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What Information Gets Disclosed to Bidders?

1. Google’s sponsored search keyword auction:. . . nothing.

2. Ebay: User ID is only known to the seller (so, nothing).

3. London bus auctions: only the winner’s bid and identity.

4. U.S. Procurement : all (“Freedom of Information Act”).



Many Alleged Reasons

• To avoid fraud (Ebay).

• Rights of American citizens (procurement).

• To preserve privacy (Christie’s).

• To prevent collusion (FCC spectrum auctions).

• Seller’s Revenue (Google).



Objective

To compare the performance of three disclosure policies (and its
impact on information revelation):

1. all bids are unobservable

2. only the winner’s bid (and identity) is observable.

3. all bids (and identities) are observable.



Environment

The environment is an infinitely-repeated first-price auction:

• Values are private, independent, and perfectly correlated over
time.

• Payoff is additive (discounted) across periods.

To abstract from collusion per se, focus on Markov strategies.



Literature

• privately observable bids

Landsberger et al. (2001): consider static environment when the
ranking of the valuations is common knowledge; establish existence
and uniqueness of BNE with first price auction

• repeated first price auction

Hörner and Jamison (2008) consider common value environment
with one informed bidder in an infinite horizon environment

• information disclosure and repeated auction with two periods:

Février (2003), Tu (2007), Yao (2007), Thomas (2010).



More Precisely

• n+ 1 bidders: i = 1, . . . , n+ 1.

• Values are private and binary: ui ∈ {u, ū}:

ū > u ≥ 0.

• They are independently distributed: q = Pr[ui = ū].

• The horizon is discrete and infinite: t = 0, . . . ,∞.

• Values are constant over time.

• Common discount factor δ.



Repeated First-Price Auction

• bid of bidder i in period t: bi ,t ∈ R+.

• To resolve issues of discontinuity, allow bids u+.

• In period t, highest bidder wins the object.

• Assignment of unit to agent i in period t: xi ,t ∈ {0, 1}.

• Reward in the case of a win: ui − bi ,t .

• Payoff:

E

[
∞

∑
t=0
(1− δ)δtxi ,t (ui − bi ,t )

]
.



Histories and Strategies

• History with unobservable bids:

hi ,t = {bi ,0, xi ,0; . . . ; bi ,t−1, xi ,t−1}.

• History with observable winner:

hi ,t = {bi ,0,max
j
bj ,0, {xj ,0}n−1j=1 ; . . . ; bi ,t−1,max

j
bj ,t−1, {xj ,t−1}n−1j=1 }.

• History with observable bids:

hi ,t = {{bj ,0, xj ,0}n−1j=1 ; . . . ; {bj ,t−1, xj ,t−1}n−1j=1 }.

• (Behavior) strategy βi = {βi ,t}∞
t=0 of bidder i :

βi ,t : {ui , ūi} ×Hi ,t → 4R+



Markov Strategies

• Repeated games typically admit a plethora of equilibria.

• We shall restrict attention to equilibria in which strategies are
measurable with respect to the players’beliefs.

• in this spirit, we assume that if two bidders commonly know
that their valuations are high, their bids are u thereafter.

• similarly, we assume that bids are always at least u.
• This is tricky with unobservable bids, as posterior beliefs are
no longer common knowledge.

• But if low-value bidders bid u, and high-value bidders bid
strictly more, then if a high-value bidder who always lost wins,
two bidders commonly know that their value is high.



Preview of the Results

• When all bids are observable, all equilibria are ineffi cient for a
range of parameters.

• When the winner’s bid is observable, some equilibria are
ineffi cient for a range of parameters.

• When all bids are unobservable, the equilibrium is effi cient (up
to a possibly useless and mild additional refinement).



The Unobservable Case

• in each period, and with unobservable bids, each bidder only
learns whether he lost or won the current auction

• the binary outcome of the auction (lose vs win) generates a
binary information structure

• the (binary) ranking of past bids is indeed common knowledge
among the bidders ...

• ... but the posterior beliefs of bidder is not common
knowledge anymore

• ... and construction and verification of equilibrium is
conceptually challenging



Is Pooling Possible?

• an equilibrium is pooling if bidders with different valuations
use the same bidding strategy

• in contrast, if strategies eventually separate types, valuation is
revealed

• in a revealing equilibrium, high valuation bidders may
eventually compete against each other...

• ...making a pooling equilibrium look rather desirable for the
bidders



On the Impossibility of Pooling

• consider a pooling equilibrium at the low valuation u, but
remember bids are not observable...

• ...and hence a loss or win does not lead to a revision of the
prior

• in a pooling equilibrium, a deviation slightly above u
guarantees a present win without any future implications...

Theorem
For all q, n, δ, a pooling Markov sequential equilibrium does not
exists with observable bids.



The Separating Equilibrium

Let us consider the case of two bidders only.

