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Interdependence and Winner’s Curse

• interdependence in values across bidders is frequent in auctions

→ wildcatters bidding for an oil tract ...

→ investment banks competing for shares in IPO’s...

→ lenders competing in syndicated loan-markets ...

• winning the object is informative about value estimate of
competing bidders

• each bidder must carefully account for the interdependence in
individual bidding behavior

• winner’s curse: unconditional vs conditional expectation
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Winner’s Curse and Adverse Selection

• consider bidding for a natural resource, such as an oil tract

• richer samples suggest more oil reserves and induce higher bids

• winning means that the other samples’ were relatively weak

• a winning bidder therefore faces adverse selection

• the expected value of the tract conditional on winning
is less than the unconditional expectation
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Winner’s Curse and Auction Design

• winner’s curse results in bid shading and lower revenues

• how can auction design attenuate the winner’s curse...

• how can the resulting selection impact revenue:
adverse, neutral or advantageous

• today: what is the revenue maximizing selling mechanism?

• prior literature has largely focused on private value

→ thus a world without winner’s curse and selection issues
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Auction Design in A Common Value Model

• a pure common value model

• private signal gives partial information about common value

• key statistical feature:
higher signals contain more information about common value
than lower signals

• today:
→ highest signal is sufficient statistic of common value
→ lower signals carry no additional information

5



Revenue Maximizing Design

• characterize revenue maximizing mechanism

• maximal revenue is obtained by strikingly simple mechanism,
stated at interim level (given signal of bidder i)

1. constant – signal independent – price

2. constant – signal independent – probability of getting object

• contrast with first, second, or ascending auction
in an environment with private values
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Revenue Maximizing Design: Posted Price

• optimal mechanism shares some features with posted price

1. constant – signal independent – price

• it coincides with posted price if

2. constant – signal independent – probability is 1/N

• necessary and sufficient condition when optimal mechanism
reduces exactly to posted price

• if posted price is an optimal mechanism it is inclusive:
every bidder with every signal realization is willing to buy
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Revenue Maximizing Design: Beyond Posted Price

• in general, aggregate assignment probability is < 1

• interim probability of getting object is constant and < 1/N

• ex post probability for i then depends on entire signal profile

• conditionally on allocating the object optimal mechanism:

1. favors bidders with lower signals

2. discriminates against bidder with highest signal

• “winner’s blessing” rather than “winner’s curse”

• advantageous rather than adverse selection
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Contributions: Substantive

• setting where bidders with higher signals have more accurate
information about common value;

• arises in market with intermediaries, and many other settings:
auctions for resources, IPO’s

• countervailing screening incentives, tension between selling to

1. bidder with higher expected value and

2. bidder with less private information

• optimal to screen “less” - with no screening in inclusive limit

• foundation for posted price mechanisms
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Contributions: Methodological

• very few results extend characterization of optimal auctions
beyond private value case

• we extend optimal auctions into interdependent values:

1. with private values, “local” incentive constraints are sufficient
to pin down optimal mechanism

2. with interdependent values, “global” constraints matter,
new arguments are required
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Model



Common Value Model

• N bidders compete for a single object

• bidder i receives signal si :

si ∈ [s, s] ⊂ R+

according to absolutely continuous distribution F (si ) , f (si )

• common value is the maximum of N independent signals:

v (s1, . . . , sN) , max {s1, . . . , sN}

• “maximum signal model”

• signal distribution F (si ) induces value distribution GN(v):

GN(v) = (F (s))N

• common value is first-order statistic of N independent signals
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Two Interpretations

• maximum signal model

v (s1, . . . , sN) = max {s1, . . . , sN}

• two leading interpretations:

1. common value model with informational implications:

• higher signal realizations contain more information about
common value than lower signal realizations

• specifically, conditional on highest signal, the other signals
contain no additional information about the common value

• drilling/sampling for mineral rights (Bulow and Klemperer
(2002))
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Two Interpretations

• maximum signal model

v (s1, . . . , sN) = max {s1, . . . , sN}

• two leading interpretations:

2. private value model of intermediary (dealer) market

• each intermediary bidder receives the signal (sample) about
the downstream trading opportunities

