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1. INTRODUCTION

1.1. Motivation

In this paper, we analyze the optimal enfry strategies for different
types of experience goods in a dynamic Cournot duopoly with vertically
differentiated buyers. Our main goal is to obtain a characterization of the
features of the new product that lead to qualitatively different entry
strategies. We show that a new product that represents a certain improve-
ment to an existing product is launched in the market at prices above the
static equilibrium level and sales quantities below the static level. A new
product that has a positive probability of being the leading brand in the
market, but also a positive probability of being revealed to be inferior to
the current product, is launched with a more aggressive strategy where
the initial prices are low and initial sales exceed the static equilibrium
guantities.

The firms compete in a continuous time model with an infinite horizon.
The uncertainty about the new product is common to all buyers in the
market. Additional information about the quality of the new product is
generated only through experiments, i.e., through purchases in the market.
The information generated is assumed to be public, and while the exact
mechanism of information transmission is left unmeodelled it is motivated
by considerations such as word of mouth communication between the
buyers and consumer report services. As a consequence all buyers have
identical beliefs about the new product, and we can represent the stage
game as a vertically differentiated quantity game parametrized by the
common belief about the new product. Examples of markets where the
assumptions of common value (aside from the aspect of vertical differen-
tiation) and commeon information may be valid include markets for trans-
portation or communications services. To take a precise example, suppose
buyers evaluate the services of an airline carrier on the basis of the proba-
bility of on-time departure and arrival and/or the probability of lost or
misplaced baggage. The uncertainty about the quality of the service is then
common to all customers of the airline, provided that the uncertainties are
not route specific. The (expected) performance or reliability of the new
service is then best predicted by aggregate and publicly available statistics
such as the percentage of on-time performances by an airline. In particular,
all idiosyncratic experiences are of equal value in providing information
and can therefore be replaced by sufficient aggregate statistics. Our model
only requires that all consumers rank reliability of the airlines or conges-
tion in the provision of internet services according to the same scale, yet
they can differ in their willingness to pay for different service qualities.
Hence the model displays vertical but not horizontal differentiation.
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We have chosen a model of quantity competition as the stage game.
With this choice, we extend the scope of viable new products. In particular,
quantity competition allows for the possibility of launching an innovation
which brings the two competitors closer to each other without a change in
the leadership. In a model of price competition, such innovations would
never be profitable, and as a result improved substitutes would never be
observed. In those models, the profits of both firms vanish as the substitu-
tability of the two products increases, and as a result the static profit func-
tions of the two firms are nonmonotonic in the level of differentiation. We
believe that a model where each firm’s profit is increasing in its own quality
is better suited for a dynamic investigation of a market with vertical
differentiation.

In order to simplify the analysis, we assume that there is no discounting.
As we want to stay close to the model with small discounting, we use the
strong long-run average criterion as defined in Dutta [10] as the intertem-
poral evaluation criterion. This criterion can be justified as the limit of
models where the discount rate is tending to zero, and it retains the recursive
formulation of standard discounted dynamic programming. Under the
assumptions of no discounting and quantity competition, it is surprisingly
simple to examine the Markov perfect equilibria of the model. In Section 5,
we show that for quite general demand structures the comparisons between
static and dynamic equilibrium policies can be based exclusively on infor-
mation about static payoff functions. It is hoped that the simplicity of the
technique of undiscounted dynamic programming as used here will prove
useful in other applications beyond the scope of this paper.

In Section 4, we assume that the underlying stage game is the standard
linear model used in the literature on vertical differentiation. This allows us
to interpret the dynamic equilibria in an economically intuitive manmer.
Using the curvature properties of the stage game profit functions, we show
that aggressive entry corresponds to relatively low (current) expected
quality of the entrant’s product while cautious entry corresponds to higher
expected quality. In the linear model, we can also solve the dynamic
equilibrium policies explicitly and, as a result, we get a set of empirically
testable predictions for the model.

The paper proceeds as follows. Section 2 introduces the basic model and
the learning environment. Section 3 derives the benchmark results of the
static duopoly game. The main results are then presented for the standard
linear demand specification in Section 4 where we derive the Markov
perfect equilibrium of the intertemporal game. In Section 3, we extend the
model beyond the linear specification and show that the qualitative
conclusions extend to much more general demand structures. All the proofs
are relegated to an appendix.
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Initially all market participants have a common prior belief a, that the new
product has a high valuation, or

% =Pr(p=py,).

The expected value given a belief x(f) in period ¢ is denoted by u(x(?)),
where

() 2 a(t) pa+ (1~ a(t)) pr.

Since the buyers are nonatomic they have no individual effect on prices
and quantities, and as a result they choose according to their myopic pref-
erences at each stage.* To complete the description of the stage game
payoffs we need to specify the profit functions for the two firms. The flow
profits resulting from a vector of quantities (g,(¢), g(f)) are given by
pt) g, (t) for i =1, E, where the p,(¢) are obtained from static market
clearing conditions.

The uncertainty about the new product can only be resolved over time
by experience with the new product. We assume that the evolution of the
belief about the quality of the new product is governed by the diffusion
Process

ge(t) a(8)(1 — (1)) (e — p11.)

do(t) = >

dB(1), (1

where B(¢) is the standard Wiener process. In the appendix, we provide a
microfoundation for this particular form of the evolution of the beliefs.
There we derive the diffusion process a(#) from a discrete time model with
a finite number of buyers, where each buyer is sampling from a normal
distribution with known variance ¢° and unknown mean g, which is either
f OF fhy.

