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Revenue Guarantee Equivalence†

By Dirk Bergemann, Benjamin Brooks, and Stephen Morris*

We revisit the revenue comparison of standard auction formats, 
including first-price, second-price, and English auctions. We rank 
auctions according to their revenue guarantees, i.e., the great-
est lower bound of revenue across all informational environments, 
where we hold fixed the distribution of bidders’ values. We conclude 
that if we restrict attention to the symmetric affiliated models of 
Milgrom and Weber (1982) and monotonic pure-strategy equilibria, 
first-price, second-price, and English auctions are revenue guaran-
tee equivalent: they have the same revenue guarantee, which is equal 
to that of the first-price auction as characterized by Bergemann, 
Brooks, and Morris (2017). If we consider all equilibria or if we 
allow more general models of information, then first-price auctions 
have a greater revenue guarantee than all other auctions considered. 
(JEL D44, D83)

The revenue equivalence theorem is a central result in auction theory that helps us 
understand the relationship between the choice of auction format and the resulting 
revenue. In an environment with symmetric independent private values, it implies 
the surprising result that many standard auction formats, including first-price, 
second-price, and English auctions, all deliver the same expected revenue (Myerson 
1981). By contrast, in a symmetric environment with affiliated values, there is a 
revenue ranking theorem that establishes that the first-price auction achieves less 
revenue than the second-price auction which in turn generates less revenue than the 
English auction (Milgrom and Weber 1982—henceforth, MW). And yet, there are 
other cases where first-price auctions will generate more revenue than second-price 
and English auctions, such as the independent private-value model when value dis-
tributions are asymmetric (Vickrey 1961, Maskin and Riley 2000).

Against this background, we provide a new revenue ranking theorem for envi-
ronments with interdependent values. The equilibrium outcomes for a given auction 
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format are conventionally analyzed for a fixed distribution of the bidders’ values 
and for a fixed information structure that generates the signals that bidders observe 
before interacting with the auction. It is known that equilibrium welfare outcomes, 
such as revenue, are sensitive to the specific form of information, e.g., Fang and 
Morris (2006) and Bergemann, Brooks, and Morris (2017)—henceforth, BBM. 
This presents a challenge for comparative auction theory, since it may be difficult 
to pin down the correct model of information, either through introspection or mea-
surement. Given this state of affairs, we propose to rank auctions by a criterion that 
is less sensitive to misspecification of the informational environment. In particular, 
we evaluate an auction according to its revenue guarantee: the greatest lower bound 
on the auction’s revenue that holds across all information structures and equilibria. 
Importantly, this guarantee is computed while holding fixed the payoff environment, 
that is, the distribution of the bidders’ values.

We establish a revenue guarantee ranking for a collection of standard auctions, 
which are defined by (i) having a rule that the high-bidder wins the good and (ii) 
admitting an equilibrium in monotonic pure-strategies in the symmetric independent 
private value model. This class includes the first-price auction, the second-price auc-
tion, and the English auction. Our main result is that the first-price auction attains 
the highest revenue guarantee of any standard auction. In particular, the first-price 
auction has a greater revenue guarantee than both the second-price and English 
auctions.

A first step to obtain this ranking is to establish the revenue guarantee of the 
first-price auction. Here we appeal to an earlier result in BBM that establishes that 
the lowest revenue in the first-price auction arises in an information structure that 
we refer to as the maximum signal model. In this information structure, the bidders’ 
signals are identically and independently distributed (i.i.d.) random variables with 
the property that the highest value bidder receives the highest signal, and the highest 
signal is equal to the average of the losing bidders’ values.

We then ask what is the equilibrium revenue of standard auctions in the maxi-
mum signal model. Here, we obtain the first surprising result. In this specific infor-
mation structure, any standard auction has an equilibrium in which bidders behave 
as if each bidder’s expected value is equal to his individual signal rather than his 
true expected value, which is strictly higher. Thus, the bidders act as if they are in 
an independent private-value environment, even though their expected values are in 
fact greater than their signals. This generalizes the construction of the equilibrium 
of the first-price auction, given by BBM, to all standard auctions. Given this stra-
tegic equivalence with the independent private-value model, we can appeal to the 
standard revenue equivalence result to conclude that all standard auctions generate 
the same revenue in an equilibrium of the maximum signal model. As a result, the 
revenue guarantee of any standard auction can be at most equal to the revenue guar-
antee of the first-price auction.

A critical feature of our analysis is that the revenue guarantee is computed by 
minimizing across all information structures, including those in which bidders have 
only partial information about their own values. This is important to our conclusion 
that the first-price auction revenue-guarantee dominates the second-price auction. 
(A corresponding discussion applies to the English auction as well.) When bidders 
know their own values but may have partial information about others’ values, i.e., 
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when values are private, the second-price auction has a unique equilibrium in weakly 
undominated strategies in which bidders bid their values. Thus, with private values 
and the weak dominance refinement, revenue is completely insensitive to informa-
tion. Indeed, Chung and Ely (2007) have given conditions under which a private-value 
analogue of the revenue guarantee will be maximized by such a dominant-strategy 
mechanism (although not necessarily the second-price auction). At the same time, 
these auctions have other equilibria in which revenue is very low. As we discuss later, 
when values are not private, such low-revenue equilibria cannot be ruled out using 
the weak dominance refinement. Since the revenue guarantee of the first-price auc-
tion in BBM is valid across all equilibria, we conclude that the revenue guarantee of 
the first-price auction is strictly higher than that of the second-price auction.

At the same time, the second-price and English auctions are known to perform 
well in certain interdependent value environments, namely the symmetric affiliated 
values models studied by MW. In that setting, these auctions have unique equilibria 
in monotonic pure strategies that lead to a nontrivial amount of revenue. We may ask, 
what is the revenue guarantee ranking if we restrict attention to symmetric affiliated 
values and monotonic equilibria? By modifying our methodology in this manner, 
we are assured that the resulting affiliated revenue guarantees and corresponding 
rankings are based on standard and uncontroversial equilibrium constructions.

Theorem 2 shows when bidders all have a common value for the good, then 
according to affiliated revenue guarantees, the first-price, second-price, and English 
auctions are all revenue guarantee equivalent. This result is established by showing 
that when the bidders have a common value, the critical maximum signal model is 
itself affiliated, so that the weak ranking of Theorem 1 is preserved. At the same 
time, it is a result of MW that the first-price auction generates weakly lower revenue 
than the second-price and English auctions in the affiliated values model. We there-
fore conclude that all of these mechanisms must have exactly the same affiliated 
revenue guarantee.

Thus, Theorems 1 and 2 offer different perspectives of the revenue ranking result 
in the affiliated values model. If we are concerned with the robustness of the revenue 
comparison across all symmetric affiliated values information structures and mono-
tonic equilibria, we find that the second-price and English auctions lose their advan-
tage, as stated in the revenue guarantee equivalence theorem. Moreover, if we are at 
the same time concerned with the equilibrium selection, or seek to offer a revenue 
guarantee that is valid across all information structures and all equilibria, then we 
find that the first-price auction offers better guarantees than either the second-price 
or English auctions.

