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Counterfactuals with Latent Information†

By Dirk Bergemann, Benjamin Brooks, and Stephen Morris*

We describe a methodology for making counterfactual predictions 
in settings where the information held by strategic agents and the 
distribution of payoff-relevant states of the world are unknown. 
The analyst observes behavior assumed to be rationalized by a 
Bayesian model, in which agents maximize expected utility, given 
partial and differential information about the state. A counterfac-
tual prediction is desired about behavior in another strategic setting, 
under the hypothesis that the distribution of the state and agents’ 
information about the state are held fixed. When the data and the 
desired counterfactual prediction pertain to environments with 
finitely many states, players, and actions, the counterfactual predic-
tion is described by finitely many linear inequalities, even though the 
latent parameter, the information structure, is infinite dimensional.  
(JEL D44, D82, D83)

A central problem in the empirical analysis of strategic behavior is the presence 
of incomplete information. For example, in an auction, it matters not only what 
bidders believe about their value from the object if they win it, but also what they 
believe about others’ beliefs about the value of the object to them and to others. 
In making predictions about outcomes in a counterfactual strategic environment, 
it is standard and natural to hold fixed the distribution of payoff-relevant states and 
players’ beliefs about the state. These are collectively described by an information 
structure. Because informational structures are complex, most applied work relies 
on strong simplifying assumptions, such as independent private values in an auction. 
However, the strength of these assumptions undermines the credibility of the result-
ing counterfactual predictions.

In this paper, we provide a novel approach to counterfactual analysis with 
latent and fixed information. We describe a completely nonparametric approach to 
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identifying counterfactuals by treating the information structure as a nuisance param-
eter—that is, a parameter that is not of intrinsic interest but needs to be accounted 
for in making counterfactual predictions. We thus avoid the complexity that would 
be involved in identifying the information structure itself.1 By instead focusing on 
a given counterfactual of interest and finite-dimensional restrictions on information 
implicit in observed behavior, we are able to derive a concise description of the set 
of counterfactual predictions.

Let us describe our approach in a simple case. Suppose that an individual takes 
an action ​a​ from a finite set of possible actions. The action results in a payoff ​u​(a, θ)​​,  
where ​θ​ is an uncertain state of the world that has finitely many possible values. 
Suppose that we observe the empirical distribution of ​​(a, θ)​​, which we refer to as 
the outcome and denote by ​ϕ​​​(a, θ)​​. We do not observe the individual’s informa-
tion about ​θ​, but we maintain the standard assumption that the action maximizes 
expected utility, given whatever beliefs about ​θ​ are held at the time the decision was 
made.

Now suppose we wish to predict how the same representative individual will 
behave in a new decision problem, where an action ​​̂  a​​ leads to a payoff ​​̂  u​​(​̂  a​, θ)​​. 
Importantly, while the decision problem changes, the joint distribution of ​θ​ and 
the individual’s information about ​θ​ are assumed to remain the same. Under the 
assumption that ​θ​ is observed, the distribution of ​θ​ can be computed directly from ​ϕ​,  
but the distribution of beliefs conditional on ​θ​ is a latent parameter. Our question 
is, which counterfactual outcomes ​​̂  ϕ​​(​̂  a​, θ)​​ could be induced by optimal behavior for 
some information structure which also rationalizes the observed data ​ϕ​?

Our main result implies the following simple and tractable characterization of 
these predictions: Imagine that rather than performing an abstract thought experi-
ment, the individual actually did choose ​​̂  a​​ at the same time as ​a​ was chosen, and 
we simply did not observe it. The payoff was simply the sum of the payoffs across 
the two decision problems, so that there was no interaction between the two choices 
except through the common information. We refer to this as the linked decision 
problem, in which the action is an ordered pair ​​(a, ​  a​)​​. Since both actions were 
taken based on the same information about the same state, there will be correlation 
between ​θ​, ​a​, and ​​̂  a​​, and we can write ​​   ϕ​​(a, ​  a​, θ)​​ for the joint distribution of these 
objects. For ​​   ϕ​​ to be consistent with our data, the marginal on ​​(a, θ)​​ must be ​ϕ​. The 
counterfactual prediction is simply the marginal of ​​   ϕ​​ on ​​(​̂  a​, θ)​​.

Thus, the problem of computing counterfactual predictions can be reduced to com-
puting those outcomes ​​   ϕ​​ for the linked problem that are consistent with Bayesian 
rationality. But Bergemann and Morris (2013, 2016) have shown that these are pre-
cisely the Bayes correlated equilibria (BCE) of the linked problem, which are a 
convex set of ​​   ϕ​​ that satisfy a finite collection of “obedience constraints” that encode 
Bayesian optimality. When we add in the constraint that the marginal on ​​(a, θ)​​ is the 
observed ​ϕ​, we obtain a convex set of joint distributions ​​   ϕ​​ on ​​(a, ​  a​, θ)​​ that are consis-
tent with rationality in the linked decision problem and are consistent with the data. 
The marginals of these distributions on ​​(​̂  a​, θ)​​ are precisely the set of counterfactual 

1 In an earlier version of this paper (Bergemann, Brooks, and Morris 2020), we discuss in greater detail the 
conceptual difficulties associated with identifying the information structure. At the very least, we would need to 
identify a distribution over the players’ infinite sequences of higher-order beliefs.
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outcomes that are consistent with the data. When there are finitely many actions 
and states and the data is given by finitely many linear constraints, counterfactual 
predictions are defined by finitely many linear inequalities, which one can use, for 
example, to compute the range of counterfactual welfare via linear programming.

This outline presumed that there was one player and that the entire outcome was 
observed. Our subsequent analysis shows that this logic goes through in general 
many-player finite-action games, where the data reveal linear constraints on ​ϕ​. In 
particular, our methodology applies to situations in which we only observe the play-
ers’ actions, or some statistic thereof, such as the winning bid in an auction. In this 
case, the state is unobserved, and in our characterization of counterfactual predic-
tions, the prior is implicitly restricted by the data. The argument that counterfactual 
predictions are characterized by linear inequalities is completely general, and fol-
lows the same steps as our informal discussion above.

We present two examples that illustrate our characterization and show how fea-
tures of the information structure are encoded in the data. The first is a discrete 
version of Roy’s (1951) model of self-selection: a worker decides whether or not to 
join the workforce (the action) in the presence of uncertainty about potential earn-
ings (the state). We consider both the case where the entire outcome is observed, 
so that we see potential earnings for all workers, and also the case where the data 
is censored and potential earnings are only observed conditional on employment. 
The example shows how the observed correlation between employment and wages 
restricts the worker’s information, which in turn determines counterfactual welfare 
when the potential earnings rise or fall. The second example is a two-firm entry 
game in the spirit of Ciliberto and Tamer (2009). The novelty in this strategic setting 
is that the observed outcome restricts both what the each firm knows about the state, 
and also what they know about the other firm’s information.

Following the examples, we discuss some straightforward extensions that are 
likely to be important for applications. Our main result is presented in a stark theo-
retical benchmark where the analyst places no a priori restrictions on players’ infor-
mation. There are many natural settings where an analyst would know more than in 
our baseline model but less than in standard parameterized models of the informa-
tion structure. In Section IV, we show how assumptions about the information struc-
ture can be incorporated in order to tighten the set of counterfactual predictions. For 
example, the analyst might be confident that players know those features of the state 
that affect their own preferences, which we refer to as the case of private values; or 
the analyst may observe “payoff shifters” that affect a player’s preferences but are 
orthogonal to other elements of the model.

As noted above, our approach builds on the work of Bergemann and Morris 
(2013, 2016) who showed that BCE are precisely the outcomes that can arise under 
some information structure and equilibrium, for a fixed game. The contribution of 
this paper is to introduce linked games to characterize counterfactual predictions 
when information is the same in the observed and counterfactual games. A different 
approach to counterfactuals building on BCE results is to hold the prior fixed but 
impose no restriction on how players’ information about the state might vary between 
the observations and counterfactual. This “unrestricted-information” approach was 
discussed informally in Bergemann and Morris (2013) and Bergemann, Brooks, 
and Morris (2017) and implemented by Magnolfi and Roncoroni (2021) and 
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Syrgkanis, Tamer, and Ziani (2021).2 We discuss this and other ways of relaxing the 
fixed-information assumption in Section IV and discuss these and other econometric 
papers in Section V.

Before proving our main result, we derive a foundational result on joint pre-
dictions across games when there is a common information structure, in terms of 
BCE of a linked game. Our result on counterfactuals follows when we consider two 
games, one of which generates some observable data and the other of which is the 
counterfactual. The joint predictions result has potential applications beyond coun-
terfactuals. In Section VI, we argue that it can be used to derive “informationally 
robust” rankings of games, which are illustrated in the online Appendix. Heumann 
(2019) analyzed a version of this problem in the context of symmetric games with 
normal uncertainty and linear best responses. The methods and results are comple-
mentary. Our approach is more general, which expands the range of potential appli-
cations but may make it harder to obtain analytic results.

The rest of this paper proceeds as follows. Section I establishes the basic nota-
tion. Section II presents our main results on counterfactual predictions. Section III 
presents our examples. Section IV presents extensions. Section V discusses related 
literature. Section VI concludes the paper. An online Appendix contains additional 
results and examples.

I.  Preliminaries

There is a state of the world ​θ  ∈  Θ​, where ​Θ​ is finite. There is also a set of 
players, indexed by ​i  =  1,  …, N​. The players and state space will be held fixed 
throughout our analysis.

The players interact through a base game ​  = ​​ (​A​i​​, ​u​i​​)​​ i=1​ N  ​​, where ​​A​i​​​ is the set of 
actions of player ​i​, ​A  = ​ ×​ i=1​ N  ​ ​A​i​​​ is the set of action profiles, and ​​u​i​​ : A × Θ  →  ℝ​ 
represents player ​i​’s expected utility preferences over ​​(a, θ)​​.

