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Problem: Sequential Screening

I When and how to sell when a buyer learns her valuation over
time?

I Classic example: Airline tickets

I Initial purchase is based on an imperfect estimate: buyer’s
type could be leisure/business travelers (Period 1)

I Buyer knows true willingness-to-pay only at date of
travel(Period 2)

What is the revenue maximizing menu of contracts?

I Classic paper of Courty and Li (2000); also Akan et.al. (2015)

I Menu of upfront fees/refund contracts
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Participation Constraints

I Classic approach imposes interim participation constraints: at
period 1 after learning private type.

I Based on new applications, recent interest on ex-post
participation constraints: at period 2 after true
willingness-to-pay gets realized. Cannot pay more than
valuation.

I Ex.1: in online shopping buyers can return purchases at low or
no cost (Krähmer and Strausz 2015).

I Ex. 2: online display advertising markets: auction based and
typical business constraint.
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Online Display Advertising Motivation
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Online Display Advertising: Waterfall Auction
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Online Display Advertising: Waterfall Auction

Think of period 1
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Online Display Advertising: Waterfall Auction
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Online Display Advertising: Waterfall Auction

Think of period 2
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This Paper

I What is the revenue maximizing sequential screening
mechanism under ex-post participation constraints?

I Classic solutions do not satisfy ex-post PC due to upfront fees.

I Obtain general insights into the structure of the optimal
mechanism

I Contribute to classic economic’s literature on sequential
screening by incorporating ex-post PC constraints

I Use dual approach to unveil the structure of optimal
mechanism

I Cai et. al (2016) and Devanur & Weinberg (2017) dual
approach also applies

I (Partially) Shed light on practical mechanisms as effective
price discrimination devices such as Waterfall Auctions
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Model: Mechanism Design Formulation

Time

Period 1 Period 2

Seller: single item
Single Buyer

Buyer privately learns
type k ∈ {L,H},
αL + αH = 1, αk > 0

Buyer privately learns
type k ∈ {L,H},
αL + αH = 1, αk > 0

Buyer knows
Fk(·) in [0, θ]
Buyer knows
Fk(·) in [0, θ]

Seller offers
mechanism:
(xk(θ), tk(θ))

Seller offers
mechanism:
(xk(θ), tk(θ))

Buyer reveals
type k
Buyer reveals
type k

Buyer privately
learns valua-
tion θ ∼ Fk(·)

Buyer privately
learns valua-
tion θ ∼ Fk(·)

Buyer reveals θBuyer reveals θ

Truthful buyer
gets: uk(θ) =
θxk(θ) − tk(θ),
Seller gets: tk(θ)

I Model primitives are common knowledge

I Parties are risk-neutral

I Non-increasing hazard rates. WLOG θ̂L ≤ θ̂H
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Revenue Maximizing Mechanisms

Time

Period 1 Period 2

Buyer privately learns
type k ∈ {L,H},
αL + αH = 1, αk > 0

Buyer knows
Fk(·) in [0, θ]

Seller offers
mechanism:
(xk(θ), tk(θ))

Ukk ≥ 0

Buyer reveals
type k

Buyer privately
learns valua-
tion θ ∼ Fk(·)

Buyer reveals θ

Truthful buyer
gets: uk(θ) =
θxk(θ) − tk(θ),
Seller gets: tk(θ)

I Courty and Li: What is the revenue maximizing sequential
screening mechanism under interim participation constraints?
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Revenue Maximizing Mechanisms

Time

Period 1 Period 2

Buyer privately learns
type k ∈ {L,H},
αL + αH = 1, αk > 0

Buyer knows
Fk(·) in [0, θ]

Seller offers
mechanism:
(xk(θ), tk(θ))

uk(θ) ≥ 0

Buyer reveals
type k

Buyer privately
learns valua-
tion θ ∼ Fk(·)

Buyer reveals θ

Truthful buyer
gets: uk(θ) =
θxk(θ) − tk(θ),
Seller gets: tk(θ)

I Our Question: What is the revenue maximizing sequential
screening mechanism under ex-post participation constraints?