Observe that, being a posterior belief, «(#) follows a martingale; i.c., has
a zero drift. The variance of the process is at its largest when «(f) is away
from its boundaries as the marginal impact of new information is at its
largest when the posterior is relatively imprecise. The economic assumption
behind the form of this particular process is that the variance in the pos-
terior belief is linear in the quantity of sales by the entrant and thus the
informativeness of the market experiment grows linearly in the sales of the
entrant, The remaining term in the expression, (uy —u,)/6%, is sometimes
referred to as the signal-to-noise ratio as it measures the strength of the

4 We are implicitly assuming that the firms' information sets consist of ali past market
observations, ie., all past prices and quantities.
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signal p; — u, compared to the inherent noise in the observation structure,
0. Define

()1 — ()t — 1)
Z(a(t)) = ‘/ b P
From (1), we see that as long as ¢z(#) is bounded away from 0 for all ¢,
af) converges to «* & {0, 1} almost surely. In fact, the convergence is fast

enough to make the limit

im &, | [t g1 |

where ¢(-) is an arbitrary continuous and piccewise smooth function of «,
finite almost everywhere. This result allows us to use the strong long-run
average as the intertemporal evaluation criterion in our model.

3. STATIC EQUILIBRIUM

In this section, we derive some of the basic equilibrium properties in the
static model for the case where f(f) is the uniform density. The safe
product is worth s and the new product is worth u(x) for a given «. In the
description of the equilibrium conditions we shall assume that u(x) <s.
The corresponding results for u(a)>s are symunetric and stated in the
relevant proposition as well. Define a,, as the belief at which the expected
value of the new product is equal to the established one:

S— iy

=5, =—".
H(a,) —

The static prices and quantities are denoted by P, P,, @, and Q, for the
entrant and the incumbent respectively. The equilibrium prices and quanti-
ties are denoted by P,(«) and Q,(x) as we are interested in the comparative
static behavior of the equilibrium variables as a function of the belief «.
The equilibrium conditions are given by the profit maximization conditions
of the firms and the indifference conditions of the marginal buyers. The
latter can be stated as

(1~Gy)s— P =(1—-Qr) u(a)—Fg
and

(1-0,—0¢) pla)—P; =0.
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The first indifference condition implies that at the equilibrium prices
buyers with valuations # e [1—Q;, 1] prefer the incumbent. The second
indifference condition implies that buyers with valuations 8 e [1—Q,— ¢,
1—Q,)] prefer the entrant. It also follows that all buyers get a nonnegative
expected utility from their purchases, but the segment with the lowest
valuations may not buy at all. The market clearing prices for given

quantities {Qy, Q;} are
Py = p(a)(1-Q,— 0Qp)

and

Py =s(1—0;)— p(a) Q.

Since the derivation of the static equilibrium is completely standard, the
derivation of the results is relegated to the appendix.

ProposiTION 1 (Static Policies).

1. Pgler), Qe(@), and Py(x) Oz(a) are increasing in o.
2. P(w), (o), and P,(a) Q,(a) are decreasing in a.

Proof. See the appendix. ||

As expected, the quantity and the price of the entrant are increasing in .
The entrant can increase his sales as well as his margins as the quality is
improved. The incumbent responds to an increase in the value of the com-
peting product by lowering his sales as well as his margins. It is worthwhile
to point out that the monotonicity result extends over the entire range of
posterior beliefs and holds also around the point «,, where the leadership
between the two firms is changing. This is one instance where the model
with quantity competition behaves in a more regular manner than the one
with price competition, which displays nonmonotonicities in the prices and
quantities around the switching point «,,.

ProrosrTion 2 (Curvatures).

1. For u(a) <s,

(a) Pplo), Os(x), and Pg(a) Qp(x) are convex in o,
) P{a), Q:(x), and P,(a) Q,(a) are concave in a.
2. For u(x)>s,
@) Pg(w), Qx(e), and Pc(a) O (a) are concave in o,
(b) P(w), @r(a), and P,(a) O,(ex) are convex in w.
Proof. See the appendix. |
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An intuition for the curvature as well as for the change in the curvature
of the policies and revenues can be given as follows. For low posterior
beliefs where g(a) < s, a marginal increase in « increases the profit of the
entrant through two channels. First, it increases the price for fixed quanti-
ties. This direct effect is the same at all levels of « as long as the quantities
supplied are unchanged. There is also the indirect effect from a stronger
competitive position of the entrant and the corresponding reduction in the
quantity of the incumbent. This effect is strongest when « is close to a,,
and vanishes for very low values of «. The combination of these two effects
leads to a convex profit function as long as u(«) < 5. As « increases beyond
«,,, the position of the entrant resembles increasingly that of a monopolist.
The indirect effect then becomes weaker and it is only the ability of the new
firm to increase its prices which increases its profits.

4. DYNAMIC EQUILIBRIUM

In Subsection 4.1 we consider the dynamic optimization problems of the
firms, and we also introduce the model without discounting using the
strong long-run average criterion for evaluating payoffs. In Subsection 4.2
we then characterize the unique equilibrium and the associated equilibrium
policies.

4.1. Dynamic Optimization

In a discounted model the entrant’s value function is the solution to the
Hamilton-Jacobi-Bellman equations®

rVp(a) = max {Ps(@) gs(a) +3 gs(a) Z7(0) Viz(a)}. @

If we tried to solve this equation jointly with the corresponding one for the
incumbent, we would obtain a nonlinear system of second-order differen-
tial equations. An analytical solution of such systems is, in general, impos-
sible. For this reason we consider the limiting case as the discount rate
vanishes or r —+ 0 and then derive the equilibrium policies under the strong
long-run average criterion. ®

¥ See Dixit and Pindyck [9] or Hartison [17] for a complete derivation of the dynamic
programming equation in continuous time when uncertainty is represented by a Brownian
motion.