The distribution of the state and players’ beliefs are described by a common-prior 
information structure ​  = ​ (​​(​S​i​​)​​ i=1​ N  ​, π)​​, where ​​S​i​​​ is a measurable set of signals of 
player ​i​, ​S  = ​ ×​ i=1​ N  ​ ​S​i​​​ is the set of signal profiles, and ​π  ∈  Δ​(S × Θ)​​ describes the 
joint distribution of signals and states.3

A (Bayesian) game is a pair ​​(, )​​. A strategy for player ​i​ in the game is a measur-
able mapping ​​σ​i​​ : ​S​i​​  →  Δ​(​A​i​​)​​. We write ​​σ​i​​​(​a​i​​ | ​s​i​​)​​ for the probability of an action ​​a​i​​​ 
given the signal ​​s​i​​​. A strategy profile ​σ  = ​ (​σ​1​​,  …, ​σ​N​​)​​ is associated with the prod-
uct mapping ​σ : S  →  Δ​(A)​​, where ​σ​(a | s)​  = ​ ∏ i=1​ N  ​ ​σ​i​​​(​a​i​​ | ​s​i​​)​​​. Player ​i​’s expected 
utility under ​σ​ is4

	​ ​U​i​​​(σ)​  = ​  ∑ 
θ∈Θ

​ 
 
 ​​ ​ ∫ 

s∈S
​ 

 
 ​​ ​  ∑ 

a∈A
​ 

 
 ​​​ u​i​​​(a, θ)​σ​(a | s)​π​(ds, θ)​.​

2 In recent versions of their work, Magnolfi and Roncoroni (2021) study fixed-information counterfactuals as 
well as unrestricted-information counterfactuals

3 We allow the information structure to be infinite, while the other objects in the model are finite. This richness 
is necessary to accommodate the full range of possible higher order beliefs and correspondingly the full range of 
equilibrium behavior across all counterfactuals.

4 Given a function ​f : S × Θ  →  ℝ​, the expression ​​∑ θ∈Θ​   ​​​ ∫ s∈S  ​ 
 
 ​​ f​(s, θ)​π​(ds, θ)​​ is the Lebesgue integral of ​f​ with 

respect to the measure that assigns a mass ​π​(X × ​{θ}​)​​ for every ​X  ⊆  S​ and ​θ  ∈  Θ​. Thus, we emphasize the finite-
ness of ​Θ​ and the (possible) infiniteness of ​S​.
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The profile ​σ​ is a Bayes Nash equilibrium if ​​U​i​​​(σ)​  ≥ ​ U​i​​​(​σ​ i​ ′ ​, ​σ​−i​​)​​ for all ​i​ and for 
all strategies ​​σ​ i​ ′ ​​, and ​​σ​−i​​​ refers to the strategy profile of all agents but ​i​. (We shall 
frequently refer to Bayes Nash equilibrium simply as equilibrium.)

An outcome of ​​ is a distribution ​ϕ  ∈  Δ​(A × Θ)​​. Note that ​ϕ​ contains all the 
information required in order to compute players’ payoffs or any welfare criterion 
that only depends on realized actions and states. The outcome ​ϕ​ is induced by a pair ​​
(, σ)​​, where ​σ​ is a strategy in ​​(, )​​, if

(1)	​ ϕ​(a, θ)​  = ​ ∫ 
s∈S

​ 
 
 ​​ σ​(a | s)​π​(ds, θ)​.​

A prior is a distribution ​μ  ∈  Δ​(Θ)​​. Given a prior ​μ​ and a base game ​​, Bergemann 
and Morris (2013, 2016) defined a Bayes correlated equilibrium (BCE) of ​​(μ, )​​ as 
an outcome ​ϕ​(a, θ)​​ that satisfies the obedience constraints: for all ​i​, ​​a​i​​​, and ​​a​ i​ ′​​,

(2)	​​  ∑ 
θ∈Θ

​ 
 
 ​​​   ∑ 

​a​−i​​∈​A​−i​​
​ 

 
 ​​​ (​u​i​​​(​a​i​​, ​a​−i​​, θ)​ − ​u​i​​​(​a​ i​ ′​, ​a​−i​​, θ)​)​ϕ​(​a​i​​, ​a​−i​​, θ)​  ≥  0,​

where ​​a​−i​​​ refers to the strategy profile of all agents but ​i​; and the Bayes consistency 
condition: for all ​θ  ∈  Θ​

(3)	​​  ∑ 
a∈A

​ 
 
 ​​ ϕ​(a, θ)​  =  μ​(θ)​.​

The obedience constraints require that whenever the joint distribution  
​ϕ​(​a​i​​, ​a​−i​​, θ)​​ recommends action ​​a​i​​​ to player ​i​, then player ​i​ will find it in their interest 
to choose the recommended action ​​a​i​​​ rather than any other action ​​a​ i​ ′​​. The obedience 
condition is a best-response condition that is based on the information conveyed by 
the recommendation alone. The Bayes consistency condition states the marginal dis-
tribution of the outcome distribution over the state space equals the common prior 
distribution ​μ​. The marginal (distribution) of ​θ​ is computed as usual from the joint 
distribution ​ϕ​(a, θ)​​ by summing up over all of the values of action profiles ​a​.

Theorem 1 in Bergemann and Morris (2016) establishes that ​ϕ​ is a BCE of ​​(μ, )​​ 
if and only if there exists an information structure ​  = ​ (S, π)​​ and an equilibrium ​σ​ 
of ​​(, )​​ such that ​ϕ​ is induced by ​​(, σ)​​ and ​μ​ is the marginal distribution of ​π​ on ​
S​.5 In fact, Theorem 1, establishes a revelation principle familiar from the mecha-
nism design literature. Namely, it is without loss of generality to restrict attention 
to information structures where the signal of each player can be identified with the 
action recommendation. Thus, there is a canonical class of information structures 
with which we can induce any outcome that can be induced with some information 
structure and equilibrium.

For the purpose of the current analysis, we shall use a weaker notion of BCE that 
only imposes the obedience conditions (2), and does not impose Bayes consistency 
(3) with respect to any particular prior. This formulation is convenient for applica-
tions in which the prior is unknown and has to be inferred from observable data. 
Formally, we say that the outcome ​ϕ​ is a BCE of the base game  if it is a BCE of ​​
(μ, )​​ for some prior ​μ​. The corresponding and logically equivalent statement to 

5 Bergemann and Morris (2016) assume that ​S​ is finite, but the extension to arbitrary measurable ​S​ is routine.
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Theorem 1 in Bergemann and Morris (2016) is that ​ϕ​ is a BCE of the base game ​​ if 
and only if there exist an information structure ​​ and an equilibrium ​σ​ of ​​(, )​​ such 
that ​ϕ​ is induced by ​​(, σ)​​. Since the prior is described as part of the information 
structure, we will hereafter mostly avoid explicit reference to ​μ​.

II.  Joint Predictions and Counterfactuals

Before developing our results on counterfactuals, we address the following ques-
tion: Suppose that the players were to simultaneously play ​K​ games, ​​​​ 1​,  …, ​​​ K​​, 
where ​​​​ k​  = ​​ (​A​ i​ k​, ​u​ i​ k​)​​ i=1​ N ​ ​. What joint predictions can we make about the outcomes 
that would arise in equilibria of the respective games, assuming that the players have 
the same information structure in every game? We have already observed that the set 
of outcomes that could arise in game ​​​​ k​​ is the set of BCE. But because players have 
the same information in each of the ​K​ games, there will be additional consistency 
requirements across the games arising from fixed information. The purpose of this 
section is to characterize those extra restrictions. Our main result regarding counter-
factual behavior and other later results will be established using this characterization 
when we impose particular structure or interpretations on the games ​​​​ k​​.

A. Joint Predictions with Fixed Information

We say that an outcome profile

	​ ​(​ϕ​​ 1​,  …, ​ϕ​​ K​)​  ∈  Δ​(​A​​ 1​ × Θ)​ ×  ⋯  × Δ​(​A​​ K​ × Θ)​​

is a joint prediction if there exist an information structure ​​ and, for each ​k  =  1,  
…, K​, an equilibrium ​​σ​​ k​​ of ​​(​​​ k​, )​​ such that ​​ϕ​​ k​​ is induced by ​​(, ​σ​​ k​)​​.

The linked game ​​   ​  = ​​ (​​   A ​​i​​, ​​   u ​​i​​)​​ i=1​ N  ​​ is defined by, for each ​i​, ​​​   A ​​i​​  = ​ A​ i​ 1​ × ⋯ × ​A​ i​ K​​ 
and

	​ ​​   u ​​i​​​(​   a ​, θ)​  = ​   ∑ 
k=1,…,K

​ 
 
 ​​​ u​ i​ k​​(​a​​ k​, θ)​,​

where ​​​   a ​​i​​  = ​ (​a​ i​ 1​,  …., ​a​ i​ K​)​​. We refer to ​​​​ k​​ as a component game of ​​   ​​. An outcome  
​​   ϕ​​ of ​​   ​​ can be identified with a joint distribution in ​Δ​(​A​​ 1​ × …. × ​A​​ K​ × Θ)​​.6

6 The most closely related antecedent to linked games we know of is the symmetrization of two-player games 
due to Brown and von Neumann (1950). Their symmetric game is essentially a linked game whose component 
games are simply the original game and its “permutation,” where the players trade roles.
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THEOREM 1 (Joint Predictions): A tuple ​​(​ϕ​​ 1​,  …, ​ϕ​​ K​)​​ is a joint prediction for 
​​​​ 1​, …, ​​​ K​​ if and only if there exists a BCE ​​   ϕ​​ of ​​   ​​ for which the marginal distribu-
tion of ​​   ϕ​​ on ​​A​​ k​ × Θ​ is ​​ϕ​​ k​​ for each ​k  =  1,  …, K​.

PROOF OF THEOREM 1:
We first establish two preliminary claims. Fix an information structure ​​ and 

strategy profile ​​   σ​​ in ​​(​   ​, )​​. For each ​k​, let ​​σ​ i​ k​​ be the strategy in ​​(​​​ k​, )​​ where  
​​σ​ i​ k​​( · |​ s​i​​)​​ is the marginal of ​​   σ​​( · | ​s​i​​)​​ on ​​A​ i​ k​​.

CLAIM 1: If ​​   ϕ​​ is the outcome induced by ​​(, ​   σ​)​​ and ​​ϕ​​ k​​ is the outcome induced by ​​
(, ​σ​​ k​)​​, then ​​ϕ​​ k​​ is the marginal of ​​   ϕ​​ on ​​A​​ k​ × Θ​. 