In light of our results, a natural question is: what is the mechanism with the 
greatest revenue guarantee? This question is answered by Bergemann, Brooks, and 
Morris (2016) when there are two bidders and binary common values and by Brooks 
and Du (2018) for general common value models. These papers construct a saddle 
point, consisting of an auction that maximizes the revenue guarantee (a maxmin 
auction) and a minmax information structure for which maximum revenue across 
all auctions and equilibria is equal to the optimal revenue guarantee. The maxmin 
auctions look quite different from the standard auctions considered here, and neces-
sarily involve randomized allocations to optimally hedge ambiguity about the infor-
mation structure. This paper constructs an analogous saddle point except that the 
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seller is restricted to using standard auctions. In this case, the first-price auction is a 
maxmin auction and the maximum signal model is a minmax information structure. 
We view these results as complements: revenue guarantees are one of many criteria 
that could be used in selecting an auction format, and while the standard auctions 
considered here do not achieve the unconstrained optimal revenue guarantee, they 
have other desirable attributes that may rationalize their use.

The rest of the paper proceeds as follows. Section I presents the model. Section II 
motivates our results via a simple example. The revenue guarantee ranking of stan-
dard auctions is the subject of Section III, and revenue guarantee equivalence under 
affiliation is the subject of Section IV. Section V concludes.

I.  Model

There are ​N​ bidders for a single unit of a good. The set of bidder indices is  
​  = ​ {1, …, N}​​. Bidders’ values ​​(​v​1​​, …, ​v​N​​)​​ are jointly distributed according to a 
probability measure ​π​(d​v​1​​, …, d​v​N​​)​​ on ​​ℝ​ +​ N ​​. We denote a profile, or vector of values 
by ​v  = ​ (​v​1​​, … , ​v​N​​)​​. We assume these values are non-negative and that the distribu-
tion ​π​ is exchangeable. In particular, for every bijection ​ξ :     →  ​ and for every 
measurable set ​X  ⊆ ​ ℝ​ +​ N ​​,

	​ π​(X)​  =  π​(​  f​ξ​​​(X)​)​,​

where ​​f​ξ​​ : ​ℝ​ +​ N ​  → ​ ℝ​ +​ N ​​ is defined by

	​ ​f​ξ​​​(v)​  = ​ (​v​ξ​(1)​​​, …, ​v​ξ​(N)​​​)​.​

An information structure consists of measurable sets of signals ​​S​i​​​ and a joint 
probability measure ​μ​(d​s​1​​, …, d​s​N​​, v)​​ on signal and value profiles in ​​S​1​​ × ⋯ × ​
S​N​​ × ​ℝ​ +​ N ​​. A representative information structure is denoted ​​. Any such distribution ​
μ​ induces an interim expected value function

(1)	​ ​w​​ ​ : S  → ​ ℝ​ +​ N ​,​

where ​​w​​ ​​(s)​​ is a version of the conditional expectation of the values conditional on 
the signal profile.

An information structure is symmetric if ​​S​1​​  =  ⋯  = ​ S​N​​​ and if for all bijections ​
ξ :   →  ​, we have

	​ μ​(X)​  =  μ​(​(​g​ξ​​, ​f​ξ​​)​​(X)​)​,​

where ​​g​ξ​​ : S  →  S​ is defined as

	​ ​g​ξ​​​(s)​  = ​ (​s​ξ​(1)​​​, …, ​s​ξ​(N)​​​)​,​

and ​​(​g​ξ​​, ​f​ξ​​)​​(s, v)​  = ​ (​g​ξ​​​(s)​, ​f​ξ​​​(v)​)​​.
An information structure is independent if the ​​s​i​​​ are independent random variables.
An information structure has common values if ​​v​1​​  =  ⋯  = ​ v​N​​​, ​μ​-almost surely.
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An information structure has private values if ​​w​​ ​​(s)​  = ​ v​i​​​, ​μ​-almost surely.
An information structure is consistent with ​π​ if for all measurable sets ​X  ⊆ ​ ℝ​ +​ N ​​, ​

μ​(S × X)​  =  π​(X)​​, i.e., ​π​ is the marginal of ​μ​ on values.
A mechanism consists of measurable sets of messages ​​M​i​​​ for each player, ​ 

M  = ​ ×​ i=1​ N  ​ ​M​i​​​, allocations ​q : M  → ​​ [0, 1]​​​ N​​ with ​​∑ i=1​ N  ​​ ​q​i​​​(m)​  ≤  1​ for all ​m​, and 
transfers to the seller ​t : m  → ​ ℝ​ +​ N ​​. A representative mechanism is denoted ​​.

A pair of an information structure  and mechanism  comprise a Bayesian 
game. A profile of strategies ​σ  = ​ (​σ​1​​, … , ​σ​N​​)​​, where ​​σ​i​​ : ​S​i​​  →  Δ​(​M​i​​)​​, induces 
ex ante expected surplus for bidder ​i​ equal to

	​ ​U​i​​​(σ; ,   )​  = ​ ∫ s∈S,v∈​핉​​ N​​ 
 
  ​​ ​∫ 

m∈M
​ 

 
  ​​ ​(​v​i​​ ​q​i​​​(m)​ − ​t​i​​​(m)​)​σ​(dm | s)​ μ ​(ds, dv)​,​

where we identify the profile ​σ​ with a mapping from signal profiles to condition-
ally independent distributions over message profiles. A Bayes Nash equilibrium is a 
strategy profile ​σ​ such that for all bidder ​i​ strategies ​​σ​ i​ ′ ​​,

	​ ​U​i​​​(σ; ,   )​  ≥ ​ U​i​​​(​σ​ i​ ′ ​, ​σ​−i​​; ,   )​.​

A strategy profile induces revenue

	​ R​(σ; ,   )​  = ​ ∫ s∈S,v∈​핉​ +​ N ​​ 
 
 ​​ ​ ∫ 

m∈M
​ 

 
 ​​ ​  ∑ 

i=1
​ 

N

 ​​ ​t​i​​​(m)​ σ ​(dm | s)​ μ ​(ds, dv)​.​

We say that ​R​ is a revenue guarantee of the mechanism ​​ with respect to ​π​ if  
​R​(σ; ,   )​  ≥  R​ for all ​​ that are consistent with ​π​ and for all Bayes Nash equi-
libria ​σ​ of ​​(,  )​​. Further, ​R​ is the revenue guarantee of ​​, relative to ​π​, if it is a 
revenue guarantee, and if there is no higher guarantee.

II.  A Revealing Example

To illustrate our findings, let us consider an example where there are two bidders 
who have a pure common value ​v​ which is uniformly distributed between 0 and 1. 
We will compute and compare the revenue guarantees of the first- and second-price 
auctions. In a sense, we already know the result: the first-price auction has a nontriv-
ial revenue guarantee, as computed by BBM. The second-price auction, on the other 
hand, always has equilibria in dominated strategies in which revenue is zero. Any 
conclusion based on these dominated equilibria would seem quite fragile. We shall 
see, however, that the first- and second-price auction guarantees can be ranked using 
equilibria that are quite natural and use undominated strategies.