SSee Dutta [10] for a detailed analysis of the link between optimality criteria under
discounting and no discounting.
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The strong long-run average criterion has the important property that
the optimal policies under this criterion are the unique limits to the asso-
ciated policies under discounting. The equilibrium policies to be derived
therefore maintain all the qualitative properties of the equilibrium with
small, but positive, discount rates > 0. In particular, they preserve the
intertemporal tradeoff of the experimentation policies under discounting.

We start by fixing the policies of all other players to a set of arbitrary
(Markovian) policies and consider the decision problem of the entrant. In
the next subsection, we return to the full equilibrium problem. The refor-
mulation for the incumbent only requires the obvious substitutions. The
long run average payoff for the entrant under an initial belief «, is given by

ostoa) = sup lim 2, [ 7 0, paa) dt |

gr(a()) T

Since a(?) converges almost surely to zero or one, the long-run average
starting at any arbitrary belief «, is given by’

ve(o) = (1 — 2} 05(0) +ao0e(1) -

As v;(0) and vz(1) are simply the full information payoffs associated with
the static payoffs at =0 or =1, the long-run average can be computed
exclusively on the basis of the static problem. In contrast, the strong long-
run average is defined through the optimization problem:

V= sup lim B, [ [ @u(e(0) paGat)-vaaD)dt |

ggla(r)) '~ oo

Thus the strong long-run average criterion maximizes the expected return
net of the long-run average. The limit as T — co in (3) is well-defined and
finite. The strong long-run average hence discriminates between policies
based on finite time intervals as well. The infinite horizon problem (3) can
be represented by a dynamic programming equation,®

v(e) = max {gs(a) pe(a) +35 gs(@) () V() }. @

The difference between the dynamic programming equation under dis-
counting (2) and under no discounting (4} is simply that the flow payoff,
rVe(a), is replaced by the long-run average payoff, v;(a), whereas the

It is easy to see that the sales of both firms are bounded away from zero at all points in
time,

 For the full details on the strong long-run average in continnous-time dynamic program-
ming models se¢ Kryloy [21], and for a derivation of Bellman’s equation for the problem in a
related application see Bolton and Harris [6].
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right-hand side of the equation remains identical. However, as the long-run
average is independent of the current policy gz(x), we can rewrite (4) to
read

0 =max {qs(@) pel@) —vg(a)+3 go(a) Z%() VE(@)}.

After dividing the entire expression through g.(e) (assuming that g;{e) >0
can be guaranteed), the optimality equation can be rewritten as

_ @ L e
0= max {pg(a) qE(a)}+22(u)Vg(a). )

This last expression demonstrates the advantage of analyzing the undis-
counted program rather than the discounted one. The first-order conditions
do not involve the second derivative of the value function any more, The
only modification relative to the static program is the introduction of the
long-run average, but as we saw above it can be computed on the basis of
the static equilibrium as well.

4.2, Equilibrium Analysis
Consider now the entire set of equilibrium conditions under no

discounting. The dynamic programming equation for the entrant is

0= max {Pe(@) gz (@) —ve(0)+3 qx(0) 2°(x) V 5(0)}, (6)

and for the incumbent the equation is by extension

0= Iﬁt’)‘ {p:(0) g {0)— v, (a) +1 gx(0) Z () V7 ()}, (7}

where v, () and vz () are the long-run average payoffs of the sellers.

Since each buyer is of negligible size, her decision doesn’t influence the
market experiment and hence her value of information is independent of
her decision. The purchase decision of each buyer is therefore exclusively
determined by the current payoff offered by the various alternatives. In
consequence, the sorting of buyers in the intertemporal equilibrium will
display the same structure as in the static equilibrium: for u(a) <,

pe(@) = p(o}(1— g (o) — gz (a)),

3
() = s(1—q(a)) — p(a) g={0);

and symmetrically for u(a) > s,
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Pu) = p(a)(1—gx(a)) —sg(a),

©)
pr(e) = s(1—¢,(2) —g5(2)).

DerintTioN 1 (Markov Perfect Equilibrium). A Markov perfect equi-
librium is a pair of functions {gz(a), ¢,(«)} such that the equations (6}-(9)
are satisfied for all a € [0, 1].

By substituting the prices into the value functions, we obtain the value
functions of the firms as a function of the quantities {g.(«), ¢;()},

0= max {(()(1 — gz () —m(o) g, (o)) ql) —ve(a) +13 gelo) Z%(a) Viz(a)},
9e(e (10)

and

0= max {(s(1—g{x)) —m(a) ge(0)) g, () — v, () +3 g () Z7(x) V7 ()}
b an

We can then solve for the unigue equilibrium quantities by the methods
from the previous subsection to get

_ ve(a)
w@= [ (12)
and
(o) =21 m(® Jos(@) (13)

2 2 s Vo’

where m(x) £ min {5, u(«)}. It can be verified that the quantity g,(e) is
continuous at a = «,,, but not differentiable. The equilibrium prices p; (o)
and p,(x) follow from the indifference conditions (8) and (9) of the margi-
nal buyers. The monotonicity properties of quantities and prices as a func-
tion of the posterior belief «, which we observed in the static equilibrium
(as a comparative static result), are preserved in the dynamic model.

ProrosiTioN 3 (Prices and Quantities).

L. pg(a), ge(a), and ps(e) q(a) are increasing in a.
2. pi(%), g/(), and p,(o) q;{ox) are decreasing in «.
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Proof. See the appendix. ||

Next we want to contrast the dynamic entry policies with the static poli-
cies. To this end, suppose that the value of information to the entrant is
zero at some critical posterior belief o, or V() =0. From (10), his
dynamic best-response function at e, is identical to the static one. As inter-
temporal considerations in terms of V3 («) or V7 () enter the best response
function of the incumbent only indirectly through the choices of the entrant
(see (11)), it follows that if V(&) =0, then necessarily ¢,(«,) = Q,(2.) and
o) = PAe,) for all {e {E, I}. Moreover, since the dynamic program-
ming equation (10) has to hold it follows that at «, the flow revenues (static
or intertemporal) of the entrant have to be equal to his long-run average
Vg (G‘.).

