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Impressions and Digital Advertising

web content is primarily monetized by ads

opportunities to show ads to user browsing a website,
"impressions", are traded via auctions...

... in search and in display advertising

seller is publisher: website that user is visiting

bidder is advertiser

object of auction is viewer ("eyeball", "attention")

example: publisher is nyt.com, bidder is Bank of America



Effi ciency vs Competition in Digital Advertising

publishers of advertising on the internet face a
fundamental economic trade-off in deciding how much
information to provide advertisers about viewers:

more information implies a more effi cient match of
advertiser and viewer, and so more surplus to split
between publisher and advertiser...

...but more information gives rise to a thinner market, and
so more information rent for the advertiser

Levin and Milgrom (2011) discuss this as an example of a
more general "conflation" question: how to draw
boundaries between goods?



Effi ciency vs Competition

equivalently: how much information would the seller (or
publisher) like buyers (advertisers) to have about the
good they are buying?

different buyers may be given different information (which
viewers are bundled in the market for impressions may
differ across advertisers).

our question: How much information would the seller
(publisher) like buyers (advertisers) to have about their
valuations of a good (an impression) in an auction?

a lot, to maximize effi ciency?
a little, to maximize competition?
or something in between?



The (Abstract) Question in More Detail

consider classic problem of second price auction of single
object to buyers with symmetric independent private
values.....

.....but suppose the seller controls how much each buyer
knows about his private value (without knowing the
private value herself)

would the seller prefer full information (buyers know their
values perfectly), no information (buyers know nothing
about their values), or something in between?

with full information: effi cient allocation but information
rents - revenue is expectation of second highest value

with no information: ineffi ciency but no information rent -
revenue is common ex ante expected value



Answer

optimal information structure is something in between.....

in particular, low valuation buyers are told their values
but high valuation buyers are pooled, i.e., just told that
their value exceeds a critical threshold

in fact, critical quantile where pooling starts depends only
on the number of buyers (and is independent of the
distribution of values)

intuition: competition is lowest when there is a high
winning value

this is our main theoretical result and first main
contribution



Selling Impressions

in the market for digital advertising, the object being sold
is a viewer impression

viewers are typically heterogeneous in many dimensions,
their demographic characteristics, their preferences, their
(past) shopping behavior, their browsing history and many
other aspects, observable and unobservable

advertisers display a corresponding degree of
heterogeneity in their willingness to pay for a match
between their advertisement and a specific viewer

today focus on digital advertising, many other
applications, e.g. asset design as information design, how
to bundle or not to bundle financial claims



Selling Impressions By Algorithms

information of advertiser and of publisher jointly inform
bidding in auction

two prevalent algorithms of how the joint information
enters into the bid formation:
automated bidding and manual bidding

in automated bidding , or short autobidding, seller offers
a bidding algorithm that generates optimal bids for the
advertisers given the disclosed information

in manual bidding seller offers disclosure algorithm that
generates information about attributes, each bidder then
translates manually into bid for impression

autobidding converts high-dimensional information across
millions of impressions into bids with minimal latency



Model



Model (Basic)

i = 1, ..., N advertisers bid for viewer in second-price
auction

private values vi symmetrically and independently
distributed according to F

publisher chooses a information structure (signal),
symmetrically and independently:

si : R→ ∆R

generates a distribution G over posterior expectations:

wi , E[vi | si]



Revenue

objective of the seller is to maximize revenue in a
second-price auction

revenue is equal to second-highest expected valuation
across bidders

k-th highest valuation is denoted by w(k)

objective of seller is to solve:

R , max
{si:R→∆R}i∈N

E[w(2)].



Analysis



First Steps of Analysis
find optimal symmetric information structure
information structure generates posterior expectation wi
with distribution G:

wi , E[vi | si]
Blackwell/Strassen/Rothschild-Stiglitz show: there exists
a signal s that induces a distribution of expected
valuations G from F if and if F is a mean preserving
spread of G
F is a mean preserving spread of G if∫ ∞

v

dF (t) ≤
∫ ∞
v

dG(t), ∀v ∈ R+

and ∫ ∞
0

dF (t) =

∫ ∞
0

dG(t).

if F is a mean preserving spread of G we write F ≺ G



Revenue
second-order statistic w(2) of N symmetrically and
independently distributed random variables is

P(w(2) ≤ t) = NGN−1(t)(1−G(t)) +GN(t)

expected revenue of seller:

R = E[w(2)] =

∫ ∞
0

td(NGN−1(t)(1−G(t)) +GN(t))

maximization problem:

