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We consider demand function competition with a finite number of agents and private informa-
tion. We show that any degree of market power can arise in the unique equilibrium under an
information structure that is arbitrarily close to complete information. Regardless of the number
of agents and the correlation of payoff shocks, market power may be arbitrarily close to zero
(the competitive outcome) or arbitrarily large (so there is no trade). By contrast, price volatil-
ity is always lower than the variance of the aggregate shock across all information structures.
Alternative trading mechanisms lead to very distinct bounds as a comparison with Cournot com-
petition establishes.

1. Introduction

� Motivation and results. Models of demand function competition (or equivalently, supply
function competition) are a cornerstone of the analysis of markets in industrial organization and
finance. Economic agents submit demand functions and an auctioneer chooses a price that clears
the market. Demand function competition is an accurate description of many important economic
markets, such as treasury auctions or electricity markets. In addition, it can be seen as a stylized
representation of many other markets in which there may not be an actual auctioneer, but agents
can condition their bids on market prices and markets clear at equilibrium prices.

Under complete information, there is a well-known multiplicity of equilibria under demand
function competition (see Grossman, 1981; Klemperer and Meyer, 1989). In particular, under
demand function competition, the degree of market power—which measures the distortion of the
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allocation as a result of strategic withholding of demand—is indeterminate. This indeterminacy
arises because, under complete information, an agent is indifferent about what demand to submit
at prices that do not arise in equilibrium. Making the realistic assumption that there is incomplete
information removes this indeterminacy because every price can arise with positive probability
in equilibrium. We therefore analyze demand function competition under incomplete information
(Vives, 2011). We consider a setting where a finite number of agents have linear-quadratic pref-
erences over their holdings of a divisible good, and the marginal utility of an agent is determined
by a payoff shock; we restrict attention to symmetric environments (in terms of payoff shocks
and information structures) and symmetric linear Nash equilibria.

The outcome of demand function competition under incomplete information will depend
not only on the fundamentals of the economic environment—the number of agents and the dis-
tribution of payoff shocks–but also on which information structure is assumed. However, it will
rarely be clear what would be reasonable assumptions to make about the information structure.
We therefore examine whether it is possible to make predictions about outcomes under demand
function competition in a given economic environment that are robust to the exact modeling of
the information structure.

Our first main result establishes the impossibility of robust predictions about market power.
We show that any degree of market power can arise in the unique equilibrium under an infor-
mation structure that is arbitrarily close to complete information. In particular, regardless of the
number of agents and the correlation of payoff shocks, market power may be arbitrarily close
to zero (so we obtain the competitive outcome) or arbitrarily large (so there is no trade in equi-
librium). The reason is that under incomplete information prices convey information to agents.
The slope of the demand function that an agent submits will then depend on what information is
being revealed, and this will pin down market power in equilibrium.

Given the sharp indeterminacy in the level of market power induced by the information
structure, it is natural to ask what predictions— if any— hold across all information structures.

Our second main result shows that—for any level of market power—price volatility is al-
ways (that is, regardless of the information structure) less than the price volatility that is achieved
by an equilibrium under complete information. A direct corollary of our result is that price
volatility is lower than the variance of the average shock across agents independent of the infor-
mation structure. Hence, we show that it is possible to provide sharp bounds on some equilibrium
statistics, which hold across all information structures.

We can always decompose agents’ payoff shocks into idiosyncratic and common compo-
nents. If the common component were common knowledge, but agents observed noisy signals
of their idiosyncratic components, there would be a unique equilibrium and we can identify
the market power as noise goes to zero. If instead, the idiosyncratic components were common
knowledge, but each agent observed a different noisy signal of the common component, there
will be a different unique equilibrium and a different market power in the limit as the noise goes
to zero. In the latter case, unlike in the former case, higher prices will reveal positive informa-
tion about the value of the good to agents, and as a result, agents will submit less price-elastic
demand functions, and there will be high market power. More generally, if agents have distinct
noisy but accurate signals of the idiosyncratic and common components of payoff shocks, then
market power will be determined by the relative accuracy of the signals, even when all signals
are very accurate.

The information structures giving rise to extremal outcomes are special because they are
constructed to simplify the Bayesian updating when solving for the Nash equilibrium, so they do
not necessarily have an immediate interpretation. Thus, one could have expected that it is possible
to sharpen the predictions about market power and price volatility if one restricts attention to
some class of parametrized information structures. To address this conjecture, we study three
classes of information structures that are natural in the sense that each signal an agent observes
is only about one payoff shock, and the noise terms are independently distributed. We do find
tighter bounds on market power in these classes: in particular, market power is bounded below by
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the market power arising in Klemperer and Meyer (1989) and bounded above by one. However,
we also show that market power can take any value in this reduced range for any degree of
interdependence in the payoff environment (that is, the correlation of the payoff shocks), even
with arbitrarily small amounts of asymmetric information.

We interpret our first main result as establishing that the indeterminacy of market power
is not an artifact of particular modeling choices, such as complete information, but rather an
intrinsic feature of the game. If economic agents interact in a market where demands can be con-
ditioned on prices, then there can be extreme sensitivity to the inferences that market participants
draw from prices, meaning that it will not be possible to make ex ante predictions about market
power. Even restricting attention to information structures close to complete information does
not allow us to provide sharper predictions about market, unless one is able to make additional
restrictive assumptions regarding the nature of the incomplete information. By contrast, it is pos-
sible to provide sharp predictions regarding price volatility with demand function competition.

On the other hand, we interpret our second main result as showing that the same economic
feature that gives rise to the indeterminacy of market power—conditioning demand on market
prices—imposes tight bounds on price volatility that do not hold in other economic environments.

The tight bounds on price volatility and indeterminacy of market power are important fea-
tures of demand function competition. Our methodology allows us to make an exact comparison
of outcomes under demand function competition (under any information structure) with what
could have arisen under alternative trading mechanisms. We illustrate this by showing that under
Cournot competition, our qualitative results are reversed: market power is now completely deter-
mined by the number of firms (and independent of the information structure), while the bounds
on price volatility are now very weak.

� Related literature. The multiplicity of equilibria in demand function competition under
complete information was identified by Wilson (1979), Grossman (1981), and Hart (1985)—see
also Vives (1999) for a more detailed account. Klemperer and Meyer (1989) emphasized that
the multiplicity under complete information was driven by the fact that agents’ demand at non-
equilibrium prices was indeterminate. They showed that introducing noise that pinned down best
responses led to a unique equilibrium and thus determinate market power. They also showed that
the equilibrium selected was independent of the shape of the noise, as the noise became small.
They were thus able to offer a compelling prediction about market power. Our results show that
their results rely on maintaining the private value assumption, which implies that agents do not
learn from prices. We replicate the Klemperer and Meyer (1989) finding that small perturbations
select a unique equilibrium but—by allowing for the possibility of a common value component
of values—we can say nothing about market power in the perturbed equilibria.

Vives (2011) pioneered the study of asymmetric information under demand function com-
petition, and we work in his setting of linear-quadratic payoffs and interdependent values. He
studied a particular class of information structures where each trader observes a one-dimensional
normal noisy signal of his own payoff type. The noise is represented by an idiosyncratic error
term around his payoff type. We study what happens for all multidimensional normal information
structures. In particular, we allow each trader to observe signals about the other traders’ payoff
types. Moreover, each multivariate signal can be either noise-free or noisy, and the noise term
can have idiosyncratic or common components.

We show that the impact of asymmetric information on the equilibrium market power can
even be larger than those derived from the one-dimensional signals studied in Vives (2011). Our
results reverse some of the comparative statics and bounds that are found when using the specific
class of one-dimensional signal structures. In particular, in this article but not in Vives (2011),
market power can be large even when the amount of asymmetric information is small; this holds
regardless of the number of players, or the correlation of the payoff shocks. Rostek and Weretka
(2012) and Rostek and Weretka (2015) relaxed the symmetry in the correlation of payoff shocks
across agents, while maintaining the one-dimensional signal model of Vives (2011). This allows
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for a rich structure in the induced correlation of signals and large variation in market power.
In our setting, the variation in market power arises through multidimensional signals despite
maintaining symmetry in the correlation of payoff shocks across agents.

