・ 同 ト ・ ヨ ト ・ ヨ ト

3

Strategic Distinguishability and Robust Virtual Implementation

Dirk Bergemann and Stephen Morris Brown University

June 2008

Strategic Distinguishability

Interdependent Preferences

- preferences are frequently assumed to be interdependent for informational or psychological reasons
- what are the observable implications of interdependent preferences
- "revealed preference" is well-developed theory to understand individual choice with independent preferences
- an approach to "strategic revealed preference" is suggested to understand interdependent preferences

・ 同 ト ・ ヨ ト ・ ヨ ト

Strategic Distinguishability

- each agent's preference depends on the "payoff types" of all agents
- two types of an agent are "strategically indistinguishable" if in every game there exists some *common* action which each type might rationally choose given some beliefs and higher-order beliefs
- two types of an agent are "strategically distinguishable" if there exists a game such that those types must rationally choose different messages whatever their beliefs and higher-order beliefs
- we characterize strategic distinguishability for general environments:
 - basic idea: types are strategically distinguishable if there is not too much interdependence of preferences

Strategic Revealed Preference

- strategically distinguishable types reveal information through choice
- information revelation in mechanism design: in a specific game do different types act differently in specific equilibrium?
 - specific game: direct mechanism of given social choice function
 - specific equilibrium: truthtelling
- in contrast, here we ask does there *exist* a game such that strategically distinguishable types always act differently

Maximally Revealing Mechanism

 construction of a canonical game to identify strategically distinguishable types

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

- for all beliefs and higher order beliefs
- maximally revealing mechanism

Robust Virtual Implementation

- social choice function maps payoff type profiles to outcomes
- "robust implementation": there exists a mechanism such that every equilibrium delivers the socially desired outcome whatever players' beliefs and higher order beliefs about others' types
- "robust virtual implementation": there exists a mechanism such that every equilibrium delivers the socially desired outcome with probability at least 1 - ε whatever players' beliefs and higher order beliefs about others' types

Robust Virtual Implementation

- necessary conditions:
 - 1. ex post incentive compatibility
 - 2. robust measurability: strategically indistiguishable always receive same allocation
- sufficiency: extending an argument of Abreu-Matsushima 1992
 - ▶ virtual (instead of exact) implementation: specific social choice function is chosen with probability 1ε (rather than 1)
 - insert maximally revealing mechanism with probability ε

Outline

- 1. Introduction
- 2. Auction Example
- 3. Environment and Solution Concepts
- 4. Strategic Distinguishability: A Characterization Result
- 5. Robust Virtual Implementation

Auction Example

- I agents with quasilinear utility
- ▶ agent *i* has type $\theta_i \in \Theta_i = [0, 1]$
- agent i's valuation of a single object is

$$\mathbf{v}_{i}\left(\theta\right) = \theta_{i} + \gamma \sum_{j \neq i} \theta_{j}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

γ ∈ ℝ measures the intensity of the interdependence
 γ = 0: private values, no interdependence

Interdependence and Strategic Distinguishability

• with
$$v_i(\theta) = \theta_i + \gamma \sum_{j \neq i} \theta_j$$
 suppose:

- 1. $\gamma \geq \frac{1}{I-1}$
- 2. every low θ_i valuation agent was convinced that other agents were high θ_i agents, and vica versa
- 3. in particular, each payoff θ_i is convinced that his opponents are types

$$heta_{j}=rac{1}{2}+rac{1}{\gamma\left(l-1
ight)}\left(rac{1}{2}- heta_{i}
ight)$$

- ► then common knowledge that everyone's valuation of the object is ¹/₂ (1 + γ (I − 1))
- ▶ thus all types strategically indistinguishable if $\gamma \ge \frac{1}{l-1}$
- we will later establish that all types are strategically distinguishable in this example if γ < 1/(1-1)

Second Price Auction

- private values $\gamma = 0$ so $v_i = \theta_i$
- second price sealed bid auction
 - object goes to highest bidder
 - winner pays second highest bid
- truth-telling is a dominant strategy, but there are inefficient equilibria