• final sale in downstream market is open to all intermediaries

• IPO, syndicated loan-markets, inter-dealer markets
(Viswanathan and Wang (2004))
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Utility and Allocation

• bidder i is expected utility maximizer with quasilinear
preferences, probability qi of receiving object and transfers ti :

ui (s, qi , ti ) = v (s) qi − ti

• feasibility of auction

qi (s) ≥ 0, with
N∑
i=1

qi (s) ≤ 1

• ex post transfer ti (s) of bidder i , interim expected transfer:

ti (si ) =

∫
s−i∈SN−1

ti (si , s−i ) f−i (s−i ) ds−i ,

where

f−i (s−i ) =
∏
j 6=i

f (sj)
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Incentive Compatibility

• bidder i surplus when reporting s ′i while observing si :

ui
(
si , s

′
i

)
≡
∫
s−i∈SN−1

qi
(
s ′i , s−i

)
v (si , s−i ) f−i (s−i ) ds−i−ti

(
s ′i
)

• indirect utility given truthtelling is:

ui (si ) ≡ ui (si , si )

• direct mechanism {qi , ti}Ni=1 is incentive compatible (IC) if

ui (si ) ≥ ui
(
si , s

′
i

)
, for all i and si , s

′
i ∈ S

• ... is individually rational (IR) if ui (si ) ≥ 0, for all i and si ∈ S
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The Winner’s Curse



Warm-Up: Second Price Auction

• second-price auction in maximum signal model:

bi (si )

• bid of bidder i is based on his interim expectation:

E[v(s1, ..., sN) |si ]

• signal si is sharp lower bound on ex post (realized) value:

si ≤ v(s1, ..., sN),

• signal si is lower bound for interim expectation of value:

si < E[v(s1, ..., sN) |si ]
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Winner’s Curse in Second Price Auction

• bidder with highest signal wins in second price auction

• equilibrium bid is given by:

bi (si ) = si

• bids as-if private value si , not common value max {s1, ..., sN}
• conditional on winning, signal si turns into sharp upper bound:

v(s1, ..., sN) = max {s1, ..., sN} ≤ si

• this is the curse:

1. when bidding, si is sharp lower bound of expectation of value

2. when winning, si is sharp upper bound of expectation of value
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Winner’s Curse and Adverse Selection

• adverse selection:
winner learns his signal is most favorable of all signals
• selection as winner is adverse information to winner
• magnitude of adverse selection is controlled by change in

expectation from ex-interim to ex-post:

1. when bidding, si is sharp lower bound of expectation of value
2. when winning, si is sharp upper bound of expectation of value

• structure of information controls strength of winner’s curse
• winner’s curse lowers bids, thus lowers revenue of auctioneer
• maximal winner’s curse is quantified by minimal revenue

(in any given auction format)
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An Aside:
Magnitude of Winner’s Curse



Magnitude of the Curse

• can we quantify the winner’s curse ?

• can we identify maximal winner’s curse which generates
minimal revenue?

• how does it relate to the structure of private information of
bidders?

• making it operational

• consider all possible information structures for a fixed
distribution of values,

• thus look at all Bayes correlated equilibria of the auction
(ECTA, 2017)
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Information and Winner’s Curse

• fix a distribution of (common) values with N bidders:

GN(v)

• ask how different common prior distribution of signals:

F (s |v)

impact bidding and revenue for fixed distribution GN(v)

• maximum signal model: an example of information structure,
others are wallet game, afiliated mineral rights model, etc.
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Revenue Minimum

• “Revenue Guarantee Equivalence” (AER forthcoming) finds:

1. equivalence: the maximum signal model attains the same
revenue in all standard auctions: first-price, second-price,
ascending auction, etc.

2. guarantee: the maximum signal model generates the lowest
revenue across all information structures in every standard
auction

• sharp revenue guarantee through maximum signal model ...
• ... across all standard auction formats
• revenue minimizing is winner’s curse maximizing:

v (s1, . . . , sN) = max {s1, . . . , sN}
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A Visualization

• standard auction (with no reserve prices) with two bidders
• revenue and bidders surplus in all information structures
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Figure 1: Revenue and Bidder Utility across All Information Structures 22



Structure of Incentive Constraints

• structure of incentive constraints in maximum signal model

• all upward deviations–relative to unique equilibrium bid–
yield the equilibrium net utility

• all upward deviations are binding:

b′ ∈ [bi (si ), bi (s)], ∀si ∈ [s, s]

• global rather than local inventive constraints matter,
everywhere!