To develop this result, we will compare revenue in the first- and second-price 
auctions on three information structures. Welfare outcomes for these examples are 
depicted in Figure 1, with revenue on the y-axis and total bidder surplus on the 
x-axis. Note that both auctions always allocate the good, so total surplus is ​1/2​. 
Moreover, both revenue and bidder surplus must be non-negative. Thus, any welfare 
outcome for these mechanisms that can arise in some information structure and 
some equilibrium must lie on the line segment between ​​(1/2, 0)​​ and ​​(0, 1/2)​​.
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Consider first the case of complete information, wherein both bidders see the value ​
v​ exactly. The first-price auction has a unique equilibrium in which both bidders tie 
at a bid ​v​. For the second-price auction, any bid profile would be an equilibrium as 
long as the high bid is at least ​v​ and the low bid is at most ​v​. However, bidding ​v​ is 
a weakly dominant strategy. The ranking of first- and second-price auctions under 
public information therefore depends on our willingness to restrict attention to strat-
egies that are weakly undominated. One can make arguments either way: dominated 
strategies are unsafe, but they could be used to facilitate collusion, as members of a 
bidding ring take turns as the high bidder (Rothkopf, Teisberg, and Kahn 1990). But 
with the weak dominance refinement, both auctions and equilibria result in expected 
revenue of ​1/2​, i.e., full surplus extraction. This is point A in Figure 1.

Next, consider an information structure in which bidder 1 observes the value 
and bidder 2 receives no information, meaning that she always sees the same sig-
nal regardless of the true value. This is the “proprietary information” model of 
Engelbrecht-Wiggans, Milgrom, and Weber (1983). They show the first-price auc-
tion has an equilibrium in which bidder 1 bids ​v / 2​ and bidder 2 randomizes uni-
formly between 0 and ​1 / 2​. To see that this is an equilibrium, observe if bidder 2 bids ​​
m​2​​  ∈ ​ [0, 1 / 2]​​, she wins on the event that ​v  ∈ ​ [0, 2 ​m​2​​]​​, in which case the expected 
value conditional on winning is exactly her bid. Thus, all bids between 0 and ​1 / 2​ 
result in zero surplus. For bidder 1, a bid of ​​m​1​​  ∈ ​ [0, 1 / 2]​​ results in a probability  
​2 ​m​1​​​ of winning, independent of the value, so that expected surplus is ​​(v − ​m​1​​)​2 ​m​1​​​.  
This expression is clearly maximized at ​​m​1​​  =  v/2​. Expected revenue is the 
expected highest of two uniform draws from ​​[0, 1/2]​​, which is ​1/3​. This is point B 
in Figure 1.

Figure 1. Welfare Outcomes for the Two-Bidder Uniform Example

Notes: Revenue is on the y-axis and bidder surplus is on the x-axis. The set of welfare outcomes which can arise in 
a first-price auction for some information structure and equilibrium is the line segment between A and C. The cor-
responding set for the second-price auction is the line segment between A and D.
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In the second-price auction, bidder 1 has a weakly dominant strategy to bid ​v​, as 
with complete information. But if bidder 1 follows this strategy, all bids in ​​[0, 1]​​ are 
best responses for bidder 2. Moreover, none of these bids is weakly dominated.1 
Thus, there are undominated equilibria of the second-price auction that generate 
all expected revenues in ​​[0, 1/2]​​. This is the entire line segment between A and D 
in Figure 1. This shows that even with the weak dominance refinement, we cannot 
escape the conclusion that there are equilibria of the second-price auction with very 
low revenue.2

The last information structure we consider is the one that minimizes revenue for 
the first-price auction, as computed in BBM. One bidder, chosen at random, sees 
the true value, and the other bidder sees a random draw from ​​[0, v]​​ according to 
the cumulative distribution function ​F​(x | v)​  = ​ √ 

_
 x / v ​​. Thus, the highest signal is 

always equal to the true value. The distribution of the low signal is chosen just so 
that if we integrate across values, the signals are i.i.d. draws from the distribution  
​F​(x)​  = ​ √ _ x ​​ on ​​[0, 1]​​. The resulting distribution of the highest signal is standard 
uniform, the same as the value. We refer to this as the maximum signal model, and 
we denote it by ​​​​ ∗​​.3 In the maximum signal model, the pure common value function 
can be written as 

	 v  =  ​​w​​ ​​​ ∗​​​(​s​1​​, ​s​2​​)​  =  max​{​s​1​​, ​s​2​​}​​.

In analyzing equilibria on ​​​​ ∗​​, we shall reverse the order of exposition and first 
describe an equilibrium of the second-price auction. As shown by Bulow and 
Klemperer (2002), there is a “truthful” equilibrium in which bidders bid their sig-
nals, i.e., ​​m​i​​  = ​ s​i​​​. In fact, it is an ex post equilibrium. To see that this is the case, 
fix a signal profile ​s  = ​ (​s​i​​, ​s​j​​)​​. Any bid ​​m​i​​  < ​ s​i​​​ is weakly dominated by bidding  
​​s​i​​​, since the true value is at least ​​s​i​​​ with probability 1. On the other hand, a devia-
tion to a bid ​​m​i​​  > ​ s​i​​​ would result in bidder ​i​ additionally winning when ​​s​i​​  < ​ m​j​​  
= ​ s​j​​  ≤ ​ m​i​​​. On this event, ​​s​j​​​ is the high signal and is therefore the value. But it is 
also equal to the second-highest bid, so that ex post surplus is zero. Thus, there is no 
change in surplus from deviating to a higher bid. Expected revenue in this equilib-
rium is ​1/6​, i.e., the expected second-highest signal.

Note that in this equilibrium, each bidder behaves as if their signal were the true 
value, even though the signal is only a lower bound. More precisely, the bidders 

1 For example, the bid ​​m​2​​  ∈  ​[0, 1]​​ is the unique best response when bidder 1 bids ​​m​1​​  =  ​v​​ 2​ / ​m​2​​​.
2 Abraham et al. (2014) argue that all of these equilibria will survive trembling hand perfection. They propose 

a stronger refinement that they term “tremble robust equilibrium” which selects ​​m​2​​  =  0​ as the unique equilibrium 
strategy for bidder 2. See also Milgrom and Mollner (2018) for a discussion of refinements in this game. The mul-
tiplicity of undominated equilibria and the existence of equilibria with extremely low revenue is hardly limited to 
this information structure. Milgrom (1981) gives other examples of interdependent values information structures 
in which the second-price auction has a continuum of undominated equilibria, some of which generate extremely 
low revenue. Milgrom (1981, p. 939), writes, “Vickrey auctions generally have a plethora of equilibria, many of 
which are quite pathological… I can find no completely convincing way to rule out these strange equilibria.” This 
is in stark contrast to the private value case, where weak dominance selects a unique equilibrium, regardless of the 
information structure. 