This follows from

    ​    ​ϕ​​ k​​(​a​​ k​, θ)​  = ​ ∫ 
s∈S

​ 
 
 ​​​ σ​​ k​​(​a​​ k​ | s)​π​(ds, θ)​​

	​ = ​ ∫ 
s∈S

​ 
 
 ​​​   ∑ 

​a​​ −k​∈​A​​ −k​
​​​​   σ​​(​a​​ k​, ​a​​ −k​ | s)​π​(ds, θ)​​

	​ = ​   ∑ 
​a​​ −k​∈​A​​ −k​

​​​​∫ 
s∈S

​ 
 
 ​​​    σ​​(​a​​ k​, ​a​​ −k​ | s)​π​(ds, θ)​​

	​ = ​   ∑ 
​a​​ −k​∈​A​​ −k​

​​​​   ϕ​​(​a​​ k​, ​a​​ −k​, θ)​,​

where ​​A​​ −k​  = ​ ∏ ​k ′ ​≠k​​ ​A​​ ​k ′ ​​​​.

CLAIM 2: ​​   σ​​ is an equilibrium of ​​(​   ​, )​​ if and only if ​​σ​​ k​​ is an equilibrium of ​​(​​​ k​, )​​ 
for each ​k​. 

This follows from the identity

     ​     ​​   U ​​i​​​(​   σ​)​  = ​  ∑ 
θ∈Θ

​​​​∫ 
s∈S

​ 
 
 ​​​  ∑ 

​   a ​∈​   A ​
​​​​​u –​​i​​​(​   a ​, θ)​​   σ​​(​   a ​ | s)​π​(ds, θ)​​

	​ = ​  ∑ 
θ∈Θ

​​​​∫ 
s∈S

​ 
 
 ​​​   ∑ 

k=1,…,K
​​​​[​ ∑ 

a∈​A​​ k​
​​​​u​ i​ k​​(a, θ)​ ​σ​​ k​​(a | s)​]​π​(ds, θ)​​

	​ = ​   ∑ 
k=1,…,K

​​​​ ∑ 
θ∈Θ

​​​​∫ 
s∈S

​ 
 
 ​​​ [​ ∑ 

a∈​A​​ k​
​​​​u​ i​ k​​(a, θ)​ ​σ​​ k​​(a | s)​]​π​(ds, θ)​​

	​ = ​   ∑ 
k=1,…,K

​​​​U​ i​ k​​(​σ​​ k​)​.​

Now, if ​​σ ¯ ​​ is not an equilibrium, then there exist ​i​ and a strategy ​​​τ –​​i​​​ such that

	​ ​  ∑ 
k=1, … ,K

​​​​U​ i​ k​​(​σ​​ k​)​  = ​​    U ​​i​​​(​   σ​)​  < ​​    U ​​i​​​(​​τ ¯ ​​i​​, ​​   σ​​−i​​)​  = ​   ∑ 
k=1, … ,K

​​​​U​ i​ k​​(​τ​ i​ k​, ​σ​−i​​)​,​

where ​​τ​ i​ k​​ is the marginal distribution of ​​​   τ​​i​​​ on ​​A​ i​ k​​. Thus, for at least one ​k​, ​​τ​ i​ k​​ is a 
profitable deviation in ​​(​​​ k​, )​​. Conversely, if there is a profitable deviation in one 
of the component games, say to ​​τ​ i​ k​​ for player ​i​ in ​​​​ k​​, then the composite strategy  
​​​   τ​​i​​​(​​   a ​​i​​ | ​s​i​​)​  = ​ τ​i​​​(​​   a ​​ i​ k​ | ​s​i​​)​​∑ ​​a ̃ ​​ i​ k​​ 

  ​​​​    σ​​i​​​(​​a ̃ ​​ i​ k​, ​​   a ​​ i​ −k​ | ​s​i​​)​​ is a profitable deviation in the linked game. 
This completes the proof of Claim 2.
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With these claims in hand, we now prove the theorem. For the only if direction, 
suppose that ​​(​ϕ​​ 1​,  …, ​ϕ​​ K​)​​ is a joint prediction. Then there exist an information struc-
ture ​​ and, for each ​k​, an equilibrium ​​σ​​ k​​ of ​​(​​​ k​, )​​ such that ​​ϕ​​ k​​ is induced by ​​(, ​σ​​ k​)​​.  
Define strategies for the linked game ​​​   σ​​i​​​(​​   a ​​i​​ | ​s​i​​)​  = ​ ∏ k=1​ K  ​ ​σ​ i​ k​​(​​   a ​​ i​ k​ | ​s​i​​)​​​, and let ​​   ϕ​​ be the 
outcome induced by ​​(, ​   σ​)​​. By Claim 1, ​​ϕ​​ k​​ is the marginal of ​​   ϕ​​ on ​​A​​ k​ × Θ​. By 
Claim 2, ​​   σ​​ is an equilibrium of ​​(​   ​, )​​ and hence, by Theorem 1 in Bergemann and 
Morris (2016), ​​   ϕ​​ is a BCE of ​​   ​​, as desired.

For the if direction, suppose that ​​   ϕ​​ is a BCE of ​​   ​​ with marginals ​​(​ϕ​​ 1​,  …, ​ϕ​​ K​)​​.  
Then by Theorem 1 in Bergemann and Morris (2016), there exist an informa-
tion structure ​​ and equilibrium ​​   σ​​ of ​​(​   ​, )​​ such that ​​   ϕ​​ is induced by ​​(, ​   σ​)​​. Now, 
for each ​i​ and ​k​, define the strategy ​​σ​ i​ k​​( · | ​s​i​​)​​ to be the marginal of ​​​   σ​​i​​​( · | ​s​i​​)​​ on ​​A​ i​ k​​.  
Then for each ​k​, by Claim 1, ​​ϕ​​ k​​ is induced by ​​(, ​σ​​ k​)​​, and by Claim 2, ​​σ​​ k​​ is an equi-
librium of ​​(​​​ k​, )​​. Hence, ​​(​ϕ​​ 1​,  …, ​ϕ​​ K​)​​ is a joint prediction, as desired. ∎

In effect, Theorem 1 shows that there is a revelation principle for joint predic-
tions. In particular, by extension from Theorem 1 in Bergemann and Morris (2016), 
there is a canonical class of information structures that suffice to rationalize any 
joint outcome of the component games, in which each player’s signal is simply their 
profile of recommended actions for each component game. This is a natural exten-
sion of the logic behind BCE: A player must at least know which action they played 
in each component game, so a necessary condition for equilibrium is that the player 
does not want to deviate conditional on all of their recommended actions. Moreover, 
it is sufficient for them to know just their recommended actions in order to imple-
ment equilibrium strategies that induce the observed outcomes.

Note that because of the additive separability of payoffs, the obedience con-
straints (2) specialized to the linked game reduce to the smaller set of constraints 
that, for all ​i​, ​​​   a ​​i​​  ∈ ​​    A ​​i​​​, ​k​, and ​​a​ i​ ′​  ∈ ​ A​ i​ k​​,

(4)	​​  ∑ 
θ∈Θ

​ 
 
 ​​​   ∑ 

​​   a ​​−i​​∈​​   A ​​−i​​
​ 

 
 ​​​ (​u​ i​ k​​(​​   a ​​ i​ k​, ​​   a ​​ −i​ k  ​, θ)​ − ​u​ i​ k​​(​a​ i​ ′​, ​​   a ​​ −i​ k  ​, θ)​)​​   ϕ​​(​​   a ​​i​​, ​​   a ​​−i​​, θ)​  ≥  0.​

Thus, an outcome of the linked game is obedient as long as each player does not 
benefit from deviating in any component game, conditional on their actions in all 
component games.

B. Counterfactuals When Information Is Latent and Fixed

We now apply the preceding result to counterfactual predictions. An analyst has 
data about play in an observed game ​​. The sets of possible states, actions, and 
players’ payoff functions are known, but the analyst does not know the information 
structure ​​ and may have limited data on the equilibrium distribution of states and 
actions.7

7 The assumption that states, actions, and payoffs are known is without loss of generality. This is discussed in 
the online Appendix. Our results also generalize to the case where there is more than one observed game and more 
than one counterfactual game, as discussed in Section VI.
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There is data on behavior in the observed game. We want to predict behavior in 
the unobserved game. The data are described by a set of outcomes which are con-
sistent with observation,

	​ M  ⊆  Δ​(A × Θ)​.​

There are various possible specifications for ​M​, which represent different kinds of 
observed data. In many cases, the set ​M​ can be taken to be a set of outcomes that 
satisfy moment equalities or inequalities. For example:

	 (i)	​ M  = ​ {ϕ}​​ for some particular ​ϕ​. This corresponds to the case described in the 
introduction, where the joint distribution of states and actions is observed. 
Then the prior on states is known, but the rest of the information structure ​​ 
is a latent parameter.

	 (ii)	​ M  = ​ {ϕ  ∈  Δ​(A × Θ)​ | ​marg​A​​ ϕ  =  ψ}​​ for some ​ψ  ∈  Δ​(A)​​. In this case, 
the joint distribution of actions is known, but the information structure 
(including the distribution of ​θ​) is latent.

	 (iii)	​ M  = ​ {ϕ  ∈  Δ​(A × Θ)​ | ​marg​A​​ ϕ  ∈  Ψ}​​ for some ​Ψ  ⊆  Δ​(A)​​. In this case, 
we do not even observe the entire distribution of the players’ actions. For 
example, it could be that only some statistic, such as the average action or the 
highest action is observed.

More specifically, the analyst knows that the outcome ​ϕ​ of the observed game (i) 
lies in a set ​M  ⊆  Δ​(A × Θ)​​ (where ​M​ is derived from the data), (ii) was generated 
under some information structure ​​, and (iii) was induced by an equilibrium of ​​
(, )​​. The analyst wants to make counterfactual predictions for what might happen 
if the unobserved game ​​̂  ​​ were played. But in making the counterfactual prediction, 
the analyst wants to assume that the information structure ​​ remains the same. We 
adopt the convention that unaccented objects correspond to the (partially) observed 
game and circumflex accented objects correspond to the unobserved game; e.g., 
outcomes for the two games are denoted ​ϕ​ and ​​̂  ϕ​​, respectively.