R = max
G

∫ ∞
0

td(NGN−1(t)(1−G(t)) +GN(t))

subject to F ≺ G.

non-linear problem in optimization variable G
neither convex nor concave program



Quantile Representation

denote by qi a random variable that is uniformly
distributed in [0, 1] and

F−1(qi) = vi.

distribution function of quantile of second-highest
valuation:

SN(q) , NqN−1(1− q) + qN

quantile distribution SN is independent of the underlying
distribution F or G

just as quantile of any random variable is uniformly
distributed, the quantile of second-order statistic of N
random variables is distributed according to SN for every
distribution



Quantile Representation: Change of Variable

revenue is expectation over quantiles using measure SN(q)

revenue given quantile of second-order statistic is G−1:

maxG−1

∫ 1

0
S ′N(q)G−1(q)dq

subject to G−1 ≺ F−1

(R)

seller can choose any distribution of expected valuations
whose quantile function G−1 is a mean-preserving spread
of quantile function F−1

F ≺ G if and only if G−1 ≺ F−1

objective is linear in G−1



Main Result
Proposition (Optimal Information Structure)
Suppose that F is absolutely continuous, then the unique
optimal symmetric information structure is given by:

SN(vi) =

{
vi, if qi ≤ q∗;

E[vi | F (vi) ≥ q∗], if qi ≥ q∗.

where q∗ ∈ [0, 1) is independent of F .

reveal the valuation of all those bidders who have a
valuation lower than some threshold determined by a
fixed quantile q∗

otherwise reveal no information beyond the fact that the
valuation is above the threshold

with change of variables, "upper censorship"



Competition through Information

optimal information structures supports competition at
the top of the distribution at the expense of an effi cient
allocation

bundles for every bidder all valuations above the threshold
F−1(q∗) into a single mass point

information rent of winning bidder is depressed with
corresponding gain in revenue for seller



Intuitive Proof Step 1: Integrate by Parts

if v = G−1 (1) is the upper bound on expected value, by
integration by parts, revenue is:∫ 1

0

S ′N(q)G−1(q)dq = v −
∫ 1

0

SN(q)dG−1(q)

so we have minimization problem

minG−1

∫ 1

0
SN(q)dG−1(q)

subject to G−1 ≺ F−1

(R)

hint: if v = 1, G−1 is itself a distribution function.



Step 2: Convexification of Second Order Statistic

graph of SN (q) for N = 3

unique inflection point for all N



Convex Hull of Quantile Function

find largest convex function below the original one
problem reduces to finding q such that:

SN(q) + S ′N(q)(1− q) = SN(1) = 1



End Points of Affi ne Segment

we take the mass to the extremes of the affi ne segment
the mass at each extreme must keep the expected mean
of quantile constant



Step 3: Back to Value Distribution

map back to value distribution of bidder i
we draw the quantile function for F (v) =

√
v



From Quantile to Convexified Quantile

the mass is moved to the end points
while keeping expectation of quantile constant



From Convex Quantile to Convex Distribution

we have been working with the quantile function
to recover the distribution we rotate



From Convex Distribution to Information Structure

we now have the distribution F
there is one step in distribution of expected value



Verification
this is an example of a problem of characterizing extreme
points of monotone functions subject to majorization
constraints (Kleiner et al. 2021)

Proposition (Kleiner et al. Proposition 2)
Let G−1 be such that for some countable collection of
intervals {[xi, x̄i) | i ∈ I},

G−1(q) =

F
−1(q) q 6∈ ∪i∈I [xi, x̄i)∫ x̄i
xi
F−1(t)dt

x̄i−xi
q ∈ [xi, x̄i)

If convSN is affi ne on [xi, x̄i) for each i ∈ I and if
convSN = SN otherwise, then G solves the maximization
problem. Moreover, if F is strictly increasing the converse
holds.



What is the Critical Quantile?