Recall that the long-run average vz(a) at o, is the expected value of the
static equilibrium revenues at « =0 and o = 1 weighted with 1—«_ and «,
respectively. Thus, even if we don’t know V(a) or ¥;(a) we can find the
points where static and intertemporal values coincide through a compari-
son of the static values with the long-run average. Conversely, at zali points
where static revenues and the long-run average diverge we can expect to see
discrepancies between static and intertemporal policies.

ProroSITION 4 (Single Crossing).

1. The difference py(«) gz()— vg(a) crosses zero at most once and
only from below.

2. The critical point o, satisfies o, > w,,.
3. A necessary condition for crossing to occur is p <5< tiy.
4. A necessary and sufficient condition for crossing to occur is

[P(0) @s(0)] —05(0) <0, and  [Px(1) @p(1)]'—vi(1) <0.

Proof. See the appendix. |}

The proof proceeds by establishing the above properties first for the
static revenues Fg(a) Qy(x) and then extending them to the intertemporal
flow revenues pg(a) gz(a). Thus there is at most one critical point where
the value of information for the entrant is zero. As the equilibrium policies
we derived earlier as well as the long-run average are continuous, it follows
that the preference of the entrant toward information represented by V7 («)
changes signs at most once. As the sign of the term V;(o) determines the
bias in the intertemporal policy relative to the static policy, the proposition
shows that this bias changes sign at most once, and in fact a necessary
condition for the change is that there is uncertainty about the ranking of
the alternatives, or u, <s5< py.
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Fe(@)Qp(@) - vi(@)

Pr@4,(@) ~vg(@)

FIG, 1. Equilibrium revenue minus long-run average for entrant for y, =99/100, s=1,
and g, =2.

Observe that the necessary and sufficient condition for a change of sign
is given entirely in terms of the static profit functions. The long-run
average vg(«) is linear in « and satisfies v, (x) = Pp{) Qx(a) for a € {0, 1}.
We showed earlier (in Proposition 2), that the static profit function of the
entrant is convex whenever u(x) < s and concave whenever u(x) > s. Hence
it is sufficient to compare the local behavior of the static profit to the long-
run average around the endpoints. The equilibrium revenue and long-run
average for the entrant are displayed in Fig. 1 for the case that the neces-
sary and sufficient condition is satisfied.

The value of information for the entrant is represented by the second
derivative of the value function V(). The dynamic programming equa-
tion (10) immediately shows that the value of information has the opposite
sign of pg(a) gz(a)—vxz(e). This allows us to establish directly how the
presence of market learning affects the equilibrium policies of the firms on
either side of the critical value «,.

ProPOSITION 5 (Static vs. Dynamic Strategies).

1. Fora<a,
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(@) gg(®) > Qp(=) and py(a) < Pgla);
(b) qi(a) < Q=) and p;{x) < P (x).

2. Fora>un,

(@) gg(e) < Qp(n) and pg(a) > Pyla);
®) g{a)> Q;(a) and p;(a) > Py(a).

Proof. See the appendix. |

The behavior of the equilibrium prices and the quantities is displayed (in
their differences) in Fig. 2 for the same environment as that in Fig. 2.

The curvature properties of the equilibrium policies provide us with
valuable additional information about the intertemporal properties as the
curvature properties can be directly translated into a time series profile by
exploiting the fact that « is a martingale.

PROPOSITION 6.

qz(x) is concave in «,

pe(o) is convex if p(x) < 5 and concave if p(e) > s,
q:{) is convex in o, and

pi() is convex in «.

i A e

Proof. See the appendix. |}

It is an immediate consequence of the previous proposition that g.(a) is
a submartingale, whereas ¢,(«) and p,(«) are supermartingales. Hence the
expected sales and the expected prices of the incumbent rise over time
whereas the expected sales of the entrant fall over time.

When we combine the time series behavior of the equilibrium with the
properties of the equilibrium policies relative to their static counterparts, a
rather complete picture regarding the entrance and deterrence behavior
emerges. As the policies depend essentially on the current position of the
firms in the quality spectrum, it is useful to consider the two polar cases
relative to the intermediate case where gy <5 < uy. I g, < py <5 we refer
to the new product as a substitute, and if s < u, < u,; then we refer to it as
an improvement. A substitute is at best equal to the established product,
whereas an improvement is at least as good as the established product. The
first scenario may represent the introduction of a generic pharmaceutical or
a no-name product, whereas the second may represent a new version of a
current product with additional features whose (positive) contribution is
yet uncertain.
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0.005

0.004 P grlo) — Oglo)

F5

0.003 1
0.002 4

0.001 T

-0.01 -

-0.02 1

q,(@) -0, (e}

pr(e)— Pgla)

|

-0.05 1]

-0.06 —

FIG. 2. Static and dypnamic equilibrium policies for u, =99/100, s=1, and py=2:
(a) ge(2) — Qr(a), q,(0) — Qs (e}, () peft) — Pe(wr), prla)— Pra).
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With a substitute entry is aggressive and the equilibrium price of the
entrant is below the static price. Over time, the expected equilibrium price
of the entrant is increasing and the expected supply is decreasing as the
entrant becomes more established and less aggressive. The effect of entry
with uncertain valuations on the incumbent is that sales as well as prices
are uniformly lower for the incumbent. But the submartingale property of
both equilibrium variables then shows that sales and prices are expected to
increase over time.