• global constraints matter in all standard auction formats!
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Upward Deviations

Reported type
0 0.25 0.5 0.75 1

U
ti
li
ty

0

0.05

0.1

0.15

0.2

0.25

0.3
Indirect utility in the FPA

True type: 0.75

0.5

0.25

Figure 2: Uniform Upward Incentive Constraints and Winner’s Curse

• counter the curse: find optimal auction 24



Counter the Curse



Adverse Selection and Winner’s Curse

• assigning object to highest bidder conveys (too) much
information to the winner

• adverse selection: winner learns that his signal was more
favorable than all other signals

• winning bid is depressed by adverserial selection of winner

• what about neutral selection of winner?

• a neutral (symmetric) selection must be a random allocation
among the bidders

• event of winning does not convey any additional information
to the winner
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Neutral Selection: Inclusive Posted Price

• a specific neutral selection

• every bidder receives the object with equal probability 1/N

• every winning bidder is charged a posted price

p ,
∫
s−i

v (s, s−i ) f−i (s−i ) ds−i

• even bidder with lowest signal, si = s, is willing to buy at p,

• thus p is inclusive, does not exlude any signal si for any i
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Revenue Improvement I

• how does inclusive posted price fare?

Proposition

The inclusive posted price yields a (weakly) higher revenue than
absolute first-price, second-price or ascending price auction.

• Bulow-Klemperer (2002) establish second-price auction ranking

• notable features of inclusive posted price

1. random allocation–rather than deterministic allocation

2. constant allocation in signal – rather than increasing in signal

3. no selection on either signal or value, thus no screening
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Neutral Selection and Exclusion

• exclusion–not selling the object when the value is low–
may increase the revenue

• in private value environments it famously does:
Myerson (1981)

• can neutral selection be maintained with exclusion?
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Two Tier Price Mechanism

• uniform exclusion at a threshold r :

qi (s) =

 1
N if max s ≥ r ;

0 otherwise.

• supported by two-tier price:

1. a preferred price (unconditional sale):

pu , r ,

2. a standard price (conditional sale):

pc ,

∫ s
r max {s−i} dF−i (s)

1− FN−1(r)
> r = pu,

⇔ right censored first order statistic of N − 1 samples
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Two-Tier Price Mechanism

• object is sold if and only if at least one bidder is willing to
make an unconditional purchase at

pu = r

• then all the remaining bidders get object with probability 1/N
at price

pc ,

∫ s
r max {s−i} dF−i (s)

1− FN−1(r)

• with one exception... if more than one bidder requests
unconditional purchase, then all bidders get object at pc
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Revenue Improvement II

Proposition (Two-Tier Pricing)

A two-tier pricing (pc , pu) yields a (weakly) higher revenue than
any other inclusive or exclusive posted price.

• standard price pc could be offered equivalently as random
price:

p , max {r , s−i}

• resulting mechanism is ex-post incentive compatible and
ex-post individually rational

• but neither as dominant strategy!
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Implications of Two-Tier Price

• uniform screening among bidders with respect to highest signal

• uniform exclusion among bidders’

• winning at generates winner’s blessing:

E[v(s1, ..., sN) |si ] < E[v(s1, ..., sN) |si , xi > 0 ]

• two-tiered pricing similar to syndicated loan arrangement: one
for lead lender, and one for all syndicate lenders

• turned from adverse to neutral selection

• now turn from neutral to to advantageous selection!
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Revenue Improvement III

• there is a fixed reserve price r and a random reserve price x > r

• if bidder i reports highest signal si > r , then:

1. he receives priority status,

2. he is offered object at price:

p , max {x , s−i}

• otherwise, other bidders receive object with probability

1/(N − 1),

• if at least one bidder has declared priority status and pay price:

p , max {r , s−i} = v(s1, ..., sN).
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Random Reserve Price

• reserve price r∗ is smallest solution to:

x −
∫ s

y=x

1− F (y)

F (y)
dy = 0

• distribution of random reserve price is:

H∗(x) =
1
N
(1− FN(r)

FN(x)
)

• resulting mechanism is interim incentive compatible and
ex-post individually rational

• higher signal guarantee higher probability of getting the object
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Final Revenue Improvement

• additional revenue from the bidder with the highest signal

Theorem (Random Reserve Price )

The random reserve price mechanism (r∗,H∗) is a revenue
maximizing mechanism.