[Ex-post PC] uk(θ) ≥ 0, ∀k ∈ {L,H}, ∀θ
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Seller’s Problem
The seller’s problem is

(Pd) max
0≤x≤1,t

∑
k∈{L,H}

αk ·
∫ θ̄

0
tk(z) · fk(z)dz

s.t. uk(θ) ≥ θ · xk(θ′)− tk(θ′) ∀k , θ [Ex-post IC]

∫ θ̄

0
uk(z)fk(z)dz ≥

∫ θ̄

0
uk ′(z)fk(z)dz , ∀k , k [Interim IC]

uk(θ) ≥ 0, ∀k , θ [Ex-post PC]

I Ex-post IC: By the envelope theorem it is enough to solve for
non-decreasing allocations xk(·) and the utility of the lowest ex-post
types uk(0)

I Interim IC: More challenging (together with ex-post PC)
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Optimal Mechanisms

Screening mechanisms

Static mechanisms

– A contract such that xk(·) ≡ x(·) and
tk(·) ≡ t(·) for all k in {L,H}

– Pooling of interim types

– Myerson for the mixture distribution:
posted price θs

Static mechanisms

Sequential mechanisms

–A contract such that xL(·) 6= xH(·) and
tL(·) 6= tH(·)

– Separate interim types

– Contract can be arbitrarily complex

Sequential mechanisms
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Research Questions/Contributions

1. When is a static contract optimal? When it is not?
I Krähmer and Strausz 2015: Sufficient condition
I Us: Necessary and sufficient condition

2. If a sequential contract is optimal, what does the
optimal mechanism look like?

I Us: Full characterization
I Very different to Courty and Li
I Significant revenue improvement over static contract
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The ”Simple Economics” of Optimal Sequential Contracts
Let’s look at weighted virtual values (“marginal revenues”);

µk(θ) = θ − 1−Fk (θ)
fk (θ)

0

µk (·)fk (·)

valuation

High

Low

θ̂L θ̂H

θ̂L θ̂Hθ̂L θ̂Hθs

Rev (static)= αL · AL +αH · AH

AL

AHθs

Rev loss(static) = shaded areas

How do we improve?
(i): Increase price offered to H
(ii): Decrease price offered to L

Both violate IC!

We can improve by randomizing L

0

µk (·)fk (·)

valuation

High

Low

χL· Low

θ1
L

θ2
L

θsθ̂L θ̂H

A

B

A: We serve more L types ⇒ Rev. gain
B: We serve less L types ⇒ Rev. loss (IC)

Necessary Condition!

Static contract ⇒ A ≤ B
is optimal
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General Necessity and Sufficiency

Theorem
The static contract is optimal if and only if

max
{

Region A︸ ︷︷ ︸
revenue gain

}
≤ min

{
Region B︸ ︷︷ ︸
revenue loss

}

1. Condition can be rigorously stated in terms of primitives:

max
θ≤θs

∫ θs
θ µL(θ)fL(θ)dθ∫ θs
θ (1− FH(θ))dθ

≤ min
θs≤θ

∫ θ
θs µL(θ)fL(θ)dθ∫ θ
θs (1− FH(θ))dθ

2. Sharp intuitive characterization for optimality of static
contract!

3. Necessity formalizes picture above; sufficiency relaxes L to H
IC and applies Lagrangian duality.
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Exponential Valuations

fk(θ) = λke
−λkθ, k = {L,H} θ ≥ 0, λL > λH .

Proposition

The static contract is optimal if and only if

λL − λH ≤
1

θs

I θs : optimal Myerson price for mixture distribution
I λL and λH close then screening is not optimal
I λL and λH different then screening is optimal

Corollary

Assume λL ∈ (λH , 2λH ], then the static contract is optimal.