The entry strategy with an improved product is substantiaily different.
The supply is at all times lower than with a static equilibrium, as the new
firm will lose more through a (gradual) decrease in the posterior than
through a (gradual) increase. In consequence, the new firm will start with
lower than myopic quantities and will be essentially cream-skimming, Over
time, its expected price is decreasing and the expected sales and revenues of
the incumbent are increasing. Thus the aggressiveness of the strategy is
almost entirely predicated by the position of the new firm relative to the
established firm.

Finally, we may ask why the value of the information of the entrant has
different signs for a substitute and for an improvement. The intuition
behind this result can be obtained by considering the strategic incentives in
the static game. With uncertainty, sales by the entrant lead to the release of
more information to the market participants. This release of information
can be thought of as inducing a Zero mean lottery over posterior beliefs.
From Proposition 2, the entrant’s static revenue is convex in « with a sub-
stitute and concave in a with an improvement. Thus, if there were a single
possibility to acquire additional information, the entrant would prefer
more information as represented by more variance in the posterior belief
with a convex static equilibrium profit function and less information with a
concave one. The results above show that this preference for additional
information in a single experiment also holds in the general dynamical
model where information is acquired at all instants.

5. ROBUSTNESS

In this section we discuss in some detail how robust our equilibrium
results are to different modeling assumptions. In Subsection 5.1 we remove
the assumption of a uniform distribution on & and extend the analysis to
more general inverse demand functions. In Subsection 5.2 we discuss how
our qualitative results would be changed by considering price competition.

5.1. Quantity Competition and General Distributions

Consider a general distribution F(#) over the unit interval. Associated
with any F(#) and an initial belief « is a static profit function #,(Qz, 0, | @)
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for firm #, In addition, denote by n:(Qg|a) the profit function of the
entrant when he faces a competitive fringe with quality s rather than a
single competitor. We make the following three assumptions about the
behavior of the static profit functions for the remainder of this section:

1. m,(Qz, O;|a)is concave in Q; for all i and all .
2. 7mg(Qz|a) is concave in Oy for all «.

3. The static best response functions satisfy the stability condition:
-1 < Qi(0)) <0, Vi

As our main interest is in the dynamic aspects of the model, we do not
attempt to present the most general conditions on F(#) which would
guarantee that the above fairly standard assumptions on the static profit
functions are met. Yet it can be verified that a sufficient condition for all
three assumptions jointly is that the distribution function F(8) is convex,
which includes the uniform density model analyzed so far.

We proceed to show that the qualitative properties of the entry and
deterrence behavior can be derived in this general setting based exclusively
on the interaction between static profit functions and long-run average
values.

As before, dynamic programming equations characterize the Markov
perfect equilibria; i.e.,

0= max {mu(qe, 4 | @) —vg(e)+3 ge Z%(@) V() },
and

0= max {ni(gs, 4| 0) =0, () +3 g5 Z%(@) VT (@)},
4

where vz(n) and v;(ee) are the long-run average revenues under the static
profit functions =g (Q,, O;|®) and #,(Q,, Q,|a). For gz >0, we may
divide the above equations by g to obtain:

0=max
g5

{“E(QE» q: | &) —vg(a)

l 2 ”
1Ol r@vi@, 9

0 = max
qr

{T‘: (2z. 4; | 0) — vy ()

l 2 o
P }+§Z (o) V(o). (15)
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In order to facilitate the comparison with the static equilibrium which is a
solution to

III:X {EI(QEs QI I d.)}, Vi!

we consider the first order conditions to the dynamic programming
equations (14) and {15):

3
9= 5- Rg(qe, g1 | o) = me(ge, g fo) —vg(a) (16)
and
O e r]a)=0 a7
34, 9> qr .

We observe that the first-order condition of the incumbent leads to the
same best response function as his static one. Moreover, if the right-hand
side in (16) vanishes, then the equations (16) and (17) reduce to the static
equilibrium conditions. Hence we know that the dynamic equilibrium
conditions are satisfied at the static equilibrium values of {Qs(a), Q,(«)} if
and only if 7z(Qc(), Or{e} | &) = vg(e). Thus the coincidence of static and
dynamic equilibrium policies is in general linked to the equality of the
static equilibrium profit and the long-run average for the entrant.

Denote by Q,(g;) the myopic best response of firm # to firm j's quantity,
where we omit the dependence of , on « for notational simplicity. As
indicated by Eq. (17), the static and the dynamic best response are identical
for the incumbent, or ¢,(gz) = @,(g5). All dynamic equilibria must there-
fore lie on the reaction curve of the incumbent, {g., g,(g¢)}. Assumptions
1 and 3 guarantee that there is a single stable static equilibrium, and thus
we know that for all g, > Qz{a), gz > Q(Q,(g:)) and hence, by the strict
concavity of #g(gg, ¢;) in gz,

Ons (g5, 4r(gz) | )
3as <0, (18)

for all gz > Qx(«). A similar argunment can be made for g, < Gg(2) to
show that

Ore(qs, 4:(q2) [ o) > 0. 19)
0ax
As the first-order condition of the entrant in the dynamic equilibrium
requires that

sen (ang (gs ,azrs(q;s) | a)) = sgn(ng(gz, ;(ge) | @) —vp(@)),  (20)

a local argument around the static equilibrium quantities {Qp (), O;()}
based on (18) and (19) suggests the direction in which dynamic quantities
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deviate from static ones. In fact, the argument is easy for the case that
#5{Qr(e), @;(e) | &) <vg(e). More care is required in the case where
75{Qx (), Q,;(x) | &) > vg(x) if we want to guarantee that all equilibria have
the desired property. Therefore assume initially the following relation
between the static equilibrium profits and the long-run average:

np(Qe(@), O;(x) | &) < vg(e).

