of the 
Myersonian type. They obtain necessary 
conditions for incentive compatibility and 
present a variety of sufficient conditions for 
revenue-maximizing contracts for specific 
classes of environments.

Our goal here is to use the tools from 
static mechanism design as much as possi-
ble to understand the basic analytics of the 
dynamic problem. Hence we start with a brief 
review of the main results in static mecha-
nism design. Then we connect the static and 
dynamic formulations by transforming the 
original dynamic problem into an equivalent 
one where it is easier to separate the initial 
private information and future information 
that can be taken to be independent of the 
initial type, as proposed in Eső and Szentes 
(2007). After formulating the optimization 
problem of the principal, we discuss some 
examples with explicit solutions to the opti-
mal contracting problem.

4.1	 Preliminaries from Static Mechanism 
Design

Not surprisingly, the assumptions needed 
for tractability in static mechanism design 
problems are also needed in the dynamic 
case. We assume that all payoff functions 
are linear in transfers, the agents’ types 
are drawn from  intervals of the real line, ​​
Θ​i​​ = ​[​​θ 

¯
 ​​i​​, ​​   θ​​i​​]​ ⊂ 핉,​ ​​​θ ̃ ​​i​​​ is independent of ​​​θ ̃ ​​j​​​, 

and that the agents’ payoff functions ​​v​i​​​(x, θ)​​ 
are strictly supermodular in ​​(x, ​θ​i​​)​.​ To make 
the connection to the dynamic setting more 
immediate, we allow the allocation decision ​
x  ∈  X​ to be multidimensional. In the pre-
sentation below, we concentrate on the case 
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with a single agent and therefore we omit the 
subscripts.7 A direct mechanism ​​(x​(θ)​, p​(θ)​)​​ 
is incentive compatible if for all types ​θ  ∈  Θ​ 
and all reports ​r  ∈  Θ,​ we have

 ​ U​(θ; θ)​  ≜  v​(x​(θ)​, θ)​ − p​(θ)​ 

	 ≥  v​(x​(r)​, θ)​ − p​(r)​  ≜  U​(θ; r)​,​

and let

	​ V​(θ)​  ≜  U​(θ; θ)​.​

The envelope theorem by Milgrom and 
Segal (2002) gives the following necessary 
condition for incentive compatibility, their 
theorems 2 and 3, respectively. We denote 
by ​​v​2​​​(x, θ) the partial derivative with respect 
to the second argument, here θ​.​

THEOREM 2 (Payoff Equivalence): Assume 
that ​v(x, ⋅ )​ is differentiable for all ​x  ∈  X​ and 
that there exists a ​K  <  ∞​ such that for all ​
x  ∈  X​ and all ​θ,​

	​​ |​v​2​​​(x, θ)​|​  ≤  K.​

Then ​V​(θ)​​ is absolutely continuous, 
​​V ′ ​​(θ)​  = ​ v​θ​​​(x​(θ)​, θ)​​ for almost every ​θ,​ and 
therefore

(5)	​ V​(θ)​  =  V​(​θ 
¯

 ​)​ + ​∫ ​θ 
¯

 ​​ 
θ
​​ ​v​2​​​(x​(s)​, s)​ ds.​

This result is called the payoff equivalence 
theorem because we can now pin down the 
transfers by just determining the physical 
allocation ​x​(θ)​​ and the additive constant 
​V​(​θ 

¯
 ​)​:​

(6)  ​  p​(θ)​  =  v​(x​(θ)​, θ)​ − V​(​θ 
¯

 ​)​ 

	 − ​∫ ​θ 
¯

 ​​ 
θ
​​ ​v​2​​​(x​(s)​, s)​ ds.​

7 Since types are independent, incentive compatibility 
reduces to individual incentive compatibility by taking 
expectations over the other agents’ types.

With the help of this necessary condition 
for implementability, we can rewrite the full 
incentive compatibility requirement as the 
following integral monotonicity condition:

(7) ​​ ∫ 
r
​ 
θ
​​​(​v​2​​​(x​(s)​, s)​ − ​v​2​​​(x​(r)​, s)​)​ ds  ≥  0.​

As an intermediate step toward the 
dynamic analysis, consider for a moment 
the case where the principal and the agent 
can write contracts based on a publicly 
observable sequence of random variables, 
​​​{​​ε ̃ ​​t​​}​​ t=1​ T ​ ​, so that the allocation ​​x​0​​​ is deter-
mined by the initial private information ​θ​ 
and ​​x​t​​​ is determined by ​θ​ and the sequence 
of realizations ​​ε​​ t​​ ​≜​ ​(​ε​1​​, … , ε ​t​​ )​​​​. Assume also 
that the following separability requirement is 
satisfied:

	​​ v​t​​​(x, θ, ​ε​​ T​)​  = ​ v​t​​​(​x​t​​, θ, ​ε​​ t​)​.​

Incentive compatibility is then equivalent to 
requiring that for all ​θ, r  ∈  Θ,​

(8) ​​ ∫ 
r
​ 
θ
​​ ​E​ε​​​[​ ∑ 

t=0
​ 

∞
 ​​ ​δ​​ t​ ​ ∂ ​v​t​​ _ ∂ θ ​​(​x​t​​​(s, ​​ε ̃ ​​​ t​)​, s)​ 

	 − ​ ∑ 
t=0

​ 
∞

 ​​ ​δ​​ t​ ​ ∂ ​v​t​​ _ ∂ θ ​​(​x​t​​​(s, ​​ε ̃ ​​​ t​)​, r)​]​ds  ≥  0​.

In the static setting, single-dimensional 
types and single-dimensional allocations 
with supermodular payoff functions yield 
a full characterization of incentive compat-
ible allocation rules: a mechanism is incen-
tive compatible if and only if the physical 
allocation is monotone and the transfers are 
pinned down by the payoff equivalence the-
orem. The static problem is then solved by 
maximizing the designer’s objective function 
over the feasible set of monotone allocation 
rules.

Unfortunately, it is not possible to find an 
equally attractive characterization for incen-
tive compatibility in the dynamic model. In 
some sense, this is not too surprising. The 
static formula for contingent allocations in 
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equation (8) requires monotonicity on aver-
age when taking expectations over ​​{ ​​ε ̃ ​​t​​ }​ t=1​ T ​ .​ If  
​​x​t​​​(θ, ​​ε ̃ ​​​ t​)​​ is monotonic in ​θ​ for all realizations ​​ε​​ t​,​ 
then incentive compatibility follows. This suf-
ficient condition is obviously not a necessary 
condition, since the sum of non-monotonic 
functions may well be monotonic.

In the remainder of this section, we 
express the process of types ​​θ​t​​​ in terms of the 
initial type ​​θ​0​​​ and a sequence of independent 
(uniform) random variables ​​{ ​​ε ̃ ​​t​​ }​ t=1​ T ​ .​ The 
main analysis considers the case where the 
​​{ ​​ε ̃ ​​t​​ }​ t=1​ T  ​​ are privately observed by the agent, 
but we also discuss the connections to the 
static case, above, where all future informa-
tion ​​{ ​​ε ̃ ​​t​​ }​ t=1​ T  ​​ is publicly observed.

4.2	 Orthogonalized Information

Eső and Szentes (2007) emphasize the 
benefits from distinguishing between private 
information at the time of contracting (cap-
tured in ​​θ​0​​​) and subsequent independent 
private information. With Markovian types, 
each ​​​θ ̃ ​​t​​​ is statistically dependent on ​​​θ ̃ ​​t−1​​​ and 
as a result, all future types are also influenced 
by the initial type ​​​θ ̃ ​​0​​ .​ We present, below, an 
equivalent formulation for the type process ​​
{ ​​θ ̃ ​​t​​ }​ t=0​ T ​ ​ that allows us to distinguish in a trans-
parent manner between the initial and the 
future private information despite the statis-
tical dependency.

Consider an arbitrary random variable ​​x ̃ ​​ 
with distribution function ​F​. Then the ran-
dom variable ​​y ̃ ​​ , with 

	​​ y ̃ ​  ≜  F​(​x ̃ ​)​,​

is by construction uniformly distributed on ​
[0, 1]​. Building on this simple observation, 
consider next a random variable ​​​θ ̃ ​​1​​​ with a 
conditional distribution ​F​( ⋅ | ​θ​0​​)​​ dependent 
on some realization ​​θ​0​​​. Then 

	​​​ ε ̃ ​​1​​  ≜  F​(​​θ ̃ ​​1​​ | ​θ​0​​)​​

is uniformly distributed for all ​​θ​0​​ .​ As a 
result, ​​​ε ̃ ​​1​​​ is independent of ​​θ​0​​​ by construc-
tion. We can view ​​ε​1​​​ as the realized percentile 
in the conditional distribution ​F​( ⋅ | ​θ​0​​)​​. Since 
​F​( ⋅ | ​θ​0​​)​​ is an increasing function, knowl-
edge of ​​ε​1​​​ and ​​θ​0​​​ allows for solving 
​​θ​1​​  = ​ F​​ −1​​(​ε​1​​ | ​θ​0​​)​.​8 Hence, the information 
content of ​​(​​θ ̃ ​​0​​ , ​​θ ̄ ​​1​​)​​ is the same as the infor-
mation content of ​​(​​θ ̃ ​​0​​ , ​​ε ̃ ​​1​​)​.​ 

As a final preparatory step, let us 
consider the effect of ​​​θ ̃ ​​0​​​ on ​​​θ ̃ ​​1​​​. Letting 
​​θ​1​​  = ​ F​​ −1​​(​ε​1​​ | ​θ​0​​)​,​ we can evaluate the effect 
of a change in ​​θ​0​​​ on ​​θ​1​​​ for a fixed ​​ε​1​​​:9

	​​ 
∂ ​F​​ −1​​(​ε​1​​ | ​θ​0​​)​ _________ ∂ ​θ​0​​

 ​  = − ​ 
​ 
∂ F​(​θ​1​​ | ​θ​0​​)​ _______ ∂ ​θ​0​​

 ​
 _______ 

f ​(​θ​1​​ | ​θ​0​​)​
 ​  ≜ ​ I​1​​​(​θ​0​​, ​θ​1​​)​.​

The function ​​I​1​​​( ⋅ )​​ is called the impulse 
response function in Pavan, Segal, and 
Toikka (2014) and it will play a key role in 
the following analysis. Since ​​​θ ̃ ​​0​​​ is indepen-
dent of ​​​ε ̃ ​​1​​ ,​ the distribution of ​​​ε ̃ ​​1​​​ does not 
vary as ​​θ​0​​​ changes. This fact implies that a 
characterization of the information rent of 
the buyer follows by the envelope theorem 
if ​∂ F​(​θ​1​​ | ​θ​0​​)​/∂ ​θ​0​​​ and ​f ​(​θ​1​​ | ​θ​0​​)​​ are sufficiently 
well-behaved. We refer to 

	​​ (​​θ ̃ ​​0​​ , ​​ε ̃ ​​1​​ , ​F​​ −1​​(​ε​1​​ | ​θ​0​​)​)​​

as the canonical (orthogonal) representation 
of the original information.