Proposition (Critical Quantile)
The quantile q∗ (N) ∈ [0, 1) that determines the optimal
information structure is 0 if N = 2, is increasing in N and
approaches 1 as N →∞; for N ≥ 3, it is implicitly defined as
the solution of:

S ′N (q) (1− q) = 1− SN (q)

this is an N th degree polynomial in q



Critical Quantiles

N q∗ (N)
2 0
3 0.25
4 0.46
5 0.58
10 0.81
100 0.98

optimal quantile is independent of the distribution and
only depends on the number of bidders
(optimal information design)
optimal reserve price is independent of the number of
bidders and only depends on the distribution
(optimal auction design)
expected numbers of bidder at top of the distribution

N (1− q∗N) ∈ (1.79, 2.25)

for all N



Variational Intuition

suppose we initially have quantile threshold q and write
v = F−1 (q) and v = EF [v|v ≥ v]

suppose we lower threshold by dq :

expected gain in approximately by bringing marginal
bidder in:

marginal gain︷ ︸︸ ︷
dqS ′N (q) ×

increase in payment︷ ︸︸ ︷
v − v

expected loss is approximately by lowering price on
inframarginal

inframarginal loss︷ ︸︸ ︷
1− SN (q) ×

decrease in payment︷ ︸︸ ︷
v − v
1− q dq



Reserve Price
second-price auction with reserve price r > 0

Proposition (Optimal Information with Reserve r)

Given a reserve price r, an optimal distribution of expected
valuations is given by:

G−1(q) =


F−1(q) if q ∈ [0, q1) ∪ (q2, q3];

r if q ∈ (q1, q2];

v̄ if q ∈ (q3, 1];

for some quantiles q1 ≤ q2 ≤ q3 (inequalities are not
necessarily strict) and r < F−1(v2) < v̄.

bundling now occurs twice:
(i) around the reserve price; (ii) upper censorship



Market for Impressions



Market for Impressions: Qualitative Features

private information in digital advertising takes a particular
distributed form....

1 viewer is object of auction and has many attributes
(demographics, past browsing behavior, past purchase
behavior, etc.)

2 publisher as seller has private information about attributes
of viewer

3 advertiser as bidder has private information about their
preference (willingness to pay) for attributes of viewer

value of the match or impression between advertiser and
viewer is jointly determined by these different sources of
private information



A Model with Two-Sided Private Information

viewer has attributes x ∈ X distributed according to Fx.

advertiser i has a preference for attributes yi ∈ Y ,
distributed according to Fy, identically and independently
distributed across i

an impression is a match between advertiser and viewer...

the value vi of a viewer is

vi = u (x, yi)

there is an induced distribution F over value vi



Statistical Assumptions

an advertiser’s preference tells them nothing about their
or others’valuation of the object (without knowing the
attribute)

a publisher’s knowledge of viewer attributes tells them
nothing about valuations

more specifically:

(x, v1, ...., vN) and (y, v1, ...., vN)

are vectors of independently distributed random variables



Micro Foundation for Statistical Assumptions
one microfoundation for statistical assumptions:

each viewer has J (binary) attributes:

xj ∈ {−1,+1} , j = 1, ..., J

each advertiser i has preferences for attributes:

yij ∈ {−1,+1} , j = 1, ..., J

we refer to vectors (x, y) as the characteristics

an impression is a match between advertiser and viewer,
match quality between advertiser i and viewer:

mi ,
1√
J

J∑
j=1

xjyij



Match Quality and Value

an advertiser value vi of a viewer is determined by a
strictly increasing function u of the match quality mi:

u : R→ R+,

such that:
vi , u(mi),

refer to u as valuation function



A Model of Auto-Bidding

1 publisher commits to signal generated conditional on
advertiser’s reported preference and viewer’s attributes

2 publisher commits to submitting advertiser optimal bid as
a function of reported preference and publisher’s signal

3 Preferences and attributes are realized, signals and bids
are realized and the impression is allocated to the highest
bidder at the second highest price



Information Design

publisher chooses a information structure (signal):

si : {−1, 1}J × {−1, 1}J → ∆R

as a function of (reported) preferences and attributes...

... or equivalently of (induced) value

si : R→ ∆R

generates a distribution G over posterior expectations

wi , E[vi | si(vi), yi]



Automated Bidding

advertiser submits his preference
subject to truthtelling (honesty)

publisher commits to

1 complement advertiser’s preference with attribute
information

2 publisher submits bid bi : {−1, 1}J × R→ R:

bi(yi, si) = wi , E[vi | si(vi), yi]

critical aspect of automated bidding, or auto-bidding is
that publisher complement preference with attribute
information and establishes subsequent bid



Eliciting Advertisers’Preferences
examine advertisers’incentives to truthfully report their
preferences
a reporting strategy for bidder i is denoted by:

ỹi : {−1, 1}J → ∆{−1, 1}J .
given reported preferences, the seller discloses to the
bidder a signal s(ṽi), where