3 Bulow and Klemperer (2002) were the first to study the common-value maximum signal model in the context 
of the English auction. They showed that bidding one’s signal is an equilibrium and that the resulting revenue is 
less than what the seller would obtain with a posted price. Bergemann, Brooks, and Morris (2018) characterize the 
optimal auction in the maximum signal model. They show that the posted price is optimal when the good must be 
sold, but otherwise the optimal mechanism has a different form.
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play the standard equilibrium of the second-price auction for the information struc-
ture in which values are independent, private, and symmetric draws from ​F​, which 
is denoted ​​​​ IPV​​. Note also that this information structure is not consistent with the 
original uniform common value distribution. Now, it is well known that in the sym-
metric IPV model, the first-price auction has an equilibrium in which the ex post 
allocation and each type’s expected payment are the same as in the truthful equilib-
rium of the second-price auction. Indeed, these properties pin down the equilibrium 
bid in the first-price auction as ​​b​i​​  = ​ s​i​​ / 3​. Returning to the first-price auction in the 
common value environment ​​​​ ∗​​, if both bidders follow the strategies of bidding ​​s​i​​ / 3​,  
then the interim payment and ex post allocation from bidding as the type ​​s​ i​ ′​​ are the 
same as they were in the second-price auction equilibrium on ​​​​ ∗​​. Since bidders did 
not want to mimic other types in the second-price auction, we conclude that the 
same holds in this equilibrium of the first-price auction. Moreover, any non-equi-
librium bid is dominated by a lower equilibrium bid with the same winning prob-
ability. We conclude that these strategies are an equilibrium of the first-price 
auction on ​​​​ ∗​​, with the same revenue of ​1 / 6​. This welfare outcome corresponds 
to point C in Figure 1.

As we comment on further below, this is in fact the revenue guarantee of the 
first-price auction, meaning that there is no information structure and equilibrium 
with lower expected revenue. Some intuition for this can be gleaned from the fact 
that in this equilibrium, bidders are indifferent between their equilibrium bids and 
all higher bids. This is suggestive of the difficulty of achieving a lower bid distribu-
tion, without some bidder being tempted to deviate up. This intuition is incomplete, 
however, since the same indifference also obtains in the truthful equilibrium of the 
second-price auction on ​​​​ ∗​​.

The equilibrium analysis on ​​​​ ∗​​ reaffirms what we already knew: first-price auc-
tion has a nontrivial revenue guarantee, attained at ​​​​ ∗​​. Moreover, the second-price 
auction has an equilibrium on ​​​​ ∗​​ with the same revenue, so that the second-price 
auction’s revenue guarantee is weakly lower. But it is conceptually important that 
we can rank the mechanisms using this environment and these equilibria. Notice that ​​
​​ ∗​​ is symmetric, has independent signals, and the value function

	​ ​w​​ ​​​ ∗​​​(​s​1​​, ​s​2​​)​  =  max​{​s​1​​, ​s​2​​}​​ 

is increasing in the signals. It is therefore an affiliated values model in the sense of 
MW. In such environments, both first-price auction and second-price auction will 
always have nontrivial symmetric and monotonic pure-strategy equilibria, which 
reduce to the equilibria described above.

Affiliated information structures represent a class of environments in which 
there is a principled way to select a nontrivial and appealing equilibrium of the sec-
ond-price auction. Thus, the revenue guarantees of first- and second-price auctions 
are ranked without resorting to exotic or dominated equilibria. Theorem 2 pursues 
this idea to its logical conclusion, and argues that if we restrict attention to affiliated 
values models in computing the revenue guarantee, the two mechanisms are revenue 
guarantee equivalent. For the equilibrium comparison in ​​​​ ∗​​ shows that the affiliated 
guarantee of the first-price auction must still exceed that of the second-price auction, 
and MW show that the second-price auction generate weakly more revenue than the 
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first-price auction in any affiliated values model, so that ​​​​ ∗​​ is the worst-case for the 
second-price auction as well.

III.  Revenue Guarantee Ranking

We now establish a revenue guarantee ranking across a number of classic auction 
formats, including the first-price, second-price, and English auctions. We begin the 
analysis by reviewing the revenue guarantee of the first-price auction.

A. Revenue Guarantee of the First-Price Auction

For a real-vector ​x  ∈ ​ ℝ​​ N​​, we let ​​x​​ ​(k)​​​ denote the ​k​th highest element of the vector. 
Thus, ​​x​​ ​(1)​​​ is the first-order statistic, ​​x​​ ​(2)​​​ is the second-order statistic, etc.

The first-price auction, denoted ​​​​ FPA​​, is formally defined as follows: ​​M​i​​  = ​ ℝ​+​​​,

	​ ​q​ i​ FPA​​(m)​  = ​
{

​
​  1 _______ |arg ​max​j​​ ​m​j​​|

 ​,
​ 

if i  ∈  arg ​max​j​​ ​m​j​​,​   
0,

​ 
otherwise;

 ​​​

and

	​ ​t​ i​ FPA​​(m)​  = ​ q​ i​ FPA​​(m)​ ​m​​ ​(1)​​.​

For any vector of values ​v​, we define the average among the ​N − 1​ lowest values 
by ​α : ​ℝ​​ N​  →  ℝ:​

(2)	​ α​(v)​  = ​   1 _ 
N − 1 ​​(​ ∑ 

i=1
​ 

N

 ​​ ​v​i​​ − ​max​ 
i
​ ​ ​ v​i​​)​​.

This statistic has a cumulative distribution function

(3)	​ H​(x)​  = ​ ∫ ​{v∈​ℝ​​ N​|α​(v)​≤x}​​ 
 
  ​​ π​(dv)​.​

Thus, ​H​ is the distribution of the average of the ​N − 1​ lowest values, ​α​(v)​,​ when the 
value profile ​v​ is distributed according to ​π​. For technical convenience, we assume 
throughout the rest of our analysis that ​π​ is such that the induced ​H​ is non-atomic.4

The critical information structure, which we denote by ​​​​ ∗​​, is as follows. The sets 
of signals are ​​S​i​​  = ​ ℝ​+​​​ and are independent draws from the distribution

	​ G​(x)​  = ​​ (H​(x)​)​​​ 1/N
​.​

This distribution is chosen such that the first-order statistic of these ​N​ signals coin-
cides with the distribution of ​α​(v)​​. The signals are correlated with the value so that 
the bidder with the highest ex post value ​​v​i​​​ observes the highest signal, breaking ties 
uniformly, and the remaining signals are randomly assigned to lower value bidders.

4 See BBM for a discussion of relaxing this assumption.
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An equivalent description of this information structure can be given in terms of 
the conditional distribution of signals given the values, ​μ​(ds | v)​​. Conditional on the 
value profile ​v​, we pick one of the high-value bidders at random and give that bidder 
a signal ​​s​i​​  =  α​(v)​​. The remaining bidders are shown signals that are independent 
draws from the distribution

	​ ​ 
G​(​s​j​​)​ _ 

G​(α​(v)​)​ ​​

over the range ​​[0, α​(v)​]​​.
Theorem 1 in BBM establishes that the revenue guarantee in the first-price auc-

tion, ​​R​​ FPA​​ is the expected second-highest of ​N​ draws from the cumulative distribu-
tion ​G​:

(4)	​ ​R​​ FPA​  = ​ E​​(​s​1​​,…,​s​N​​)​​∼​​ iid ​G​​​[​s​​ ​(2)​​]​.​

This level of revenue is attained in a Bayes Nash equilibrium of information struc-
ture ​​​​ ∗​​, as we now explain. By construction, the high-value bidder always receives 
a signal which is equal to ​α​(v)​​, the average of the ​N − 1​ lowest value bidders. Thus, 
conditional on the signal profile ​s​, the average of the ​N − 1​ lowest values is known 
to be ​​max​i​​ ​s​i​​​. Moreover, due to exchangeability of ​π​, low-value bidders believe 
they are equally likely to be anywhere in the distribution, so their expected value is 
exactly equal to the highest signal. On the other hand, the high bidder knows ​α​(v)​​ 
and knows that she has the high value, but does not know what it is, so the expected 
value of the high signal bidder is

	​ η​(​s​i​​)​  = ​ E​π​​​[​max​ 
j
​ ​ ​ v​j​​ ​|​​ α​(v)​  = ​ s​i​​]​,​

which is necessarily greater than ​​s​i​​​. Again, this expression is independent of ​i​, due 
to the symmetry of ​π​. To summarize, the induced interim expected value function is

	​ ​w​ i​ ​​​ ∗​​​(s)​  = ​ {​
​max​j​​ ​s​j​​,

​ 
if  ​s​i​​  < ​ max​j​​ ​s​j​​;

​   
η​(​s​i​​)​,

​ 
if  ​s​i​​  = ​ max​j​​ ​s​j​​.