Since ​​​θ ̃ ​​0​​​ is independent of ​​​ε ̃ ​​1​​​ by construc-
tion, we may view ​​​θ ̃ ​​0​​​ as the true private infor-
mation to the agent and ​​​ε ̃ ​​1​​​ as information not 
available at the moment of contracting. If ​​​ε ̃ ​​1​​​ 

8 If ​F​( ⋅ ​|​​ ​θ​0​​)​​ is constant for some interval or if 
it has upward jumps, we can define ​​F​​ −1​​(​ε​1​​​|​​ ​θ​0​​)​  
=  inf ​{​θ​1​​​|​​F​( ⋅ ​|​​ ​θ​0​​)​  ≥ ​ ε​1​​}​.​

9 Since 
​​ε​1​​  ≜  F​(​F​​ −1​​(​ε​1​​​|​​ ​θ​0​​)​​|​​ ​θ​0​​)​,​

the second equality in the formula follows by total differen-
tiation with respect to ​​θ​0​​.​
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were publicly observable and contractible, 
then we would indeed be dealing with the 
static problem in the previous subsection. If 
the solution of the mechanism design prob-
lem with observable and unobservable ​​​ε ̃ ​​1​​​ 
coincide, then the principal does not have 
to give any information rent to the agent in 
excess of that contained in ​​​θ ̃ ​​0​​ .​ We will dis-
cuss below when this conclusion holds and 
when it does not.

As long as ​​​θ ̃ ​​1​​​ is first order stochastically 
increasing in ​​​θ ̃ ​​0​​ ,​ we have ​​I​1​​  ≥  0​. In the 
appendix, we provide a construction of the ​
t​-period impulse responses for a general 
Markov process ​​{ ​​θ ̃ ​​t​​ }​ t=0​ T ​ ​ and we record here 
that 

​​I​t​​​(​θ​​ t​, ​x​​ t−1​)​  ≜  − ​ ∏ 
k=1

​ 
t
 ​​ ​ 

​ 
∂ F​(​θ​k​​ | ​θ​k−1​​, ​x​k−1​​)​  ____________ ∂ ​θ​k−1​​

 ​
  _____________  

f ​(​θ​k​​ | ​θ​k−1​​, ​x​k−1​​)​
 ​ ,​

where we allow the transition function to 
depend on the current state and the current 
allocation, thus a controlled stochastic pro-
cess. Since we will make use of an envelope 
theorem, we assume from now on that the 
impulse response functions are bounded.

A very rough protocol for solving dynamic 
mechanism design problems can now be 
given as follows. First, find the dynamic 
equivalent of the envelope formula (5) in 
the payoff equivalence theorem to compute 
the transfers as a function of the allocation 
process. Second, consider the relaxed princi-
pal’s problem where her payoff is maximized 
subject to the constraint that the transfer 
is computed from (6). Third, verify that 
the obtained solution satisfies the dynamic 
equivalent of the full incentive compatibility 
requirement (7). We pursue this program in 
the next few subsections.

4.3	 Dynamic Payoff Equivalence

Since the dynamic mechanism design 
problem inherits the trade-off between 

efficiency and information rent from the 
static problem, we must find a characteri-
zation for the information rent in terms of 
the allocation as in the static payoff equiv-
alence theorem. This is where the above 
orthogonalized model becomes useful. In a 
model of perfect commitment, the mecha-
nism designer maximizes her payoff from the 
perspective of ​t = 0​. The orthogonalization 
gives a tractable solution for the agent’s equi-
librium payoff in ​t = 0​ (and hence also her 
expected transfers).

Recall that in a dynamic direct mechanism ​​
(x, p)​​ the agent reports her type ​​θ​t​​​ at each 
​t​. Any allocation rule ​x​ under truthful report-
ing induces a stochastic process whose tran-
sitions are given by: 

	​​ θ​t+1​​  ∼  F​( ⋅ | ​θ​t​​, ​x​t​​)​,​

and we denote this process by ​λ [x]​. By the 
dynamic revelation principle in Sugaya and 
Wolitzky (2017), it is without loss of gener-
ality to consider a dynamic direct mecha-
nism where the buyer reports her type ​​θ​t​​​ 
truthfully on equilibrium path in each ​t​, and 
any such mechanism is said to be incentive 
compatible.

We want to compute the equilibrium pay-
off to the agent with initial private informa-
tion ​​θ​0​​:​ 

​V​(​θ​0​​)​ 

  = ​ E​​ λ​[x]​​​[​ ∑ 
t=0

​ 
T

  ​​​δ​​ t​​(v​(​x​t​​​(​θ​t​​, ​h​t​​)​, ​θ​t​​)​ − ​p​t​​​(​θ​t​​, ​h​t​​)​)​]​,​

where the expectation is taken with respect 
to ​λ​[x]​​. The following theorem is a special 
case of the characterization of local incentive 
compatibility in  theorem 1 of Pavan, Segal, 
and Toikka (2014).10

10 Modulo changing the notation for a different starting 
date and starting history, the same characterization holds 
for ​∂ ​V​s​​​(​θ​s​​, ​θ​​ s−1​)​/∂ ​θ​s​​​ for all ​s​ and all ​​θ​​ s​  ∈ ​ Θ​​ s​.​
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THEOREM 3 (Dynamic Revenue Equiv-
alence): If ​(x, p)​ is incentive compatible, 
then ​​V​0​​(​θ​0​​)​ is Lipschitz continuous and has 
almost everywhere the derivative:

(9) ​ V′​(​θ​0​​)​ 

= ​ E​​ λ​[x]​​​[​ ∑ 
t=0

​ 
T

  ​​ ​I​t​​​(​θ​​ t​, ​x​​ t−1​)​ ​δ​​ t​ ​ 
∂ ​v​t​​​(​x​t​​​(​θ​t​​, ​h​t​​)​, ​θ​t​​)​

  _____________ ∂ ​θ​t​​
 ​ ]​.​

The reason for using the canonical repre-
sentation is that it allows for an application of 
the Milgrom–Segal envelope theorem more 
easily than the original formulation. The rep-
resentation also shows that the equilibrium 
payoff to the agent from truthful reporting is 
the same in the original game and the game 
where the ​​​ε ̃ ​​t​​​ are publicly observed. This fol-
lows immediately from the assumption of 
truth telling and the envelope formula. We 
will return to this issue, but it should be 
noted already here that there are allocations 
where truth telling is not optimal in a mech-
anism with privately observed ​​​ε ̃ ​​t​​​ but where 
the allocation rule can be implemented with 
observable ​​​ε ̃ ​​t​​.​ 

As in the static case, the payoff equivalence 
theorem shows that the (dynamic) allocation 
pins down the agent’s payoff, and therefore 
her transfers, up to a constant. To interpret 
the result, let 

	​ U​(x, θ)​  ≜ ​  ∑ 
t=0

​ 
T

  ​​ ​δ​​ t​ ​v​t​​​(​x​t​​, ​θ​t​​)​​

so that

	​​  ∂ U _ ∂ ​θ​t​​
 ​  = ​ δ​​ t​ ​ ∂ ​v​t​​ _ ∂ ​θ​t​​

 ​.​

The derivative of the indirect utility (9) then 
becomes:

	​​ V​ 0​ ′ ​​(​θ​0​​)​  =  E​ ∑ 
t=0

​ 
T

  ​​ ​I​t​​​(​θ​​ t​, ​x​​ t−1​)​​ ∂ U _ ∂ ​θ​t​​
 ​​.

The impulse response function measures 
the effect of a small change in ​​θ​s​​​ on ​​θ​t​​​ and 
​∂ U/∂ ​θ​t​​​ measures the induced change in 
period ​t​ utility. All the other effects across 

periods depend on the reported types, not 
the true types. The transfers that support 
the indirect utility of the agent can then be 
derived just as in the static model.

4.4	 Dynamic Incentive Compatibility

Characterizing incentive compatible 
dynamic mechanisms is not hard at a very 
abstract level. A counterpart for the static 
integral monotonicity condition in equa-
tion (7) can be given as follows. A mech-
anism ​​(x, p)​​ is incentive compatible if the 
transfers are computed from formula (9) and 
if for each ​s,​ ​​θ​​ s​​, and and report ​​m​s​​​ in period ​s,​ 

(10) ​​ ∫ ​m​s​​
​ 

​θ​s​​
​​​[​ 
∂​V​s​​​(q, ​θ​​ s−1​)​

 ___________ 
∂ ​θ​s​​

 ​  − ​ 
∂ ​V​ s​ 

​m​s​​​​(q, ​θ​​ s−1​)​
  ___________ 

∂ ​θ​s​​
 ​ ]​dq ≥ 0,​

where ​∂ ​V​ s​ 
​m​s​​​​(q, ​θ​​ s−1​)​/∂ ​θ​s​​​ is the derivative of 

the continuation payoff with respect to the 
true type ​q​ given the reports ​​θ​​ s​ = ​(​m​s​​, ​θ​​ s−1​)​​ 
and given that all future reports are truthful.

Even though a condition for full incentive 
compatibility can be expressed in a concise 
form, it does not yield an easy characteriza-
tion of the feasible mechanisms for the prin-
cipal. Pavan, Segal, and Toikka (2014) offer 
stronger sufficient conditions for imple-
mentability that are easier to verify. A very 
strong sufficient condition is that the payoff 
functions are supermodular in the allocation 
and type and the allocation (at all histories) is 
nondecreasing in all types.

It should also be noted that while the 
canonical representation is convenient for 
proving the payoff equivalence theorem, 
it is not helpful for analyzing full incentive 
compatibility. When one writes the payoff 
functions in terms of the canonical repre-
sentation ​(​​θ ̃ ​​0​​, ​{​​ε ̃ ​​t​​ }​ t=1​ T ​ , ​{​Z​t​​}​ t=1​ T ​ )​ as defined in 
the appendix using the orthogonal shocks 
​​​ε ̃ ​​t​​​, one obtains:

	​​ v​t​​​(​x​t​​, ​θ​t​​)​  =  v​(​x​t​​, ​Z​t​​​(​θ​0​​, ​ε​​ t​, ​x​​ t−1​)​)​ 

	 ≜ ​​ v ˆ ​​t​​​(​x​t​​, ​ε​​ t​, ​x​​ t−1​)​.​
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In other words, the agent’s utility in 
period ​t​ depends on variables that are 
determined by past and current reported 
types and the whole sequence of realized ​​
ε​t​​.​ The first dependence is present in the 
original model as well, but the second 
type breaks the Markovian nature of the 
agents’ problem. This adds new difficul-
ties into checking full incentive compati-
bility, since checking for optimal behavior 
after non-truthful messages is no longer  
easy.11

4.5	 Optimal Dynamic Mechanism

We proceed to describe the solution of 
the optimal dynamic mechanism design. 
Similar to the static case, we start by consid-
ering a relaxed problem where the only con-
straint for the problem is that the transfers 
are calculated from the payoff equivalence 
theorem.