ṽi , u(
1√
J

J∑
j=1

ỹij(yij)xj)

since preferences and attributes are symmetrically
distributed, a suffi cient statistic for the bidder’s strategy
is the fraction of preferences truthfully reported:

ti ,
J∑
j=1

ỹiyi
J



Auto-Bidding

Proposition (Truthful Reporting)
Under the optimal information structure, it is a dominant
strategy for an advertiser to report truthfully his preferences to
the publisher.

distribution of bids b̃i is the same for every reported
strategy

truthtelling generates the highest correlation among all
joint distributions (vi, bi)



Manual Bidding

advertiser submits his preference
subject to truthtelling (honesty)

publisher commits to

1 complement advertiser’s preference with attribute
information

advertiser combines preference and attribute information
to set advertiser-optimal bid
subject to obedience



Manual Bidding

truthtelling is not an equilibrium for every N, u

there is a class of information structures balancing
revenue and incentive compatibility with large N

consider the two-sided pooling structure:

s(vi) =


E[vj | F (vj) ≤ 1− q] if F (vj) ≤ 1− q∗

vj if 1− q∗ ≤ F (vj) ≤ q∗

E[vj | F (vj) ≥ q] if F (vj) ≥ q∗

above information structure adds pooling at the bottom
to pooling at the top



Truthful Reporting Under Manual Bidding

Proposition (Honesty and Obedience)
Under manual bidding, it is a dominant strategy for the
advertiser to report his preference truthfully in the two-sided
pooling structure.

Proposition (Approximate Optimality)
Under the two-sided pooling information structure the revenue
converges to the one under the optimal information structure
when the number of bidders grows large:

lim
N→∞

(E[w(2)]−R) = 0.

revenue under two-sided pooling is given by w(2)



Comment on Manual Bidding

suppose that the advertiser chooses his bid after receiver
signal from publisher

advertiser now has the option of double deviation:
misreporting preferences to control information and then
bidding as a function of true preferences

analogous to Bayesian persuasion with private information



Large Markets



Large Markets

large number of (possible) bidders is arguably the
prevailing condition in digital advertising how does
information respond to random participation of bidders

revenue performance of auction with optimal information
structure when the actual number of participating bidders
grows large.



Random Number of Bidder

with probability p, valuation is equal zero

with probability 1− p,valuation is distributed with F
limit as N →∞ and p→ 1 while expected number of
bidders with positive values constant at:

λ , N(1− p)

critical number ρ of expected bidders

ρ , N(1− q∗) (1)

as N →∞, (1) converges in terms of ρ:

ρ2e−ρ = 1− e−ρ − ρe−ρ ⇔ ρ ≈ 1.793



Equilibrium Information

λ is expected number of serious bidders, ρ

Proposition
As N →∞, p→ 1, the optimal information structure is:

1 If λ ≤ ρ, then bidders observe binary signals and expected
value is either 0 or E [vi]λ/ρ.

2 If λ > ρ, bidder vi with F (vi) ≤ (λ− ρ)/λ learns value,
and bidder vi ∈ [F−1((λ− ρ)/λ), 1] is bundled.

bundle zero values with positive values ("broad search")

increase number of bidders even at cost of decreasing
expected valuations

with suffi ciently many bidders, we have pooling of
high-valuation bidders



Large Number of Bidders with Heavy Tails

Arnosti, Beck and Milgrom (2016) argued heavy tails
distribution prevail in digital advertising.

F has regularly varying tails with index α, if

lim
t→∞

1− F (kt)

1− F (t)
= kα,

we assume α < 0, a α < −1 for finite mean

for example Pareto distribution



Revenue Comparison with Heavy Tails

expected revenue in second price auction with complete
disclosure of information, Rc :

Rc , E[v(2)].

compare revenue of optimal information structure, R with
revenue of complete disclosure, Rc for large N

Proposition (Revenue Ratio with Many Bidders )
As N →∞, there exists z ∈ (1,∞) s.th.:

lim
N→∞

R

Rc

= z.

Furthermore, in the limit α→ −1, z →∞.



Revenue Gains

gains from optimal information structure do not vanish

when the distribution has fat tails, or α < 0

E[v(1)]− E[v(2)]→∞, as N →∞.

optimal information structure thickens the market at the
tail of the distribution

thus provide a revenue improvement even as the numbers
of bidders becomes arbitrarily large



Discussion and Conclusion

auction format (revenue equivalence)

reserve price and optimal auction

vertical differentiation of attributes

correlated values and adverse selection

privacy policies (targeting negative and positive news)

asymmetric information across bidders...
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