We ask which outcomes ​​̂  ϕ​​ could be induced by some equilibrium of ​​(​̂  ​, )​​​?​ 
Formally, an outcome ​​̂  ϕ​  ∈  Δ​(​̂  A​ × Θ)​​ is a counterfactual prediction if there exist 
an information structure ​​ and equilibria ​σ​ and ​​̂  σ​​ of ​​(, )​​ and ​​(​̂  ​, )​​, respectively, 
such that the outcome ​ϕ​ induced by ​σ​ is in ​M​ and such that ​​̂  ϕ​​ is induced by ​​̂  σ​​. The 
set of counterfactual predictions is denoted ​​̂  Φ​​.

Our second main result is a characterization of ​​̂  Φ​​ in terms of the linked game ​​   ​​ 
with component games ​​ and ​​̂  ​​. As in Theorem 1, it is the BCE characterization that 
will link the equilibrium behavior in the observed and the unobserved game.

THEOREM 2 (Counterfactual Predictions): An outcome ​​̂  ϕ​  ∈  Δ​(​̂  A​ × Θ)​​ is in ​​̂  Φ​​ 
if and only if there is a BCE ​​   ϕ​​ of ​​   ​​ such that (i) the marginal distribution of ​​   ϕ​​ on 
the observed game ​A × Θ​ is in ​M​ and (ii) ​​̂  ϕ​​ is the marginal distribution of ​​   ϕ​​ on the 
unobserved game ​​̂  A​ × Θ​.
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PROOF OF THEOREM 2:
By the definition of a counterfactual prediction, ​​̂  ϕ​  ∈ ​   Φ​​ if and only if there is a ​

ϕ  ∈  M​ such that ​​(ϕ, ​  ϕ​)​​ is a joint prediction for ​​   ​​. By Theorem 1, such a joint pre-
diction exists if and only if there exists a BCE ​​   ϕ​​ of the linked game ​​   ​​ for which ​ϕ​ 
and ​​ϕ ˆ ​​ are marginals on ​A × Θ​ and ​​A ˆ ​ × Θ​, respectively, and ​ϕ  ∈  M​, as desired. ∎

As discussed earlier, we can represent different kinds of data through the choice of ​
M​. Broadly, the set ​M​ can be used to represent various moment restrictions from the 
data, such as when only a subset of actions or statistics of actions can be observed. 
In each of these cases, ​M​ can be described as the intersection of a finite number of 
linear inequalities. As a result, ​​̂  Φ​​ is also described by finitely many linear inequali-
ties, being the projection onto ​Δ​(A × Θ)​​ of the set of BCE of the linked game that 
satisfy the finitely many obedience constraints and the constraints corresponding to ​
M​. In the special case of counterfactuals, the obedience constraints for the linked 
game (4) reduce to, for all ​i​, ​​a​i​​​, ​​​  a​​i​​​, ​​a​ i​ ′​​, and ​​​  a​​ i​ ′ ​​,

(5)  ​  ​ ∑ 
θ∈Θ

​​​​  ∑ 
​a​−i​​∈​A​−i​​

​​​​  ∑ 
​​  a​​−i​​∈​​  A​​−i​​

​​​​(​u​i​​​(​a​i​​, ​a​−i​​, θ)​ − ​u​i​​​(​a​ i​ ′​, ​a​−i​​, θ)​)​​   ϕ​​(​(​a​i​​, ​​  a​​i​​)​, ​(​a​−i​​, ​​  a​​−i​​)​, θ)​  ≥  0;

	​  ∑ 
θ∈Θ

​​​​  ∑ 
​a​−i​​∈​A​−i​​

​​​​  ∑ 
​​  a​​−i​​∈​​  A​​−i​​

​​​​(​​  u​​i​​​(​​  a​​i​​, ​​  a​​−i​​, θ)​ − ​​  u​​i​​​(​​  a​​ i​ ′ ​, ​​  a​​−i​​, θ)​)​​   ϕ​​(​(​a​i​​, ​​  a​​i​​)​, ​(​a​−i​​, ​​  a​​−i​​)​, θ)​  ≥  0.​

If we fix a Bayesian welfare criterion ​w​(​̂  a​, θ)​​ over ex post counterfactual outcomes, 
then the range of expected values of ​w​ across all counterfactuals can be obtained by 
solving a pair of finite-dimensional linear programs. We give specific examples of 
these linear programs in the next section.

III.  Two Examples

We now illustrate the content of Theorem 2 using two examples. The first is a 
discrete version of the Roy (1951) model of self-selection. The second is an entry 
game in the spirit of Ciliberto and Tamer (2009) and Magnolfi and Roncoroni 
(2021). These examples demonstrate how the obedience constraints and moment 
conditions obtained from the data can be used to make counterfactual predictions 
without explicitly identifying the latent prior and/or information structure. We will 
also explore how the counterfactual prediction depends on what we observe about 
the outcome of the observed game, as captured by the moment conditions.

A. One-Player Games and the Roy Model

We specialize to the case where ​N  =  1​, in which case the “game” is a deci-
sion problem being solved by a single decision-maker. We further specialize to 

Table 1—Payoffs as a Function of Actions and States

​a​\​θ​ ​− 1​ ​1​

​0​ ​0​ ​0​
​1​ ​− 1 + z​ ​1 + z​
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the case where there are two states ​Θ  = ​ {− 1, 1}​​ and two actions ​A  = ​ {0, 1}​​.8 In 
the observed game, the player’s payoff is ​u​(a, θ)​  =  aθ​, represented compactly in 
Table 1 Thus, we have normalized the payoff from ​a  =  0​ to zero, which is without 
loss of generality as long as the optimal action depends on the state. In the coun-
terfactual, the payoff is ​​̂  u​​(a, θ)​  =  a​(θ + z)​​ for some ​z  ∈  ℝ​, so that ​a  =  1​ has 
become more or less valuable in both states by the same amount. The observed game 
corresponds to ​z  =  0​.

This problem can be viewed as a discretized version of the canonical model of 
self-selection, first formulated by Roy (1951), in which the player decides whether 
or not to opt in to some activity. Opting out (action ​0​) results in a certain payoff 
(normalized to zero), but opting in (action ​1​) yields an uncertain payoff.9 The player 
may have imperfect knowledge of the state that informs their decision of whether to 
opt in. The Roy model has been described by Heckman (2010b) as “the prototype for 
many models of self-selection in economics” (p. 264).10 In Roy (1951), opting in rep-
resents a decision to choose one occupation over another; in Willis and Rosen (1979) 
or Carneiro, Hansen, and Heckman (2003), opting in represents one schooling level 
over another. In the context of employment, the payoff represents the difference in the 
player’s potential long-run earnings between the two occupations. In the experimental 
setting, the opt in payoff is the average potential treatment effect, which may be uncer-
tain due to latent characteristics of the player that affect the treatment’s efficacy. In the 
counterfactual, opting in becomes more or less valuable, which corresponds to a shift 
in the distribution of potential wages or the distribution of potential treatment effects.

Counterfactual Welfare with Observable Outcomes.—We will first consider the 
case where the analyst observes the entire distribution of actions and states. This 
corresponds to the case originally considered by Roy (1951), in which it is assumed 
that wages are observed for whatever occupation is chosen. The specific observed 
outcome ​​(a, θ)​​ is given by the probabilities in Table 2 for some ​α  ∈ ​ [1/4, 1/2]​​.11 
Thus, both states are equally likely, and the probability that the player chooses the 
ex post optimal action is the same in both states.

We first investigate the maximal counterfactual welfare that is consistent with the 
outcome in the observed game. This is the value of the following linear program:

	​​ max​ 
​   ϕ​≥0

​ ​ ​  ∑ 
(a, ​̂  a​, θ)

​ 
 

  ​​​   ϕ​(a, ​̂  a​, θ) ​̂  a​ (θ + z)​,

such that

(6a)  ​​  ∑ 
​̂  a​
​ 

 

  ​​​ ​​   ϕ​​ ​(a, ​̂  a​, θ)​  = ​​
{

​
α,

​ 
if  (a, θ) ∈ {(0, −1), (1, 1)};

​   
​ 1 _ 
2
 ​ − α,

​ 
otherwise;

 ​​​

8 We will note in the text how some results generalize beyond binary actions/states, and report these results as 
propositions in the online Appendix.

9 The constant payoff associated with opting out is a notable feature—simplifying our exposition—whereas the 
Roy (1951) model and most of the subsequent work have random payoffs associated with either choice of action. 

10 See Heckman and Vytlacil (2007) for a canonical exposition. Abbring and Heckman (2007) survey a recent 
literature that develops econometric methods for identifying the player’s information, which we briefly discuss in 
Section V.

11 The constraint ​α  ≤  1/2​ is necessary for the probability of every outcome to be nonnegative. If ​α  <  1/4​, 
the player’s payoff would be negative, which is inconsistent with utility maximization, since the player can always 
opt out and obtain a payoff of zero.
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(6b)  ​​  ∑ 
θ
​ 

 

  ​​ ​   ϕ​ (0, ​̂  a​, θ) θ ≤ 0    and  ​  ∑ 
θ
​ 

 

  ​​ ​   ϕ​ (1, ​̂  a​, θ) θ  ≥  0, ∀ ​  a​​;

(6c)  ​​  ∑ 
θ
​ 

 

  ​​​    ϕ​ (a, 0, θ)(θ + z) ≤ 0    and  ​  ∑ 
θ
​ 

 

  ​​ ​   ϕ​ (a, 1, θ)(θ + z) ≥ 0, ∀a​.

The objective is counterfactual welfare. The constraints given by (6a) requires that 
the marginal on the observed game is the observed outcome. These equality con-
straints are the generalizations of the Bayes consistency conditions. The first set of 
inequality constraints given by (6b) are the obedience conditions for the observed 
game. The second set of inequality constraints given by (6c) are the obedience con-
ditions for the counterfactual game. The program that establishes the minimum 
counterfactual welfare is the same, except that we now minimize the objective rather 
than maximize.

Counterfactual welfare is plotted in the left panel of Figure 1 for ​α  ∈ ​
{0.25, 0.375, 0.5}​​. If ​α  =  0.5​, then the player opts in if and only if the state is ​
1​. This is possible only if the player has full information about the state. If we 
change ​z​, the player will continue to make the ex post optimal choice, so that coun-
terfactual welfare is the green line. If ​α  =  0.25​, then the player enters with the 
same probability independent of the state. This is possible only if the player has 
no information: otherwise there would be some correlation between the action and 
the state. Again, in the counterfactual, the player still has no information, and the 
counterfactual payoff is given by the red line. Thus, for ​α  ∈ ​ {0.25, 0.5}​​ we get a 
point prediction for counterfactual welfare. In these two extremes of the outcome 
distribution parametrized by ​α​, the outcome in the observed game allows the ana-
lyst to completely deduce the distribution of interim beliefs held by the player. In 
consequence, the counterfactual welfare prediction in the one agent environment is  
unique.