4.5.1	 Relaxed Problem

We denote the dynamic payoff to the 
mechanism designer by 

	​​  ∑ 
t=0

​ 
T

  ​​ ​δ​​ t​​(​p​t​​ − ​c​t​​​(​x​t​​)​)​.​

She designs a mechanism to maximize her 
own payoff. As always, we can write the 
designer’s payoff as the difference between 
the social surplus and the agent’s information 
rent. Using formula (9) to substitute for the 
payments gives, after the usual integration 
by parts, the following program for maximiz-
ing the designer’s payoff from period ​t  =  0​ 
perspective: 

11 Within the Markovian setting of the original model, 
the future incentives for truth telling are independent 
of past types. Hence if a report is optimal on the equi-
librium path for type ​​θ​t​​,​ it will also be optimal following 
non-truthful reports. 

(11) ​​ max​ 
​(x,p)​

​ ​ ​E​​ λ​[x]​​​ ∑ 
t=0

​ 
T

  ​​​δ​​ t​​(v​(x​(​θ​t​​, ​h​t​​)​, ​θ​t​​)​ 

                  − ​c​t​​​(x​(​θ​t​​, ​h​t​​)​)​)​​

​	 − ​E​​ λ​[x]​​ ​ 
1 − ​F​0​​​(​θ​0​​)​ _ 

f ​(​θ​0​​)​
 ​

× ​[  ​ ∑ 
t=0

​ 
T

  ​​​δ​​ t​ ​I​t​​​(​θ​​ t​, ​x​​ t−1​)​​ 
∂ v​(x​(​θ​t​​, ​h​t​​)​, ​θ​t​​)​

  _______________ ∂ ​θ​t​​
 ​ ]​

	 − ​V​0​​​(​​θ 
¯

 ​​0​​)​.​

The maximization is also subject to period ​0​ 
participation constraints:

	​​ V​0​​​(​θ​0​​)​  ≥  0.​

We denote the first line in the objective 
function by ​​E​​ λ[x]​​[S​(x, θ)​]​​ to represent the 
social surplus. We have built the local incen-
tive compatibility conditions into the objec-
tive function by using the envelope formula 
to represent the buyer’s information rent. If 
the stage payoff functions of the agent are 
supermodular, and if ​​​θ ̃ ​​t+1​​​ is first order sto-
chastically increasing in ​​​θ ̃ ​​t​​​, then the individ-
ual participation constraint typically bind at 
the optimum for the lowest type and thus 
​V​(​​ θ 

̅
 ​​0​​)​  =  0.​ 

Even though the relaxed problem can be 
written rather concisely, solving 

(12) ​​ max​ x​ ​ ​ E​​ λ​[x]​​​[S​(x, θ)​ − ​ 
1 − F​(​θ​0​​)​ _ 

f ​(​θ​0​​)​
 ​ ​  ∑ 

t=0
​ 

T

  ​​ ​δ​​ t​ ​I​t​​ ​ 
∂ ​v​t​​ _ ∂ ​θ​t​​

 ​]​​

involves dynamic programming and is not 
easy, in general. When discussing the appli-
cations below, we shall see some instances 
where more or less explicit solutions to the 
problem exist.
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4.5.2	 Properties of the Solution to the 
	 Relaxed Problem

If the process of ​​{ ​​θ ̃ ​​t​​ }​ t=1​ T ​​  does not depend 
on the allocations ​​x​​ t​​ and if there are no 
intertemporal restrictions on ​​x​t​​ ,​ then a 
point-wise solution is possible as in the static 
case. Examples of this setting were covered 
already in Baron and Besanko (1984) and 
Besanko (1985). In this case, we can deduce 
some immediate properties of equation (12).

First, if the type is perfectly persistent, 
then ​​I​t​​​(​θ​​ t​)​ = 1​ for all ​t​ and ​​θ​​ t​.​ This implies 
that the optimal point-wise solution collapses 
to the static solution to 

(13)	​​ max​ x​ ​​ {​s​t​​​(x, θ)​ − ​ 
1 − F​(​θ​0​​)​ _ 

f ​(​θ​0​​)​
 ​  ​  ∂ ​v​t​​ _ ∂ ​θ​t​​

 ​}​.​

Notice that here the distortions in the alloca-
tion rule remain over time.

Second, if the ​​​θ ̃ ​​t​​​ are independent of ​​​θ ̃ ​​0​​​ for ​
t > 0,​ then ​​x​t​​​ maximizes the social surplus 
for all ​t > 0.​ In this case, initial private infor-
mation has no effect on future types.

Third, if the type process follows an AR(1) 
process:

	​​ θ​t​​  =  λ ​θ​t−1​​ + ​ε​t​​,​

with ​​θ​−1​​  =  0​, then one finds from the mov-
ing average representation, 

	​​ θ​t​​  = ​  ∑ 
s=0

​ 
t

  ​​ ​λ​​ t−s​ ​ε​s​​​,

that ​​I​t​​​(​θ​​ t​)​ = ​λ​​ t​.​ Since we require that 
| ​​I​t​​​(​θ​​ t​)​| < ∞,​ we must have ​λ ≤ 1.​ If we 
have a persistent random walk, i.e., ​λ = 1,​ 
then the solution is as with persistent types. 
If ​λ < 1​, then the distortions from the 
efficient allocation vanish as ​t  →  ∞​. This 
simply reflects the fact that as time goes on, 
the effect of the initial shock ​​θ​0​​  = ​ ε​0​​​ on ​​θ​t​​​ 
vanishes and at the moment of contracting, 
the principal and the agent have almost iden-
tical beliefs about ​​​θ ̃ ​​t​​​ for large ​t​.

4.5.3	 Full Solution

If the relaxed problem allows for an explicit 
solution, one can check if the sufficient con-
ditions for full incentive compatibility are 
satisfied. For the examples that we describe 
below, the solution of the relaxed problem 
can be characterized in enough detail to 
allow us to verify sufficient conditions for full 
incentive compatibility.

The optimal solution in the original 
mechanism design problem coincides 
with the optimal solution in the modified 
problem of the canonical representation 
where the orthogonal shocks ​​​ε ̃ ​​t​​​ are publicly 
observable. By the payoff equivalence the-
orem, this implies that the agent gets the 
same expected payoff in the two problems. 
Hence, it is reasonable to say that the agent 
does not benefit from the additional pri-
vate information that she gets during the  
game.

At the same time, if the solution to the 
relaxed problem is not fully incentive com-
patible, this is no longer true. In the appen-
dix, we present an example showing that the 
solution of the relaxed problem may not be 
incentive compatible even though the solu-
tion is incentive compatible when the ​​​ε ̃ ​​t​​​ are 
publicly observable.

4.5.4	 Implementing the Solution

Unfortunately there is no general rec-
ipe along the lines of the taxation principle 
for natural indirect implementations of the 
optimal direct mechanism in the dynamic 
setting. In some cases, the solution to the 
optimal contracting problem is sugges-
tive of natural ways to implement the solu-
tion. For example, the sequential screening 
problem and the dynamic auction formats 
discussed below have solutions that can 
be implemented through option contracts 
and through various types of handicapped 
auctions.
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5.  Leading Applications

We shall now discuss how the general 
insights translate into specific solutions in a 
number of important economicapplications.

5.1	 Sequential Screening

Starting with Courty and Li (2000), the 
simplest model of bilateral trading with 
a dynamic flow of information has been 
called the sequential screening model. The 
canonical model extends over two periods, 
​t ∈ ​{0, 1}​​, with trade taking place only in 
period ​t = 1.​ An uninformed seller proposes 
a mechanism to an informed buyer with type ​​
θ​0​​  ∈  [​θ _​, ​

_
 θ ​]​ in ​t  =  0.​ Her second period 

type ​​θ​1​​  ∈  [​θ _​, ​
_

 θ ​]​ is unknown to both parties 
at the moment of contracting, but it is com-
mon knowledge that its conditional distribu-
tion is given by ​F​(​θ​1​​ | ​θ​0​​)​​. The prior on ​​θ​0​​​ is 
denoted by ​​F​0​​​(​θ​0​​)​.​ 

The key economic question for the model 
is whether the seller can use the dynamic 
nature of information arrival to increase her 
expected revenue. Obviously she can sell 
using an optimal Myerson mechanism based 
on either ​​​θ ̃ ​​0​​​ or on ​​​θ ̃ ​​1​​.​ The main observation in 
sequential screening models is that she can do 
strictly better by offering an option contract. 
In ​t  =  0​, the seller offers a menu of strike 
prices for period ​t  =  1.​ Based on different ​​
θ​0​​ ,​ the buyers choose different strike prices 
(obviously at different up-front payments) 
and this improves the seller’s payoff.

Different interpretations are possible 
for ​​θ​0​​ .​ It can be thought as a prior mean 
for ​​θ​0​​​ or, alternatively, it can be thought of 
as a measure of the precision of the agent’s 
prior information about ​​θ​1​​​. In the first case, 
it would be natural to assume that ​​​θ ̃ ​​1​​​ is first 
order stochastically increasing in ​​​θ ̃ ​​0​​​ while in 
the second, one would expect ​​​θ ̃ ​​1​​​ to be second 
order stochastically increasing in ​​​θ ̃ ​​0​​.​ 

Since trading takes place only in period ​
t  =  1,​ there is no loss of generality in 

assuming that ​​θ​1​​​ is the value of the buyer 
in ​t  =  1.​ We also assume that the good is 
indivisible (or alternatively, the payoffs are 
linear in quantities) and that the seller has 
no value for the object herself. This leads to 
the payoffs:

	​​ u​S​​​(​θ​1​​, x, p)​  =  p,​

	​​ u​B​​​(​θ​1​​, x, p)​  = ​ θ​1​​ x − p,​

for the seller and the buyer respectively, 
where ​x​ is the probability of trading and ​p​ is 
the transfer from the buyer to the seller. We 
also assume that the outside option for the 
buyer yields payoff 0.

We can use the general result from the 
previous section to see rather quickly how 
to arrive at this solution. A direct dynamic 
mechanism is now a pair of functions:

	​ x : ​Θ​0​​ × ​Θ​1​​  → ​ [0, 1]​,​

	​ p : ​Θ​0​​ × ​Θ​1​​  → ​ ℝ​+​​.​

We recall that the single period impulse 
response function can be written as:

	​​ I​1​​​(​θ​0​​, ​θ​1​​)​  =  − ​ 
​ 
∂ F​(​θ​1​​​|​​ ​θ​0​​)​ _ ∂ ​θ​0​​

 ​
 _ 

f ​(​θ​1​​​|​​ ​θ​0​​)​
 ​.​

Together with equation (9), this gives: 

	​​ V ′ ​​(​θ​0​​)​  =  − ​∫ ​Θ​1​​
​ 

 

 ​​  x​(​θ​0​​, ​θ​1​​)​ ​ 
∂ F​(​θ​1​​​|​​ ​θ​0​​)​ _ ∂ ​θ​0​​

 ​   d​θ​1​​.​

Solving for the expected transfer (i.e., the 
seller’s expected payoff), the relaxed prob-
lem becomes (after an integration by parts 
and using the individual rationality constraint 
​V​(​θ _​)​  =  0​): 

​​max​ x​ ​ ​ ∫ ​Θ​0​​
​ 

 

 ​​ ​ ∫ ​Θ​1​​
​ 

 

 ​​  x​[​θ​1​​ − ​ 
1 − ​F​0​​​(​θ​0​​)​ _ 

​f​0​​​(​θ​0​​)​
 ​ ​ I​1​​​(​θ​0​​, ​θ​1​​)​]​

� × f ​(​θ​1​​ | ​θ​0​​)​  f ​(​θ​0​​)​  d​θ​1​​d​θ​0​​.​
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But this is a linear problem in ​x​, hence the 
relaxed solution is easy to find.