Our result demonstrating the extreme sensitivity of market power to the information struc-
ture has the same flavor as abstract game theory results establishing that fine details of the infor-
mation structure can be chosen to select among multiple rationalizable or equilibrium outcomes
of complete information games (Rubinstein (1989) and Weinstein and Yildiz (2007)). However,
this work relies on extremal information structures and, in particular, a “richness” assumption
in Weinstein and Yildiz (2007), which in our context would require the strong assumption that
there exist “types” with a dominant strategy to submit particular demand functions.1 Our results
do not require richness and do exploit the structure of the demand function competition game.
Moreover, we show that although it is impossible to make sharp predictions about market power,
the complete information equilibria generate the maximum price volatility, thus allowing sharp
predictions for the second moment.

2. Model

� Payoff environment. There are N agents who have demand for a divisible good. The utility
of agent i ∈ {1, . . . , N} who buys qi ∈ R units of the good at price p ∈ R is given by:

ui(θi, qi, p) � θiqi − pqi − 1

2
q2

i ,

where θi ∈ R is the payoff shock of agent i. The payoff shock θi describes the marginal willing-
ness to pay of agent i for the good at qi = 0. The payoff shocks are symmetrically and normally
distributed across the agents, and for any i, j:(

θi

θ j

)
∼ N

((
μθ

μθ

)
,

(
σ 2

θ
ρθθσ

2
θ

ρθθσ
2
θ

σ 2
θ

))
,

where ρθθ is the correlation coefficient between the payoff shocks θi and θ j.
The realized average payoff shock among all the agents is denoted by:

θ � 1

N

∑
i∈N

θi, (1)

and we will adopt the upper bar notation for all subsequent random variables as well. The corre-
sponding joint distribution of θi and θ is given by(

θi

θ

)
∼ N

((
μθ

μθ

)
,

(
σ 2

θ

1+(N−1)ρθθ

N
σ 2

θ
1+(N−1)ρθθ

N
σ 2

θ

1+(N−1)ρθθ

N
σ 2

θ

))
.

The supply of the good is given by an exogenous supply function S(p) as represented by a
linear inverse supply function with α, β ∈ R+:

p(q) = α + βq.

For notational simplicity, we normalize the intercept α of the affine supply function to zero.2

� Information structure. Each agent i observes a multidimensional signal si ∈ RJ about
the payoff shocks:

si � (si1, . . . , si j, . . . , siJ ).

1 Weinstein and Yildiz (2011) provide a similar result without requiring a richness condition. However, their results
apply only for games with one-dimensional strategies and continuous and concave payoffs.

2 The general affine case with α �= 0 is equivalent to a market with a different mean payoff shock μθ . Specifically,
considering α �= 0 is mathematically equivalent to considering a model in which α̃ = 0 and θ̃i = θi − α.
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The joint distribution of signals and payoff shocks (s1, . . . , sN , θ1, . . . , θN ) is symmetrically and
normally distributed. We discuss specific examples of information structures in the following sec-
tions.

� Demand function competition. The agents compete via demand functions. Each agent i
submits a demand function xi : R × RJ → R that specifies the demanded quantity as a function
of the market price p ∈ R and the private signal si ∈ RJ , denoted by xi(p, si). The Walrasian
auctioneer sets a price p∗ such that the market clears for every realization of signal profiles s:

p∗ = β
∑
i∈N

xi(p∗, si). (2)

If a market clearing price satisfying (2) does not exist, then we assume that there is a market shut-
down; thus, q1 = · · · = qN = 0. We note that in the class of linear equilibria we study, a market
clearing price will always exist, so the aforementioned rule is mentioned only for completeness.

We study the Nash equilibrium of the demand function competition game. The strategy
profile (x∗

1, . . . , x∗
N ) forms a Nash equilibrium if:

x∗
i ∈ arg max

{xi:RJ+1→R}
E

[
θixi(p∗, si) − p∗xi(p∗, si) − xi(p∗, si)2

2

]
, (3)

where

p∗ = β

(
xi(p∗, si) +

∑
j �=i

x∗
j (p∗, s

j
)

)
.

We say that a Nash equilibrium (x∗
1, . . . , x∗

N ) is linear and symmetric if there exists a vector of
coefficients (c0, . . . , cJ , m) ∈ RJ+2 such that for all i ∈ N :

xi(p, si) = c0 +
∑

j∈J

c jsi j − mp.

Thus, the private information si of agent i determines the intercept of the demand curve, whereas
the slope m of the demand curve–determined in equilibrium–is invariant with respect to the signal
si. Throughout the paper we focus on symmetric linear Nash equilibria and so hereafter we drop
the qualifications “symmetric” and “linear” . When we say that an equilibrium is unique, we refer
to uniqueness within this class of equilibria.

� Equilibrium statistics: market power and price volatility. We analyze the set of equi-
librium outcomes in demand function competition under incomplete information. We frequently
describe the equilibrium outcome through two central statistics of the equilibrium: market power
and price volatility.

The marginal utility of agent i from consuming the qi-th unit of the good is θi − qi. We
define the market power of agent i as the agent’s gross marginal utility minus the price divided
by the equilibrium price:

li �
θi − qi − p

p
.

This is the natural demand-side analogue of the supply-side price markup defined by Lerner
(1934), commonly referred to as the “Lerner index.” We define the (expected) equilibrium market
power by:

l � E

[
1

N

∑
i∈N

li

]
= 1

N
E

[∑
i∈N (θi − qi − p)

p

]
. (4)
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The market power l is defined as the expected average of the Lerner index across all agents. If
the agents were price takers, then the marginal utility would be equal to the equilibrium price,
θi − qi = p, and the market power would be l = 0.

A second equilibrium statistic of interest is price volatility, the variance of the equilibrium
price:

σ 2
p � var(p).

Price volatility measures the ex ante uncertainty about the equilibrium price.
These two statistics of the equilibrium outcome, market power and price volatility, will com-

pletely describe the first and second moments of aggregate market outcomes. In more detail, the
equilibrium market power l will determine the expected equilibrium price and the expected ag-
gregate demand. Similarly, the variance of the equilibrium price σ 2

p will determine the variance of
the aggregate demand. Thus, within the linear-quadratic normal environment, these two statistics
completely describe the aggregate equilibrium outcomes.

While most of our paper focuses on price volatility and market power, we will explain how
our results extend to other statistics of an equilibrium outcome, such as the mean and variance of
individual demand.

3. The case of complete information

� As previously discussed, the existence of multiple equilibria in demand function competi-
tion has long been established. Here, we focus on the implications that such multiplicity has for
the induced market power and price volatility. With complete information every agent i observes
the entire vector of payoff shocks θ = (θ1, . . . , θN ) before submitting his demand xi(p, θ ). We
use a brief review of the complete information setting to introduce some key ideas.

The residual supply faced by agent i, denoted by ri(p, θ ), is determined by the demand
functions of all the agents other than i:

ri(p, θ ) � S(p) −
∑

j �=i

x j(p, θ ).

Agent i is a monopsonist over his residual supply. That is, if agent i submits demand xi(p, θ ),
then the equilibrium price p∗ satisfies xi(p∗, θ ) = ri(p∗, θ ) for every i. Hence, agent i only needs
to determine the optimal point along the curve ri(p, θ ); this will determine the quantity that agent
i purchases and the equilibrium price.

To compute the first-order condition for agent i’s demand, we define the price impact λi of
agent i as the reciprocal of the residual demand derivative:

1

λi

� ∂ri(p, θ )

∂ p
. (5)

This parameter is frequently referred to as “Kyle’s lambda” following the seminal contribution of
Kyle (1985). The price impact determines the rate at which the price increases when the quantity
bought by agent i increases:

λi = ∂ p

∂ri(p, θ )
.

The first-order condition of agent i determines the equilibrium demand of agent i:

xi(p∗) = θi − p∗

1 + λi

.

Thus, λi determines how much demand agent i withholds to decrease the price at which he
purchases the good. For example, if λi = 0, then agent i behaves as a price taker. As λi in-
creases, agent i withholds more demand to decrease the equilibrium price. Hence, λi determines
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the propensity of agent i to withhold demand to decrease the price. The following proposition es-
tablishes the range of the equilibrium outcomes with complete information in the linear-quadratic
setting.