Corollary

Assume λL > 2λH , then there exists ᾱ ∈ (0, 1) such that the
sequential contract is optimal iff αL ∈ (0, ᾱ).
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General Necessity and Sufficiency

Krähmer and Strausz 2015 sufficient condition:

µ`(θ)f`(θ)

F̄k(θ)

is increasing for all `, k

I Stronger pointwise condition

I It implies our condition

I Ex.: does not necc. hold for exponential valuations.
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General Characterization
Full characterization for optimal sequential contract!

Theorem
Consider problem (Pd) and assume profit-to-rent cond. does not
hold, the optimal solution has allocations

x?L(θ) =


0 if θ < θ1

L

χL ∈ [0, 1] if θ1
L ≤ θ ≤ θ2

L

1 if θ2
L < θ,

x?H(θ) =

{
0 if θ < θH

1 if θH ≤ θ,

for some values θ1
L, θH , θ

2
L with θ1

L ≤ θH ≤ θ2
L, and

uL(0) = uH(0) = 0

I Optimal contract is simple

I Optimal contract departs from bang-bang contract with one
buyer and one item

I θ̂L ≤ θ1
L, θH ≤ θ̂H
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Proof Sequential Contract

I Relax L to H interim IC constraint (check feasibility at the
end)

I Use Lagrangian duality to show that can restrict attention to
allocations that are step functions (can ignore strictly
increasing functions)

I Show that can find feasible improvements to the objective
function if:

I L type allocation has two or more intermediate steps
I H type allocation has one or more intermediate steps
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The Value of Sequential Screening: Optimal Revenues

Revenue

θs = 1
λL−λH

0.22

0.58

0.93 2.5 δ

Sequential (Πseq)

Static (Πstatic)

%

0

16.5

27

3.17

7.29

δ5

αL = 0.3
αL = 0.5

αL = 0.7

αL = 0.9100× (Πseq−Πstatic)

Πstatic

Figure: Left: Optimal expected revenue for static and sequential.
Right: Percentage improvement of the sequential over the static
contract. In both figures we set set λL = λH + δ with λH = 0.5.
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Back to Waterfall Auctions
I In Waterfall Auctions low type buyers are randomized: can

only bid when high-reserve auction does not clear
I “high-reserve auction does not clear” ⇔ high type value ≤ θH
I Seller revenue:

max
θH≥θL≥0,(IC)

αL FH(θH)︸ ︷︷ ︸
randomization

F̄L(θL)θL + αH F̄H(θH)θH

Revenue

S
ta
ti
c
is
op
ti
m
al

0.22

0.34

0.93 5 δ

Sequential (Seq)
Water (W)

S
ta
ti
c
is
op
ti
m
al

%

δ5

13.4

7.1

3.8

1.9

16.5

αL = 0.9

αL = 0.7

αL = 0.5

αL = 0.3
100×(Seq-W)/W

Figure: Left: Optimal expected revenue for Waterfall and Sequential.
Right: Percentage improvement of the Sequential over the Waterfall
contract. In both figures we set set λL = λH + δ with λH = 0.5.
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Multiple Interim Types

I We partially extend result of necessary and sufficient condition
for optimality of static contract.

I We prove that for exponential valuations there is at most one
randomization step in optimal sequential contract. We
partially extend this result.

I Multiple-type analysis is more complex because there is not an
obvious relaxation of the math program.
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Allocation

0 0.5 1

Figure: Optimal allocations for 4 interim types with exponential
valuations. In each panel the vertical axis corresponds to buyers’
valuations and the horizontal axis corresponds to the type. Each bar
represents the allocation for each type, lighter grey indicates lower
probability of allocation while darker grey indicates higher probability of
allocation. Different distributions of interim types across instances.
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Conclusions and Future Work

Summary

I Complete characterization for the optimal mechanism for two
interim types and one buyer

I Both static and sequential contracts can be optimal

I When the sequential contract is optimal, the seller has to
randomize the low-type and give a deterministic allocation to
the high-type

I Some extensions to multiple types

Current and Future work

I Study multiple buyers: may need ironing

I Connections with practical real-world mechanisms, such as
waterfall auctions (randomization)

I Analyze performance guarantees of “simple mechanisms”
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