Define a modified virtual value ​ψ( ​θ​0​​, ​θ​1​​)​ 
by 

	​ ψ​(​θ​0​​, ​θ​1​​)​  ≜ ​ θ​1​​ − ​ 
1 − ​F​0​​​(​θ​0​​)​ _ 

​f​0​​​(​θ​0​​)​
 ​ ​ I​1​​​(​θ​0​​, ​θ​1​​)​.​

This modifies the classic Myersonian vir-
tual value by multiplying the information 
rent component ​​(1 − ​F​0​​ (​θ​0​​))​/​f​0​​ (​θ​0​​)​ by the 
impulse response ​​I​1​​​.

Since the value of the integral is linear in ​
x​, it is clearly optimal to set ​x(​θ​0​​, ​θ​1​​)  =  1​ 
whenever ​ψ(​θ​0​​, ​θ​1​​) ≥ 0​ in the relaxed pro-
gram. If ​ψ(​θ​0​​, ​θ​1​​)​ is strictly increasing in both 
components, then this solution solves the 
revenue maximization problem. Hence, we 
assume from now on that ​ψ​ is increasing in 
both arguments. To complete the descrip-
tion of the optimal mechanism, define the 
following function:

	​ q​(​θ​0​​)​  =  min​{​θ​1​​  ∈ ​ Θ​1​​ | ψ​(​θ​0​​, ​θ​1​​)​  ≥  0}​.​

Since ​ψ​ is increasing, ​q​( ⋅ )​​ is well defined. 
With the help of this function, we can char-
acterize the optimal selling mechanisms.

THEOREM 4 (Optimal Screening 
Mechanism): If ​ψ(​θ​0​​, ​θ​1​​)​ is increasing in both 
arguments, then a direct dynamic mechanism ​
(x, t)​ maximizes the seller’s expected profit in 
the class of incentive compatible mechanisms 
if and only if

	​ x​(​θ​0​​, ​θ​1​​)​  = ​ 1​​{​θ​1​​≥q​(​θ​0​​)​}​​​,​

and the transfer is computed from the enve-
lope formula.

As anticipated, in the optimal mechanism 
the buyer pays an up-front fee ​p(​θ​0​​)​ for the 
option of purchasing the good at strike price ​
q(​θ​0​​)​. Hence, the mechanism seems to bear 
some relation to contracts that are actually 

observed in situations where uncertainty is 
gradually resolved and revealed about the 
value of the alternatives.

Courty and Li (2000) show that in the 
case where ​​​θ ̃ ​​1​​​ is second order stochastically 
increasing in ​​​θ ̃ ​​0​​,​ the standard Myersonian 
downward distortions may be reversed. If ​​​θ ̃ ​​1​​​ 
is first order stochastically increasing in ​​​θ ̃ ​​0​​,​ 
this is not possible. This result can be under-
stood in terms of the sign of the impulse 
response function in the two cases. Under 
first-order stochastic dominance (FOSD), 
​​I​1​​​(​θ​0​​, ​θ​1​​)​​ is always positive. For the case 
of second-order stochastic dominance 
(SOSD), it may well be negative, thus 
leading to a reversal in the direction of the  
distortions.

Eső and Szentes (2007) extend the model 
to allow for multiple bidders for the good 
(otherwise the model is identical to the 
model above). They find an optimal auc-
tion—called the ​handicap auction​—where 
the bidders can make up-front payments 
in the first period to influence the alloca-
tion rule determining the second period 
allocation (the handicaps for the final auc-
tion). In order to analyze the model, Eső 
and Szentes (2007) introduced the orthog-
onalization process described in section 
4.2. They compare the revenue to the seller 
under two scenarios: one where she releases 
the orthogonal signals to the buyers and one 
where she does not. They conclude that 
the seller is always better off releasing the  
information.

Bergemann and Wambach (2015) and 
Li and Shi (2017) offer extensions of the 
sequential screening model that incorporate 
information and mechanism design. Li and 
Shi (2017) show that even though the seller 
always wants to release all of the orthogonal-
ized information to the buyer, she may pre-
fer to send garbled information based on the 
original (not orthogonalized) type ​​θ​1​​​. The 
question of what types of disclosure policies 
are optimal in this setting is still open.
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5.2	 Selling Options

The second illustrative example is a stop-
ping problem, rather than a selling problem 
at a fixed deadline. Suppose we would like 
to allocate a single object among ​N​ bidders, 
but we can allocate it only once and for all. 
Thus, the seller faces a stopping problem, 
and at the moment of stopping must decide 
to whom to allocate the object. Suppose the 
evolution of the willingness to pay by bidder ​
i​ is given by: 

	​​ θ​i,t​​  =  γ ​θ​i,t−1​​ + ​ε​i,t​​,​

with ​​θ​i,0​​  ∼ ​ G​i​​​(​θ​i,0​​)​,​ ​​ε​i,t​​  ∼ ​ H​i​​​( ⋅ )​,​ i.i.d. If we 
set ​γ  =  1,​ we are essentially dealing with 
the model of Board (2007).

We can now compute the indirect utility 
function in the familiar way,

	​​ V​i,0​​​(​θ​i,0​​)​  =  E​ ∑ 
t=0

​ 
T

  ​​ ​δ​​ t​ ​ 
1 − ​G​i​​​(​θ​i,0​​)​ __________ 

​g​i​​​(​θ​i,0​​)​
 ​ ​ γ​​ t​ ​x​i,t​​​(θ)​,​

and find that the expected revenue to the 
seller is

	​ E​ ∑ 
t=0

​ 
T

  ​​ ​ ∑ 
i=1

​ 
N

 ​​ ​δ​​ t​​[​θ​i,t​​ − ​ 
1 − ​G​i​​​(​θ​i,0​​)​ __________ 

​g​i​​​(​θ​i,0​​)​
 ​ ​ γ​​ t​]​​x​i,t​​​(θ)​​.

The seller’s problem is thus an optimal stop-
ping problem, and her decision in period ​t​ is 
whether to stop the process and collect

	​​ max​ 
i
​ ​​ {​θ​i,t​​ − ​ 

1 − ​G​i​​​(​θ​i,0​​)​ __________ 
​g​i​​​(​θ​i,0​​)​

 ​ ​ γ​​ t​}​​

or to continue until ​t + 1​ and draw a new 
valuation vector ​​θ​t+1​​  =  γ ​θ​t​​ + ​ε​t​​​ for the bid-
ders. As time progresses and ​t​ increases, the 
distortion relative to the planner’s solution in 
the allocation diminishes.

5.3	 Bandit Auctions

A single indivisible object is allocated in 
each period among ​n​ possible bidders who 

learn about their true valuation for the good. 
The type of bidder ​i​ changes only in periods ​
t​ where she is allocated the good: if ​​x​i,t​​  =  0,​ 
then ​​θ​i,t+1​​  = ​ θ​i,t​​,​ if ​​x​i,t​​  =  1,​ then

(14)	​​ θ​i,t+1​​  = ​ θ​i,t​​ + ​ε​i​​​(​n​i​​​(t)​)​​,

where ​​ε​i​​​ is a random variable whose distribu-
tion depends on the number of periods up to ​
t,​ ​​n​i​​​(t)​,​ in which the good has been allocated 
to ​i.​ For some stochastic processes such as 
the normal learning version of the process 
outlined in section 2.2, the number of obser-
vations from the process (here ​​n​i​​(t​)) and the 
current posterior mean (here ​​θ​i, t​​​) form a suf-
ficient statistic. We can interpret the alloca-
tion process as intertemporal licensing where 
the current use of the object is determined by 
the past and current reports of the bidders. 
Notably, the assignment of the object can 
move back and forth between the bidders as 
a function of their reports. Pavan, Segal, and 
Toikka (2014) and Bergemann and Strack 
(2015) consider a revenue-maximizing auc-
tion for the special case of the multi-armed 
bandit model in discrete or continuous time, 
respectively. The efficient allocation policy 
under private information was analyzed ear-
lier in Bergemann and Välimäki (2010).

A useful aspect of the bandit model with 
the additive noise model is the easily verified 
property that: 

(15)	​​  ∏ 
t=r

​ 
s
 ​​​

⎛

 ⎜ 
⎝
− ​ 

​ 
∂ ​F​i​​​(​θ​i,t+1​​ | ​θ​i,t​​)​

 __________ ∂ ​θ​i,t​​
 ​
 ___________ 

​f​i​​​(​θ​i,t+1​​ | ​θ​i,t​​)​
 ​

⎞

 ⎟ 
⎠
​  =  1.​

Hence, the revenue maximization problem is 
now turned (again using the usual steps) into 
a modified bandit problem where the seller 
maximizes

	​​ max​ 
x∈X

​ ​ E​ ∑ 
t=0

​ 
T

 ​​ ​  ∑ 
i=1

​ 
N

 ​​ ​δ​​ t​​[​θ​i,t​​ − ​ 
1 − ​F​i​​​(​θ​i,0​​)​

 _ 
​F​i​​​(​θ​i,0​​)​

 ​ ]​ ​x​i​​​(​θ​i,t​​)​,​
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where ​X = ​{​(​x​1​​, …, ​x​N​​)​ ∈ ​핉​ +​ N ​ | ​∑ i​   ​​ ​x​i​​ = 1}​​.  
Stated in this form, the problem can be 
solved using the dynamic allocation index, 
the Gittins index. Pavan, Segal, and Toikka 
(2014) verify that the solution satisfies the 
average monotonicity condition and is hence 
implementable. Thus, the resulting dynamic 
optimal auction proceeds by finding the bid-
der with the highest valuation after taking 
into account the handicap, which is deter-
mined exclusively by the initial private infor-
mation ​​θ​i,0​​​. Moreover, by (15), the impulse 
response function, and hence the handicap, 
is constant in time and determined only by 
the initial shock.

Kakade, Lobel, and Nazerzadeh (2013) 
consider a class of dynamic allocation prob-
lems that includes the above bandit prob-
lem. By imposing a separability condition 
(additive or multiplicative) on the interac-
tion of the initial private information and all 
subsequent signals, they obtain an explicit 
characterization of the revenue-maximizing 
contract and derive transparent sufficient 
conditions for the optimal contract.

5.4	 Repeated Sales

A common economic setting where 
long-term contracts govern the interaction 
between buyer and seller is the repeated 
sales problem. The buyer anticipates that he 
might purchase a good or a service repeat-
edly over time, but is uncertain about his 
future valuation of the good. At any point in 
time, his willingness to pay is private infor-
mation, and the current willingness to pay is 
a good prediction of the future willingness 
to pay. A variety of dynamic contracts are 
used to support the provision of services, as 
documented by DellaVigna and Malmendier 
(2006), Grubb (2009), and Eliaz and Spiegler 
(2008) for gym memberships, mobile phone 
contracts, and many other services.