Proposition 1. (Equilibrium statistics with complete information). Market power and price
volatility are induced by some complete information Nash equilibrium if and only if (l, σ 2

p )
satisfy:

l ≥ − 1

2βN
and σ 2

p = (βN )2

(1 + βN + βNl )2
σ 2

θ
. (6)

Proposition 1 can be established using the general arguments provided in Theorem 1 and
the proof is relegated to the Appendix. In the complete information equilibrium, market clearing
implies that market power l and price impact λ are related as follows:

l = λ

βN
. (7)

In the special case, when there is only one agent, then the market power is equal to 1 as the
price impact is then given by the supply function itself, and λ = β. In this case, the agent fully
internalizes the impact of increasing his demand on the total expenditure. The lower bound on
market power in Proposition 1 indicates that a small amount of negative market power can occur.
This happens when an agent faces a downward-sloping residual supply. However, the slope of
the residual supply cannot be too inelastic because otherwise the agent would be able to achieve
infinite utility by buying an arbitrarily large quantity at an arbitrarily low price. The relation
between price volatility and market power is intuitive. As market power increases, every agent
withholds more demand to lower the price. This leads to a smaller response to the payoff shocks
and consequently, lower price volatility.

The reason for multiple equilibria has been thoroughly investigated in the literature (see
Grossman, 1981; Klemperer and Meyer, 1989). The key source of equilibrium multiplicity is that
each agent has multiple best responses. In particular, there are multiple affine demand functions
that agent i can submit that would intercept his residual supply at the same point (hence, inducing
the same equilibrium price and quantities). Thus, agent i is indifferent between the multiple
demand functions that intercept with his residual supply at the same point. Importantly, the slope
of the demand function of agent i determines the slope of the residual supply of agent j.

In Figure 1, the bold red curve plots all feasible equilibrium pairs of market power and
price volatility that can be attained under complete information. The point labeled A depicts
the equilibrium outcome that would be attained under complete information if we selected the
outcome using the equilibrium selection proposed by Klemperer and Meyer (1989).

The results in the next section will establish that the set of all possible pairs of market power
and price volatility is the set of pairs under this red curve established by the complete information
equilibria, thus the area in light red under the boundary curve in bold red.

4. Robust prediction of market power and price volatility

� With incomplete information, market power and price volatility will be uniquely pinned
down given a specific information structure. What robust predictions can then be made that do
not depend on the fine details of the information structure? We will show that we cannot make any
robust predictions about market power: any positive level of market power can arise as the unique
equilibrium even when we restrict attention to arbitrarily small amounts of incomplete informa-
tion. However, we can offer a sharp prediction about price volatility regardless of the amount of
incomplete information, price volatility cannot be higher than that under complete information.
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FIGURE 1

SET OF EQUILIBRIUM PAIRS (l, σ 2
p ) OF MARKET POWER AND PRICE VOLATILITY WITH COMPLETE

INFORMATION (β = 3,N = 3)

We say that an information structure is ε−close to complete information if the conditional
variance of the estimate of each payoff shock θ j is small given the signal si received by agent i:

∀i, j ∈ N, var(θ j|si) < ε. (8)

In an information structure that is ε-close to complete information, an agent can observe his own
payoff shock and the payoff shock of the other agents with a residual uncertainty of at most ε. If
an information structure is ε−close to complete information for a sufficiently small ε, then the
information structure will effectively be a perturbation of complete information. We now show
that any equilibrium under complete information can be selected as the unique equilibrium in a
perturbation of complete information.

We prove the result by decomposing the payoff shock θi into two independent payoff shocks:

θi � ηi + φi, (9)

where the sets of payoff shocks {ηi}i∈N are independent of the shocks {φi}i∈N . We extend the

notation introduced in (1) to denote by
−
η,

−
φ, the realized average shocks, respectively:

−
η = 1

N

∑
j∈N

η j and
−
φ = 1

N

∑
j∈N

φ j.

The shocks are jointly normally distributed:

μη = μφ = μθ/2 and corr(ηi, η j ) = corr(φi, φ j ) = corr(θi, θ j ), (10)
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and the variance of the shocks are:

var(ηi) = σ 2
θ

− ε and var(φi) = ε. (11)

It follows from (10) and (11) that:

var(ηi + φi) = σ 2
θ

and cov(ηi + φi, η j + φ j ) = cov(θi, θ j ).

Thus, the joint distribution of the random variables {ηi + φi}i∈N is equal to the joint distribution
of the original payoff shocks {θi}i∈N .

With respect to the information structure, we assume that every agent observes the realiza-
tion of all shocks {ηi}i∈N . Additionally, agent i observes a signal ti that is equal to a weighted
difference between his shock φi and the average of the shocks {φ j} j∈N :

ti = φi − (1 − γ )
1

N

∑
j∈N

φ j. (12)

Thus, the weight γ ∈ R\{0} serves to confound the payoff shocks φi with φ j for all j �= i. The
signal vector si that is observed by agent i is then given by:

si = (ti, η1, . . . , ηN ). (13)

We remark that under this information structure:

∀i, j ∈ N, var(θi|η1, . . . , ηN , s j ) = var(φi|s j ) ≤ var(φi) = ε.

It follows that under this information structure, (8) is satisfied. We refer to the information struc-
ture given by (13) as noise-free signals because the signals represent the payoff shocks (in a linear
combination) without adding any extraneous noise. We discuss the role of the confounding pa-
rameter γ following the statement of our first main result.

Theorem 1. (Equilibrium selection). For every ε > 0 and every complete information equi-
librium market power and price volatility (l, σ 2

p ), there exists an information structure that is
ε−close to complete information and induces (l, σ 2

p ) as the unique equilibrium.

Proof. We now construct a symmetric linear Nash equilibrium using a “guess-and-verify”
method. A linear demand function x∗ is a symmetric Nash equilibrium if and only if it solves
(2) and (3

) for all i. In a linear Nash equilibrium x∗(p∗, si) is linear in p∗, and so the first-order condi-
tion of (3) is given by:

x∗(p∗, si) = E[θi|p∗, si] − p∗

1 + λ
, (14)

where λ is the derivative of the inverse residual supply defined above in (5). We now write λ

explicitly:

λ �
(

∂ri(p, si)

∂ p

)−1

= β

1 + βm(N − 1)
. (15)

The objective function of (3) is a quadratic function of x(p∗, si) and the coefficient on the
quadratic component is equal to −(λ + 1/2). Thus, the second-order condition is satisfied if
and only if λ ≥ −1/2. It is clear that if λ < −1/2, then the objective function is strictly convex
and hence (3) does not have a solution. Therefore, there is no equilibrium satisfying λ < −1/2.

We first establish the argument for l ∈ R\{0, 1}; we address the special cases of l = 0 and
l = 1 at the end of the proof. In any linear Nash equilibrium, the equilibrium price must be a
linear function of the shocks {ηi}i∈N and the signals {ti}i∈N . The symmetry of the conjectured
equilibrium implies that there exist constants ĉ0, ĉ1, ĉ2 such that the equilibrium price satisfies:

p∗ = ĉ0 + ĉ1φ̄ + ĉ2η̄.
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Regardless of the values of ĉ0, ĉ1, ĉ2, as long as ĉ1 �= 0, the following equation is satisfied:

E[θi|{ηi}i∈N , ti, p∗] = θi. (16)

That is, agent i can perfectly infer θi using the realization of the shocks {ηi}i∈N , the signal ti and
the equilibrium price. This is because agent i can infer φ̄ from p∗, which in addition to ti, allows
agent i to perfectly infer φi (note that η̄ is common knowledge). We now verify that there is no
equilibrium in which ĉ1 = 0. If ĉ1 = 0, then E[θi|{ηi}i∈N , ti, p∗] = ηi + E[φi|ti], and so each agent
will submit a demand function:

x∗(p∗, si) = ηi + E[φi|ti] − p∗

1 + λ
,

for some λ. Therefore, market clearing implies that:

β
∑
i∈N

ηi + E[φi|ti] − p∗

1 + λ
= p∗.

Thus,

p∗ = 1

1 + βN + λ
β
∑
i∈N

(ηi + E[φi|ti]) .

However,
∑

i∈N E[φi|ti] ∝ φ̄ (recall that γ �= 0, so
∑

i∈N ti �= 0). Thus, the market clearing price
p∗ must depend on φ̄, which contradicts ĉ1 = 0.

Using (14) and (16), we conclude that, in equilibrium, agent i buys a quantity equal to:

x∗(p∗, si) = q∗
i = θi − p∗

1 + λ
, (17)

for some λ ≥ −1/2. The market clearing condition implies that p∗ = β
∑

q∗
i , and so the equilib-

rium price is given by:

p∗ = βN θ̄

1 + λ + βN
, (18)

for some λ ≥ −1/2.
Given the expression for the equilibrium price in (18), we note that:

E[θi|p∗, ti, {ηi}i∈N ] = ti + ηi + (1 − γ )

(
p∗

βN
(1 + λ + βN ) − η̄

)
= θi.