• interim probability of receiving object is constant in signal si

• interim transfer is constant in signal si

• advantageous selection

• all downward incentive constraints are binding!
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A Visualization

• with random reserve price, each bidder is indifferent between
his equilibrium bid and any lower bid
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Figure 3: Uniform Downward Incentive Constraints
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A Study in Contrasts

• optimal vs standard mechanisms
• exactly flip the orientation of the constraints, and more...
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Figure 4: Uniform Downward vs Upward Incentive Constraints
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Bounds on
Bidder Surplus and Revenue



A New Problem

• how to establish the optimality of the mechanism?

• evidently, the local constraints are binding, but many others,
non-local constraints are binding as well

• thus, we need to consider local as well global constraints

• but which ones?

• analyze a relaxed problem which consists of local and small
class of global constraints

• use these constraints to derive:

1. an upper bound on seller revenue

2. a lower bound on bidder utility
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A Relaxed Problem

• consider a smaller–one-dimensional–family of constraints:

• instead of reporting signal si , report a random signal

s ′i < si ,

drawn from truncated prior on support [s, si ]:

F
(
s ′i
)
/F (si )

• misreporting a redrawn lower signal
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A Lower Bound on Bidder Utility

• what are the gains from misreporting a redrawn lower signal?

• equilibrium surplus of a bidder with type x is
–from envelope condition of local constraints:

ui (si ) =

∫ si

x=s
q̂i (x) dx

• surplus from misreporting the redrawn lower signal

1
F (si )

∫ si

x=s
ui (si , x) f (x) dx

• gains vary depending on realized misreport
average gains across all misreports are easy to compute
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Average Gains from Misreporting

• misreport is redrawn from prior, bidder i is equally likely to fall
anywhere in distribution of signals, unconditional on misreport,
ex-ante likelihood that i receives object and x is highest signals

qi (x) gN (x)

• if highest report is less than si , surplus that bidder i obtains
from being allocated object is si rather than x , so si − x is
difference between deviator and truthtelling surplus:

1
F (si )

∫ si

x=s
[(si − x) qi (x) gN(x) + ui (x) f (x)] dx

• thus the incentive constraint requires:

ui (si ) ≥
1

F (si )

∫ si

x=s
[(si − x) qi (x) gN(x) + ui (x) f (x)] dx
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Lower Bound As Equality

• lower bound of bidder’s surplus through small class of
deviations:

ui (si ) ≥
1

F (si )

∫ si

x=s
[(si − x) qi (x) gN(x) + ui (x) f (x)] dx

• inequality hold as sum across all i :

u(s) ≥ 1
F (s)

∫ s

x=s
[(s − x) q (x) gN(x) + u (x) f (x)] dx

• lowest solution u (s) exists and solves inequality as equality
• monotonic operator on increasing functions has unique

smallest fixed point by Knaster-Tarski fixed point
• can be integrated by parts as

U =

∫
x∈S

u (s) f (s) ds =

∫
s

(∫ s

x=s

1− F (x)

F (x)
dx

)
q (s) gN (s) ds
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A Generalized Virtual Utility Formula

• with the lower bound on bidder surplus:

U =

∫
x∈S

u (s) f (s) ds =

∫
s

(∫ s

x=s

1− F (x)

F (x)
dx

)
q (s) gN (s) ds

• we obtain our final formula for revenue, which is

R = TS − U =

∫
v
ψ (v) q (v) gN (v) dv

where

ψ (v) = v −
∫ s

x=v

1− F (x)

F (x)
dx ,

• compare to virtual utility in private value environments:

π (x) = x − 1− F (x)

f (x)
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Upper Bound on Revenue

• generalized virtual utility:

ψ (x) = x −
∫ s

y=x

1− F (y)

F (y)
dy ,

Theorem (Revenue Upper Bound)

In any auction in which the probability of allocation is given by q,
bidder surplus is bounded below by U and expected revenue is
bounded above by R .