Approximate Second Price Auction

- with probability 1ε ,
 - allocate object to highest bidder
 - winner pays second highest bid
- for each *i*, with probability $\frac{\varepsilon b_i}{l}$
 - i gets object
 - pays $\frac{1}{2}b_i$
- truth-telling is a strictly dominant strategy so we can guarantee Robust Virtual Implementation

・ 同 ト ・ ヨ ト ・ ヨ ト …

Modified Second Price Auction

$$\blacktriangleright \ \gamma > 0, \ v_i = \theta_i + \gamma \sum_{j \neq i} \theta_j$$

generalized second price sealed bid auction

object goes to highest bidder

• winner pays max
$$b_j + \gamma \sum_{j
eq i} b_j$$

 if γ ≤ 1, truth-telling is a "ex post" equilibrium but there are inefficient ex post equilibria ("ex post incentive compatibility")

Modified Second Price Auction

• with probability $1 - \varepsilon$,

- allocate object to highest bidder i
- winner pays $\max_{j \neq i} b_j + \gamma \sum_{j \neq i} b_j$
- for each *i* with probability $\frac{\varepsilon b_i}{l}$,

• *i* gets object
• pays
$$\frac{1}{2}b_i + \gamma \sum_{j \neq i} b_j$$

truth telling is a strict ex post equilibrium

in Auction Example

- If γ ≥ 1/(1-1), inefficient multiple equilibria in the ε modified second price auction AND ALL OTHER mechanisms
- if γ < 1/(l-1), robust virtual implementation can be achieved using the ε modified second price auction

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●

Robust Virtual Implementation Results in General Environments

Necessary and Sufficient Conditions:

- 1. Ex Post Incentive Compatibility
 - in example, $\gamma \leq 1$
- 2. "Robust Measurability" or Not Too Much Interdependence

• in example,
$$\gamma < rac{1}{l-1}$$

Section 3: ENVIRONMENT AND SOLUTION CONCEPTS

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めんの

Strategic Distinguishability

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Environment

- I agents
- lottery outcome space $Y = \Delta(X)$, X finite
- ▶ finite "payoff" types Θ_i
- ▶ vNM utilities: $u_i : Y \times \Theta \to \mathbb{R}$

イロン 不同 とくほう イロン

э.

Mechanism

A mechanism \mathcal{M} is a collection $((M_i)_{i=1}^l, g)$

- each M_i is a finite message set
- outcome function $g: M \to Y$

Rationalizable Messages

$$\begin{array}{l} \text{initialize at } S_{i}^{\mathcal{M},0}\left(\theta_{i}\right) = M_{i}, \text{ inductive step:} \\ S_{i}^{\mathcal{M},k+1}\left(\theta_{i}\right) = \\ \left\{ \left. \begin{array}{c} m_{i} \right| & \exists \ \mu_{i} \in \Delta\left(\Theta_{-i} \times M_{-i}\right) \text{ s.t.}; \\ (1) \ \mu_{i}\left(\theta_{-i}, m_{-i}\right) > 0 \Rightarrow m_{-i} \in S_{-i}^{\mathcal{M},k}\left(\theta_{-i}\right) \\ (2) \ m_{i} \in \arg\max_{\substack{m'_{i} \\ m'_{i} \\ \end{array}} \sum_{\substack{\theta_{-i}, m_{-i} \\ \theta_{-i}, m_{-i} \\ \end{array}} \mu_{i}\left(\theta_{-i}, m_{-i}\right) u_{i}\left(g\left(m'_{i}, m_{-i}\right), \theta\right) \end{array} \right.$$

limit set

$$S_{i}^{\mathcal{M}}\left(\theta_{i}\right) = \underset{k\geq0}{\cap} S_{i}^{\mathcal{M},k}\left(\theta_{i}\right).$$

• $S_i^{\mathcal{M}}(\theta_i)$ are *rationalizable actions* of type θ_i in mechanism \mathcal{M}

▲日を▲母を▲用を▲用す 用 ろんの

Epistemic Foundations: Framework

► Type Space
$$\mathcal{T} = \left(\mathcal{T}_i, \widehat{\pi}_i, \widehat{ heta}_i
ight)_{i=1}^l$$