Recall that in equilibrium, agent i submits demand function (14), so the slope of the demand
submitted by agent i is given by:

m = −∂xi(p)

∂ p
= −1

1 + λ
(
∂E[θi|p∗, ti, {ηi}i∈N ]

∂ p∗ − 1) =
1 − (1 − γ ) 1

βN
(1 + λ + βN )

1 + λ
.

This gives a relation between agent i’s price impact (i.e., λ) and the slope of the demand func-
tion submitted by agent i (i.e., m). Using these equations and (15), we find λ in terms of the
confounding parameter γ :

λ = 1

2

⎛
⎝−1 − Nβ

γ (N − 1) − 1

γ (N − 1) + 1
±
√(

Nβ
γ (N − 1) − 1

γ (N − 1) + 1

)2

+ 2Nβ + 1

⎞
⎠. (19)

Only the positive root is a valid solution because the negative root yields λ less than −1/2.
Hence, for every γ , there is a unique linear Nash equilibrium. In this equilibrium, the price
impact is equal to the positive root of (19), and each agent i submits a demand function:

x(p, si) = 1

1 + λ

(
ti + ηi + (1 − γ )

(
p

βN
(1 + λ + βN ) − η̄

)
− p

)
.
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We note that this demand function is equal to (12), so the demand of every agent satisfies the first-
order condition by construction and λ ≥ −1/2, so the second-order condition is also satisfied.
This shows that this is a Nash equilibrium.

We note that for all λ ≥ −1/2, there exists γ that satisfies (19) (as a positive root). To verify
this, note that (19) is continuous as a function of γ except at γ = −1/(N − 1). Moreover, at
γ = −1/(N − 1), the right limit is +∞ while the left limit is −1/2. Since (19) is equal to 0 in
the limits γ → ±∞, we have that every λ ∈ [−1/2,∞) is achieved by some γ .

From (18), it follows directly that in equilibrium, the price volatility is:

σ 2
p =

(
βN

1 + λ + βN

)2

σ 2
θ̄
.

Using the definition of market power (4), the expression for price (18) and the expression for qi

(17) we obtain that:

l = 1

N
E

⎡
⎢⎢⎣
∑

i∈N

(
θi − θi− βN θ̄

1+λ+βN

1+λ
− βN θ̄

1+λ+βN

)
βN θ̄

1+λ+βN

⎤
⎥⎥⎦ = E

⎡
⎢⎢⎣
(

θ̄ − θ̄− βN θ̄
1+λ+βN

1+λ
− βN θ̄

1+λ+βN

)
βN θ̄

1+λ+βN

⎤
⎥⎥⎦.

Simplifying terms, we obtain the following:

l = λ

βN
. (20)

Thus, we have that l ≥ −1/(2βN ) and price volatility can be written as a function of market
power. Recall that we have in fact constructed a linear Nash equilibrium in which every agent i
submits a demand function given by (14), which by construction satisfied the agent’s first-order
condition, and we have also shown that the second-order condition is satisfied.

Finally, we address the cases of l = 0 and l = 1, which correspond to the cases in which
the confounding parameter is either γ = ∞ or γ = 0, respectively. An equilibrium with market
power l = 1 and price volatility given by (6) can be attained by the following information struc-
ture. Every agent observes {ηi}i∈N and {(θi − φ̄)}i∈N , and additionally agent i privately observes
signal ti = φ̄ + εi, where εi is an error term normally distributed with variance one and correla-
tion across agents equal to −1/(N − 1). Since the errors are perfectly negatively correlated, this
implies that

∑
i∈N εi = 0. Note that agent i knows ηi and (φi − φ̄), so by virtue of observing only

his own signals, he does not know φ̄.3 We also note the following:

E[φ̄ | {ti}i∈N ] = 1

N

∑
j∈N

t j, ∀ti,∀i ∈ N. (21)

That is, φ̄ can be inferred perfectly by averaging over signals {t j} j∈N .
An equilibrium with l = 0 and price volatility given by (6) is attained by considering the fol-

lowing information structure. Every agent knows {ηi}i∈N and φ̄, and additionally agent i privately
observes a signal ti = φi − φ̄ + ε, where ε is a common error term that is normally distributed
with variance one. Note that agent i knows ηi and φ̄, so by virtue of observing only his own
signals, he cannot know φi − φ̄. We also note the following:

E[φi − φ̄ | {ti}i∈N ] = ti − 1

N

∑
j∈N

t j, ∀ti,∀i ∈ N. (22)

That is, φi − φ̄ can be inferred perfectly by subtracting from i the average of the signals {ti}i∈N .

3 Agent i cannot infer φ̄ by observing {(φi − φ̄)}i∈N , as by construction the sum of all signals {(φi − φ̄)}i∈N is equal
to zero. Thus, knowing {(φi − φ̄)}i∈N is equivalent to knowing only (φi − φ̄).
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Using the two aforementioned information structures, one can construct a unique linear
equilibrium in which l = 1 and l = 0. The equilibrium construction is the same as before, so we
will not repeat the steps. However, we note that for the noise-free signals we constructed in (12),
we have that:

E[φi | {ti}i∈N ] = ti + 1 − γ

γ

1

N

∑
j∈N

t j. (23)

The two special cases of γ = 0 and γ = ∞ correspond intuitively to the cases in which the
expectations are given by (21) and (22), respectively.4 �

Theorem 1 shows that all combinations of market power and price volatility that can be
achieved as an equilibrium under complete information can also be achieved as a unique equi-
librium in an information structure that is close to complete information. In fact, the result is
stronger: every equilibrium outcome under complete information is the unique equilibrium out-
come of an information structure that is close to complete information.

To provide intuition for Theorem 1 it is useful to consider a one-dimensional version of the
noise-free signals described above in (13). Consider a situation in which every agent i observes
a one-dimensional signal:

si = θi − (1 − γ )
1

N

∑
j∈N

θ j. (24)

This one-dimensional information structure is a particular instance of the earlier information
structure (13). Now, we remove the restriction on the variance of φi, which we required to sat-
isfy var(φi) ≤ ε. In fact, the one-dimensional signal (24) sets φi = θi, and so var(φi) = σ 2

θ
and

var(ηi) = 0. While this one-dimensional information structure clearly cannot approximate com-
plete information, we now establish that it can attain the complete information equilibrium out-
come.

Corollary 1. (Equilibrium selection with one-dimensional signals). For every complete informa-
tion equilibrium market power and price volatility (l, σ 2

p ), there exists a one-dimensional infor-
mation structure as in (24) that induces (l, σ 2

p ) as the unique equilibrium.

By changing the weight γ that signal si places on an agent’s own payoff shock θi relative to
the other agents’ payoff shocks, one can affect the (perceived) degree of payoff interdependence
between the agents. To see this, note that the expected payoff of agent i conditional on all signals
{si}i∈N is given by:

E[θi | {si}i∈N ] = si + 1 − γ

γ

1

N

∑
j∈N

s j. (25)

The conditional expectation of θi now places weights on both the signal si observed by agent
i and the signals observed by other agents, {s j} j �=i. By changing γ , the relative weight that the
conditional expectation places on agent’s i signal relative to the signals of others changes.

Of course, agent i only observes his own private signal si and not the private signals of
other agents. However, the equilibrium price allows agent i to deduce the average of the signals
observed by the other agents. Hence, each agent uses the equilibrium price as a signal about his
own payoff shock. With a change in the confounding parameter γ , the weight that agent i places
on the price to predict his own payoff shock changes, which in turn changes the equilibrium
degree of market power. We illustrate the relation between γ and the equilibrium degree of market
power in Figure 2.5

4 The right-hand side of (23) diverges in the limit as γ → 0. However, what is relevant for the analysis is that in
this limit E[φi | {ti}i∈N ] ∝ 1

N

∑
j∈N t j , which is satisfied in (21).
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FIGURE 2

SET OF EQUILIBRIUM MARKET POWER l WITH NOISE-FREE SIGNAL PARAMETRIZED BY γ .