If ​α  =  0.375​, then the player’s action is ex post optimal less often than can be 
explained by full information and more often than can be explained by no informa-
tion. Here are two information structures that rationalize the data, formally described 
as ​​π​1​​​(s, θ)​​ and ​​π​2​​​(s, θ)​​ in Table 3:

	 (i)	 Half of the time, the signal ​s  ∈ ​ {− 1, 1}​​ is fully informative and matches 
the state, and the player opts in if and only if the state is high. The other half 
of the time, the signal, ​s  =  0​, is uninformative, and the player opts in with 
probability ​1/2​.

	 (ii)	 The player’s signal ​s  ∈ ​ {− 1, 1}​​ is a noisy observation of the state and the 
probability that ​s  =  θ​ is ​3/4​. The player opts in when the signal is ​1​ and opts 
out when the signal is ​− 1​.

Table 2—Observed Distribution of Actions and States

​a​\​θ​ ​− 1​ ​1​

​0​ ​α​ ​​ 1 _ 2 ​ − α​

​1​ ​​ 1 _ 2 ​ − α​ ​α​
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Suppose that the player’s information is given by (i). As we vary ​z​, the counterfac-
tual payoff is simply the average of the full- and no-information payoffs. This is the 
top blue line in the left panel of Figure 1. In contrast, if information is given by (ii), 
then the player’s strategy when ​z  =  0​ remains optimal as long as ​z  ∈ ​ [− 1/2, 1/2]​​.  
When ​z  <  1/2​, the noisy signal is not strong enough to induce the player to opt 
in,  and it is optimal to always opt out. When ​z  >  1/2​, it is optimal to always 
opt in. The resulting welfare is given by the lower blue line in the left panel of  
Figure 1.

It turns out that the information structures (i) and (ii) achieve maximum and min-
imum counterfactual welfare. Thus, all we can say about the player’s counterfactual 
welfare is that it lies in the hatched area between the blue lines. With regard to 
minimum counterfactual welfare, observe that whatever information the player has, 
it must be Blackwell more informative than the signal generated by the action the 
player chose, which corresponds precisely to the information structure (ii). Thus, 
welfare under (ii) must be weakly lower than welfare under any other information 
structure that rationalizes the player’s behavior. With regard to maximum counter-
factual welfare, consider what distributions of the player’s belief about the state are 
consistent with the observed behavior. The obedience constraint implies that when ​
a  =  0​ (​a  =  1​), the player’s belief that the state is high is less than ​1/2​ (greater 
than ​1/2​). In addition, the average belief is ​1/4​ conditional on ​a  =  0​ and ​3/4​ con-
ditional on ​a  =  1​. Among distributions of beliefs satisfying these properties,  the 
one that is most informative in the sense of Blackwell (1953)—and is therefore 
associated with the highest payoff—assigns probability ​1/4​ to a belief of ​0​, ​1/4​ 

Figure 1. Counterfactual Welfare in the Roy Model
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Table 3—Signal Distributions ​​π​1​​​(s, θ)​​ and ​​π​2​​​(s, θ)​​

​θ​\​s​ ​− 1​ 0 1 ​θ​\​s​ ​− 1​ ​1​

​− 1​ ​1 / 4​ ​1 / 4​ ​0​ ​− 1​ ​3 / 8​ ​1 / 8​
​1​ ​0​ ​1 / 4​ ​1 / 4​ ​1​ ​1 / 8​ ​3 / 8​
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to a belief of ​1​, and ​1/2​ to a belief of ​1/2​. This is precisely the belief distribution 
induced by the information structure (i).

Note that for any value of ​α​, there is a unique “local” counterfactual payoff 
prediction, where by local we mean that the counterfactual game is the same as 
the observed game. Thus, when ​z  =  0​, counterfactual welfare must be equal to 
observed welfare. The reason is that the player can always simply repeat their 
observed action in the counterfactual and achieve as high a payoff as in the observed 
outcome. Similarly, in the observed game, the player could have instead mimicked 
their action in the counterfactual and achieved as high a payoff as in the counterfac-
tual outcome. Thus, the two payoffs must be equal.

To summarize, we have shown that (i) minimum counterfactual welfare is attained 
when the player has only the information revealed by observed behavior, (ii) max-
imum counterfactual welfare is attained when the player has the Blackwell most 
informative information structure consistent with observed behavior, and (iii) local 
counterfactual welfare is unique. In the online Appendix, we show that these proper-
ties generalize to any number of actions, and (i) and (iii) also generalize to any num-
ber of states.12 All three results rely on the fact that there is a single player and we 
are looking at counterfactuals about that player’s payoff. In the online Appendix, we 
give an example of a single-player game where there is not a unique counterfactual 
when we look at behavior instead of payoffs. We also see the failure of the unique-
ness of the local counterfactual in the entry game in the next section. However, 
the local counterfactual for welfare is unique in two-player zero-sum games, as is 
shown in the online Appendix.

Partially Observed Outcomes.—In randomized controlled trials, it is natural to 
suppose that the data are censored, and we only observe average treatment effects 
for players who opt into the trial. Similarly, if “opting in” represents a decision to 
join the labor force, we would likely not observe potential income for the unem-
ployed. We now revisit the analysis of the previous section, but supposing that we 
only observe the distribution of the state conditional on ​a  =  1​. In the linear pro-
gram, we simply replace the first constraint with

	​​ ∑ 
​̂  a​,θ

​ 
 
 ​​ ​    ϕ​​(0, ​  a​, θ)​  =  1/2,  ​∑ 

​̂  a​
​ 
 
 ​​ ​    ϕ​​(1, ​  a​, − 1)​  = ​  1 _ 

2
 ​ − α,  and ​ ∑ 

​̂  a​
​ 
 
 ​​ ​    ϕ​​(1, ​  a​, 1)​  =  α.​

Counterfactual welfare is plotted in the right panel of Figure 1. For ​z  <  0​, the pre-
diction is unchanged. The reason is that for these counterfactuals, opting in is less 
attractive than in the observed game; so whenever we observe the player opt out, 
they will also opt out in the counterfactual, in which case the payoff is independent 
of the state.

When ​z  >  0​, however, the player may opt in when we observe them opt out. 
Exactly how often this happens and what welfare results depends on the state 
distribution that rationalizes the data. Consider first when ​α  =  0.5​, i.e., we observe 
the player opt in half the time, but when the player opts in, the state is always 

12 With more than two states, there may not be a Blackwell most informative information structure consistent 
with observed behavior.
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high. We do not know the distribution of the state when the player opts out. In the 
case considered previously, the state was always low when the player opted out. 
This is the most pessimistic case, and corresponds to the lower green curve in 
the right panel of Figure 1. However, obedience only requires that the state be 
low at least half the time when the player opts out; in particular, the data can 
also be rationalized by the state being equally likely to be high or low when 
the player opted out. In this case, the counterfactual payoff would be strictly 
higher, since when ​z  >  0​, the player would strictly prefer to opt in, thereby 
achieving the welfare on the higher green line. Any payoff between the green 
lines can also be rationalized. A similar analysis explains the upper and lower 
bounds for ​α  =  0.375​ and ​α  =  0.25​. Interestingly, the direction in which our 
bounds expand depends on the particular observed outcome: When the observed 
welfare is high, it is the upper bound on counterfactual welfare that is relaxed; 
whereas when observed welfare was low, it is the lower bound that is relaxed. In 
the intermediate case, both upper and lower bounds on counterfactual welfare are  
relaxed.

B. An Entry Game

Our second application is a simple entry game with entry costs, in the spirit of 
Ciliberto and Tamer (2009) and Magnolfi and Roncoroni (2021). Two firms choose 
whether to enter (​E​) or not enter (​N​) a market. The payoff from not entering is zero. 
Each firm ​i  =  1, 2​ has a cost to enter the market ​​c​i​​  ∈ ​ {0, 2}​​. If a single firm enters, 
that firm earns a monopoly revenue ​3​. If both firms enter, they each earn revenue ​1​. 
Payoffs are summarized in the following matrix:

​​

​a​1​​\ ​a​2​​ 
​ 

N
​ 

  E
​   N​  ​(0, 0)​​    ​(0, 3 − ​c​2​​)​​    

E
​ 

​(3 − ​c​1​​, 0)​

​ 

  ​(1 − ​c​1​​, 1 − ​c​2​​)​
​​

To map this game into our framework, we identify the state with the ordered pair of 
firms’ entry costs; that is, ​θ  = ​ (​c​1​​, ​c​2​​)​​.

The outcome of the observed game is as follows. First, all entry-cost profiles are 
equally likely. Second, each firm enters if and only if their cost is low. This outcome 
corresponds to the unique symmetric equilibrium if each firm only knows their own 
cost. We assume that the analyst observes this outcome. In the counterfactual predic-
tion, we compute producer surplus ​​̂  U​​ when we add ​z​ to the payoff from entry. This 
can be interpreted as a change in firms’ entry costs. In Figure 2, we have plotted the 
counterfactual predictions for ​​̂  U​​ for ​z​ between ​− 3​ and ​2​.

A detailed analysis is given in Section  B in the online Appendix, where we 
also explicitly write out the linear programs corresponding to maximum and 
minimum ​​̂  U​​. We now give a brief summary. First, consider which information 
structures are consistent with the observed outcome. Since each firm’s action 
is perfectly correlated with their cost, and since firms know their own actions, 
they must know their own costs as well. In addition, when ​z  =  0​, entering is 
strictly dominant when the cost is low. Thus, the data do not place any further 
restrictions on firms’ information about the other firm’s cost when their own cost 
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is low. However, the data do restrict the beliefs of high-cost firms. In particu-
lar, in the observed outcome, each firm would be just indifferent between enter-
ing and not entering if they had no information about the other firm’s cost. If a 
high-cost firm’s signal contained nontrivial information about the other firm’s cost, 
then they would sometimes believe that the other firm is more likely to enter than 
under the prior, in which case it would be strictly optimal to enter, thus violating  
obedience.