These allocation problems can be viewed 
as being separable across periods in two 
important aspects: ​​(i)​​ the set of feasible 

allocations at time ​t​ is independent of the 
history of the allocations, and ​​(ii)​​ the flow 
utility function depends only on current 
type. This class of models is particularly 
tractable since a point-wise solution to the 
relaxed problem is quite easily obtained and 
the conditions for full incentive compatibil-
ity can be directly checked. In fact, the earli-
est contributions to the dynamic mechanism 
design literature, Baron and Besanko (1984) 
and Besanko (1985) restricted attention to 
time-separable problems of this form.

Bergemann and Strack (2015) consider 
time-separable allocation problems in con-
tinuous time. They leverage the structure 
of the continuous-time setting to obtain 
closed-form solutions of the optimal con-
tract. In the leading example of repeat sales 
of a good or service, they establish that many 
commonly observed contract features such 
as flat rates, free consumption units, and 
two-part tariffs can emerge naturally as part 
of the optimal contract.

In their setting, the flow value is given by ​​
v​t​​ ​x​t​​ − ​p​t​​​, ​​v​t​​​ is the willingness to pay in time ​
t​, and ​​x​t​​​ the quantity or quality assigned to 
buyer in period ​t​. The willingness to pay is 
assumed to be a function,

	​ ​v​t​​  =  ϕ​(t, ​θ​0​​, ​W​t​​)​,​

that is weakly increasing in the initial type 
​​θ​0​​​ and the value of a Brownian motion ​​W​t​​​ 
in period ​t​. With the time separability of the 
allocation across periods, the virtual utility in 
period ​t​ is simply given by 

(16)	​ ​v​t​​ − ​ 
1 − F​(​θ​0​​)​ _ 

f ​(​θ​0​​)​
 ​ ​ 

∂ ϕ​(t, ​θ​0​​, ​W​t​​)​ ___________ ∂ ​θ​0​​
 ​  .​

This is simply the continuous-time analogue 
to the relaxed problem that we derived ear-
lier in (13), where the derivative

	​​ 
∂ ϕ​(t, ​θ​0​​, ​W​t​​)​ ___________ ∂ ​θ​0​​

 ​  ,​
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often referred to as the stochastic flow, 
replaces the product of the marginal flow 
value times the impulse response func-
tion. The nature of the initial information 
​​θ​0​​​ together with the shape of the stochastic 
process now determine how the stochastic 
flow, and ultimately the optimal allocation, 
vary over time.

Bergemann and Strack (2015) then ana-
lyze how the optimal contract depends on 
the nature of initial private information and 
the structure of the stochastic process. In 
their leading case, the valuation evolves as a 
geometric Brownian motion

	​ d​v​t​​  = ​ (​v​t​​ − ​v _​)​ σd​W​t​​,​

where ​​v _​  ≥  0​ is a lower bound on the flow 
utility, and ​​W​t​​​ is a Brownian motion. If the 
initial private information is simply the initial 
value of the process, ​​θ​0​​  = ​ v​0​​​, then the sto-
chastic flow is simply

	​​ 
∂ ϕ​(t, ​θ​0​​, ​W​t​​)​ ___________ ∂ ​θ​0​​

 ​   = ​  ​v​t​​ − ​ v 
̅
 ​
 ______ ​v​0​​ ​  .​

Thus, the corresponding expression from 
discrete time, the impulse response func-
tion, reduces to a simple expression. They 
can consequently show that a menu of flat-
rate contracts, different two-part tariffs, or 
different free minute contracts can arise as 
optimal solutions, depending on the value of 
the lower bound ​​v _​​ and the flow cost of pro-
viding the service, given by ​c​(x)​​.

By contrast, if the initial private informa-
tion ​​θ​0​​​ is the drift of the geometric Brownian 
motion, thus 

	​ d​v​t​​  =  ​v​t​​​(​θ​0​​ dt + σd​W​t​​)​,​

then the stochastic flow can be computed to 
be 

	​​ 
∂ ϕ​(t, ​θ​0​​, ​W​t​​)​ ___________ ∂ ​θ​0​​

 ​   =  ​v​t​​ t.​

Now the optimal contract is a menu of leas-
ing contracts with deterministic deadlines as 
the flow virtual utility takes the form:

	 ​​v​t​​​(1 − ​ 
1 − F​(​θ​0​​)​ _ 

f ​(​θ​0​​)​
 ​  t)​.​

Interestingly, the distortion is linearly 
increasing in time. It follows that in contrast 
to many of the models analyzed so far, the 
allocative distortion is now increasing over 
time rather than decreasing over time. A 
noteworthy aspect of this last example is that 
the initial private information of the agent is 
not the initial value of the stochastic process, 
but rather a parameter of the stochastic pro-
cess itself.

5.5	 Private Information about the 
Stochastic Process

In fact, a number of recent contributions 
have considered the possibility that the ini-
tial private information is about a parame-
ter of the stochastic process itself, such as 
the drift or the variance of the process. For 
example, Boleslavsky and Said (2013) let the 
initial private information of the agent be the 
mean of a multiplicative random walk. This 
changes the impact that the initial private 
information has on the future allocations. 
The distortions in the future allocation may 
now increase over time, rather than decline 
as in much of the earlier literature. The rea-
son is that the influence of the parameter of 
the stochastic process on the valuation may 
increase over time. Pavan, Segal, and Toikka 
(2014) and Skrzypacz and Toikka (2015) 
report similar findings.12

12 This is equivalent to assuming that the private 
information of the agent corresponds to the state of a 
two-dimensional Markov process, whose first component 
is constant after time zero, but influences the transitions of 
the second component. 
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5.6	 Beyond the First-Order Approach

The method of analysis for the dynamic 
contracting problem above relies heavily 
on the payoff equivalence theorem, also 
known as the first-order approach. For this 
approach to be successful, the models must 
be such that the solutions to the relaxed 
problem are incentive compatible. Battaglini 
and Lamba (2017) show that in models with 
discrete types, the first-order approach 
becomes problematic if the agents interact 
frequently. In particular, the solution to the 
first-order problem is no longer monotonic 
if types are highly persistent. They propose 
and analyze optimal contracts in the class of 
strongly monotonic allocation functions and 
show that these contracts are approximately 
efficient in the class of all incentive compat-
ible contracts.

Garrett, Pavan, and Toikka (2018) take 
a different approach to the problem. They 
characterize necessary properties of the 
optimal contract by a relatively simple per-
turbation argument. They show that regard-
less of whether the first order approach is 
applicable or not, the optimal contract must 
have vanishing distortions as long as the 
underlying process on types is sufficiently 
mixing, in the sense that the impact of ini-
tial information on future types vanishes. 
Hence this paper confirms, for a larger 
class of models, one of the key findings in 
Battaglini (2005) derived for models with 
binary types.

6.  Dynamic Populations

In this section, we consider mechanism 
design problems where the population of 
privately informed agents changes over 
time. To fix ideas, we return to our leading 
example of a seller who has a fixed capacity ​
K​ of indivisible goods to sell by a (possibly 
infinite) deadline ​T​. Potential buyers arrive 
according to a stochastic process and the 

seller wants to extract as much revenue as 
possible from them. Variants of this problem 
have been studied in the literature on rev-
enue management in management science 
and in operations research.

Important economic examples fit this 
description very nicely. By far the most 
important and most analyzed example is the 
pricing of airline tickets. As airlines custom-
ers have noticed, prices for identical tickets 
on a given flight vary over time. The airlines 
industry uses various dynamic pricing and 
allocation methods for the seats. They use 
time-varying posted prices that may depend 
on the query data for the flight in ques-
tion, and sometimes also more complicated 
mechanisms allowing for the possibility of 
securing a future price by paying an up-front 
fee. These features are important for poten-
tial buyers as well. Forward-looking buyers 
should time their purchases optimally given 
their expectation of the price path. In fact, 
services such as Kayak have been developed 
to alert buyers to particularly good moments 
to purchase tickets.

Optimal timing of the purchases is a nat-
ural element in any dynamic mechanism 
design problem of this type. The findings in 
this literature have a clear substantive mes-
sage. In a wide class of models, the literature 
shows that sellers cannot be made worse off 
if the buyers are forward looking rather than 
myopic. Moreover, the analysis of models 
with forward-looking buyers guides practical 
implementations for the revenue maximizing 
scheme.

A key modeling decision with dynamic 
populations is whether the arrival of a buyer 
is publicly observable or not. We start with 
the simpler models where observability is 
assumed. We discuss also models where 
arrival is private information to the buyer. 
In this case, the buyer’s type has two dimen-
sions: age and valuation, but the model has 
enough structure that the analysis remains 
tractable.
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6.1	 Observable Arrival of Short-Lived 
Buyers

The first approach in the revenue man-
agement literature was to assume away 
problems of asymmetric information, i.e., 
assume that the seller observes the valua-
tions and that the buyers are short lived (i.e., 
they disappear if they are not allocated the 
good).13 In this framework, the seller’s prob-
lem coincides with the problem of surplus 
maximization and the analysis is a standard 
(but not analytically simple) exercise in 
dynamic programming. Within the revenue 
management literature, the key analytical 
aspect of the problem is to find a characteri-
zation for the optimal allocation rule for the 
goods as a function of remaining objects ​k​ at 
any point in time and remaining time ​t​ to the 
deadline. The key finding in this literature is 
that the optimal allocation rule is often given 
by a cutoff rule in the set of types or valua-
tions: allocate at ​​(k, t)​​ if and only if ​​v​t​​  ≥  g​
(k, t)​​ for some function ​g​ that is typically 
decreasing in ​k​ and increasing in ​t.​14

The mechanism design approach to this 
problem emphasizes the effects of incentive 
compatibility when the buyers’s types are 
not observable to the seller. When buyers 
are short lived and their process of arriv-
als is observable to the seller, then we are 
specializing the general model to the case 
described at the end of subsection 2.2, where 
the agent’s type in period ​t​ is ​​θ​i, ​τ​i​​​​  ∈  [0, ​

_
 θ ​]​ if ​

t  = ​ τ​i​​​ for some (possibly random) publicly 
observed arrival period ​​τ​i​​​ and ​​θ​i, τ​​  ∈ ​ θ​0​​​ if 
​t  ≠ ​ τ​i​​​ and her payoff from allocation ​x​ in a 
(possibly random) period ​​τ​i​​​ is ​​v​i​​(​x​i,​τ​i​​​​, ​θ​i,​τ​i​​​​)​.

13 The classical references are Derman, Lieberman, 
and Ross (1972) for the case of known distribution of buyer 
valuations and Albright (1977) for the case where the seller 
learns about the distribution based on the observed types. 

14 With an infinite deadline, the problem becomes sta-
tionary if the arrival process of buyers is stationary and the 
solution of the process simplifies considerably. 

In the simplest case, the buyers have unit 
demands for the object and they have inde-
pendent valuations. By the payoff equiv-
alence theorem, incomplete information 
about the type of the buyer transforms the 
maximization of total expected revenue to 
the relaxed problem of maximizing expected 
virtual surplus. For notational convenience, 
we assume that the distribution of the real-
ized type does not depend on the arrival time ​​
τ​i​​,​ but this could be easily accommodated in 
the model as well.