Our construction uses an (N + 1)-dimensional signal. Given that there are N different
shocks in our model, in any information structure that is close to complete information, agents
must observe at least N different signals. Therefore, any information structure that is close to
complete information must consist of at least N signals.6

When agents observe one-dimensional signals as in (24), agents will not be close to com-
plete information. However, an agent’s private information plus the information that can be de-
duced from knowing the equilibrium price is sufficient to deduce this agent’s payoff shock and the
average payoff shock across all agents. Hence, despite the fact that agents have non-negligible
uncertainty about their own payoff shock and the average payoff shock, every agent perfectly
knows his own payoff shock and the average shock of all agents ex post (i.e., after learning the
equilibrium price).

Theorem 1 shows that (i) all equilibrium outcomes under complete information can turn
into unique equilibrium outcomes under incomplete information, and (ii) restricting attention

5 The idea that confounding informational shocks can strongly influence equilibrium behavior goes back at least
to Lucas (1972). In a seminal contribution, he shows how monetary shocks can have a real effect in the economy, even
when under complete information monetary shocks would have no real effect.

6 The information structure that we use to prove Theorem 1 generates an N + 1-dimensional signal. However, it
is possible to prove this theorem using an N-dimensional signal. Consider an information structure in which agent i
observes a signal as in (24) and, additionally, N − 1 signals given by si j = θ j + εi j , for every j �= i, where all noise terms
are independently normally distributed. First, note the following:

s̃i �
1

1 − (γ − 1)/N
si − (γ − 1)/N

(1 − (γ − 1)/N )

∑
j �=i

si j = θi + (γ − 1)/N

(1 − (γ − 1)/N )

∑
j �=i

εi j .

Agent i can infer s̃i by taking a linear combination of the N signals he observes. Therefore, if the noise terms {εi j} j �=i are
small enough, each agent will be ε-close to complete information. With this N-dimensional signal, there is an equilibrium
that is equivalent to that in which agents observe only signal (24); that is, there is an equilibrium in which the N − 1
additional signals are ignored. Therefore, this N-dimensional signal supports every market power and price volatility
(l, σ 2

p ) satisfying (6). Additionally, since this is an ex post equilibrium in which each agent can perfectly infer θi ex post,
the results in Heumann (2021) imply that this will be the unique equilibrium. Hence, this N−dimensional signal would
suffice to prove Theorem 1.

C© The RAND Corporation 2021.



138 / THE RAND JOURNAL OF ECONOMICS

to information structures close to complete information does not allow us to provide sharper
predictions about market power and price volatility. The large indeterminacy in the set of possible
outcomes suggests that it is difficult to offer robust predictions of market power under demand
function competition. By contrast, it is possible to provide sharp predictions regarding price
volatility with demand function competition.

We consider the earlier decomposition of the payoff shocks as given by (9) and (10). By
contrast to the earlier construction, we now allow the variance of the decomposed payoff shocks
φi and ηi to vary. In particular, the variance var(φi) is no longer restricted anymore to be less than
ε:

var(φi) = σ 2
p

N

ρθθ (N − 1) + 1

(1 + βN (1 + l ))2

(βN )2
and var(ηi) = σ 2

θ
− var(φi). (26)

We assume that each agent receives no information about the realization of the shocks {ηi}i∈N and
that each agent simply observes the following one-dimensional signal about the payoff shocks
{φi}i∈N :

ti = φi − (1 − (lβN + 1)(βN − lβN )

βNl(N − 1)(βN + lβN + 1)
)

1

N

∑
j∈N

φ j.

Note that the signal ti here has the same structure as the signal ti that we used in the proof of
Theorem 1, and we simply replace the weight γ with the fraction; thus:

γ = (lβN + 1)(βN − lβN )

λ(N − 1)(βN + lβN + 1)
.

Theorem 2. (Equilibria under all information structures). There exists an information structure
that induces a pair of market power and price volatility (l, σ 2

p ) if and only if:

l ≥ −1

2

1

βN
and σ 2

p ≤ (βN )2

(1 + βN (1 + l ))2
σ 2

θ
. (27)

Moreover, all feasible pairs (l, σ 2
p ) are induced by a unique equilibrium for some informa-

tion structure.

Proof. We prove necessity and sufficiency separately and start with necessity.
We established in Theorem 1 that in any linear Nash equilibrium, an agent’s demand is given

by (14). Adding (14) over all agents and multiplying by β, we obtain:

β
∑
i∈N

x∗(si, p∗) = β
∑
i∈N

E[θi|si, p∗] − p∗

1 + λ
.

Market clearing implies that β
∑

i∈N x∗(si, p∗) = p∗. It follows that

p∗ = β
∑
i∈N

E[θi|si, p∗] − p∗

1 + λ
.

Rearranging terms, we obtain:

p∗ = βN

1 + λ + βN

1

N

∑
i∈N

E[θi|si, p∗]. (28)

Taking the expectation of the previous equation conditional on p∗ (i.e., taking the expectation
E[·|p∗]) and using the law of iterated expectations, we obtain:

p∗ = βN

1 + λ + βN

1

N

∑
i∈N

E[θi|p∗] = βN

1 + λ + βN
E

[
1

N

∑
i∈N

θi|p∗
]

.
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It follows that:

σ 2
p =

(
βN

1 + λ + βN

)
cov(p, θ ) =

(
βN

1 + λ + βN

)
ρpθ̄ σpσθ̄ .

Thus, we have that:

σ 2
p =

(
βN

1 + λ + βN

)2

ρ2
pθ̄ σ

2
θ̄
. (29)

We now prove that λ = lβN in every linear equilibrium. We write market power (4) as
follows:

l = 1

N
E

[
1

p
E

[∑
i∈N

(θi − qi − p) | p

]]
, (30)

where we used the fact that the law of iterated expectations implies that E[·] = E[E[· | p]]. The
first-order condition (14) implies that:

qi = E[θi|p, si] − p

1 + λ
.

Substituting qi back into equation (30) for market power, we obtain:

l = 1

N
E

[
1

p
E

[∑
i∈N

(
θi − E[θi|p, si] − p

1 + λ
− p

)
| p

]]
.

Using the law of iterated expectations, we obtain that E[E[θi|p, si] | p] = E[θi|p]. Simplifying
terms, we obtain:

l = 1

N
E

[
1

p

∑
i∈N

λ

1 + λ
(E[θi | p] − p)

]
. (31)

Using (28), we obtain the following:

N p
1 + λ + βN

βN
= E

[∑
i∈N

θi|p
]

.

Substituting the conditional expectation of the payoff shock back into (31), we have that:

l = E

[
1

p

λ

1 + λ

(
1 + λ + βN

βN
p − p

)]
.

Here, p cancels out, so we can omit the expectation on the right-hand side of this equation.
Simplifying terms, we obtain that λ = lβN .

Since ρ2
pθ̄

≤ 1, we have that (29) implies that:

σ 2
p ≤ (βN )2

(1 + βN (1 + l ))2
σ 2

θ
.

Moreover, in the proof of Theorem 1, we also established that in any linear Nash equilibrium
λ ≥ −1/2 and thus that l ≥ −1/(2βN ).

Sufficiency. Let (l, σ 2
p ) be such that (27) is satisfied. We show that there exists an information

structure that induces this market power and price volatility as a unique equilibrium. We can now
construct a linear equilibrium in the same way as in the proof of Theorem 1, so we obtain that
the price volatility is:

(βN )2

(1 + βN + βNl )2
var

(
1

N

∑
i∈N

φi

)
= (βN )2

(1 + βN + βNl )2

ρφφ (N − 1) + 1

N
var(φi).
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Since var(φi) is defined as in (26) and ρφφ = ρθθ , the previous equation implies that the price
volatility is given by σ 2

p . Moreover, market power is l. Thus, (l, σ 2
p ) is induced as an equilibrium

outcome, and it is the unique equilibrium, as we already established in Theorem 1. �

Theorem 2 provides a sharp bound on all possible equilibrium outcomes. It shows that the
equilibrium outcome is bounded by the outcomes that are achieved under complete information.
Thus, the outcomes that arise under complete information can be seen as the “upper boundary”
of the set of outcomes that can arise under all information structures, as illustrated above in
Figure 1.