With this characterization in hand, we can now explicitly describe the informa-
tion structures and equilibria that attain the maximum and minimum counterfactual 
predictions. As indicated in Figure 2, there are several cases, depending on the value 
of ​z​. This discussion will focus on ​z  >  − 1​. The remaining cases are described in 
the online Appendix.

First, if ​z  >  1​, then entering is strictly dominant regardless of the entry cost, so 
that there is a point prediction for welfare. There is also a unique counterfactual pre-
diction for aggregate payoffs for ​z  ∈ ​ (− 1, 0)​​, which is attained in the equilibrium 
in which firms enter if and only if their costs are low.

The analysis for ​z  ∈ ​ [0, 1]​​ is more subtle. In this range, there is a symmetric 
mixed-strategy equilibrium in which high-cost firms independently randomize 
between entering and not entering. Since a high-cost firm’s payoff is zero (the pay-
off from not entering), all surplus is generated by the low-cost firms. Moreover, a 
low-cost firm’s payoff from entering is just the high-cost firm’s payoff from entering 
plus two (the difference in entry cost), so that aggregate payoff is two in this equi-
librium. However, we can see in Figure 2 that counterfactual welfare can be both 
higher and lower than in the symmetric mixed equilibrium. This is possible if firms’ 
entry decisions are correlated.

Figure 2. Counterfactual Welfare in the Entry Game
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In particular, suppose that in addition to learning their entry costs, firms observe 
the outcome of a randomization device that recommends either enter (​​s​ i​ ′​  =  e​) or 
not enter (​​s​ i​ ′​  =  n​) with probabilities:

	​​
​s​ 1​ ′ ​\ ​s​ 2​ ′ ​

​ 
n
​ 

e
​  n​  1 − β − 2γ​  γ​  

e

​ 

γ
​ 

β
​​

where ​β  ≥  0​, ​γ  ≥  0​, and ​β + 2γ  ≤  1​; and ​​(​s​ 1​ ′ ​, ​s​ 2​ ′ ​)​​ is independent of ​​(​c​1​​, ​c​2​​)​​. 
There are choices of ​β​ and ​γ​ for which it is an equilibrium for low-cost firms to 
ignore the correlation device and always enter and for high-cost firms to enter if and 
only if ​​s​ i​ ′​  =  e​. To maximize producer surplus, we choose the parameters of the cor-
relation device to maximize the probability of one firm entering, subject to only one 
firm entering at a time. The latter condition corresponds to ​β  =  0​, in which case 
the obedience constraint for a high-cost firm not entering reduces to ​γ  ≤  z​. Setting ​
γ​ equal to this upper bound, we obtain the highest counterfactual producer surplus. 
(In the online Appendix, we verify that the obedience constraint for high-cost firms 
not entering is also satisfied.)

Similarly, to minimize producer surplus, we choose the parameters to maximize 
the probability that two firms enter by setting ​β  =  1 − 2γ​, in which case the obedi-
ence constraint for not entering reduces to ​γ  ≤ ​ (1 − z)​ / ​(2 − z)​​. Setting ​γ​ equal to 
its upper bound, we obtain the lowest counterfactual producer surplus. When ​z  =  0​,  
this outcome involves exactly one high-cost firm entering. This lowers the aggregate 
payoff below the equilibrium in which high-cost firms do not enter, because it lowers 
the payoffs of low-cost firms. This illustrates the multiplicity of local counterfactual 
predictions when there is more than one player, due to multiplicity of equilibria; it is 
also an equilibrium for firms to ignore the correlation device and play the symmetric 
mixed-strategy equilibrium.

IV.  Tightening Counterfactuals and Varying Information

We now describe some straightforward extensions of the model that are rele-
vant for applications. These extensions could be used to either shrink or expand 
the set of counterfactual predictions obtained from Theorem 2. At a conceptual 
level, one can conceive of a wide variety of refinements and relaxations of our 
notion of a counterfactual prediction, where we impose different assumptions on 
players’ information and strategies and how they can vary across games. A key 
question is whether these variations will retain the tractable linear structure that 
we characterized for our baseline model. The particular extensions that we pro-
pose are notable in that the resulting set of counterfactuals is still given by the 
intersection of finitely many linear inequalities, which correspond to obedience 
constraints and data restrictions. Since the extensions are rather notationally bur-
densome, we provide an informal discussion, but there is a more complete and for-
mal treatment in the working paper version; see Bergemann, Brooks, and Morris 
(2020).
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A. Tightening Counterfactuals

Bounds on Information.—First, we can enrich the model with further restrictions 
on players’ information. The most straightforward such restriction is to require that 
the information structure that rationalizes the data be at least as informative as some 
fixed information structure ​​ ~ ​  = ​ (​​{​​ ~ S​​i​​}​​ i=1​ N ​ , ​ ~ π​)​​ in the sense of individual sufficiency 
(Bergemann and Morris 2016). This means that players observe signals in ​​ ~ ​​ (or 
an equivalent information structure), but may have access to additional informa-
tion. To incorporate this assumption, we expand the outcome to a joint distribution 
over ​​(a, θ, s)​  ∈  A × Θ × ​ ~ S​​, and we write ​ϕ​(a, θ, ​ ~ s​)​​, etc. The moment restriction ​
M​ can now incorporate assumptions about the joint distribution of ​​(​ ~ s​, θ)​​. We also 
need to modify the obedience constraints (4). Since player ​i​ can observe ​​​ ~ s​​i​​​, they can 
condition on it when they evaluate a deviation. Hence, the obedience constraints for 
the linked game are now that for every ​i​, ​​​ ~ s​​i​​​, ​​a​i​​​, ​​​  a​​i​​​, ​​a​ i​ ′​​, and ​​​  a​​ i​ ′ ​​,

(7) ​​  ∑ 
θ∈Θ

​ 
 
 ​​​   ∑ 

​a​−i​​∈​A​−i​​
​ 

 
 ​​​   ∑ 

​​  a​​−i​​∈​​  A​​−i​​
​ 

 
 ​​​   ∑ 

​​ ~ s​​−i​​∈​S​−i​​
​ 

 
 ​​​ (​u​i​​​(​a​i​​, ​a​−i​​, θ)​ − ​u​i​​​(​a​ i​ ′​, ​a​−i​​, θ)​)​​   ϕ​​(​(​a​i​​, ​​  a​​i​​)​, ​(​a​−i​​, ​​  a​​−i​​)​, θ, ​​ ~ s​​i​​, ​​ ~ s​​−i​​)​

        ≥  0;

6 ​  ∑ 
θ∈Θ

​ 
 
 ​​​   ∑ 

​a​−i​​∈​A​−i​​
​ 

 
 ​​​   ∑ 

​​  a​​−i​​∈​​  A​​−i​​
​ 

 
 ​​​   ∑ 

​​ ~ s​​−i​​∈​S​−i​​
​ 

 
 ​​​ (​​  u​​i​​​(​​  a​​i​​, ​​  a​​−i​​, θ)​ − ​​  u​​i​​​(​​  a​​ i​ ′ ​, ​​  a​​−i​​, θ)​)​​   ϕ​​(​(​a​i​​, ​​  a​​i​​)​, ​(​a​−i​​, ​​  a​​−i​​)​, θ, ​​ ~ s​​i​​, ​​ ~ s​​−i​​)​

        ≥  0.​

The analogue of Theorem 2 with the lower bound on information is as follows: 
An outcome ​​̂  ϕ​  ∈  Δ​(​̂  A​ × Θ × ​ ~ S​)​​is a counterfactual prediction if and only if there 
exists a BCE ​​   ϕ​  ∈  Δ​(​   A ​ × Θ × ​ ~ S​)​​, satisfying the generalized obedience condi-
tions (7), such that ​​̂  ϕ​​ is the marginal of ​​   ϕ​​ on ​​̂  A​ × Θ × ​ ~ S​​, and the marginal of ​​   ϕ​​ on ​
A × Θ × ​ ~ S​​ is in ​M​. When ​​ ~ ​​ is uninformative (i.e., ​​ ~ s​​ is independent of ​θ​), this char-
acterization reduces to Theorem 2. But as ​​ ~ ​​ becomes more informative in the sense 
of individual sufficiency, the set of counterfactual predictions must shrink. (This 
follows immediately from Theorem 2 of Bergemann and Morris 2016.)

A particularly relevant special case is that of public regressors, i.e., covariates ​x​ 
that are common knowledge among the players when they choose their actions. In 
this case, we can set ​​​ ~ s​​i​​  =  x​ for all ​i​, and ​​π ̃ ​​ captures the correlation between ​x​ and ​
θ​. This is how public regressors are modeled in Magnolfi and Roncoroni (2021).13 
Another important case is private values: In many applications, such as auctions, 
the state can be decomposed as ​θ  = ​ (​θ​1​​,  …, ​θ​N​​)​​ into player-specific components, 
and player ​i​’s preferences depend only on ​​θ​i​​​. In addition, we often assume that each 
player knows their own payoff type, which we can model by setting ​​​ ~ s​​i​​  = ​ θ​i​​​. For 
example, in the entry example of Section IIIB, the components of ​θ​ are the firms’ 

13 A conceptually distinct way to model the public regressor is by regarding each realization of ​x​ as a separate 
instance of the observed and counterfactual games, and by forming a larger linked game consisting of component 
games ​​​(​​x​​, ​​̂  ​​x​​)​​x∈X​​​. This formulation implicitly assumes that the players’ signals are conditionally independent of ​
x​, whereas the approach developed in the main text allows for correlation between signals and public regressors.
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costs, and we could impose a lower bound on information that each firm knows 
their own cost (as is generally assumed in the applied literature). In fact, this lower 
bound would not have changed the counterfactual prediction in our example, since 
the observed outcome revealed that firms knew their costs anyway. However, if we 
observed a different outcome, say, that from the symmetric mixed-strategy equilib-
rium where the benefits from entering would be sufficiently larger than two, then the 
data would be consistent with firms not knowing their own costs, and assuming pri-
vate costs would lead to a tighter counterfactual prediction. (Incidentally, Magnolfi 
and Roncoroni [2021] assume that entry costs are private, and Syrgkanis, Tamer, and 
Ziani [2021] consider private-value auctions in which each bidder knows their own 
value for the good being sold.)