- 1. T_i countable types of agent i
- 2. $\widehat{\pi}_i: T_i \to \Delta(T_{-i})$ (belief type component)
- 3. $\widehat{\theta}_i: T_i \to \Theta_i$ (payoff type component)
- incomplete information game $(\mathcal{T}, \mathcal{M})$
 - *i*'s strategy: $\sigma_i : T_i \to \Delta(M_i)$
 - strategy profile σ is an equilibrium if σ_i (m_i|t_i) > 0 implies m_i is in

$$\underset{m_{i}^{\prime}}{\arg\max}\sum_{t_{-i},m_{-i}}\widehat{\pi}_{i}\left[t_{i}\right]\left(t_{-i}\right)\left(\prod_{j\neq i}\sigma_{j}\left(m_{j}|t_{j}\right)\right)u_{i}\left(g\left(m_{i}^{\prime},m_{-i}\right),\widehat{\theta}\left(t\right)\right)$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● の()

Epistemic Foundations: Result

PROPOSITION. $m_i \in S_i^{\mathcal{M}}(\theta_i)$ if and only if there exist

- 1. a type space ${\mathcal T}$,
- 2. an equilibrium σ of $(\mathcal{T}, \mathcal{M})$ and
- 3. a type $t_i \in T_i$, such that

3.1 $\sigma_i(m_i|t_i) > 0$ and 3.2 $\hat{\theta}_i(t_i) = \theta_i$.

Brandenburger and Dekel (1987), Battigalli (1996), Bergemann and Morris (2001), Battigalli and Siniscalchi (2003).

Section 4: STRATEGIC DISTINGUISHABILITY

- ▲日 > ▲ 圖 > ▲ 圖 > ▲ 圖 - シッペマ

Strategic Distinguishability

Strategic Distinguishability

DEFINITION. Types θ_i and θ'_i are strategically indistinguishable if $S^{\mathcal{M}}(\theta_i) \cap S^{\mathcal{M}}(\theta'_i) \neq \emptyset$

for every \mathcal{M} .

DEFINITION. Types θ_i and θ'_i are strategically equivalent if

$$S^{\mathcal{M}}\left(heta_{i}
ight)=S^{\mathcal{M}}\left(heta_{i}'
ight)$$

(日本) (日本) (日本)

for every \mathcal{M} .

Preference Relation

DEFINITION. R_{θ_i,λ_i} is a preference relation of agent *i* with payoff type θ_i and conjecture $\lambda_i \in \Delta(\Theta_{-i})$ about types of others:

$$yR_{\theta_{i},\lambda_{i}}y' \Leftrightarrow \sum_{\theta_{-i}\in\Theta_{-i}}\lambda_{i}(\theta_{-i}) u_{i}(y,\theta) \geq \sum_{\theta_{-i}\in\Theta_{-i}}\lambda_{i}(\theta_{-i}) u_{i}(y',\theta)$$

- write Ψ_i ⊆ Θ_j for subset and Ψ_{-i} = {Ψ_j}_{j≠i} for profile of subsets
- ▶ possible preference profiles if *i* assigns probability 1 to his opponents' types to be θ_{-i} ∈ Ψ_{-i}:

$$\mathcal{R}_{i}(\theta_{i}, \Psi_{-i}) = \{ R \in \mathcal{R} | R = R_{\theta_{i}, \lambda_{i}} \text{ for some } \lambda_{i} \in \Delta(\Psi_{-i}) \}$$

Defining Separability

• with: $\mathcal{R}_i(\theta_i, \Psi_{-i}) = \{ R \in \mathcal{R} | R = R_{\theta_i, \lambda_i} \text{ for some } \lambda_i \in \Delta(\Psi_{-i}) \}$

DEFINITION. Type set profile Ψ_{-i} separates Ψ_i if

$$\bigcap_{\theta_i\in\Psi_i} \mathcal{R}_i(\theta_i,\Psi_{-i}) = \varnothing.$$

• Ψ_{-i} separates Ψ_i if whatever realized preference of *i*, we can rule out at least one possible type of *i*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Iterative Definition of Separability

▶ iteratively delete type sets of *i* that are separated by some type set profile Ψ_{-i}

$$\begin{array}{lll} \Xi_i^0 & = & 2^{\Theta_i} \\ \Xi_i^{k+1} & = & \left\{ \Psi_i \in 2^{\Theta_i} \left| \Psi_{-i} \text{ doesn't separate } \Psi_i \text{ for some } \Psi_{-i} \in \Xi_-^k \right. \end{array} \right.$$

- 4 同 2 4 日 2 4 H

э.

and limit type set profile is

$$\Xi_i^* = \bigcap_{k \ge 0} \Xi_i^k$$

Pairwise Inseparable

DEFINITION. Types θ_i and θ'_i are pairwise inseparable if $\{\theta_i, \theta'_i\} \in \Xi_i^*$,

and we write $\theta_i \sim \theta'_i$.