​​​

This is the generalization of the maximum signal model described in the previous 
section.

There is a monotonic pure-strategy equilibrium of the first-price auction on the 
maximum signal model in which a type ​​s​i​​​ bids

(5)	​ ​β​​ FPA​​(​s​i​​)​  = ​ E​​s​−i​​​∼​​ iid ​G​​​[​s​ −i​ 
(1)​ | ​s​ −i​ 

(1)​  ≤ ​ s​i​​]​.​

By this, we mean that the strategy ​σ​( · |​s​i​​)​​ puts probability 1 on ​​β​​ FPA​​(​s​i​​)​​. We hereaf-
ter adopt this notation for pure strategies. Proposition 1 below restates Theorem 1 of 
BBM in the current language and notation.
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PROPOSITION 1 (BBM): The revenue guarantee of the first-price auction is ​​
R​​ FPA​​. Moreover, the strategies ​​β​​ FPA​​ are an equilibrium of ​​(​​​ FPA​, ​​​ ∗​)​​ and ​​R​​ FPA​  
=  R​(​β​​ FPA​; ​​​ FPA​, ​​​ ∗​)​​.

The first step in the proof of this result establishes that ​​R​​ FPA​​ is a lower bound on 
revenue of ​​​​ FPA​​ in any equilibrium in any information structure. The lower bound 
is attained by solving a relaxed program in which revenue is minimized over win-
ning bid distributions that satisfy a one-dimensional class of incentive constraints, 
which correspond to bidders deviating by bidding the maximum of their equilibrium 
bid and some fixed cutoff ​b​. At the minimum, all of these incentive constraints bind.

The second step shows that ​​β​​ FPA​​ is an equilibrium under ​​​​ ∗​​ in which revenue is ​​
R​​ FPA​​, so that the lower bound is attained. It is this second step that is the most rel-
evant for the new results in our paper. The information structure ​​​​ ∗​​ is strategically 
very similar to another information structure, which we denote by ​​​​ IPV​​: as before, 
signals are independent draws from ​G​, but now the joint distribution of values is 
such that ​​s​i​​  = ​ v​i​​​ with probability one for all ​i​. In other words, ​​​​ IPV​​ is the indepen-
dent private values information structure in which the individual values are distrib-
uted according to ​G​. Importantly, the highest value among the ​N​ values has the same 
distribution ​H​ as the value in maximum signal model. We note that all of the bidders, 
except possibly the bidder with the highest signal, have a strictly lower expected 
value for the object in ​​​​ IPV​​ than they do in ​​​​ ∗​​.

It is a standard result that there is a monotonic pure-strategy equilibrium of  
​​(​​​ FPA​, ​​​ IPV​)​​ in which a bidder with value ​​s​i​​​ bids the expected highest of the oth-
ers’ signals, conditional on others’ signals being less than ​​s​i​​​, i.e., ​​β​​ FPA​​(​s​i​​)​​. We can 
use this to show that ​​β​​ FPA​​ is also an equilibrium of ​​(​​​ FPA​, ​​​ ∗​)​​. First, consider a 
deviation in which a type ​​s​i​​​ bids ​​β​​ FPA​​(​s​ i​ ′​)​​ for some ​​s​ i​ ′​  ≤ ​ s​i​​​. Then the bidder only 
wins when the highest of the others’ signals is less than ​​s​i​​​. The deviator’s surplus is 
therefore the same as what it would be in ​​​​ IPV​​ but with a value ​η​(​s​i​​)​​ instead of ​​s​i​​​. It 
is well known that a player’s surplus is single-peaked in their bid (Matthews 1995). 
It follows that a bidder’s surplus is increasing in his bid as long as he is bidding as 
a type ​​s​ i​ ′​  <  η​(​s​i​​)​​. Thus, we conclude that downward deviations are not attractive.

On the other hand, by deviating to a higher bid, the deviator’s surplus would be

   ​   η​(​s​i​​)​ ​G​​ N−1​​(​s​i​​)​ + ​∫ x=​s​i​​
​ ​s​ i​ ′​ ​​ x d​(​G​​ N−1​​(x)​)​ − ​β​​ FPA​​(​s​ i​ ′​)​​(​G​​ N−1​​(​s​ i​ ′​)​)​​

	​ = ​ ∫ 
x=0

​ 
​s​i​​
 ​​ η​(​s​i​​)​ d​(​G​​ N−1​​(x)​)​ + ​∫ x=​s​i​​

​ ​s​ i​ ′​ ​​ x d​(​G​​ N−1​​(x)​)​ − ​∫ 
x=0

​ ​s​ i​ ′​ ​​ x d​(​G​​ N−1​​(x)​)​​

	​ = ​ ∫ 
x=0

​ 
​s​i​​
 ​​​ (η​(​s​i​​)​ − x)​ d​(​G​​ N−1​​(x)​)​,​

which is independent of ​​s​ i​ ′​​. Finally, it is clear that bidding above the highest or below 
the lowest equilibrium bid is dominated.

From the revenue equivalence theorem (Myerson 1981), we know that revenue 
in this equilibrium must be equal to that of the second-price auction, which is the 
expected second-highest signal, thus giving us the formula (4).

While a complete proof that ​​​​ ∗​​ minimizes revenue for the first-price auction 
is beyond the scope of this paper, we observe that ​​​​ ∗​​ has two critical properties 
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that make revenue especially low. First, we note it is informative enough so that 
the resulting equilibrium allocation is efficient. This is important, because bidders 
incentive to deviate up depends on their values when they lose the auction. When 
the allocation is efficient, losing bidders’ values are lowest, so that the incentive to 
deviate up is weakest. Second, it is well known that equilibrium bid shading in com-
mon value environments depends on how bidders update their expected values when 
they condition on winning the auction. Roughly speaking, the more that bidders 
revise their expectations down, the less they bid in equilibrium. In the maximum 
signal model, this updating is extreme. When a bidder just conditions on their signal ​​
s​i​​​, the signal is a lower bound on the ex post value. But on the marginal event where 
a bidder wins by slightly increasing their bid, ​​s​i​​​ is equal to the expected value. In 
equilibrium, bid shading is so large that bidders behave as if their true value were 
the lowest possible value.