The “if” part of the statement closely resembles the proof of Theorem 1. In particular, the
set of market power and price volatility that satisfy (27) would be achieved under complete
information if one could reduce the variance of the aggregate shocks (i.e., by making var(θ )
smaller). By decomposing the payoff shocks into an observable and an unobservable component,
we can effectively achieve the same outcomes as if there were complete information but the
variance of the shocks were smaller. We note that var(ηi) (as defined in (26)) is always positive
because Theorem 2 states that:

σ 2
p ≤ (βN )2

(1 + βN (1 + l ))2
σ 2

θ
,

and so var(φi) (as defined in (26)) is less than or equal to var(θi).
The “only if” part of the statement is economically more interesting because it uses the

restrictions that arise from the agents’ first-order condition. By aggregating the agents’ demands
and using the market clearing condition, we can establish that the equilibrium price satisfies:

p∗ = β

1 + βN (1 + l )

∑
i∈N

E[θi|si, p∗]. (32)

That is, the equilibrium price is proportional to the average of the agents’ expected payoff shocks.
Note that the expectation includes the information that can be deduced from observing the equi-
librium price. Hence, the price reflects the agents’ valuation, and the price is consistent in the
sense that the expectations also include the information that can be deduced from observing the
equilibrium price.

Taking expectations of (30) conditional on p∗ and using the law of iterated expectations, we
can write the equilibrium price as follows:

p∗ = βN

1 + βN (1 + l )
E[θ̄ |p∗]. (33)

Since (33) relates p∗ to the expectation of θ̄ conditional on p∗, it follows that the variance of p∗

is directly related to the variance of θ̄ and the correlation between p∗ and θ̄ .7

It is crucial for the argument that the expected payoff shock of agent i is computed condi-
tional on the equilibrium price—this is an implication of the fact that agents compete on demand
functions and hence agent i can condition the quantity he buys on the equilibrium price. The fact
that an agent can condition on the equilibrium price disciplines beliefs, which ultimately allows
us to bound price volatility. This allows us to relate p∗ to the average payoff shock θ̄ (as in (33)),
instead of p∗ being related only to the average of the agents’ expected payoff shocks (as in (33)).

An interesting conclusion that one can derive from the proof of Theorem 2 is that the ex-
pected price is uniquely determined by the equilibrium degree of market power. Specifically, (28)
implies that:

μp = βN

1 + λ + βN
μθ.

7 For any two random variables (y, z), if y = E[z|y], then σy = ρyzσz.
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Thus, the equilibrium degree of market power l and the price volatility describe the first and
second moments of the equilibrium price. By extension, they also describe the first and second
moment of aggregate demand. This in turn allows us to describe other statistics of the equilibrium
outcome. For example, the expected revenue is given by:

E

[
p
∑
i∈N

qi

]
= E

[
p2

β

]
= 1

β

(
μ2

p + σ 2
p

)
.

Here, we used the fact that
∑

i∈N qi = p/β by the market clearing condition. Since Theorem 2
provides bounds on price volatility and market power and market power determines the mean
price, Theorem 2 also provides bounds on the equilibrium revenue of the seller.

5. Parametrized information structures

� We now study parametrized classes of information structures. We first consider two differ-
ent forms of one-dimensional signals about the payoff shock. These information structures im-
pose tighter lower and upper bounds on market power and lead to qualitatively very different rela-
tionships between market power and volatility. We then consider a class of information structures
with multidimensional signals and show that while it maintains the tighter restriction on market
power, it also replicates in a parameterized class the feature that we can approximate extremal
complete information market power and price volatility pairs with arbitrarily small incomplete
information and thus hints that our main results do not rely on outlandish information structures.

One-dimensional signal of payoff shock. The first information structure consists of a one-
dimensional signal about the payoff shock θi, which was the case studied by Vives (2011). For
completeness, we show how the model fits into our framework. Each agent i observes his payoff
shock with conditionally independent noise; thus, the noisy one-dimensional signal is:

si = θi + εi, (34)

where the noise terms {εi}i∈N are independent normal with variance σ 2
ε
. This class of information

structure is therefore parametrized by the variance σ 2
εω

of the noise term εiω.
The equilibrium strategies can be computed using a guess-and-verify approach (as we did

in the proof of Theorem 1), and for every σε, there is a unique equilibrium. Given the equilibrium
strategies, we can then compute equilibrium market power and price volatility as in Theorem 1.

To gain some intuition for how the noise term changes market power, we consider the con-
ditional expectation of θi given the realization of all signals:

E[θi | {si}i∈N ] = (1 − ρθθ )σ 2
θ

(1 − ρθθ )σ 2
θ + σ 2

ε

(
si + 1 − γ

γ

1

N

∑
j∈N

s j

)
, (35)

where

γ = (1 − ρθθ )σ 2
θ

(ρθθN + (1 − ρθθ ))σ 2
θ

(ρθθN + (1 − ρθθ ))σ 2
θ

+ σ 2
ε

(1 − ρθθ )σ 2
θ + σ 2

ε

. (36)

We obtain an expression that is identical to (25), except that the expectation is multiplied by a
constant. While agent i only observes si, the conditional expectation (35) represents the equilib-
rium inference of agent i because he can deduce the average signal of other agents from observing
the equilibrium price.

We can then compute the equilibrium market power using the calculations developed in the
proof of Theorem 1:

l̂(γ ) � 1

2βN

⎛
⎝−Nβ

(N − 1)γ − 1

(N − 1)γ + 1
− 1 +

√(
Nβ

(N − 1)γ − 1

(N − 1)γ + 1

)2

+ 2βN + 1

⎞
⎠. (37)
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FIGURE 3

SET OF EQUILIBRIUM PAIRS (l, σ 2
p ) OF MARKET POWER AND PRICE VOLATILITY UNDER SIGNALS

ABOUT PAYOFF SHOCKS

We note that when agents observe signals about payoff shocks (24), then the equilibrium market
power is given by l = l̂(γ ) (this can be deduced from (19) and (20)). We obtain an expression
for price volatility similar to (29) but in which we replace λ = βNl :

σ 2
p =

(
βN

1 + βN (1 + l̂(γ ))

)2

ρ2
pθ̄ σ

2
θ̄
. (38)

Here, ρ2
pθ̄

is the correlation between the equilibrium price and the average payoff shock:

ρ2
pθ̄ = (ρθθN + (1 − ρθθ ))σ 2

θ

(ρθθN + (1 − ρθθ ))σ 2
θ + σ 2

ε

. (39)

We can summarize our discussion in the following corollary, which establishes a tighter range of
possible market power levels.

Corollary 2. (One-dimensional signal about payoff shock). There exists an information struc-
ture σ 2

ε
that induces market power and price volatility (l, σ 2

p ) as a unique equilibrium if and only
if market power l is given by (35)– (35) and price volatility is given by (38) and (39). In particular,
market power l ∈ (l̂(1), 1) ⊂ (0, 1).

The noise-free signals and the class of noisy one-dimensional signals (34) have the com-
mon feature that in equilibrium prices are privately revealing. This means that the information
contained in the price plus the private signals observed by agent i are a sufficient statistic for all
the signals observed by every agent to predict θi.

In Figure 3, we illustrate how market power and price volatility change with the variance σ 2
ε

of the noise term. We present the equilibrium behavior for different correlation coefficients ρθθ

of the payoff shocks θi and θ j.
Point A corresponds to the outcome when σ 2

ε
= 0: every agent knows his own payoff shock

but remains uncertain about the payoff shocks of other agents. Market power is increasing in σ 2
ε

and price volatility is decreasing in σ 2
ε
. Price volatility decreases at a faster rate (as a function of
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market power) than under complete information. Therefore, the relation between market power
and price volatility is different from the one that arises under complete information.

As the payoff shocks become more correlated (i.e., as ρθθ increases), market power in-
creases. One easy way to verify this is to note that the weight γ given by (36) is decreasing in
ρθθ . In the limit in which the payoff shocks are perfectly correlated, γ converges to zero and con-
sequently market power converges to 1. This is the maximum market power that can be attained
with a one-dimensional noisy signal about payoff shocks.

One-dimensional signal about common payoff shock. Our next example highlights that dif-
ferent one-dimensional signals will give rise to different implications for market power and
price volatility.

We allowed the individual payoff shocks θi and θ j to be positively correlated. One plausible
reason for this is that the individual payoff shocks reflect common and idiosyncratic components.
This suggests that we decompose the individual payoff shocks into a common and an idiosyn-
cratic component, ω and τi, respectively:

θi = ω + τi,

where ω and {τi}i∈N are normally distributed and independent of each other.8 It is now natural to
allow information to reflect common and idiosyncratic components in different ways.

In the second class of information structure, each agent i now receives a noisy one-
dimensional signal about the common component ω:

siω = ω + εiω,

where the noise terms are again independent normal with variance σ 2
εiω

. By contrast, the id-
iosyncratic components {τi}i∈N are assumed to be public information. This class of information
structure is therefore parametrized by the variance σ 2

εiω
of the noise term εiω.