To determine the location of the dynamic equilibrium we must determine
sgn(n; (g, q:(ge) | &) —vg(a)) on the locus {gz, g,(gz)}. The claim is that
every quantity ¢, which satisfies the dynamic equilibrium conditions must
imply that g; > Qg(«). To see this we observe that we have either

7ig (45, 4/(qg) | ) < vp(x) forall g, (21)

or

7elqe, 4r(qx) | @) 2 ve{a) = g5 > Ox() . (22)

In the first case, the static profit function remains below the long-run
average for all pairs {gg, g;(gz)}, and the first-order condition (20)
together with condition (18) implies that g, («)} > Qg (). Consider next the
case of (22). If there exist values {g;,q,(¢gz)} such that the static profit
exceeds the long-run average, then condition (18) shows that (20) cannot
possibly hold at g > Qs(a). Hence we can conclude that whenever
n:(Qg, Q| &) <vg(a), the dynamic equilibrium quantity sold by the new
firm exceeds the static equilibrium quantity, or ggz{«) > Qz(«). To establish
this argument we only used the stability condition of the static best
response function, The complementary results for

mp(Qe(a), Or(a) [ ) > vg(a),

are proved in the appendix under the additional concavity assumptions.

ProrosITION 7. Suppose that assumptions 1-3 hold. Then,

L. wg(Qe(a), Qi(a) | @) <vg(x) = gg(a) > Qp(a),
2. 7me(Qx(a), @r(x) | ) > vg(e) = gulx) < Qp(at).
Proof. See the appendix. §

Under Assumptions 1-3, the predictions for the dynamic model are then
straightforward. To determine whether the equilibrium quantities of the
new firm exceed or fall short of the myopic guantities, all we need to do is
to compare the myopic equilibrium profits to the long-run average profits.
If the static equilibrium profits are below the long-run average profits, then
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the new firm will adopt an aggressive sales policy and by the property of
the best response function the incumbent will adopt a more defensive
stance. In contrast, if the static equilibrium profits are above the long-run
average revenues, the entrant will proceed cautiously with the introduction
of the new product and the incumbent will increase his supply to the
market. The dynamic programming equations also inform us that the entry
strategies are always associated with ¥ () > 0 and V' («) <0, respectively.
The change in the entry strategy can therefore generally be located as in the
uniform model analyzed earlier at the intersection mg(Qg(2), Q;(x)|a)
vy(n), where all the necessary data can be computed on the basis of the
static profit function alone.

5.2. Price Competition

Finally, we sketch how the qualitative results would be affected by a
model of price competition within the linear specification. We show that
despite some fundamental differences in the static equilibrium profit func-
tions, the dynamic equilibria of the two models share very similar properties.

The most important change in terms of the static equilibria of the two
models is that the equilibrium profits are no longer monotone in the
quality of the new product. As emphasized in the literature on vertical dif-
ferentiation, the competitor with a lower quality product doesn’t want to
increase the quality of his product if this brings the inferior product too
close to the superior product. In consequence, the equilibrium prices and
revenues are not monotone in o« either, rather they display a global
minimum at & = e,. At the point a,,, price competition with identical pro-
ducts leads to the Bertrand outcome with marginal cost pricing. The static
equilibrium profit functions display a kink at a,, but on the intervals
[0,«,) and (x,,c0) they are concave for the entrant as well as for the
incumbent.

In the dynamic model, the strategic interaction is more complex with
price competition. With quantity competition, the only variable which
affects the evolution of future states, i.e., the level of sales by the entrant, is
directly a decision variable of the entrant. In obtaining the dynamic best
response of the incumbent, we can therefore ignore the impact of his
current decision on future states. But this implies that the best response of
the incumbent to any output decision by the entrant is the same in the
static and the dynramic models. As a result, all comparisons can be carried
out by analyzing the shifts in the best response function of the entrant. Ina
model with price competition, the price decisions by the firms jointly
determine the sales level of the entrant. In consequence, we have to analyze
the joint effects of changes in the two best response functions on the
dynamic equilibrium. To see how this interaction is resolved in equilibrium,
we check how the static policies are modified by intertemporal consider-
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FIG. 3. Static equilibrium profits and long-run average (I), with g, =3/2, s=2, and
#y =572 (8) mp(Qz(a), Or(n)), and v(2); (b) 7, (Qe(2), Qr(w)) and v, (o},

ations. Figure 3 illustrates the static equilibrium revenues as well as the
long run average revenues for the case that the value of the new product
can either be lower or higher than the established product. Due to the local
minimum at « = ¢, the long-run average is always above the static reve-
nues. Thus if the static policies were in fact the dynamic equilibrium poli-
cies, then the respective Bellman equations would indicate that ¥V;(x) >0
as well as V() > 0. But this would imply that both firms would like to see
more sales by the entrant relative to the static equilibrium. We can there-
fore conjecture that the entrant will lower and the incumbent will raise its
price relative to the static equilibrium price. In consequence, sales by the
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FIG. 4. Static equilibrium profits and long-run average (II), with s=px, and u, =2:
(a) 7(Qs(x), Os(«)) and vg(a); (0) 7 (Qeler), Or(e)) and v, (2).
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entrant must be larger (and the incumbent’s sales must be lower) than in
the static equilibrium. If, on the other hand, the product is an improvement
and § < g4; < iy, then the long-run average revenue is lower than the static
equilibrium revenue, as Fig. 4 illustrates.