 \blacktriangleright note \sim is reflexive, symmetric, but not necessarily transitive

Back to the Auction Example

- I bidders
- bidder *i* has type $\theta_i \in \Theta_i = [0, 1]$
- ► bidder *i*'s valuation is $v_i(\theta, m_i) = \theta_i + \gamma \sum_{j \neq i} \theta_j m_i$
- set of possible preferences = set of possible valuations

$$V_i\left(heta_i, \Psi_{-i}
ight) = \left[heta_i + \gamma \sum_{j
eq i} \min \Psi_j \ , \ heta_i + \gamma \sum_{j
eq i} \max \Psi_j
ight]$$

Separability in the Auction Example I

• now Ψ_{-i} separates Ψ_i if and only if

$$\bigcap_{\theta_i \in \Psi_i} V_i(\theta_i, \Psi_{-i}) = \emptyset$$

• suppose
$$heta_i, heta_i' \in \Psi_i$$
 and $heta_i < heta_i'$;

▶ there exist $\lambda_i, \lambda'_i \in \Delta(\Psi_{-i})$ such that $R_{\theta_i,\lambda_i} = R_{\theta'_i,\lambda'_i}$ iff

$$heta_i + \gamma \sum_{j
eq i} \max \Psi_j \geq heta_i' + \gamma \sum_{j
eq i} \min \Psi_j$$

Separability in the Auction Example II

• Ψ_i is separable given Ψ_{-i} if and only if

$$\max \Psi_i - \min \Psi_i > \gamma \left(\sum_{j \neq i} \max \Psi_j - \min \Psi_j \right)$$

$$\Xi_{i}^{1}=\left\{ \Psi_{i}\left|\mathsf{max}\,\Psi_{i}-\mathsf{min}\,\Psi_{i}\leq\left[\gamma\left(\mathit{I}-1
ight)
ight]
ight\}$$

and iteratively:

$$\Xi_{i}^{k} = \left\{ \Psi_{i} \left| \max \Psi_{i} - \min \Psi_{i} \leq \left[\gamma \left(I - 1 \right) \right]^{k} \right\} \right\}$$

- * ロ > * @ > * 注 > * 注 > うへで

Pairwise Inseparability in the Auction Example

- If $\gamma \geq \frac{1}{l-1}$, all θ_i, θ_i' are pairwise inseparable
- If $\gamma < \frac{1}{I-1}$, $\theta_i \neq \theta'_i \Rightarrow \theta_i$ and θ'_i are pairwise separable
- pairwise separability requires "not too much interdependence"

◆□ > ◆□ > ◆豆 > ◆豆 > ◆□ > ◆□ >

Fixed Point Characterization

Consider a collection of sets $\Xi = (\Xi_i)_{i=1}^l$, each $\Xi_i \subseteq 2^{\Theta_i}$.

DEFINITION. A collection Ξ is mutually inseparable if, for each *i* and $\Psi_i \in \Xi_i$, there exists $\Psi_{-i} \in \Xi_{-i}$ such that Ψ_{-i} does not separate Ψ_i .

LEMMA. Types θ_i and θ'_i are pairwise inseparable if and only if there exists mutually inseparable Ξ such that $\{\theta_i, \theta'_i\} \subseteq \Psi_i$ for some $\Psi_i \in \Xi_i$.

・ロ > ・ 同 > ・ 三 > ・ 三 > ・

Strategic Distinguishability

DEFINITION. Types θ_i and θ'_i are strategically indistinguishable if

$$S^{\mathcal{M}}\left(heta_{i}
ight)\cap S^{\mathcal{M}}\left(heta_{i}'
ight)
eqarnothing$$

for every \mathcal{M} .