For the case of identical objects and with ​​
v​i​​(​x​i,​τ​i​​​​, ​θ​i,​τ​i​​​​)  = ​ θ​i,​τ​i​​​​ ​x​i,​τ​i​​​​​, where ​​x​i,​τ​i​​​​ ∈ ​{0, 1}​​ 
indicates whether the object is allocated or 
not to ​i​ in ​​τ​i​​,​ we can write the expected rev-
enue of the seller in terms of the expected 
virtual utility: 

	​​ E​θ​​ ​ ∑ 
i=1

​ 
N

 ​​ ​δ​​ ​τ​i​​​​[​θ​i​​ − ​ 
1 − F​(​θ​i​​)​ _ 

F​(​θ​i​​)​
 ​ ]​ ​x​i,​τ​i​​​​

such that

	​ ∑ 
i=1

​ 
N

 ​​ ​x​i,τ​​​(​θ​i​​)​  ≤  K  for all  ​θ​i​​  ∈ ​ Θ​i​​,​

where the expectation is taken over the vec-
tor ​θ​ of type processes and the allocation 
decisions depend only on the realized part 
​​θ​​ ​τ​i​​​​ of the process at ​​τ​i​​.​ 

Full incentive compatibility typically 
boils down to an appropriate monotonicity 
requirement for the allocation rule in type 
​​θ​i,t​​.​ For the case of identical objects, mono-
tonicity is equivalent to a cutoff charac-
terization of the allocation rule. Hence, a 
sequence of posted prices can always imple-
ment the optimal allocation. Versions of this 
problem have been analyzed in a sequence 
of papers by Gershkov and Moldovanu 
(2009a, b), and additional results collected 
in Gershkov and Moldovanu (2014). The 
revenue maximization problem in Gershkov 
and Moldovanu (2009a) allows for the possi-
bility that the ​K​ objects to be allocated have 
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different (vertical) qualities. Gershkov and 
Moldovanu (2009b) shows that learning or 
correlation in types may cause problems for 
the monotonicity even for the socially effi-
cient allocation rule. Thus, the difficulty of 
obtaining a monotone allocation rule does 
not arise solely due to non-monotonic virtual 
surpluses. This observation can be illustrated 
nicely within our leading example.

Example 3 (Learning and Incentive 
Compatibility) 

A single indivisible good is to be allocated 
efficiently to one of two bidders ​i  ∈  {1, 2},​ 
both with a strictly positive valuation for the 
object. It is commonly known that ​​τ​i​​  =  i​ 
and therefore the relevant social allocation 
decisions are given by ​x  ∈  {1, 2},​ where the 
first choice indicates allocating the object to 
bidder ​1​ in period ​1​ and the second indicates 
allocating to bidder ​2​ in period ​2​. The plan-
ner’s objective is to maximize the social sur-
plus and she has a discount factor ​δ.​

The valuation ​​θ​1​​  ∈  [0, 1]​ of bidder ​1​ is 
known at the outset of the game. Bidder 2 
learns her value in period 2. The valuations 
can come from one of two possible distribu-
tions: ​​θ​i​​​ is uniformly distributed on either ​​
[0, 1/2]​​ or ​​(1/2, 1]​​. The prior probability of 
each of these distributions is identical.

With observable types, the planner’s opti-
mal solution is immediate: allocate to agent ​1​ 
in period ​1​ if and only if 

	​​ θ​1​​  ∈ ​ [​ 1 _ 
2
 ​ δ, ​ 1 _ 

2
 ​]​  ∪ ​ [​ 3 _ 

4
 ​ δ, 1]​.​

As long as ​δ  >  2/3,​ this allocation rule is 
not monotone, and since the bidders’ pay-
offs are supermodular, it fails to be incentive 
compatible for the case of unobserved types. 
If a bidder can make a payment only in the 
period when he receives the good, we see that 
there is no way of implementing the efficient 
decision rule in the model with incomplete 
information. This problem does not arise if 
we can condition payments on the reports 

of both types. The team mechanism derived 
in section 3 works nicely here if such con-
tingent payments are allowed. Hence the 
example points out the problems that arise 
as a consequence of the (often quite realistic) 
requirement that monetary transfers occur 
only in conjunction with physical allocation 
decisions. This requirement sometimes goes 
under the name of “online” payments.

6.2	 Unobservable Arrival of Long-Lived 
Buyers

With unobservable arrivals, the buyers will 
have an incentive to time their purchases 
strategically. If prices decrease over time, 
they will delay reporting to the mechanism 
in order to get a better deal later on. Any 
incentive compatible mechanism must take 
this possibility into account. By contrast, if 
the arrivals are publicly observed then this is 
not a concern. The seller may simply commit 
not to offer any contracting opportunities 
except in the period of arrival. If the arriv-
als are not observed, the seller cannot dis-
tinguish between new arrivals in any period ​
t​ from those that arrived earlier and waited 
with their announcement.

Board and Skrzypacz (2016) consider the 
sales problem of ​K​ identical indivisible units 
to a population of arriving buyers when the 
arrivals are private information. In their 
model, the statistical properties of the arriv-
als and valuations are common knowledge at 
the beginning of the game and arrivals and 
types satisfy independence across buyers and 
across periods. They show that the optimal 
selling mechanism is surprisingly simple: it 
is a deterministic sequence of posted prices 
depending on ​​(k, t)​​. Interestingly, this pat-
tern leads to waiting by the buyers along 
the equilibrium path. Even if the seller 
knew the past realized arrivals, this would 
not change the solution. If the demand is 
decreasing over time, they find a surprisingly 
explicit analytical solution for the problem. 
The other main substantive finding is that 
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under the optimal mechanism, the seller 
gets a higher revenue than she would get if 
the buyers were short lived. This happens 
even though sales are more back loaded in 
the case with forward-looking buyers and 
prices falling. If the modeling assumptions 
are relaxed, each of these two main predic-
tions may fail and complete solutions seem 
difficult to obtain. See, for example, the 
analysis in Mierendorff (2016) for the case 
where the agents are forward looking but 
may disappear or have different discount  
factors.

Gershkov, Moldovanu, and Strack (2018) 
extend the model to cover the case where the 
buyers’ arrival process is initially not known. 
This relaxes the assumption of indepen-
dence in arrival times. They show that even 
though the optimal allocation is no longer 
implementable through anonymous posted 
prices, a simple name-your-own-price mech-
anism can be used as an indirect mechanism 
that achieves the maximal revenue. Further 
results in the paper show that the seller does 
not benefit from hiding information, say, 
about the existing stock of ​k​ units and that 
forward-looking buyers still benefit the seller 
as in Board and Skrzypacz (2016).

Since the models of dynamic populations 
where the buyers’ types, the willingness to 
pay, are fixed over time lead to considerations 
of strategic timing, it is natural to ask how the 
case where buyers’ types change over time 
would change the problem. In this case, there 
are two reasons for optimizing over the pur-
chasing time: the price may be more favor-
able in the future or the type may change to 
one with a higher information rent.

A related issue is the timing of the con-
tractual agreement between principal and 
agents. Much of the current analysis assumes 
that the arrival of the agents is known to the 
principal and that the principal can make a 
single, take-it-or-leave-it offer at the moment 
of the agent’s arrival. This constraint, while 
natural in a static setting, is much less 

plausible in dynamic settings. In particular, 
it explicitly excludes the possibility for the 
agent to postpone and delay the acceptance 
decision to a later time when he may have 
additional information about the value of the 
contract offered to him.

Garrett (2017) considers a model of sales 
of a nondurable good where the buyer 
appears at a random future time, the arrival 
is private information, and the buyer’s pri-
vately known valuation changes over time. 
He shows that in the optimal mechanism, the 
principal commits to punishing the agent for 
late arrival by inducing more inefficiencies to 
diminish information rents from manipulat-
ing the entry time.

A more ambitious attempt in this direction 
appears in Garrett (2016), where generations 
of new buyers are arriving over time to con-
tract with a seller. A full mechanism design 
approach is not tractable in this case, and 
the paper restricts attention to an optimal 
time-dependent sequence of posted prices. 
Using anonymous posted prices implies that 
old and new buyers with the same valuation 
type have the same incentives for all pur-
chases. In this sense, explicit penalties for late 
arrivals are not possible. In an otherwise sta-
tionary environment, the optimal posted price 
fluctuates. This comes as a surprise after the 
well-known result in Conlisk, Gerstner, and 
Sobel (1984) showing that stationary prices 
are optimal because the forward-looking buy-
ers with high values anticipate lower prices 
and are therefore  reluctant to buy at high 
prices. In Garrett (2016), high valuation buy-
ers are more keen to buy immediately, since 
they understand that their type may decrease 
in the future.

Bergemann and Strack (2019) analyze a 
dynamic revenue-maximizing problem in con-
tinuous time when the arrival time of the agent 
is uncertain and unobservable to the seller. The 
valuation of the agent is private information, as 
well, and changes over time. They derive the 
optimal dynamic mechanism, characterize its 
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qualitative structure, and derive a closed form 
solution. As the arrival time of the agent is pri-
vate information, the optimal dynamic mecha-
nism has to be stationary to guarantee truthm 
telling. The truth-telling constraint regarding 
the arrival time can be represented as an opti-
mal stopping problem. They show that the 
ability to postpone the acceptance of an offer 
to a future period can increase the value of the 
buyer and can lead to a more efficient alloca-
tion resulting in equilibrium.

7.  Connections to Nearby Models

In this section, we briefly discuss two 
classes of dynamic contracting models that 
do not assume quasi-linear payoffs. Since 
Rogerson (1985), models of dynamic moral 
hazard have discussed the smoothing of 
dynamic risks in models with incentive prob-
lems. In dynamic settings, the distinction 
between dynamic moral hazard and adverse 
selection is almost impossible to make and 
many models that share the informational 
structure with our general dynamic model 
have been discussed under the name of 
dynamic moral hazard. The key difference 
between these models and those discussed 
in the previous sections is that with risk-
averse preferences, the trade-off between 
efficient physical allocation and efficient risk 
allocation emerges. Whether private infor-
mation exists at the moment of contracting 
or not is not that important for this literature, 
since the incentives–insurance trade-off 
emerges in any case as private information 
is generated.

In models of financial economics, a key 
assumption is that the privately informed 
managers may be risk-neutral but that they 
do not have sufficient funds to buy the 
entire enterprise. This is typically formal-
ized through a limited liability constraint 
stating that the manager (the agent) cannot 
make payoffs to the owner (the principal). 
Recent work starting with Clementi and 

Hopenhayn (2006), DeMarzo and Sannikov 
(2006), DeMarzo and Fishman (2007), and 
Biais et al. (2007) has analyzed the problem 
of incentivizing a manager who privately 
observes the cash flow of a firm.

7.1	 Risk-Averse Agent

In most mechanism design problems, the 
key problem for the designer can be for-
mulated as follows: what is the most advan-
tageous way of providing the agent with 
a fixed level of utility ​​u​0​​​ (e.g., to satisfy a 
participation constraint). With risk-averse 
agents and a risk-neutral principal, optimal 
contracts provide some amount of insurance, 
but incentive compatibility precludes the 
possibility of full insurance. This problem has 
attracted a large amount of attention starting 
with Green (1987) and Thomas and Worrall 
(1990).15 Our goal here is not to assess this 
literature, but merely point out how it con-
nects to the models in the previous sections 
of this survey.