The expectation of agent i’s payoff shock conditional on all the signals is given by:

E[θi | {(τ j, s jω )} j∈N ] = τi + σ 2
ω

σ 2
ω

+ σ 2
εiω

N

1

N

∑
j∈N

s jω.

We can see that agent i places the same weight on all private signals {s jω} j∈N . Since the shocks
{τ j} j∈N are public information, we can construct a linear equilibrium in the same way as we
constructed an equilibrium for noise-free signals in the proof of Theorem 1.

When σ 2
εiω

= 0, we have the same market power as with noise-free signals when the con-
founding parameter is equal to zero. To see why this is true, note that when the confounding
parameter is zero, an agent places the same weight on his own private signal as on the private
signals of other agents. For this reason, market power l is equal to 1. As an agent increases the
quantity he demands, in the symmetric equilibrium all agents increase the quantity demanded by
the same amount. Hence, while each agent only spends a fraction 1/N of the total expenditure,
increasing the quantity demanded leads to N times higher price increase (since all other firms
follow suit). Hence, when agents only observe signals about a common shock, in equilibrium
there is complete internalization of the impact that demand has on the equilibrium price. On the
other hand, to compute the price volatility, we can use (38) and compute the correlation between
the price and the aggregate payoff shock. It is easy to verify that the correlation is bounded from
below by:

ρ2
pθ̄ ≥

σ 2
τ

N

σ 2
τ

N
+ σ 2

ω

.

8 Given that θi are normally distributed with mean 0, standard deviation σθ and correlation ρθθ , the decomposition
leads ω and τi to be independently normally distributed with mean 0 and standard deviations σ 2

ω = ρθθσ
2
θ and σ 2

τ =
(1 − ρθθ )σ 2

θ , respectively. Observe that the variance of the realized average payoff shock θ can now be written as σ 2
θ̄

=
var(ω + 1

N

∑
τi ) = σ 2

ω + σ 2
τ /N .
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FIGURE 4

SET OF EQUILIBRIUM PAIRS (l, σ 2
p ) OF MARKET POWER AND PRICE VOLATILITY UNDER SIGNALS

ABOUT COMMON COMPONENT

The lower bound is attained when σ 2
εiω

= ∞. We summarize these findings in the following corol-
lary.

Corollary 3. (One-dimensional signal about common payoff shock). There exists an informa-
tion structure σ 2

εiω
that induces market power and price volatility (l, σ 2

p ) as a unique equilibrium
if and only if market power l is equal to 1 and price volatility σ 2

p is in the interval:[(
βN

1 + 2βN

)2
σ 2

τ

N
,

(
βN

1 + 2βN

)2 (
σ 2

τ

N
+ σ 2

ω

)]
.

When the only source of uncertainty is the common-valued shock, market power is always
equal to 1. In this case, the noise term in the signal changes the price volatility because it changes
how much the price co-moves with the shocks. We illustrate the set of market power and price
volatility that is attained by signals about common component in Figure 4.

Multidimensional signals. Our final information structure consists of multidimensional signals.
We enrich the preceding information structure by relaxing the assumption that there is common
knowledge of the idiosyncratic components. Instead, each agent observes a noisy signal of the
idiosyncratic component of the other agents’ idiosyncratic payoff shocks. Thus, each agent i
observes N + 1 private signals:

sii = τi, si j = τ j + εi j, siω = ω + εiω, ∀i ∈ N,∀ j �= i ∈ N;
where all noise terms are again independent normal. Thus, each agent knows his own idiosyn-
cratic component. In addition, each agent has noisy signals of the idiosyncratic components
of the others, which are very accurate (i.e., 0 < σεi j � 1). The multidimensional signals are
parametrized by the standard deviation of noise on the common component σεiω ∈ [0,∞).
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FIGURE 5

SET OF EQUILIBRIUM PAIRS (l, σ 2
p ) OF MARKET POWER AND PRICE VOLATILITY UNDER NOISY

MULTIDIMENSIONAL SIGNALS

Computing the equilibrium strategies is analytically much more intricate than in the previ-
ous cases, and explicit solutions are only available in special cases.9 Formally, we can state the
following result for information structures near complete information.

Proposition 2. (Multidimensional signals near complete information). There exists a multidi-
mensional signal that induces a pair of market power and price volatility (l, σ 2

p ) in the limit as

σ 2
εi j

, σσεiω
→ 0 if and only if l ∈ [l̂(1), 1] and price volatility σ 2

p satisfies (6).

The detailed analysis is in the Appendix. In Figure 5, we plot the set of market power and
price volatility that is achieved by multidimensional signals for all σεiω ∈ R+ (the red dashed
curve is the set of outcomes under complete information). As before, point A corresponds to
the outcome when σεiω = 0: An agent knows his own payoff shock but remains uncertain about
the payoff shocks of the other agents. Initially, as σεiω increases, market power increases. The
intuition is similar to the case of a one-dimensional signal about the payoff shocks. Because
the payoff shocks θi of the agents are correlated, every agent wants to increase the correlation
between the quantity he buys and the quantity bought by the other agents. Figure 5 illustrates
the equilibrium outcomes as we vary the correlation ρθθ in the payoff shocks. As σεiω → ∞ the
signals about the common shock become irrelevant, and so we are back to the case in which all the
relevant sources of uncertainty are idiosyncratic shocks. Therefore, as σεiω → ∞, market power is
reduced back to the same level as σεiω = 0, but price volatility is lower because the price does not
reflect the common component. Market power and price volatility under multidimensional signals
track very closely the set of outcomes under complete information. The agents are effectively
close to complete information as each agent i observes precise signals about {τ j} j∈N and ω. We
conclude that a wide range of outcomes that are close to the complete information outcomes can
be attained by parametrized information structures that have a natural statistical decomposition
into idiosyncratic and common shocks.

9 Heumann (2021) shows that computing the coefficients of a linear equilibrium amounts to finding the roots of a
polynomial of degree 2 × (number of signals) − 1.
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Thus, when each agent observes noisy one-dimensional signals about his payoff shocks,
market power always increases with the amount of incomplete information, and high market
power can only be supported by a large amount of incomplete information. If each agent observes
a noisy signal about the common payoff shock, then market power is always equal to 1 and
price volatility is determined by the variance of the noise term. For the noisy multidimensional
signals, the equilibrium outcomes closely track—within some range—the set of outcomes under
complete information. Although a small amount of incomplete information can support high
market power, in our parametrized classes of information structure market power is never above
1 . However, Theorem 1 establishes that there is no upper bound on market power across all
information structures.

6. Comparing market mechanisms

� Our paper focuses on characterizing the set of possible pairs of market power and price
volatility that can be attained by a Nash equilibrium of a particular mechanism, the demand
function competition game. A methodological contribution of the paper is that we provide a
characterization of key statistics of the equilibrium outcome independent of the specific equilib-
rium strategies that generate these outcomes. This approach has the advantage that it permits an
easy and insightful comparison of different mechanisms or game forms.

We now illustrate this by means of Cournot competition. Thus, we consider the outcome
of the economic environment as described in Section 2 in terms of payoff functions and payoff
shocks but where agents now compete by submitting quantities (i.e., Cournot competition) in-
stead of submitting demand schedules. Bergemann et al. (2015) characterizes all the equilibrium
outcomes of the quantity competition game. We can use their results (and the results we have
given here) to compare the two forms of market competition.10

We first characterize market power and price volatility in quantity competition, which is
analogous to Theorem 2.

Corollary 5. (Cournot equilibria under all information structures). There exists an information
structure that induces a pair of market power and price volatility, (l, σ 2

p ), under quantity compe-
tition if and only if:

l = 1

N
and σ 2

p ≤ 1

4

⎛
⎝

√
1 + βσθ̄ +

√
(β + βN + 1)σ 2

θ + βNσ 2
θ̄√

1 + β(β + βN + 1)

⎞
⎠

2

.

The restrictions that quantity competition imposes on market power and price volatility are
strikingly different from those imposed under demand function competition. We illustrate the
possible market power and price volatility values that can be attained by some information struc-
ture under the two forms of market competition in Figure 6; this figure illustrates the discussion
that we present next.

Under quantity competition, market power is constant instead of being (almost) completely
indeterminate. The expression for price volatility is slightly more cumbersome, but there is one
important feature that is worth highlighting. Even if the aggregate shock is close to zero (i.e.,
σ 2

θ̄
≈ 0), there may be non-negligible price volatility. In contrast, under demand function compe-

tition, price volatility is always negligible if the variance of the aggregate shock is negligible (see
Theorem 2). The difference between quantity competition and demand function competition is
explained as follows.