THEOREM 1. Types θ_i and θ'_i are strategically indistinguishable if and only if they are pairwise inseparable.

Sufficiency of Pairwise Separability I

PROPOSITION 1: If θ_i and θ'_i are indistinguishable, then

$$S_{i}^{\mathcal{M}}\left(heta_{i}
ight)\cap S_{i}^{\mathcal{M}}\left(heta_{i}'
ight)
eqarnothing$$

in any mechanism \mathcal{M} . Suppose Ξ is mutually inseparable Fix any finite mechanism.

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ● ⑦ � @

Sufficiency of Pairwise Separability II

By induction on k, for each k, i and $\Psi_i \in \Xi_i$, there exists a common action $m_i^k(\Psi_i)$ such that $m_i^k(\Psi_i) \in S_i^k(\theta_i)$ for each $\theta_i \in \Psi_i$

- 1. True by definition for k = 0.
- 2. Suppose true for k-1
 - fix any *i* and $\Psi_i \in \Xi_i$
 - since Ξ is mutually inseparable, $\exists \Psi_{-i} \in \Xi_{-i}$, R_i and, for each $\theta_i \in \Psi_i$, $\lambda_i^{\theta_i} \in \Delta(\Psi_{-i})$ such that $R_{\theta_i, \lambda_i^{\theta_i}} = R_i$
 - $m_i^k(\Psi_i)$ be any element of the argmax under R_i of $g\left(m_i, m_{-i}^{k-1}(\Psi_{-i})\right)$

▶ by construction, $m_i^k(\Psi_i) \in S_i^{\mathcal{M},k}(\theta_i)$ for all $\theta_i \in \Psi_i$.

Necessity of Pairwise Separability

PROPOSITION 2: There exists a mechanism \mathcal{M}^* such that if $\theta_i \not\sim \theta'_i$, then $S_i^{\mathcal{M}^*}(\theta_i) \cap S_i^{\mathcal{M}^*}(\theta'_i) = \varnothing.$

PROOF: By construction of "maximally revealing mechanism".

Construction of Maximally Revealing Mechanism I

uniform lottery $\bar{y} : \bar{y}(x) \triangleq 1/|X|$ KEY LEMMA: Type set profile Ψ_{-i} separates Ψ_i iff there exists $\tilde{y} : \Psi_i \to Y$ such that

$$\sum_{m{ heta}_i \in \Psi_i} \left(\widetilde{y} \left(m{ heta}_i
ight) - \overline{y}
ight) = \mathbf{0}$$

and, for each $\theta_i \in \Psi_i$ and $\lambda_i \in \Delta(\Psi_{-i})$,

6

 $\widetilde{y}(\theta_i) P_{\theta_i,\lambda_i} \overline{y}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

→ <同> < B> < B> < B</p>

Construction of Maximally Revealing Mechanism II

LEMMA (Morris 1994, Samet 1998): Let $V_1, ..., V_L$ be closed, convex, subsets of the *N*-dimensional simplex Δ^N . These sets have an empty intersection if and only if there exist $z_1, ..., z_L \in \mathbb{R}^N$ such that

$$\sum_{l=1}^{L} z_l = 0$$

and

 $v \cdot z_l > 0$

for each l = 1, ..., L and $v \in V_l$.

Key lemma follows from this duality lemma, letting $\Theta_i = \{1, ..., L\}$ and V_i be the set of possible utility weights of type $\theta_i = I$ with any $\lambda_i \in \Delta(\Psi_{-i})$.

Construction of Maximally Revealing Mechanism III

let B^Y (θ_i,λ_i) be the agents most preferred lotteries in the set
 Y given type θ_i and belief λ_i:

$$\mathcal{B}_{i}^{Y}\left(heta_{i},\lambda_{i}
ight)=\left\{y\in Y\left|y\mathcal{R}_{ heta_{i},\lambda_{i}}y'
ight.$$
 for all $y'\in Y\left.
ight\}$