The consumer derives utility ​v​(​x​t​​, ​θ​t​​)​​ in 
period ​t​ from allocation ​​x​t​​​ if her type is ​​θ​t​​.​ 
We consider incentive compatible dynamic 
direct mechanisms. The agent’s prob-
lem is typically formulated as a dynamic 
programming problem (induced by the  
mechanism): 

​V​(​θ​t​​)​ = ​max​ ​r​t​​
​ ​​ {v​(x​(​r​t​​, ​h​t​​)​, ​θ​t​​)​ + E​[V​(​​θ ̃ ​​t+1​​)​ | ​θ​t​​]​}​.​

Under sufficient regularity conditions, 
value functions ​​V​t​​​ satisfying these equa-
tions exist and are sufficiently well behaved 
for an application of the envelope theorem. 
Indeed, if one assumes that the set of pos-
sible types is a connected interval and that 
the process of types has full support, then 

15 Many of the issues also arise in dynamic incen-
tive provision models with hidden actions starting with 
Rogerson (1985). 
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an application of the envelope theorem  
yields:

 ​​ V ′ ​​(​θ​t​​)​  = ​ 
∂ v​(​x​t​​, ​θ​t​​)​ _ ∂ ​θ​t​​

 ​ 

	 + ​∫ 
​θ _​​ 
​
_

 θ ​​​ V​(​θ​t+1​​)​ ​ 
∂ f ​(​θ​t+1​​ | ​θ​t​​)​ __________ ∂ ​θ​t​​

 ​   d​θ​t+1​​.​

Integration by parts gives:

​​V ′ ​​(​θ​t​​)​  = ​ 
∂ v​(​x​t​​, ​θ​t​​)​ _ ∂ ​θ​t​​

 ​ 

	 + E​[​ 
− ​ 

∂ F​(​θ​t+1​​ | ​θ​t​​)​ ________ ∂ ​θ​t​​
 ​
 __________ 

f​(​θ​t+1​​ | ​θ​t​​)​
 ​ ​ V ′ ​​(​θ​t+1​​)​]​.​

Hence by iterating this formula forwards, 
one gets as before:

	​​ V ′ ​​(​θ​0​​)​  =  E​[​ ∑ 
t=0

​ 
∞

 ​​ ​I​t​​ ​δ​​ t​ ​ ∂ v(​x​t​​, ​θ​t​​) _ ∂ ​θ​t​​
 ​ ]​.​

In other words, a similar envelope theo-
rem characterization for the agent’s utility is 
still possible in this model. Many papers in 
the new public finance literature adopt this 
approach. For example Farhi and Werning 
(2007) study dynamic insurance schemes 
from this perspective.

But following with this first-order approach 
to dynamic problems, the next step of substi-
tuting the agent’s payoff into the principal’s 
objective unfortunately fails because the 
utility is not quasi-linear. As a result, solving 
the model is in general more difficult than 
in the quasi-linear case and numerical meth-
ods are typically needed. This also implies 
that checking full incentive compatibility 
becomes much harder in this class of models.

7.2	 Managerial Contracts and Hidden 
Actions

Garrett and Pavan (2012) consider a model 
where a risk-neutral principal contracts with 

a risk-neutral manager whose type (produc-
tivity) changes over time. The manager (the 
agent) has to be incentivized to take the opti-
mal action at each point in time and the dis-
tortions now refer to the dynamic distortions 
relative to the model where incentives are 
provided in a setting with no private infor-
mation. The paper shows that as long as the 
impulse response functions in the model are 
positive (for the privately observed produc-
tivity of the manager), then the distortions to 
the incentives diminish over time and incen-
tives become more high powered.16

Limited liability protection on the part 
of the agent implies an upper bound on the 
transfers that can be made from the agent 
to the principal. Often this constraint takes 
the form that all transfers must be from the 
principal to the agent. This prevents the 
principal from selling the enterprise to the 
agent at the outset even when there is no 
initial asymmetric information and hence 
there are no losses due to information rent 
left with the agent. A canonical model for 
this literature is one where the agent reports 
a privately observed i.i.d. cash flow to the 
principal in each period. The mechanism 
determines the transfers to the agent and a 
probability of continuing the project as func-
tions of the (history of) reported cash flows. 
A key finding in this literature is that over 
time, the contract becomes more efficient, 
i.e., the probability of inefficient liquidation 
decreases over time. It should be noted that 
the intuition for this finding is very different 
compared to the models surveyed above. 
With limited liability, the optimal contract 
effectively saves funds for the agent so that 
she can buy the enterprise at a later time. 
Since recent surveys of this large literature 

16 In contrast, Garrett and Pavan (2015) consider the 
case where a risk-neutral principal provides incentives 
for a risk-averse manager and shows that the power of 
incentives vanishes over time to reduce the overall riski-
ness in the contract. 



269Bergemann and Välimäki: Dynamic Mechanism Design: An Introduction

exist (see for example Biais, Mariotti, and 
Rochet 2013), we do not survey the topic  
here.

8.  Concluding Remarks

It was our objective to give a broad and 
synthetic introduction to the recent work on 
dynamic mechanism design. We hope we 
have conveyed the scope and the progress 
that has been made in the past decade. Still, 
many interesting questions remain wide 
open. We shall describe some of them in 
these final remarks.

The intertemporal allocations and com-
mitments that resulted from the dynamic 
mechanism balanced trade-offs over time. 
These trade-offs were based on the expec-
tations of the agents and the principal over 
the future states. In this sense, all of the 
mechanisms considered were Bayesian solu-
tions and relied on a shared and common 
prior of all participating players. Yet, this 
clearly is a strong assumption and a natural 
question would be to what extent weaker 
informational assumptions, and correspond-
ing solution concepts, could provide new 
insights into the format of dynamic mech-
anisms. For example, the sponsored search 
auctions, which provide much of the revenue 
for the search engines on the web, are clearly 
repeated and dynamic allocations with pri-
vate information; yet, most of the allocations 
and transfer are determined by spot mar-
kets or short-term arrangements rather than 
long-term contracts. An important question 
then is why more transactions are not gov-
erned by long-term arrangements that could 
presumably share the efficiency gains from 
less distortionary allocations between the 
buyers and the seller. An important friction 
to long-term arrangements is presumably the 
diversity in expectations about future events 
between buyer and seller. In a recent paper, 
Mirrokni et al. (2018) provide lower bounds 
for a revenue-maximizing mechanism in 

which the players do not have to agree on 
their future expectations. The mechanism 
that achieves the lower bound in fact satisfies 
the interim participation and incentive con-
straints for all possible realizations of future 
states. This approach reflects the recent 
interest of theoretical computer science in 
dynamic mechanism design, see for example 
Papadimitriou et al. (2016). But in contrast 
to the Bayesian approach most commonly 
taken by economic theorists who explic-
itly identify and design the optimal mecha-
nism, theoretical computer scientists often 
describe achievable performance guaran-
tees. The bounds are frequently achieved by 
mechanisms that have computational advan-
tages in terms of computational complexity 
relative to the possibly unknown exact opti-
mal mechanism.

As an important friction to long-term 
arrangements is presumably the diversity 
in expectations about future events among 
the players, it is natural to ask to what extent 
the relevant insights from static mechanism 
design can be transferred to dynamic set-
tings. Mookherjee and Reichelstein (1992) 
establish that in static environments, the rev-
enue-maximizing allocation can frequently 
be implemented by dominant rather than 
Bayesian incentive compatible strategies. 
Similarly, Bergemann and Morris (2005) 
present conditions for static social choice 
functions under which an allocation can be 
implemented for all possible interim beliefs 
that the agents may hold. The robustness 
to private information is arguably an even 
more important consideration in dynamic 
environments.

The central problem that the literature of 
dynamic mechanism has addressed is how 
to provide incentives to report the sequen-
tially arriving private information. Thus, 
the central constraints on the design are 
given by the sequence of interim incentive 
compatibility conditions. The participation 
constraints, on the other hand—somewhat 
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surprisingly for a dynamic perspective—have 
received much less attention. A dynamic 
mechanism requires voluntary participation 
at the ex ante and interim stages via interim 
or periodic ex post constraints. The dynamic 
pivot mechanism that governed the dynam-
ically efficient allocation provided such an 
instance.

By contrast, the dynamic revenue maximi-
zation contract only imposed the participa-
tion constraint in the initial period. Interim 
participation constraints can be handled by 
allowing the agents to post bonds at the ini-
tial stage. In general, the mechanism does 
not provide any guarantees about ex post 
participation constraints.17 In fact, Krähmer 
and Strausz (2015) show that sequential 
screening frequently reduces to a static 
screening solution if the seller has to meet 
the ex post rather than the ex ante partici-
pation constraints of the buyers. More gen-
erally, if the dynamic mechanism improves 
upon a static mechanism in the sequential 
screening model, then the ex post participa-
tion constraint severely limits the ability of 
the seller to extract surplus through option 
contracts as shown in Bergemann, Castro, 
and Weintraub (2017).

An interesting set of issues arise when the 
mechanism itself can govern only some of 
the relevant economic transaction. A spe-
cific setting where this occurs is markets 
with resale. Here, the design of the optimal 
mechanism in the initial stage of the game 
is affected by the interaction in the resale 
market, see for example Calzolari and Pavan 
(2006); Dworczak (2017); Carroll and Segal 
(2016); and Bergemann, Brooks, and Morris 
(2017). In particular, the information that is 
generated by the mechanism may affect the 
nature of the subsequent interaction, and 

17 Many commonly observed dynamic contracts do in 
fact violate ex post participation constraints. For example, 
an insurance company does not return the premium in 
case of no accident. 

thus the tools from information design and 
mechanism design may jointly yield interest-
ing new insights.

Appendix A. Dynamic Pivot 
Mechanism and Independence

To see why the restriction to independent 
values is necessary, recall the transfer rule 
for agent ​i​ in the static pivot mechanism:

   ​​   p​i​​​(θ)​  =  − ​∑ 
j≠i

​ ​​ ​u​j​​​(​x​​ ∗​​(θ)​, ​θ​j​​)​ 

	 + ​∑ 
j≠i

​ ​​ ​u​j​​​(​x​ −i​ ∗  ​​(​θ​−i​​)​, ​θ​j​​)​,​

where ​​x​ −i​ ∗  ​​(​θ​−i​​)​​ is the optimal allocation for 
agents different from ​i.​ In the static case, 
​​x​ −i​ ∗  ​​ depends only on the vector ​​θ​−i​​​ by the 
assumption of private values regardless of 
any statistical dependencies between the 
agents’ types. In the dynamic case, with cor-
related values, ​​θ​i,t​​​ might have an effect on 
​​x​ −i,t​ ∗  ​​ even when fixing ​​θ​−i,t​​.​ As a result, both 
sums on the right hand side of (2) depend on ​​
θ​i,t​​​ and this distorts the incentives for truth-
ful reporting. The following example illus-
trates this point.