By the same intuition as that above we can then infer from the value
functions that if the static policies were indeed equilibrium policies in the
dynamic model, then it would have to be that Vi(x) <0 as well as
V() < 0. But this implies that both firms perceive sales by the entrant as
carrying a negative value of information. The strategic response relative to
the static solution for the new firm is to raise its price, and for the incum-
bent it is to decrease its price, This leads to lower quantities for the entrant
and higher quantities for the incumbent. Thus the qualitative behavior of
entrant and incumbent are similar in a model for quantity competition.

The only difference between the two models arises when u; < gy <s. By
the concavity of the static profit function, the static revenues of the new
firm are always below the long-run average. Observe, however, that a
marginal improvement actually brings the new firm closer to its competitor
in the quality spectrum and this leads to lower profits. If we interpret the
random product quality as reflecting the uncertain value of some new fea-
tures in the product, it would be unlikely that these features would be
included in the product if y; < uy <s.

Our carlier paper, [4], analyzed a model of horizontal differentiation
with price competition. In that model, an increase in the entrant’s expected
quality leads to a lower equilibrium price for the incumbent. This clearly
has an adverse effect on the entrant’s profit, but as the expected quality
increases the entrant’s profits depend to a lesser extent on the incumbent’s
decisions. As a result, the entrant’s static profit increases in « at an increas-
ing rate or, in other words, the static profit function is convex in a. A
similar analysis applies to the incumbent, and as a result both the incum-
bent and the entrant have a positive value for information. In the current
model with purely vertical differentiation, the incumbent’s price increases
with the entrant’s expected quality in the static equilibrium in the region
where u(o) >s. As a consequence, the e¢ntrant’s static profit function is
concave in that region. Hence the differences in the two papers depend
crucially on the economic distinction between the two models (i.e., the type
of differentiation) rather than on the more arbitrary decision of price vs
quantity competition.

6. CONCLUSION

This paper analyzed the entry game in a model with vertical differentia-
tion, The precise location of the new product relative to the existing
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product was initially uncertain and was learned over time through experi-
ence. We derived the optimal entry and deterrence strategies for the com-
petitors. It was shown that their qualitative properties depend on the
current position of the new product in the quality spectrum. This allowed
particularly sharp characterization results for the polar cases of a substitute
or an improvement, respectively. By focusing on the Markov perfect equi-
librium of the game, we derived a set of time series implications which may
be amenable to empirical tests.

The current analysis faced some restrictions by the very nature of the
model. First, we assumed that the value gnd the uncertainty about the new
product were common to all buyers, after controlling for the element of
vertical differentiation. It may be interesting to pursue how the equilibrium
strategies would be affected if the experience by the buyers would contain
an idiosyncratic element (see Milgrom and Roberts [25] for a simple
monopoly model). The second limitation is the “once and for all” nature of
the innovation presented by the new product. This was reflected in the
model by the fact the posterior beliefs converged to either of the absorbing
states a ¢ {0, 1} almost surely.

The techniques employed in this paper, however, generalize beyond the
present model. The use of the undiscounted optimization criterion, and in
particular the notion of the long-run average, allowed us to make a series
of predictions based almost exclusively on the static equilibrium behavior.
While the long-run average here was computed on the basis of the absorb-
ing and mutually exclusive posterior beliefs, the technique extends naturally
to ergodic distributions of the state variables. This should make the meth-
odology used in this paper an attractive candidate for a much richer class
of strategic models such as investment games and models of industry
evolution, for which there are very few explicit solutions currently known
(e.g., Ericson and Pakes [12]). In particular, it would seem feasible to
combine dynamic competition models such as the one analyzed here with
an ongoing process of innovation.

APPENDIX

We first present a derivation of the Bayesian filtering equation (1) based
on a discrete time model with a finite number of buyers. The limiting
behavior of the discrete learning model will lead to the Brownian moticn
depicted in (1) as the number of buyers becomes large and the time elapsed
between any two periods converges to zero. Suppose therefore in an
economy with N buyers, that each individual experiment with the new
product by buyer i is an independent and identically distributed random
variable % with a normal distribution of unknown mean (uy = u/N) and
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known variance (g% = 6%/ N). The parameter x4 can take on the value y; or
H#y. Note that the mean as well as the variance of the individual experiment
is scaled with respect to the total number of buyers N. The utility for buyer
i is then given by 8,x,, where x, is a sample realization of %,. Based on the
individual experiences of all buyers, we can describe the aggregate or
market experience in every period. As the informational content in every
realization x, is independent of the willingness to pay #, of individual i, we
take the market experience to be the sum of the individual random
variables while omitting the weights 8,; i.e.,

HN) = ;1 £,

As the mean and variance of the random variable %, are normalized by the
number of buyers in the market, the appregate mean and aggregate
variance of the market experiment $(N) are independent of the number N
of buyers and are given by (4, ¢%). If only a number k of buyers experiment
with the new produci, where k < N, then the aggregate experiment is given
by the random variable

k
Xk)=Y %,
i=1
which is again normally distributed with mean £ u and variance £ o*. If

we take the limit as N goes fo infinity, the distribution of an aggregate
experiment with a fraction n of the buyers, where

Lk
=+
is given by
#(n) ~ N(np, no?y .

Next we take the limit as the time between any two periods converges to
zero. In the continuous time limit the market experiment then becomes a
Brownian motion which can be described by the stochastic differential
equation

dx(n(2)) = n(t) udt+o ./ n(c) dB(s), te[0, o).

The flow realization in petiod ¢ is given by the true mean g weighted by the
fraction of buyers participating in the experiment and the random term of

the standard Brownian motion dB(f) weighted by the standard deviation
o./n(f).
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Based on the evolution of the market experiment the market can update
the prior belief &, to the posterior belief a{z). Based on the standard result
for Bayesian updating in continuous time, it can b¢ shown that the pos-
terior belief «(¢) also evolves as a Brownian motion.? It can be represented
by

in) - [P ONr =12) g,
and as in equilibrium n(¢) = g, (1), Eq. (1) follows.