Call the bidder who lost (resp. won) at t = 0 the loser (winner).

If the loser ever wins with b > u, the game is over: bids jump to u.

The loser can get a positive reward only once.

The loser’s trade-off: winning early vs. bidding low.

With monotone strategies (later bids nondecreasing in earlier
ones), the greater his last bid, the more “pessimistic” the loser.

The winner’s trade-off: winning a long time vs bidding low.



Equilibrium Conjecture

• Current bis are monotone nondecreasing in past bids .

• The players’last equilibrium bid summarizes their belief.

• The high-value bidder always bids at least u+.



The (High-Value) Winner’s Problem (n = 2)

Given last bid b in period t − 1 by the winner,

Vt (b) = max
β

{
Ft (β)
Ft−1(b)

((1− δ)(u − β) + δVt+1(β))
}
,

where Ft is the loser’s c.d.f. Let expected continuation value of bid
b be:

Yt (b) := Ft−1(b)Vt (b),

then a version of the above Bellman equation is:

Yt (b) = max
β
{((1− δ)(u − β)Ft (β) + δYt+1(β))} .



• now the continuation value of the winner is given by

Yt (b) /(1− δ) = max
β
{Ft (β) (u − β) + δYt+1 (β) /(1− δ)}

• observe that it follows that Yt (b) is independent of b and
hence Yt (b) = ϕt for some constant ϕt ≥ 0

• but this allows us to determine Ft as

Ft (b) =
(1− qt ) (u − u)

u − b

for all t, so the loser’s bid is constant over time (from t = 1
onward).



The (High-Value) Loser’s Strategy

With n+ 1 bidders:

Ft (b) = (1− q)
(
u − u
u − b

)1/n

.

All the losers’bids are constant over time (from t = 1 onward).

In fact, the distribution is the same as in the static auction.



Static Auction

low value bidder: βi (u) = u
high value bidder randomizes between

[
b, b
]
with:[

b, b
]
= [u, (1− q) u + qu]

and unique equilibrium distribution given by:

F (b) =
1− q
q

b− u
u − b



Randomized Strategy

graphically for q ∈
{ 1
4 ,
1
2 ,
3
4

}
, u = 1, u = 2:
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expected net utility for high valuation bidder: (1− q) (u − u)



The (High-Value) Loser’s Problem

Given last bid b in period t − 1,

Wt (b) =

max
β

{
Gt (β)− Gt (b)
1− Gt−1(b)

(1− δ)(u − β) + δ
1− Gt (β)
1− Gt−1(b)

Wt+1(β)

}
,

where Gt is the winner’s c.d.f.

• define component of continuation value from winning

Xt (b) , (1− Gt−1 (b))Wt (b)

• allows us to rewrite above to

Xt (b) = max
β
{(Gt (β)− Gt−1 (b)) (1− δ) (u − β) + δXt+1 (β)} (t ≥ 1).



Envelope Conditions

while the previous trick does now longer work, first order and
envelope conditions gives us:

(1− δ)G ′t (b) (u − b) = Gt (b)− Gt−1 (b) ,

a difference-differential equation we can solve for n+ 1 bidders:

Gt (b) = F (b)
1
δt
+ F (b)

1
1−δ

t

∑
τ=0

(1− δ)τ−t

τ!

(
lnF (b)−

1
1−δ

)τ

with support [u+u − (1− q)n (u − u)]



The (High-Value) Winner’s Strategy

The winner of t = 0 makes decreasing bids from t = 1 onward,
until he loses.

The support of the bid distribution does not shrink.

As time passes, the distribution puts increasing weight on u+.

For fixed t, Gt converges to

(1− q)
(
ū − u
ū − b

)1/n

,

the distribution of bids in a static first-price auction, as δ→ 1.



Illustration
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Figure: Bid distribution for n = 2 in periods t = 1, . . . , 6, q = 1/3,
δ = 9/10, ū = 1 = 1− u (bottom t = 1, top t = 6)



Illustration as δ→ 1
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Figure: Bid distribution for n = 4 in periods t = 1, . . . , 6 and 54,
q = 1/3, δ = 99/100, ū = 1 = 1− u (bottom t = 1, top t = 54)



Bid Distribution in the First Period

Incentives at t = 0 determined by:

• Immediate reward (1− δ)F0(b)(u − b);

• Continuation payoff from winning Yt (b): independent of b;

• Continuation payoff from losing Wt (b) : decreasing in b.

As a result, bid in the first period lower than in the static auction.

With two bidders, it solves:

F0(b)(ū − b)
(1− q)(u − u) = δ lnF0(b) + (1− δ ln(1− q)),

which leads to after transformation of variables into a Wishart
function.