B. Revenue Ranking

With the revenue guarantee of the first-price auction in hand, we now turn to rank-
ing the revenue guarantees of standard mechanisms. A mechanism is standard if (i) 
messages are one-dimensional bids and the high bidder is allocated the good and (ii) 
there is a symmetric and strictly monotonic pure-strategy equilibrium when values 
are symmetric, independent, and private. The first-price auction, second-price auc-
tion, all-pay auction, and the war-of-attrition5 are all examples of standard auctions.

Our first main result is a ranking of revenue guarantees of standard auctions.

THEOREM 1 (Revenue Guarantee Ranking): If  is standard, then ​​R​​ FPA​​ is greater 
than any revenue guarantee of ​​. Thus, the first-price auction maximizes the reve-
nue guarantee among standard auctions.

To prove the theorem, we first establish the following result.

PROPOSITION 2 (Strategic Equivalence): Suppose that  is a standard mech-
anism and ​β​ is a symmetric and strictly monotonic pure-strategy equilibrium of  
​​(, ​​​ IPV​)​​. Then ​β​ is also an equilibrium of ​​(, ​​​ ∗​)​​.

PROOF OF PROPOSITION 2:
When others use the strategy ​β​, bidding ​β​(​s​i​​)​​ must result in the bidder winning 

when ​​s​i​​  ≥ ​ max​j≠i​​ ​s​j​​​ and making an interim payment ​T​(​s​i​​)​​. This “direct” allocation 
is precisely the one that is induced by the first-price auction. Moreover, from the 
revenue equivalence theorem, we know that the interim expected payment must be 
the same as that induced by the first-price auction, denoted ​​T​​ FPA​​(​s​i​​)​​, up to a constant 
that depends on ​i​ but not on ​​s​i​​​:

	​ T​(​s​i​​)​  = ​ T​​ FPA​​(​s​i​​)​ + ​c​i​​.​

5 By war of attrition, we mean the sealed-bid mechanism defined by Krishna and Morgan (1997): each bidder 
submits a real number, the high bidder wins, and all bidders pay the minimum of their bid and the second-highest bid. 



1923BERGEMANN ET AL.: REVENUE GUARANTEE EQUIVALENCEVOL. 109 NO. 5

Thus, a bidder with signal ​​s​i​​​ profits from a deviation from ​β(​s​i​​)​ to ​β(​s​ i​ ′​ )​ in the game ​​
(, ​​​ ∗​)​​ if and only if ​​s​i​​​ profits from a deviation from ​​β​​ FPA​​(​s​i​​)​​ to ​​β​​ FPA​​(​s​ i​ ′​)​​ in the 
game ​​(​​​ FPA​, ​​​ ∗​)​​. Since the latter deviation is unprofitable, the former must be as 
well. Finally, it cannot be that there is any type that wants to deviate to a message 
that is not sent in equilibrium. The fact that there are no atoms in the bid distribu-
tion induced by ​β​ implies that for any message, there is an equilibrium message 
which induces the same allocation. If an out-of-equilibrium message were a profit-
able deviation, it would have to entail a lower expected transfer than the equilibrium 
message with the same winning probability, which contradicts the hypothesis that ​β​ 
is an equilibrium of ​​(, ​​​ IPV​)​​. ∎

We now complete the proof of Theorem 1.

PROOF OF THEOREM 1:
We will simply exhibit an information structure and equilibrium in which revenue 

is less than or equal to ​​R​​ FPA​​. The information structure is ​​​​ ∗​​. From the hypothesis 
that ​​ is standard, we know that ​​(, ​​​ IPV​)​​ must have a symmetric equilibrium 
in strictly monotonic pure-strategies, which we denote by ​β​. From Proposition 2,  
​β​ is also an equilibrium of the game ​​(, ​​​ ∗​)​​. This implies the result, since the  
revenue-equivalence theorem implies that

(6)	​ R​(β; , ​​​ ∗​)​  =  R​(β; , ​​​ IPV​)​  ≤  R​(​β​​ FPA​; ​​​ FPA​, ​​​ IPV​)​  = ​ R​​ FPA​,​

where the inequality follows from the fact that the first-price auction maximizes 
revenue among all efficient auctions when values are symmetric, private, and 
independent. In particular, the monotonic equilibrium of the first-price auction 
induces an efficient allocation and makes the participation constraint of the lowest  
type bind. ∎

Thus, the first-price auction has a greater revenue guarantee than second-price 
auction, all-pay auction, war of attrition, and all combinations of these mecha-
nisms. Note that the English auction is not a standard mechanism in the sense 
described above, since in its normal form, messages are functions that indicate 
when a bidder would drop out of the auction, depending on the prices at which 
other bidders drop out. However, the revenue guarantee ranking can be easily 
extended to the English auction, since that auction is strategically identical to the 
second-price auction on ​​​​ ∗​​, and there is an equilibrium in which bidders drop 
out when the price reaches their signal. We comment on this further in the next 
section.

While Theorem 1 only shows a weak ranking, in the case of the second-price and 
English auctions, the ranking is clearly strict, since these mechanisms have “bid-
ding ring” equilibria with strategies different from ​β​ in which one bidder makes a 
high bid and the others effectively do not participate in the auction. Such equilib-
ria would be undominated if we use a generalization of the Engelbrecht-Wiggans, 
Milgrom, and Weber (1983) construction: if bidder 1 sees the average value and 
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the other bidders see nothing, then every bid in the support of the average is  
undominated.6

C. Reserve Prices

Theorem 1 pertains to revenue in standard mechanisms, which by definition must 
always allocate the good. It is well known that a seller may be able to increase 
revenue by rationing the good, e.g., by imposing a minimum bid ​r​ in the first-price 
auction. Under the additional hypothesis that values are common, we can extend 
Theorem 1 to standard mechanisms with rationing in the following manner. BBM 
derive the worst-case information structure ​​​​ ∗​​(r)​​ for the first-price auction with a 
reserve price ​r  ∈ ​ ℝ​+​​​. This information structure can be constructed from ​​​​ ∗​​ by 
identifying a cutoff ​​s ˆ ​​(r)​​ , and letting bidders observe

	​ ​s​ i​ ′​  = ​ {​​s​i​​,​  if  ​s​i​​  ≥ ​ s ˆ ​​(r)​;​  
r,
​ 

otherwise.
 ​​​

Thus, signals below the cutoff are pooled into a signal of ​r​. The cutoff is chosen 
so that the expected value is ​r​ conditional on ​r​ being the highest signal. There is a 
monotonic pure-strategy equilibrium of the first-price auction under ​​​​ ∗​​(r)​​ which 
attains the revenue guarantee, which is once again the monotonic equilibrium that 
would obtain if the bidders interpreted their signals as private values. We denote 
this information structure by ​​​​ IPV​​(r)​​. The induced revenue guarantee ​​R​​ FPA​​(r)​​ is the 
expected second highest signal from ​​​​ IPV​​(r)​​.

Let us extend the notion of a standard mechanisms to those with one-dimensional 
bids, and such that conditional on the good being allocated, it is the high bidder who 
receives the good. We also assume that if the good is allocated at some bid profile, 
then it is also allocated at all weakly higher bid profiles. Importantly, however, the 
auction need not always allocate the good. Now, consider a standard mechanism 
 which induces the same allocation in ​​​​ IPV​​(r)​​ as does the first-price auction with 
reserve price ​r​. Examples of such mechanisms are the second-price or English auc-
tions with the same reserve price. Then  has a revenue guarantee which is weakly 
less than ​​R​​ FPA​​(r)​​.