Note that the observed outcome is itself a lower bound on information, in the 
sense that players must know the action they took in the observed game. Similarly, 
the observed outcome is also an upper bound on information: players cannot have 
so much information that they would have preferred to deviate from their observed 
actions. In many cases, this upper bound on information is abstract and difficult to 
interpret. But we can contemplate games for which there is a natural interpretation 
of the implied upper bounds on information. Consider a game in which the players 
do not interact at all; they simply try to guess the state, and are incentivized to be as 
accurate as possible. If we were to observe players not always guessing the state cor-
rectly, then we would know that their information about the state must be bounded 
away from full information.14

Payoff Shifters.—A common device in applied microeconomics is to assume that 
there are exogenous “payoff shifters” that affect a player’s utility and are observ-
able to the player and to the econometrician (Tamer 2003; Jia 2008; Bajari, Hong, 
and Ryan 2010; Somaini 2020). Actions and shifters together provide much richer 
information about players’ information than just the actions. Such payoff shifters 
are easily incorporated into our framework.

For each ​i​, let ​​ω​i​​​ be a shifter for player ​i​’s payoffs in the observed game, which 
takes values in a finite set ​​Ω​i​​​. Player ​i’s​ payoff is now of the form ​​u​i​​​(a, θ, ​ω​i​​)​​. Suppose ​​
ω​i​​​ is directly observable to player ​i​ but not to players ​− i​, and let ​η​(ω | θ)​​ denote the 
conditional distribution of the entire profile of payoff shifters. (We are assuming 
that ​η​ can be separately identified from the data.) In addition, we assume that play-
ers do not learn anything about ​ω​ from their signals in the information structure. 
Since each player can observe their component of ​ω​, they may condition on it when 
choosing their action. We can therefore reduce this game to a normal form in which 
player ​i​’s action is a strategy ​​ξ​i​​​ that maps payoff shifters into a pure action ​​a​i​​​. (It is 
without loss to restrict player ​i​ to pure mappings, since we allow them to mix over 

14 An alternative approach would be to restrict attention to information structures that are less informative than 
some fixed ​​ ~ ​​. But this is equivalent to requiring that there exist kernels ​​K​i​​ : ​​ 

~ S​​i​​  →  Δ​(​A​i​​)​​ such that

(8)	​ ​  ∑ 
​​   a ​​−i​​∈​​   A ​​−i​​

​ 
 
  ​​​   ϕ​​(​​   a ​​i​​, ​​   a ​​−i​​, ​​ ~ s​​i​​, ​​ ~ s​​−i​​, θ)​  =  ​K​i​​​(​​   a ​​i​​ | ​​ ~ s​​i​​)​​ ∑ 

​​   a ​ ′ ​∈​   A ​
​ 

 
  ​​​   ϕ​​(​​   a ​ ′ ​, ​​ ~ s​​i​​, ​​ ~ s​​−i​​, θ)​,​

a constraint that is nonlinear in ​​K​i​​​ and ​​   ϕ​​.
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pure strategies, as in the baseline model.) Player ​i​’s payoff as a function of the strat-
egy profile is

	​​ u​i​​​(ξ, θ)​  = ​  ∑ 
ω∈Ω

​ 
 
 ​​ η​(ω | θ)​ ​u​i​​​(ξ​(ω)​, θ, ω)​.​

We can now immediately apply Theorem 2 to the normal form game in which a 
player’s action is their strategy.

The value of the payoff shifters is that the implied richness of the observed game 
may reveal more about players’ information. We can illustrate this with a variation 
on the Roy model of Section IIIA. Suppose we first make the counterfactual prob-
lem harder by having the analyst not observe anything about the state in the original 
game. However, we suppose that the player observes a payoff shifter ​ω​, which is dis-
tributed uniformly on ​​[− 1, 1]​​ and independent of the player’s signal and the state.15 
The payoff from opting out is still normalized to zero, but the payoff to a player who 
opts in is ​θ + 1 − 2ω​.16

Further suppose that we observe the joint distribution of ​​(a, ω)​​. Let ​p​ denote the 
interim probability that the player assigns to ​θ  =  1​. Opting out is optimal only if

	​ p − ​(1 − p)​ + 1 − 2ω  ≤  0  ⇔  p  ≤  ω.​

Thus, the probability of opting out given ​ω​ is precisely the probability that ​p​ is 
less than ​ω​. Indeed, if we write ​P​(ω)​​ for the probability of ​a  =  0​ given ​ω​, then  
​P​(ω)​​ is the cumulative distribution of the player’s interim belief. This distribution of 
the interim beliefs describes all features of the player’s information that are relevant 
for counterfactual predictions. In that sense, the payoff shifter allows us to point 
identify the information structure.

B. Variable Information

Our focus in this paper is on counterfactuals when the base game changes but 
fundamentals and information are held fixed. This notion of counterfactual is 
entirely standard: we change one feature of the environment (the base game) and 
keep everything else the same. It is also implicitly adopted in the vast majority of 
applied work on incomplete information games, generally along with even stronger 
functional form assumptions (e.g., independent or affiliated private values in the 
literature on auctions). At the same time, while fixed information is a natural bench-
mark, we may also wish to consider cases where information can vary. This would 
be reasonable if the players have opportunities to acquire more or different informa-
tion between observation and counterfactual. We now describe a range of counter-
factual exercises, where the prior over states is held fixed, but players’ information 

15 We let the payoff shifter be a continuous variable. It would be straightforward but slightly less elegant to make 
the same points with a finite set of realizations (consistent with the rest of our model), in which case we would be 
able to identify the cumulative distribution of the player’s belief at finitely many points.

16 This functional form is chosen so that we obtain a clean expression for the distribution of beliefs. Note that 
this model is neither a generalization nor a special case of the model of Section IIIA.
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about the state is allowed to vary between the observed and counterfactual games. In 
fact, we can accommodate a variety of such “variable-information” counterfactuals 
within our framework, and different assumptions about how information can vary 
are captured by suitably modifying the obedience constraints (5).17

In the most extreme case, one could allow information to vary in an arbitrary 
way between the observed game and the counterfactual. This corresponds to the 
unrestricted-information counterfactuals approach discussed in the introduction 
and applied by Magnolfi and Roncoroni (2021) and Syrgkanis, Tamer, and Ziani 
(2021). In this case, we simply have to modify the obedience constraints for the 
linked game: When deciding whether or not to deviate in the observed game (resp. 
counterfactual game), players should only condition on their action in the observed 
game (resp. counterfactual game), since the action in the other game may be based 
on entirely different information. Thus, the obedience constraints become, for all  
​i​, ​​a​i​​​, ​​a​ i​ ′​​, ​​​  a​​i​​​, and ​​​  a​​ i​ ′ ​​,

(9a)	​​  ∑ 
θ∈Θ

​ 
 
 ​​ ​   ∑ 

​a​−i​​∈​A​−i​​
​ 

 

 ​​ ​  ∑ 
​̂  a​∈​̂  A​

​ 
 

 ​​ (​u​i​​ (​a​i​​, ​a​−i​​, θ) − ​u​i​​ (​a​ i​ ′ ​, ​a​−i​​, θ)) ​   ϕ​ (​a​i​​, ​a​−i​​, ​̂  a​, θ) ≥ 0​;

(9b)	​​  ∑ 
θ∈Θ

​ 
 
 ​​ ​   ∑ 

​​  a​​−i​​∈​​  A​​−i​​

​ 
 

 ​​ ​  ∑ 
a∈A

​ 
 

 ​​ (​​  u​​i​​ (​​  a​​i​​, ​​  a​​−i​​, θ) − ​​  u​​i​​ (​​  a​​ i​ ′ ​, ​​  a​​−i​​, θ)) ​   ϕ​ (a, ​​  a​​i​​, ​​  a​​−i​​, θ) ≥ 0​.

This is equivalent to allowing arbitrary BCE in the observed and counterfactual 
games, with the only requirement being that the BCE have the same marginal distri-
bution over the fundamental.

Alternatively, one could assume that in the counterfactual game, players know as 
much as they knew in the observed game, but they may know more. In this case, the 
obedience constraints for observed actions (9a) stay the same, but the constraints for 
the counterfactual (9b) become, for all ​i​, ​​a​i​​​, ​​​  a​​i​​​, and ​​​  a​​ i​ ′ ​​,

	​ ​  ∑ 
​​  a​​−i​​,​a​−i​​,θ

​​​​(​​  u​​i​​​(​​  a​​i​​, ​​  a​​−i​​, θ)​ − ​​  u​​i​​​(​​  a​​ i​ ′ ​, ​​  a​​−i​​, θ)​)​​   ϕ​​(​a​i​​, ​a​−i​​, ​​  a​​i​​, ​​  a​​−i​​, θ)​  ≥  0.​

Thus, when deciding whether or not to deviate in the counterfactual game, players 
are able to condition on both their observed and counterfactual actions.

Going a step further, we could even combine this approach with the lower 
bounds on information discussed in Section IVA, and suppose that in the counter-
factual game, the players observe signals ​​ ~ s​​ (with known distribution) that were not  

17 For many of the same reasons as with variable information, we may also wish to consider cases where the 
distribution of fundamentals varies as we vary the base game. Indeed, we view the fixed-information hypothesis 
in much the same way as we view fixed fundamentals: a natural benchmark, but one that should be regarded with 
appropriate skepticism, depending on the application. It would be straightforward to adapt our methodology to 
allow for some features of the state distribution to vary between observation and counterfactual. Of course, if the 
base game, information, and fundamentals can all change in an unrestricted manner, then connection between the 
observed and unobserved games is lost, and our so-called counterfactual prediction would simply reduce to BCE 
of the unobserved game.
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available in the observed game.18 In this case, the obedience constraints for the 
counterfactual (9b) become, for all ​i​, ​​a​i​​​, ​​​ ~ s​​i​​​, ​​​  a​​i​​​, and ​​​  a​​ i​ ′ ​​,19

	​ ​  ∑ 
​​  a​​−i​​,​a​−i​​,​​ ~ s​​−i​​,θ

​​​​(​​  u​​i​​​(​​  a​​i​​, ​​  a​​−i​​, θ)​ − ​​  u​​i​​​(​​  a​​ i​ ′ ​, ​​  a​​−i​​, θ)​)​​   ϕ​​(​a​i​​, ​a​−i​​, ​​  a​​i​​, ​​  a​​−i​​, ​ ~ s​, θ)​  ≥  0.​

This is by no means an exhaustive list: The methodology in this paper can accommo-
date a wide variety of assumptions about how information varies between observed 
and counterfactual games. One can also allow for players to have less information 
in the counterfactual, which would be relevant, say, in a counterfactual where we 
impose that a monopolist cannot price based on some observable characteristic of 
consumers.