Illustration: Initial Distribution n = 2
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Figure: Initial distribution (blue), q = 2/3, δ = 9/10, ū = 1 = 1− u,
and bid distribution in the static auction (red)



Revenue and Effi ciency

• The allocation is effi cient
(a higher-value bidder never loses to a lower-value bidder);

• The lowest type gets zero profits;
• Average expected revenue converge to the optimal auction
(without reserve price) as δ→ 1.



Observable Bids

• publicly observable bids
• information revelation by bidder i in period t:
• bid βi ,t > u =⇒ valuation has to be ui > u

• bid βi ,t = u =⇒ valuation can be ui = u or ui = u

• bidding game begins with two-sided incomplete information,
may turn into one-sided incomplete information and/or
complete information game



On the Diffi culty of Separating

Suppose a high-valuation bidder does not assign positive
probability to the bid u in the initial period.
By bidding more, say u+, he gets

(1− q)n(ū − u)

By deviating and bidding u in this period, followed by u+, a
high-valuation bidder gets

(1− δ)(1− q)n ū − u
n+ 1

+ δ((1− q)n + (1− δ)nq(1− q)n−1)(ū− u)

On the other hand, separation yields the same payoff as the static
auction,

(1− q)n(ū − u)



On the Impossibility of Separating

Theorem
For all positive q and δ, there exists n such that for all n > n, a
separating Markov sequential equilibrium does not exist with
observable bids.



Impossibility of Separation

In fact, comparing the above payoffs, we find that separation is not
an equilibrium if, and only if

q ≥ qo :=
1

1+ (n+ 1)δ
.

This condition, expressed in terms of the prior probability of a high
valuation is satisfied if there are suffi ciently many bidders and/or if
the discount factor is suffi ciently high.
Contrast this with the earlier result that showed with unobservable
bids pooling is never an equilibrium



From Two-Sided to One-Sided Incomplete Information

• What then is the equilibrium of the game?

• It might occur that only one bidder reveals himself of high
valuation, while all the other n bidders submit a bid u

• hence we must understand the continuation game of one-sided
incomplete information

• Informed bidder knows the valuation of his opponent
• Uninformed bidder doesn’t know the valuation of his opponent



One-Sided Incomplete Information

• probability qt that informed bidder has high valuation
• informed bidder’s bid distribution Ft
• uninformed bidder’s bid distribution Gt
• belief of uninformed bidder in terms of low valuation
probability

1− qt+1 =
1− qt
Ft (u)

• indifference condition of informed bidder

Ft (u) (u − u) = δF nt+1 (u) (u − u)

yield
1− q0 = ∏

t=0,...,T
Ft (u)



Randomized Solution to the One-sided Case

• In all periods up to T − 1, (unknown) high-value bidders
randomize between u and some distribution over [u, b̄t ].

• In period T , the probability assigned to u is 0.
• The known high-value bidder randomizes on [u+, b̄t ] (up to
T ),

• So as δ→ 1, VU (q)→ (1− q)n(u − u).



On the Possibility of Pooling

• What then is the equilibrium of the overall game?

• A pooling equilibrium must involve all bidders submitting the
bid u .

• The payoff to a high-valuation bidder is then

(ū − u)/(n+ 1)

• The best deviation for a high-valuation bidder involves bidding
u+, which garners

(1− δ)(ū − u) + δV U (q)

Theorem
For all positive q, there exists

(
δ, n
)
such that for all δ > δ and

n > n, a pooling Markov sequential equilibrium does exist with
observable bids.



A Preliminary Summary

Let us now focus on δ→ 1. Because V U → (1− q)n(ū − u), we
then get

q ≥ q̄o → 1− (n+ 1)−1/n.

Note that the left-hand side tends to the lowest payoff that a
high-valuation bidder can guarantee, provided low-valuation
bidders do not bid more than u. As δ→ 1:

-
q

Separating Semi-pooling equilibrium

0 1
n+2 1− (n+ 1) −1n 1

pooling equilibrium



Winner-Only Observable

Similar to the case of observable bids, but:

If one known high-value, and n unknown bidders, no ratcheting.

For high-value bidder, u+ always dominates u.

Learning only depends on the known bidder’s bid (till he loses).

Known bidder willing to bid u+; lose against unknown high type:

VU (q) = (1− q)n(u − u).

No last period of separation.



Winner-Only Observable: Summary

Same condition as before the existence of a pooling equilibrium:

1− q ≤ (n+ 1)−1/n.

However, a separating (and effi cient) equilibrium always exists (if
no other high type bids u, why do so?)

To summarize:

-
q

Separating equilibrium

0 1− (n+ 1) −1n 1

pooling equilibrium



Conclusion

• repeated bidding and information disclosure
• construction of equilibrium strategies relied on dynamic
programming, but not infinite horizon

• equilibrium strategies can be viewed as limits of finite horizon
analysis

• privateness of bids enhanced competition and revenue
• revenue ranking of different disclosure policies with respect to
past bids

• rationale for non-disclosure of past bids