The proof is nearly the same as before. Such a mechanism must be revenue 
equivalent to the first-price auction on ​​​​ IPV​​(r)​​. The same logic as in Proposition 
2 regarding the strategic equivalence implies that the equilibrium of  on ​​​​ IPV​​(r)​​  
would continue to be an equilibrium on ​​​​ ∗​​(r)​​. Moreover, this equilibrium has 
revenue less than or equal to ​​R​​ FPA​​(r)​​, so the revenue guarantee for  is weakly 
below that of the first-price auction. Thus, the first-price auction with a reserve price 
revenue-guarantee dominates a broad class of standard mechanisms that induce sim-
ilar rationing.

6 In personal communication, Ziwei Wang has given an example of an information structure and equilibrium 
in which revenue from the all-pay auction is strictly lower than ​​R​​ FPA​​. Thus, the ranking with the all-pay auction is 
also strict.
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IV.  Revenue Guarantee Equivalence

A. Equivalence with Common Values

The revenue guarantee as defined in Section I is a tight lower bound on revenue 
in the first-price auction that holds across all information structures and all equilib-
ria. As we mentioned previously, we could therefore have quite easily concluded 
that the second-price and English auctions have lower revenue guarantees than the 
first-price auction, since the former have “bidding ring” equilibria in which one 
bidder bids a large amount and the others bid zero. It is insightful to consider an 
alternative definition of the revenue guarantee, that restricts attention to information 
structures in which the second-price and English auctions have compelling and non-
trivial equilibria. A natural class of information structures are those with affiliated 
values, as defined by MW. Our next result shows that even if we restrict attention to 
affiliated and common value information structures and if we select the monotonic 
pure-strategy equilibrium, the first-price auction still outperforms the second-price 
and English auctions. In fact, they all perform equally well.

Proceeding more formally, we say that a common value information structure ​​ is 
affiliated if (i) ​​S​i​​  =  ℝ​ for all ​i​, (ii) the marginal of ​μ​ on ​S​ is absolutely continuous 
with respect to Lebesgue measure and has a density ​f   ​(s)​​, (iii) ​f​ is log supermodular 
(i.e., affiliated), and (iv) the induced interim expected value function ​​w​​ ​​(s)​​ is con-
tinuous and weakly increasing in all coordinates.

MW show that when the information structure is symmetric and affiliated, the 
first-price, second-price, and English auctions all have unique symmetric equilibria 
in strictly monotonic pure strategies. For the first-price auction, the equilibrium bid-
ding function is

	​ ​β​​ FPA​​(​s​i​​)​  = ​ E​μ​​​[​w​​ ​​(​s​i​​, ​s​−i​​)​​|​​ ​s​ −i​ 
​(1)​​  ≤ ​ s​i​​]​.​

We now formally define the second-price and English auctions. The second-price 
auction, denoted ​​​​ SPA​​, has an allocation rule ​​q​​ SPA​  = ​ q​​ FPA​​ that is the same as that 
of the first-price auction, but the payment is the second-highest bid, i.e.,

	​ ​t​ i​ SPA​​(m)​  = ​ q​ i​ SPA​​(m)​ ​m​​ ​(2)​​.​

MW show that the symmetric monotonic equilibrium of the second-price auction is

	​ ​β​​ SPA​​(​s​i​​)​  = ​ E​μ​​​[​w​​ ​​(​s​i​​, ​s​−i​​)​​|​​ ​s​ −i​ 
​(1)​​  = ​ s​i​​]​.​

The English auction, denoted ​​​​ EA​​, is more complicated to define. It has mes-
sages that are collections of mappings ​​m​ i​ I​ : ​ℝ​+​​ × ​ℝ​ +​ I ​  → ​ ℝ​+​​​ for all ​I  ⊆     \​{i}​​ 
that indicate, as a function of the prices at which bidders in ​I​ dropped out of the 
auction, at which price bidder ​i​ should drop out. A profile of messages induces an 
outcome wherein the first bidder ​i​ to drop is the one with the smallest ​​m​ i​ ∅​​(​s​i​​)​​, the 
second bidder ​j​ drops out at price ​​m​ j​ i​​(​s​j​​, ​m​ i​ ∅​​(​s​i​​)​)​​, etc. The auction ends when only 
one bidder remains, and the remaining bidder gets the good and pays the price at 
which the penultimate bidder dropped out. We break ties uniformly if more than one 
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bidder drops out simultaneously to end the auction. For a more formal description 
of the English auction, see MW. They show that there is an equilibrium of this game 
in which, conditional on the first ​K​ bidders dropping out at prices ​​y​​ N−1​  ≤  ⋯  ≤ ​
y​​ N−1−K​​, a bidder with signal ​​s​i​​  ≥ ​ y​​ N−1−K​​ drops out at price

 ​ ​β​​ EA​​(​s​i​​, ​y​​ N−1​, …, ​y​​ N−1+K​)​ 

	   = ​ E​μ​​​[​w​​ ​​(s, ​s​−i​​)​​|​​ ​s​ −i​ 
​(k)​​  = ​ y​​ k​  ∀ k  ≥  N − 1 + K,  ​s​ −i​ 

​(k)​​  = ​ s​i​​  ∀ k  ≤  N − K]​.​

For each ​  ∈ ​ {​​​ FPA​, ​​​ SPA​, ​​​ EA​}​​, we say that ​R​ is an affiliated revenue guar-
antee for  if for any symmetric affiliated values information structure  and sym-
metric strictly monotonic pure-strategy equilibrium ​β​ of ​​(,   )​​, ​R​(β; ,   )​  ≥  R​.  
As before, ​R​ is the affiliated revenue guarantee of ​​ if it is an affiliated revenue 
guarantee and it is greater than any other affiliated revenue guarantee.

THEOREM 2 (Revenue Guarantee Equivalence): The first-price, second-price, and 
English auctions all have the same affiliated revenue guarantee, which is equal to ​​
R​​ FPA​​.

PROOF OF THEOREM 2:
The proof proceeds by two short steps.

Step 1: It is easy to verify that when values are common, ​​​​ ∗​​ is such that signals 
are real-valued, there is a symmetric and independent signal distribution (which 
is a special case of affiliation), and the value function is ​​w​​ ​​​ ∗​​​(s)​  = ​ max​i​​ ​s​i​​​, which 
is continuous and monotonic. Thus, ​​​​ ∗​​ is a symmetric and affiliated information 
structure. Moreover, the monotonic equilibria of the first-price, second-price, and 
English auctions on ​​​​ ∗​​ all reduce the previously described equilibria on ​​​​ IPV​​. All of 
these equilibria induce revenue equal to the expected second-highest signal, which 
is ​​R​​ FPA​​. The lower bound from BBM still applies, so we conclude that this is the 
affiliated revenue guarantee of the first-price auction, and it continues to be an upper 
bound on the affiliated revenue guarantees of the second-price and English auctions.