TEST SET LEMMA. There exists a finite set $Y^* \subseteq Y$ such that

- 1. for each *i*, θ_i and $\lambda_i \in \Delta(\Theta_{-i})$, $B_i^{Y^*}(\theta_i, \lambda_i) \neq Y^*$
- 2. for each *i*, Ψ_i and Ψ_{-i} , if Ψ_{-i} separates Ψ_i , then for each $\theta_i \in \Psi_i$ and $\lambda_i \in \Delta(\Psi_{-i})$, there exists $\theta'_i \in \Psi_i$ such that

$$B_{i}^{Y^{*}}\left(heta_{i},\lambda_{i}
ight)\cap B_{i}^{Y^{*}}\left(heta_{i}^{\prime},\Psi_{-i}
ight)=arnothing.$$

Mechanism in Words

each player makes K simultaneous announcements:

- 1. an element of test set Y^*
- 2. a profile of first round announcements of other players he thinks possible, plus an element of Y^*
- 3. a profile of second round announcements of other players he thinks possible, plus an element of Y^\ast

- ▲ 目 > ▲ 目 > ▲ 目 > 2 〇

- 4.
- all chosen outcomes selected with positive probability, with much higher weight on "earlier" announcements

Mechanism in Formulae

mechanism $\mathcal{M}^{K,arepsilon}=\left(\left(\textit{M}^K_i
ight)_{i=1}^I$, $\textit{g}^{K,arepsilon}
ight)$ parameterized by

- 1. ε > 0
- 2. integer K
- ▶ i's message set is M^K_i where

$$\begin{array}{l} \blacktriangleright \quad M_i^0 = \left\{ \overline{m}_i^0 \right\} \\ \blacktriangleright \quad M_i^{k+1} = M_i^k \times M_{-i}^k \times Y^* \end{array}$$

- typical element $m_i^k = \left\{ \overline{m}_i^0, r_i^1, y_i^1, ..., r_i^k, y_i^k \right\}$
- allocation rule:

$$g^{K,\varepsilon}(m) = \overline{y} + \frac{1 - \varepsilon^{K}}{1 - \varepsilon} \frac{1}{I} \sum_{k=1}^{K} \varepsilon^{k-1} \sum_{i=1}^{I} \mathbb{I}\left(r_{i}^{k}, m_{-i}^{k-1}\right)\left(y_{i}^{k} - \overline{y}\right)$$

where

$$\mathbb{I}\left(r_{i}^{k}, m_{-i}^{k-1}\right) = \begin{cases} 1, \text{ if } r_{i}^{k} = m_{-i}^{k-1} \\ 0, \text{ otherwise } r_{i}^{k}, r_{i}^{k} > r_{i}^{k} > r_{i}^{k} \end{cases}$$

Strategic Distinguishability

Conclusion of Proof of Proposition 2

1. Let

$$\overline{\Theta}_{i}^{k}\left(m_{i}^{k}\right) = \overline{\Theta}_{i}^{k}\left(\left(m_{i}^{k-1}, r_{i}^{k}, y_{i}^{k}\right)\right) = \begin{cases} \theta_{i} \mid \overline{\Theta}_{i}^{k-1}\left(m_{i}^{k-1}\right) \\ \overline{\Theta}_{-i}^{k-1}\left(r_{i}^{k}\right) \neq \emptyset \\ y_{i}^{k} \in B_{i}\left(\theta_{i}, \overline{\Theta}_{-i}^{k-1}\left(r_{i}^{k}\right)\right) \end{cases}$$

2. There exists $\overline{\varepsilon} > 0$ such that

$$\left\{\theta_{i}\in\Theta_{i}\left|\boldsymbol{m}_{i}^{k}\in\boldsymbol{S}_{i}^{\mathcal{M}^{k,\varepsilon}}\left(\theta_{i}\right)\right.\right\}\subseteq\overline{\Theta}_{i}^{k}\left(\boldsymbol{m}_{i}^{k}\right)$$

for all $\varepsilon \leq \overline{\varepsilon}$ and $m_i^k \in M_i^k$.

3. There exists $\overline{\varepsilon} > 0$ and K such that

$$\left\{\theta_{i}\in\Theta_{i}\left|m_{i}^{\mathcal{K}}\in S_{i}^{\mathcal{M}^{\mathcal{K},\varepsilon}}\left(\theta_{i}\right)\right.\right\}\in\Xi_{i}^{*}$$

B b d B b

for all $\varepsilon \leq \overline{\varepsilon}$ and $m_i^K \in M_i^K$.