As an illustration of unrestricted-information counterfactuals, we computed 
unrestricted-information counterfactuals in the examples of Section III, which are 
depicted in Figure 3. As expected, the counterfactual prediction is more permissive 
with unrestricted information than with fixed information. For the Roy model, the 
only restriction from the data is that both states are equally likely. Blackwell’s the-
orem (Blackwell 1953) implies that counterfactual welfare is maximized when the 
player has full information, in which case the player chooses the optimal ex post 
action. On the other hand, counterfactual welfare is minimized when they have no 
information, in which case opting in is optimal only if ​z  ≥  0​. The counterfactual 
predictions for welfare is everything between these two extremes. There is no more 
that we can say.

18 Dickstein and Morales (2018) consider such a counterfactual in the context of international trade, with a more 
parametric model of firms’ information when they decide whether or not to export.

19 An important subtlety in this counterfactual is that players observe ​​ ~ s​​ and possibly more. The reason is that 
when we use ​​​a ̃ ​​i​​​ to represent player ​i​’s information in the counterfactual game, we cannot separate the “part” of ​​​a ̃ ​​i​​​ 
that depends on ​​ ~ s​​ from that which depends on information available in the observed game. Imposing the restriction 
that players observe a new orthogonal signal ​​ ~ s​​ and nothing more would require us to explicitly model the informa-
tion that gave rise to observed behavior.

Figure 3. Counterfactuals with Fixed versus Unrestricted Information
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V.  Related Empirical and Econometric Work

A growing number of papers have already successfully employed the BCE char-
acterization in developing unrestricted-information counterfactuals; notably (as dis-
cussed in the introduction) Magnolfi and Roncoroni (2021) and Syrgkanis, Tamer, 
and Ziani (2021).20 We now describe these papers in more detail, and explain their 
connection to our results.

Magnolfi and Roncoroni (2021) consider an entry game with binary actions. 
Firms’ preferences and the distribution of entry costs depend on a parameter ​
ω  ∈  Ω​.21 Firms’ entry costs correspond to the payoff-relevant state ​θ​ in the present 
paper. Magnolfi and Roncoroni (2021) suppose that firms know their own entry 
costs but may have arbitrary information about other firms’ entry costs, which can 
be identified with BCE in which firms know their own costs (cf. the discussion in 
Section IVA). Magnolfi and Roncoroni (2021) identify the subset of ​Ω​ for which 
there exists such a BCE that matches the observed distribution of actions. Thus, 
the presumption is that the parameter ​ω​ is the same for all realizations of the game 
that contributed to the data. In their main counterfactual analysis, the base game 
changes, the parameter ​ω​ is held fixed, but the information can vary in an arbi-
trary manner between the observed and counterfactual games. This corresponds 
to the unrestricted-information counterfactual that we discussed in Section  IVB, 
which is more permissive than the fixed-information counterfactual characterized 
by Theorem 2. Following earlier versions of this paper, Magnolfi and Roncoroni 
(2021) added an analysis of fixed-information counterfactuals and found that fixed 
information substantially reduces the range of counterfactual outcomes.

Syrgkanis, Tamer, and Ziani (2021) develop a theory and applications of what 
we call unrestricted-information counterfactuals. In contrast to Magnolfi and 
Roncoroni (2021), Syrgkanis, Tamer, and Ziani (2021) do not parametrize players’ 
preferences or the distribution of the payoff-relevant state. Rather, they implicitly 
describe the identified set of state distributions as marginals of the BCE that are 
consistent with the observed distribution of actions. In this respect, their analysis 
makes a more direct use of the BCE characterization than Magnolfi and Roncoroni 
(2021), who use random set theory and support function to characterize the iden-
tified set of parameter values. Syrgkanis, Tamer, and Ziani (2021) use their results 
to analyze bidding behavior in generalized second-price and first-price auctions. 
Syrgkanis, Tamer, and Ziani (2021) compute counterfactual predictions when the 
auction format changes, say, from a generalized second-price auction to a first-price 
auction, and when information can vary arbitrarily between the observed and coun-
terfactual games. We suspect that their empirical approach can be extended to 
fixed-information counterfactuals.

The scope of our paper is limited to the question of partial identification of 
counterfactuals, when the “data” are in the form of an exact moment (or moments) 
of the population outcome. We do not address the fundamental issue of how to  

20 Both Magnolfi and Roncoroni (2021) and Syrgkanis, Tamer, and Ziani (2021) were circulated before the 
present paper. We cite only the most recent versions.

21 Magnolfi and Roncoroni (2021) denote the parameter by ​θ​. We use the letter ​ω​ to avoid confusion with the 
notation used in this paper for the payoff-relevant state.
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conduct inference on the counterfactual prediction when one only has access to a 
noisy estimate derived from a finite dataset, which of course plays a central role in 
the empirical papers described above.

In related work, Gualdani and Sinha (2020) maintain the fixed counterfactuals 
assumption in their application to a single agent discrete choice model of voting. 
Canen and Song (2020) introduce a decomposition approach used frequently in 
labor economics to offer counterfactual predictions in strategic settings using BCE 
as the solution concept.

A common and novel feature of all of this work is a general and nonparametric 
treatment of the information structure. By contrast, the vast literature on the Roy 
model, our leading example in Section  III, has addressed imperfect information 
largely with a parametric approach; see Abbring and Heckman (2007) for a compre-
hensive survey. As emphasized by Heckman (2010a), agents will base their treat-
ment decisions on their beliefs about the outcome, referred to as ex ante evaluations 
or ex ante outcomes, whereas the econometrician typically observes the ex post 
outcomes. A recent strand of literature, including Carneiro, Hansen, and Heckman 
(2003); Cunha, Heckman, and Navarro (2005) among others, has developed meth-
ods for identifying agents’ information and separating the ex ante and ex post out-
come distributions. The identification of the information structure is typically based 
on the assumption that the returns from treatment depend in a known manner on a 
specific set of factors, and the agent’s information is identified with the subset of 
factors that are observed when treatment is chosen.

Our approach models information entirely nonparametrically and treats it as a 
nuisance parameter that is of interest only insofar as it influences the counterfac-
tual prediction. Building on the prior results on informationally robust identifica-
tion and inference with unrestricted information due to Magnolfi and Roncoroni 
(2021) and Syrgkanis, Tamer, and Ziani (2021), we established that we can both 
allow for arbitrary and unobservable information structures and yet hold the infor-
mation structure fixed when computing counterfactuals. This insight could be used 
in a wide range of microeconometric applications, including those mentioned  
above.

VI.  Conclusion

Our first result (Theorem 1) characterized the precise implications of Bayesian 
rationality and common priors for joint predictions in games, under the hypothesis of 
fixed information. Theorem 2 applied that result to derive counterfactual predictions 
under fixed and latent information. We have shown that there is a sharp description of 
the set of counterfactual outcomes that are consistent with observed data. The main 
virtues of our approach are its analytical tractability and the minimalist assumptions 
about the form of information and equilibrium selection. These two go hand in hand: 
it is precisely because we allow a large set of information structures and equilibria 
that the set of counterfactual predictions has a simple linear structure. In spite of 
the weakness of our assumptions, we have demonstrated through examples that the 
predictive power of fixed information can be significant, in particular compared to 
what can be predicted if we do not fix information between observation and coun-
terfactual. Moreover, we have shown that it is possible to refine the counterfactual 
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predictions with further assumptions on the information structure, although only 
certain kinds of assumptions about information will preserve the linear structure.

Theorem 1 has implications beyond counterfactuals, and we will conclude the 
paper by discussing three. First, Theorem 1 implies a simple test of the hypothesis 
that the players had the same information in the component games; observed out-
comes can be rationalized by a common information structure if and only if there 
exists a BCE of the linked game for which the marginals are the observed outcomes.

Second, Theorem 1 can be used to generate informationally robust rankings of 
games, as we now explain. Suppose that there are two games of interest ​​​​ k​​ for ​
k  =  1, 2​. An analyst assigns a value to each outcome of ​​​​ k​​. This value is used to 
compare outcomes across games. For example, ​​​​ 1​​ and ​​​​ 2​​ may be entry games with 
different barriers to entry, and the value is social surplus. Or they may represent 
different auction formats and the value is expected revenue. The question is, which 
game is associated with a higher value?

Let us say that ​​​​ 1​​ dominates ​​​​ 2​​ if for every information structure ​​, and equilib-
ria of ​​(​​​ 1​, )​​ and ​​(​​​ 2​, )​​, the induced outcome for ​​​​ 1​​ has higher value than to the 
induced outcome of ​​​​ 2​​.22 Theorem 1 immediately implies the following: ​​​​ 1​​ domi-
nates ​​​​ 2​​ if and only if for every BCE ​​   ϕ​​ of the linked game with component games ​​
​​ 1​​ and ​​​​ 2​​, the value of ​​ϕ​​ 1​​ is greater than that of ​​ϕ​​ 2​​, where ​​ϕ​​ k​​ is the marginal of ​​   ϕ​​ 
on ​​​​ k​​. When the games are finite, determining dominance with fixed information 
reduces to checking the feasibility of a finite system of linear inequalities.

Third, we could combine the informationally robust rankings and counterfactual 
predictions. In particular, we could suppose that there is an observed game ​​ and 
two counterfactual games ​​​̂  ​​​ 1​​ and ​​​̂  ​​​ 2​​. We can ask, does ​​​̂  ​​​ 1​​ dominate ​​​̂  ​​​ 2​​, subject to 
observed behavior in ​​ and the constraint that the information structure is the same 
in all three games? One can answer this question by first forming the linked game 
with components ​​, ​​​̂  ​​​ 1​​, and ​​​̂  ​​​ 2​​. Then, ​​​̂  ​​​ 1​​dominates ​​​̂  ​​​ 2​​ if and only if for every BCE 
of the linked game that is consistent with the data, the marginal on ​​​̂  ​​​ 1​​ has greater 
value than the marginal on ​​​̂  ​​​ 2​​. In the online Appendix, we report examples of such 
informationally robust rankings on counterfactuals for both the Roy model and the 
entry game. Further developing these and other applications of Theorem 1 is an 
important direction for future work.
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