• bound is valid for any allocation policy q(v)

Corollary (Random Reserve Price)

The random reserve price mechanism attains the revenue upper
bound.
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Posted Price
As Optimal Mechanism



Posted Prices

• consider mechanisms where object is always allocated
• pure common values – allocation is therefore socially efficient

Theorem (Revenue Optimality among Efficient Mechanisms)

Among all mechanisms that allocate the object with probability
one, revenue is maximized by setting a posted price of

p =

∫ s

v=s
vgN−1 (v) dv ,

i.e., expected value of object conditional on having lowest signal s.

• posted price is inclusive: all types purchase at p
• all bidders equally likely to receive object: qi (v) = 1/N, ∀i , v .
• optimal selling mechanism is attained with constant interim

transfer t = ti (si ) and probability q = qi (si ) 45



Optimality of Posted Price

• next, optimality of posted price among all
– possibly inefficient – mechanisms

Corollary (Revenue Optimality of Posted Prices)

A posted price mechanism is optimal if and only if

ψ(s) = s −
∫ s

s

1− F (x)

F (x)
dx ≥ 0.

If a posted price p is optimal, then it is fully inclusive.
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The Power of Optimal Auctions



Auctions vs Optimal Mechanism

• Bulow and Klemperer (1996) establish the limited power of
optimal mechanisms as opposed to standard auction formats

• revenue of optimal auction with N bidders is strictly
dominated by standard absolute auction with N + 1 bidders

• current common value environment is an instance of general
interdependent value setting – with one exception

• virtual utility function—or marginal revenue function—is not
monotone due to maximum operator in common value model
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A Closer Look at the Virtual Utility

• non-monotonicity leads to an optimal mechanism with features
distinct from standard first or second price auction.

• it elicits information from bidder with highest signal but
minimizes probability of assigning him the object subject to
incentive constraint

• virtual utility of each bidder, πi (si , s−i ):

πi (si , s−i ) =

 maxj{sj}, if si ≤ max{s−i};

max{sj} − 1−Fi (si )
fi (si )

, if si > max{s−i}.

• downward discontinuity in virtual utility indicates why seller
wishes to minimize the probability of assigning the object to
the bidder with the high signal
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Revenue Comparison

• virtual utility of bidder i fails monotonicity assumption even
when hazard rate of distribution function is increasing
everywhere

• BK (1996) require monotonicity of virtual utility when
establishing their main result that an absolute English auction
with N + 1 bidders is more profitable than any optimal
mechanism with N bidders

• revenue ranking does not extend to current auction
environment

• compare revenue from optimal auction with N bidders to
absolute, English or second-price, auction with N + K bidders

• absolute as there is no reserve price imposed
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Reversal in Revenue Comparison

Theorem (Revenue Comparison)

For every N ≥ 1 and every K ≥ 1, the revenue from an absolute
second-price auction with N + K bidders is strictly dominated by
the revenue of an optimal auction with N bidders.

• comparison of second order statistic of N +K i.i.d. signals and
first order statistic of N + K − 1 i.i.d. signals

• second order statistic of N + K signals is revenue of absolute
second-price auction with N + K bidders.

• by earlier Theorem, optimal mechanism (weakly) exceeds
revenue from a posted price set equal to the maximum of
N + K − 1 signals.
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Revenue Comparison: Continued

• but pure common value of the object is not affected by
number of bidders, it is as if the remaining K signals are
simply not disclosed, but the N participating bidders still form
the expectation over the N + K−1 signals.

• now, if instead of N + K bidders, the optimal auction only has
N bidders, then it is as if only N independent and identical
distributed signals are revealed to the N bidders

• thus an attainable revenue for the seller is to offer the object
at random to a bidder at a posted price set equal to the
maximum of N + K − 1 signals
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Conclusion

• characterized novel revenue maximizing auctions for a class of
common value models

• common value models with qualitative feature that values are
more sensitive to private information of bidders with more
optimistic beliefs

• second interpretation as auction with intermediary/resale
market

• countering the winner’s curse

• optimal auctions discriminate in favor of less optimistic bidders
since they obtain less information rents from being allocated
the object
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