Section 5: ROBUST VIRTUAL IMPLEMENTATION

Strategic Distinguishability

Definitions Reminder

- "implementation": requires ALL equilibria deliver the right outcome, a.k.a. full implementation
- "robust": same mechanism works independent of agents' beliefs and higher order beliefs about the environment
- \blacktriangleright "virtual": enough if correct outcome arises with probability $1-\varepsilon$

DEFINITION: A social choice function $f : \Theta \to Y$. Write ||y - y'|| for the Euclidean distance between a pair of lotteries y and y', i.e.,

$$||y - y'|| = \sqrt{\sum_{x \in X} (y(x) - y'(x))^2}.$$

DEFINITION: Social choice function f is robustly ε -implementable if there exists a mechanism \mathcal{M} such that

$$m \in S^{\mathcal{M}}(\theta) \Rightarrow \|g(m) - f(\theta)\| \leq \varepsilon.$$

DEFINITION: Social choice function f is robustly virtually implementable if, for every $\varepsilon > 0$, f is robustly ε -implementable.

ロト ・ 同ト ・ ヨト ・ ヨト

Result

DEFINITION: Social choice function f satisfies ex post incentive compatibility if, for all i, θ_i , θ_{-i} and θ'_i :

$$u_{i}\left(f\left(\theta_{i},\theta_{-i}\right),\left(\theta_{i},\theta_{-i}\right)\right) \geq u_{i}\left(f\left(\theta_{i}',\theta_{-i}\right),\left(\theta_{i},\theta_{-i}\right)\right).$$

DEFINITION: Social choice function f satisfies robust measurability if $\theta_i \sim \theta'_i \Rightarrow f(\theta_i, \theta_{-i}) = f(\theta'_i, \theta_{-i})$, $\forall \theta_{-i}$

THEOREM 2. Social choice function f is robustly virtually implementable if and only if f satisfies ex post incentive compatibility and robust measurability.

Abreu-Matsushima (1992) Incomplete Information

- Standard "Bayesian" incomplete information setting, i.e., common knowledge of common prior on type space
- Necessary conditions for virtual implementation
 - Bayesian incentive compatibility
 - Abreu-Matsushima measurability: types are iteratively distinguishable
 - reduces to "value distinction" in private values case

Adding Robustness

- with robustness, full implementation equivalent to belief free version of iterated deletion of strictly dominated strategies
- generalizing Abreu-Matsushima, necessary conditions become:
- 1. Ex post incentive compatibility (instead of Bayesian IC)
 - Bergemann-Morris "Robust Mechanism Design"
- 2. robust measurability as belief free version of AM measurability

Intermediate Notions of Robustness

Artemov-Kunimoto-Serrano (2008) consider type space with

- given finite payoff types $\theta_i \in \Theta_i$
- given finite first-order beliefs $q_i(\theta_i | \theta_{-i})$

and general type space T_i is assumed to be consistent with payoff types and first-order beliefs

 in the presence of a type diversity condition, incentive compatibility and AM measurability is necessary and sufficient for robust virtual implementation

く 同 と く ヨ と く ヨ と …

some tension between rich type space and type diversity

Exact Implementation I

following Maskin methods, necessary and sufficient conditions for exact robust implementation - using ANY mechanism: (Bergemann-Morris "Robust Implementation in General Mechanisms" (2008))

- 1. ex post incentive compatibility
- 2. "robust monotonicity": not too much interdependence

Exact Implementation II

in large class of economically interesting "monotonic aggregator" environments:

(Bergemann-Morris "Robust Implementation in Direct Mechanisms" (2007))

- 1. robust monotonicity = robust measurability
- 2. natural generalization of $\gamma < \frac{1}{l-1}$ condition
- 3. if robust virtual implementation is possible, it arises in modified direct mechanism

Conclusion

- strategic distinguishability: information revelation through choice in some game
- strategic distinguishability = not too much interdependence
- information revelation in maximally revealing mechanism
- virtual implementation via maximally revealing mechanism
- robust virtual implementation leads to sharp possibility but also impossibility results