Step 2: MW show that for any symmetric affiliated information structure, the first-
price, second-price, and English auctions have unique symmetric strictly monotonic 
equilibria, which are described above, and that

	​ R​(​β​​ FPA​; ​​​ FPA​, )​  ≤  R​(​β​​ SPA​; ​​​ SPA​, )​  ≤  R​(​β​​ EA​; ​​​ EA​, )​.​

This implies that the affiliated revenue guarantee of the English auction must weakly 
exceed that of the second-price auction, which in turn weakly exceeds that of the 
first-price auction. The theorem follows from combining this with the opposite rev-
enue guarantee ranking from Step 1. ∎

Thus, we find that when we restrict attention to well-behaved (symmetric and 
affiliated value) environments, the second-price and English auctions do no better 
than the first-price auction in the worst case. At the same time, if we relax these 
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hypotheses (symmetry, affiliated values, favorable equilibrium selection), the worst-
case for the first-price auction must remain the same, while for the other mecha-
nisms it can only decrease.

In a sense, Theorem 2 shows that the information structure ​​​​ ∗​​ has the strongest 
winner’s curse of any affiliated values environment with the given distribution over 
the common value. By winner’s curse, we mean the adverse selection from winning 
the good under a mechanism and equilibrium in which the high-signal bidder is 
allocated the good. It is well known that the presence of a winner’s curse induces 
the bidders to shade their bids, so that they bid based on their pivotal value on 
the marginal event that they win. This updating is particularly severe in the maxi-
mum signal information structure ​​​​ ∗​​: learning that one has the highest signal means 
that the value is exactly equal to one’s own signal, whereas at the moment when 
the bidder only knows his own signal, it is only a lower bound on the true value 
of the object. Holding fixed the auction, a crude way of measuring the amount of 
adverse selection is the difference between expected value and expected revenue. 
Theorem 2 shows that this difference is the largest under the monotonic equilibrium 
of ​​​​ ∗​​, regardless whether it is the first-price, second-price, or English auction that is 
used to measure the effect.

B. Interdependent Values and Reserve Prices

Theorem 1 is presented for symmetric interdependent values, whereas Theorem 2 
is stated only for common values. Some subtleties arise in extending the latter theo-
rem, due to the non-monotonicity of the conditional expectation ​​w​ i​ ​​​ ∗​​​(s)​​ at the infor-
mation structure ​​​​ ∗​​, so that it is not affiliated in the sense of MW. To see why, 
consider a model with two bidders and values are independent standard uniform 
random variables. Under ​​​​ ∗​​, the highest signal is equal to the smallest value:

	​ ​w​i​​​(s)​  = ​
{

​
​s​j​​,

​ 
if  ​s​i​​  < ​ s​j​​;

​  
​ 1 + ​s​i​​ _ 2  ​,

​ 
otherwise.

 ​​​

This function is discontinuous along the diagonal, when ​​s​i​​  = ​ s​j​​​.
This discontinuity gives rise to multiple monotonic pure-strategy equilibria in 

standard auctions: for the second-price auction, bidding ​​s​i​​​ is an equilibrium, but so 
is bidding ​​(1 + ​s​i​​)​ / 2​. Under both strategy profiles, the high signal bidder wins and 
pays less than his expected value, so that downward deviations are not attractive. 
But on the marginal event where increasing one’s bid changes the outcome, the 
bidder’s expected value jumps down, so that the price paid is weakly greater than 
the expected value. One can similarly construct multiple equilibria of the first-price 
auction, with the one described in equation (5) being the lowest.

So, to generalize Theorem 2 to interdependent values, we have to both expand the 
set of information structures and specify which equilibria we compare. This can be 
done as follows. An information structure has generalized affiliated values if signals 
are affiliated and the value function is of the form

	​ ​w​ i​ ​​(s)​  = ​​ w ˆ ​​i​​​(s)​ + ​1​​s​i​​≥​max​j≠i​​​s​j​​​​ ​​w ̃ ​​i​​​(s)​​
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where ​​​w ˆ ​​i​​​ is monotonic and ​​​w ̃ ​​i​​​ is non-negative. It is easily verified that when infor-
mation is symmetric and generalized affiliated, the first-price, second-price, and 
English auctions all have monotonic pure-strategy equilibria in which bidders 
act “as if  ” the value function were ​​​w ˆ ​​i​​​. We refer to this as the minimal monotonic 
equilibrium. Moreover, the linkage principle of MW applies to these equilibria, so 
that English auction generates more revenue than second-price auction generates 
more revenue than first-price auction. The generalized affiliated revenue guarantee 
is minimum revenue in the minimal monotonic equilibrium across all generalized 
affiliated values information structures that are consistent with the given prior. The 
proof of Theorem 2 then applies to this setting, and we conclude that the first-price, 
second-price, and English auctions are all generalized affiliated revenue guarantee 
equivalent.

Theorem 2 can be extended to cover auctions with reserve prices as well when 
values are common. The information structure ​​​​ ∗​​(r)​​ described in Section IIIC is 
one of affiliated values, and the revenue ranking of MW in affiliated environments 
extends to auctions with reserve prices. Moreover, the equilibrium ​​β​​ FPA​​( · ; r)​​ coin-
cides with the one described by MW. Thus, the first-price, second-price, and English 
auctions with reserve price ​r​ are revenue guarantee equivalent, with a guarantee of ​​
R​​ FPA​​(r)​​.

V.  Conclusion

We presented a novel version of the revenue ranking and revenue equivalence the-
orems. We compared auction formats in terms of their revenue guarantees across all 
information environments, rather than in terms of revenue in a specific information 
environment. This analysis yields a powerful new argument in favor of the first-price 
auction as achieving a greater revenue guarantee than other standard mechanisms, 
such as the second-price and English auctions.

Importantly, the dominance of the first-price auction among standard auctions 
depends on the possibility that bidders are uncertain about their own valuations. If 
we were to assume that bidders at least know their own values, then there is a simple 
argument that the second-price auction should revenue guarantee dominate the first-
price auction. For if bidders know their values, the second-price auction has a unique 
equilibrium in weakly undominated strategies, in which a high-value bidder wins the 
auction and pays the second-highest value. On the other hand, if values were complete 
information among the bidders, the same ex post outcome would obtain in the first-
price auction: a high-value bidder would win the auction, but the sale price would be 
competed up to the second-highest value. The private-value revenue guarantee of the 
first-price auction must therefore be weakly less than revenue in the undominated 
equilibrium of the second-price auction. Moreover, Fang and Morris (2006) and BBM 
gave examples of private-value information structures with binary values in which 
the revenue from an first-price auction is strictly lower than that of the second-price 
auction. This suggests that one could always find an information structure that with 
positive probability gives the bidders common knowledge that values are in a binary 
value subset with information of the form constructed by Fang and Morris. In such 
an information structure, the first-price auction would generate strictly lower revenue 
than the weakly undominated equilibrium of the second-price auction.
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Thus, which mechanisms have better revenue guarantees depends on what 
assumptions we are willing to make about information and behavior. Indeed, the 
revenue rankings of Maskin and Riley (2000) and MW can be viewed as a limiting 
case where a single information structure and equilibrium is considered. A promis-
ing direction for future research is to identify classes of information structures and 
corresponding revenue guarantee rankings that interpolate between our findings and 
the classical results.
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