Example 4 (Capacity Allocation and 
Correlated Types) 

Three agents, ​i  ∈ ​ {1, 2, 3}​​, are bidding 
for a single indivisible object over three 
periods. Let ​​x​t​​  ∈ ​ {1, 2, 3}​​ denote the pos-
sible allocations to ​i​ in period ​t​. If the good 
is allocated in period ​s,​ then ​​θ​i,t​​  =  0​ for all ​
i​ and all ​t  >  s​ (say because it is not worth-
while to pay a cost to learn the valuation for 
an object that was already sold). Assume 
also that ​​θ​i,t​​  =  0​ if ​i  ≠  t​ to indicate that 
agent ​i​ is active at most in period ​t  =  i.​ 
The payoff to agent ​i​ in period ​t​ is then 
​Pr​{​x​t​​  =  i}​ ​θ​i,t​​.​

Assume that ​​θ​1,1​​  ∈ ​ {3, 3 − ε}​,​ ​​
θ​2,2​​  =  1​ if ​​x​0​​  =  N​ and ​​θ​3,3​​  =  0​ otherwise, ​​
θ​3,3​​  ∈ ​ {2, ε}​​ if ​​x​1​​  = ​ x​2​​  =  N​​​​ and ​​θ​1,1​​  =  0​ 
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otherwise. Let ​π​ denote the prior probabil-
ity that ​​θ​2,2​​  =  2​ given that ​​x​0​​  = ​ x​1​​  =  N,​ 
and assume that ​2πδ  >  1.​ Then it is opti-
mal to have ​​x​1​​  =  N, ​x​2​​  =  2​ conditional on ​​
x​0​​  =  N.​ As long as ​ε  <  1,​ the efficient deci-
sion is to have ​​x​0​​  =  0.​ But it is clear that this 
is not incentive compatible if the transfers 
are calculated using the pivotal rule. To min-
imize the payments, agent 0 should always 
report type ​​θ​0,0​​  =  3 − ε.​

Appendix B. The Canonical 
Representation of a Markov 

Process

Consider an arbitrary Markov process ​​
{ ​​θ ̃ ​​t​​ }​ t=0​ T  ​​ with the prior distribution ​​F​0​​​(​θ​0​​)​​ and 
the transition kernel ​​​θ ̃ ​​t+1​​  ∼  F​( ⋅ | ​θ​t​​)​​ on ​Θ.​ 
Since ​​​ε ̃ ​​t+1​​  =  F​(​​θ ̃ ​​t+1​​ | ​θ​t​​)​​ is uniformly dis-
tributed for all ​​θ​t​​,​ we can deduce ​​θ​t+1​​​ from 
​​(​θ​0​​, ​ε​1​​, … , ​ε​t​​)​​ by using the recursive formula:

(17)	​​ θ​t​​  = ​ F​​ −1​​(​ε​t​​ | ​θ​t−1​​)​  ≜  ​Z​t​​​(​θ​0​​, ​ε​​ t​)​.​

Since the functions ​​Z​t​​​( ⋅ , ⋅ )​​ are com-
mon knowledge at the start of the game, 
​​(​​θ ̃ ​​0​​, …, ​​θ ̃ ​​t​​)​​ contains the same information 
as ​​(​​θ ̃ ​​0​​, ​​ε ̃ ​​1​​,  …, ​​ε ̃ ​​t​​)​.​ Pavan, Segal, and Toikka 
(2014) call the collection ​(​​θ ̃ ​​0​​, ​{​​ε ̃ ​​t​​}​ t=1​ T ​ , ​{​Z​t​​}​ t=1​ T ​ )​ 
the canonical representation of the process 
​​{​​θ ̃ ​​t​​}​ t=0​ T ​ .​ 

In computing the dynamic payoff equiv-
alence formula, we need to evaluate the 
impact of the initial private information on 
future types. Using the chain rule, we can 
compute from equation (17) the impact 
​​​I ˆ ​​t​​(​ε​​ t​)​ of the initial private information ​​θ​0​​​ on ​​
θ​t​​​ for any fixed sequence of orthogonalized 
future types ​​ε​​ t​:​ 

(18) ​​​ I ˆ ​​t​​​(​ε​​ t​)​  = ​  ∏ 
k=1

​ 
t
 ​​ ​ 

∂ ​F​​ −1​​(​ε​k​​ | ​θ​k−1​​)​  ____________ ∂ ​θ​k−1​​
 ​ 

	 =  − ​ ∏ 
k=1

​ 
t
 ​​ ​ 

​ 
∂ F​(​θ​k​​ | ​θ​k−1​​)​ ________ ∂ ​θ​k−1​​

 ​
 _________ 

f ​(​θ​k​​ | ​θ​k−1​​)​
 ​  ≜  ​I​t​​​(​θ​​ t​)​.​

The function ​​I​t​​​( ⋅ )​​ that expresses this impact 
in terms of the original type formulation 
is called the impulse response function in 
Pavan, Segal, and Toikka (2014) and it plays 
a key role the characterization of the agent’s 
information rent.18 Notice that as long as 
​​​θ ̃ ​​t​​​ is first order stochastically increasing 
in ​​​θ ̃ ​​t−1​​,​ we can show that ​I​(​θ​​ t​)​  ≥  0​. From 
now on, we assume that | ​​I​t​​​(​θ​​ t​)​ |  <  K​ 
for some ​K  <  ∞​ so that the formula for 
determining ​​I​t​​​(​θ​​ t​)​​ makes sense, and we let 
​​I​0​​​(​θ​0​​)​  =  1​ for all ​​θ​0​​​.

The canonical representation is by no 
means a unique representation of the orig-
inal model in terms of initial information 
and subsequent independent information. 
The next appendix gives an example where 
a noncanonical representation allows us to 
overcome a differentiability problem in the 
canonical representation.

We have presented the construction here 
for homogeneous Markov processes, but 
the same procedure can be used to obtain 
a canonical representation for the more 
general processes ​F​(​θ​t+1​​ | ​θ​t​​, ​x​​ t​)​.​ In this 
more general case, we denote the impulse 
response functions by ​​I​t​​​(​θ​​ t​, ​x​​ t−1​)​.​ 

Appendix C. Implementability in 
the Orthogonalized Model

This example, communicated to us by 
Juuso Toikka, gives an example of a problem 
where the solution of the relaxed problem is 
not (fully) incentive compatible, but where 
it can be implemented if the orthogonalized 
information is publicly observable. 

18 Since 

​​ε​k​​  ≡  F​(​F​​ −1​​(​ε​k​​ | ​θ​k−1​​)​ | ​θ​k−1​​)​,​

the second equality in the formula follows by total differen-
tiation with respect to ​​θ​k−1​​​:

​​ ∂ ​F​​ −1​​(​ε​k​​ | ​θ​k−1​​)​  __________ 
∂ ​θ​k−1​​

 ​   =  − ​ 
​ 
∂ F​(​θ​k​​ | ​θ​k−1​​)​ _________ ∂ ​θ​k−1​​

 ​
 ___________ 

f ​(​θ​k​​ | ​θ​k−1​​)​
 ​  .​ 
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A seller (mechanism designer) with cost 
function ​​c​t​​​(​x​1​​)​  = ​ x​ 1​ 2​/2​ sells to a privately 
informed buyer in period ​t  =  1.​ In period ​
t  =  0,​ there is no trade, hence the allo-
cation decision for that period is trivial. 
The buyer’s (the agent’s) type in ​t  =  0​ is 
uniformly distributed, ​​θ​0​​  ∼  U​[0, 1]​,​ and in 
period ​t  =  1,​ it remains unchanged with 
probability ​q.​ With probability ​​(1 − q)​,​ 
the type is drawn independently of ​​θ​0​​.​ The 
canonical representation of the model is 
​​(​​θ ̃ ​​0​​, ​​ε ̃ ​​1​​, ​Z​1​​​(​θ​0​​, ​ε​1​​)​)​,​ where

​​Z​1​​​(​θ​0​​, ​ε​1​​)​ = ​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​

​  ​ε​1​​ _ 
1 − q

 ​

​ 

if 0 ≤ ​ε​1​​ < ​(1 − q)​ ​θ​0​​

​   ​θ​0​​  ​  if ​(1 − q)​ ​θ​0​​ ≤ ​ε​1​​ ≤ ​(1 − q)​ ​θ​0​​ + q.​    

​ 
​ε​1​​ − q

 _ 
1 − q

 ​

​ 

if ​(1 − q)​ ​θ​0​​ + q < ​ε​1​​ ≤  1

 ​​​

Notice that ​​Z​1​​​(​θ​0​​, ​ε​1​​)​​ is not differentiable 

in ​​θ​0​​​ at ​​θ​0​​  ∈ ​ {​  ​ε​1​​ _ 1 − q ​, ​ 
​ε​1​​ − q

 _ 1 − q ​}​​ and hence the 

envelope theorem is not directly applica-
ble.19 This problem can, however, be over-
come by selecting a different (noncanonical) 
orthogonal representation with a two dimen-
sional ​​η​1​​ = ​(​η​11​​, ​η​12​​)​​ where ​​η​11​​​ is a Bernoulli 
random variable with ​Pr​{​η​11​​ = 1}​ = 1 − 
Pr​{​η​11​​ = 0}​ = q​ and ​​η​12​​​ is an independent 
uniform random variable. Then we can write

​​θ​1​​ = ​​Z ˆ ​​1​​​(​θ​0​​, ​η​11​​, ​η​12​​)​ = ​η​11​​ ​θ​0​​ + ​(1 − ​η​11​​)​ ​η​12​​.​

Now we see that ​​​Z ˆ ​​1​​​ is differentiable in ​​θ​0​​​ 
and

	​​ I​1​​​(​θ​0​​, ​θ​1​​)​  = ​ 𝟏​​{​θ​1​​=​θ​0​​}​​​  ∈ ​ {0, 1}​.​

Hence the envelope theorem is applica-
ble and we can write equation (12) for the 
relaxed problem as

	​​ max​ 
​x​1​​≥0

​ ​​{​x​1​​​(​θ​1​​ − ​(1 − ​θ​0​​)​ ​𝟏​​{​θ​1​​=​θ​0​​}​​​)​ − ​ ​x​ 1​ 2​ _ 
2
 ​}​.​

19 A similar example can be constructed where the 
canonical representation is well behaved by smoothing the 
distribution of ​​θ​1​​​ around ​​θ​0​​.​

The solution to this problem is

	​​ x​1​​​(​θ​0​​, ​θ​1​​)​  = ​​ {​​​​θ​1​​​  if  ​θ​1​​  ≠ ​ θ​0​​​   max​{0, 2​θ​1​​ − 1}​​  if  ​θ​1​​  = ​ θ​0​​
​.​​

The allocation rule is non-monotone in ​​θ​1​​​ 
for each ​​θ​0​​  <  1​ and as a result, it cannot be 
implemented if ​​η​1​​​ is private information. On 
the other hand, it can be implemented if ​​η​1​​​ is 
observed by the seller. In this case, the seller 
knows ​​θ​1​​​ if ​​η​11​​  =  0​ and any rule is trivially 
implementable. If ​​η​11​​  =  1,​ the solution 
to the problem is the usual Mussa–Rosen 
rule. The second part of the allocation rule ​​
x​1​​​ above is the optimal scheme for this case. 
Hence we conclude that ​​x​1​​​ is implementable 
with publicly observed ​​η​1​​.​
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