Under quantity competition, an agent’s price impact is equal to the slope of the exogenous
supply; this explains why market power is constant across all information structures. In contrast,

10 The explicit calculations and comparison can be found in an earlier version of this paper (see Bergemann et al.,
2018), and the analysis of Cournot competition with a continuum of firms appears in Bergemann and Morris (2013).
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FIGURE 6

COMPARISON OF THE FIRST AND SECOND EQUILIBRIUM MOMENTS UNDER DEMAND FUNCTION
COMPETITION AND COURNOT COMPETITION

when agents submit price-contingent demands, an increase in the demand of an agent affects
the price, which in turn affects the demand of other agents. Thus, an agent’s price impact is not
determined solely by the exogenous supply.

For price volatility, the intuition is as follows. In quantity competition the equilibrium quan-
tities may be correlated because signals are correlated, which may lead to aggregate volatility
even in the absence of aggregate shocks. In contrast, when agents submit price-contingent de-
mands, their beliefs are disciplined by the equilibrium price. Specifically, because agents choose
their demand contingent on the price, the price serves as a public signal about the average quan-
tity purchased by all agents. This additional signal disciplines beliefs in such a way that the
quantities they purchase cannot be correlated more than the correlation of the payoff shocks,
which ultimately disciplines price volatility.

7. Discussion

� In this article, we study demand function competition. Our findings provide positive and
negative results regarding our ability to make predictions in this empirically important mar-
ket microstructure. We showed that any market power is possible— from −1/(2βN ) to infin-
ity. Considering small amounts of incomplete information does not allow us to provide any
sharper predictions, unless one is able to make additional restrictive assumptions regarding the
nature of the incomplete information. However, we showed that we can provide many substan-
tive predictions regarding demand function competition that are robust to weak informational
assumptions.

While our analysis focused on studying market power and price volatility, the conclusions
can be extended to other equilibrium statistics. For example, an analyst may be interested in the
variance of the quantities bought by each agent, that is, var(qi). In an earlier version of this ar-
ticle (see Bergemann et al., 2018), we explored more broadly how information may determine
any given equilibrium statistic. Our conclusions there extend the current results in the sense that
the equilibria under complete information are “extremal” equilibria. For example, the variance
of the quantities is bounded by the variance attained under a complete information equilibrium.
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Thus, while it is difficult to rule out any of the equilibria that arise under complete informa-
tion, these equilibria can be used to provide bounds of what can happen across all information
structures.

Our analysis relies on several simplifying assumptions, most notably the symmetry of agents
and the normality of signals. The symmetry assumption facilitates the analysis by allowing us
to describe the equilibrium outcome using a smaller set of equilibrium variables. If agents were
heterogeneous, then describing an equilibrium outcome would amount to describing each agent’s
market power, the price volatility, and the variance of each agent’s demand. We believe that this
would be an algebraically more cumbersome exercise, but the tools and ideas we have devel-
oped could be applied to such a problem. The most important role that the normality assump-
tion plays in our analysis is that it leads to constant market power (meaning that it does not
depend on the realization of signals). If market power is not constant, then we may have an ad-
ditional source of price volatility that does not come from the realization of the average payoff
shock, but from market power volatility. Hence, we may attain higher price volatility than when
we focus on Gaussian signals. Overall, we believe that allowing for richer settings in terms of
heterogeneous agents and non-Gaussian signals would not overturn the main message of The-
orem 1: that is, it is difficult to offer predictions even when close to complete information.
On the other hand, allowing for non-Gaussian signals may lead to higher price volatility, and
hence, the bounds on price volatility that would allow us to extend Theorem 2 may show more
slackness.

Appendix A

Proof of Proposition 1. Using the equilibrium construction in the proof of Theorem 1, in particular (14), we find that in
any symmetric Nash equilibrium x∗:

x∗(si, p) = θi − p

1 + λ
, (A1)

where λ is the reciprocal of the derivative of an agent’s residual supply. This equation is the complete information
counterpart to (14). The market clearing condition implies that the equilibrium price is given by:

p∗ = βN θ̄

1 + λ + βN
. (A2)

The arguments established in the proof of Theorem 1 imply that market power satisfies l = λ/βN and that the second-
order condition of an agent’s maximization problem implies that λ ≥ −1/2. Thus, (A2) implies that the equilibrium
relation between price volatility and market power is as in (6).

To check that the conditions are sufficient, we consider the following family of demand functions parametrized by
γ ∈ R:

xi(p) = 1

1 + λ

(
θi − (1 − γ )θ̄

)− 1

N − 1

(
1

λ
− 1

β

)
p, (A3)

where λ is determined as a function of γ by the positive root of (19). We first observe that this is the same demand function
as the one that the agents submit in the Nash equilibrium when they observe the information structure constructed in
Theorem 1 (there γ parametrizes the one-dimensional signal (12)). Thus, if (A3) constitutes a Nash equilibrium, then the
equilibrium market power and price volatility are given by:

l = λ/βN and σ 2
p = (βN )2

(1 + βN + λ)2
σ 2

θ
,

where λ ∈ [−1/2,∞) is the positive root of (19). To check that (A3) is an equilibrium, we note that when λ is determined
by the positive root of (19) we have that:

xi(p) = 1

1 + λ

(
θi − (1 − γ )θ̄

)− 1

N − 1

(
1

λ
− 1

β

)
p = θi − p

1 + λ
.

Thus, demand satisfies the first-order condition (A1), and it also satisfies the second-order condition because λ ≥ −1/2.
Therefore, (A3) satisfies the optimality conditions and thus constitutes a symmetric Nash equilibrium. �
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Proof of Proposition 2. We recall that the first-order condition is given by (14). In the limit σ 2
εi j

, σ 2
εiω

→ 0 we have that:11

E[θi|p∗, si] → θi.

This limit is satisfied regardless of the rate at which we take the limits. Following the same steps as in the proof of
Theorem 1, we conclude that the equilibrium price converges to:

p → βN θ̄

1 + βN (1 + l )
. (A4)

This immediately implies that price volatility converges to the formula in (6). We are thus left with proving that, by taking
the limits σ 2

εi j
, σ 2

εiω
→ 0 at the appropriate rate, every market power l ∈ [l̂(1), 1] can be attained in the limit.

We now use the fact that the price converges to (A4), and we recall that θ̄ = ω + τ̄ . We first note that, if σ 2
εi j

, σ 2
εiω

→
0 and σ 2

εi j
/σ 2

εiω
→ ∞, then:

E[θi | p, si] → sii + siω.

In other words, if σ 2
εiω

converges to zero at a faster rate than σεi j , then siω becomes arbitrarily more informative (about
ω) than p. Hence, to predict ω, agents simply use their private signals siω . Following the same steps as in the proof of
Theorem 1 to find the equilibrium market power, we conclude that the equilibrium market power will be l̂(1).

We now note that if σ 2
εi j

, σ 2
εiω

→ 0 and σ 2
εi j

/σ 2
εiω

→ 0, then:

E[θi | p, si] → sii +
(

1 + Nβ(1 + l )

βN
p − 1

N

∑
j∈N

si j

)
.

In other words, if σ 2
εi j

converges to zero at a faster rate than σεiω , then agents can subtract τ̄ from the equilibrium price,
which allows them to deduce

∑
j∈N s jω/N by observing the equilibrium price. Hence, to predict ω, agents simply use

the equilibrium price. Following the same steps as in the proof of Theorem 1 to find the equilibrium market power, we
conclude that the equilibrium market power will be 1.

We now observe that for every κ ∈ [0, 1] we can take the limits σ 2
εi j

, σ 2
εiω

→ 0 at an appropriate rate such that:

E[θi | p, si] → sii + κ

(
1 + Nβ(1 + l )

βN
p − 1

N

∑
j∈N

si j

)
+ (1 − κ )siω.

Therefore, changing the rate at which σ 2
εi j

and σ 2
εiω

converge to zero changes κ , which has the same effect on the equilib-
rium market power as changing γ under noise-free signals (24). The set of equilibrium market power values that can be
attained by the set κ ∈ [0, 1] corresponds to the set of market power values that can be attained by noise-free signals with
parameter γ ∈ [0, 1]. Hence, every market power in l ∈ [l̂(1), 0] can be attained. �
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