Proof of Proposition 1. The static Nash equilibrium of the duopoly is
obtained by solving simultaneously for profit maximizing {Qy (), Q,(a)}."’
By solving the best response functions simultaneously, we get

(o) + M(ax) —m(a) 5+ M(x)—mio)
4M (o) —m(a) AM (o) —m(a)

and  Qe)= 23)

Q) =

where m(a) and M(x) are defined as follows:

m(a) £ min{s, (@)},  M(a) £ max{s, a(a)}.
The equilibrium prices follow from the market clearing conditions and the
monotonicity properties follow directly from the relevant derivatives. [

Proof of Proposition 2. The curvature properties follow directly from
the second derivatives of the equilibrium (23) and prices. |

The next lemma records the construction of the long-run averages for the
firms.

Lemma 1 {Long-Run Averages). The long-run averages are given by

(g + M(0)—m(0))? - ta (it + M(1) —m(1))?
@M —m©0)* (aMQ)—m(1))?

vp(a)=(1—a) (29)

and

s(s+ MO)—m(0))?  s(s+M(1)—m(1))?
2@ = (=) = ) —m@)? T (@M —m(D))?

Proof. The long-run average valucs v,(a) are equal to the expected
full-information payoffs

(@) = (1 —a) 5,(0) +av, (1),

*Sec Lipster and Shiryayev {22, Chap. 9] for the derivation of the filtering equation for the
continuous time, Brownian motion model.

1 With the linear demand specification, the profit function of each firm is concave in its
own quantity, and therefore first-order conditions are also sufficient for optimality.
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if gz () is bounded away from zero for all a. It can be verified from (12)
that this indeed guaranteed in equilibrium. As v,{0) and »,(1) are simply
the values of the full information static equilibrium problems with
a € {0, 1}, the composite values follow. |

Next we record without proof some properties of ratios and products of

pla) and vglor).

Lemma 2.
1. The ratios vg(a)/ u(e) and \/vz(x) / u(ex) are increasing and concave
ina.
2. The product vg(e) u(a) is increasing and convex in o.

3. The product ./vg(e) u(a) is increasing and concave in a.

Proof of Proposition 3. The first-order conditions associated with (10)
and (11) deliver the solutions for gz(«) and g,(a) given in (12) and (13).
The market clearing conditions (8) and (9) lead to the equilibrium prices:

_ _ fes@_ 1_1m) foe(e)
”E(“)"‘(“)(l #(oc)) '"(“)(2 2 s ,u(«x))

and

_§ _ma) frg(x)
pre)= 33 (o)

Next we prove the monotonicity properties. Consider first u(a)2s or
m(x) = 5. A necessary and sufficient condition for ggz(a) to be increasing is
that vz(1)} #(0) = vg(0) u(1), which is equivalent to

p +M©Q)—m(0) _ pu +M(1)—m(1)
AMO)—m(0) — 4dM)—-m(1) ’

which holds for all values of u,, 4, and s. It follows directly that 4,(«)
and p,(«) are decreasing in «. It remains to show that pg() is increasing.
Suppose initially that u,, uy 2s. It is sufficient to show that u(a)—

 #(@) ve(a) is increasing in a. As p(a) > ve(er) for all a, it suffices to show
that

p) [ue)
”’E(a‘), UE(“)'
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By Lemma 2, the rhs is convex and decreasing, and evaluating the inequal-
ity at o = 0 is sufficient as p'(«) and vz () are constant. We then obtain

Ha—Hp Ay —s
s . 25
p it =) Gt =) 2= @9
(4ps —5)* (4p, —3)*
As the lhs is increasing in ug, it is sufficient to evaluate it as gy | g;, and
(25) reads as

(4pty —5)* 2 8ui —2u; 8+ 57,

which is satisfied by the hypothesis of u; >s. Suppose next that
Hy, <8< gig. Then with (25) the argument changes only slightly as v {«)
has a different form, or

M — Hy > ds—p,
(20t "5')2_ () 7 s
(Bug—5)"  (ds—p)
As the lhs is now decreasing in py, it is sufficient to evaluate it in the limit
as pi — oo, where the inequality is satisfied as it reads

4;45‘—]11,.
s

Consider next u(x) < 5. The price is then given by
1 o
o) = 5 @) — (@) 9@+ /) 0.
Suppose initially that y;, py; <s. It is now sufficient to show that

1
5 10— /@) 5() 6)

is increasing in a. By the multiplication rule this is equivalent to showing
that

# (@) o/ (o) vy () 2 po' () v (o) + peer) vp(er).

As the term in (26) is concave in a, it remains to show that the inequality
holds at a =0 or that

Ha — B (g —p) s Bgs S
= ) ] 3
ds—p ~ (ds—p)t (s—py)” (ds—p)
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As the rhs term is increasing faster in u, than the lhs, it is sufficient to
evaluate it at py =3, or

S—H (s—p)s 1 B

4*"—111./(43_!’1_)2 9 (ds—p)”

which is satisfied for all u;, < 5. Suppose now that u; <5< uy; it is then
sufficient to show that p(a) > 0 at @ = 0 by Lemma 2, which is equivalent
to showing that at o =0

1
1) o/ (0 v(e) + 5 G} (@) vp(2) + (u(e))? vg(a))
2 p' (o) vg (o) + p(er) v (a).

Since the lhs is increasing faster in g, than the rhs it is sufficient to
evaluate the inequality at uy =s, and again it can be verified that the
inequality holds for all 4, <s. |

The proof of Proposition 4 relies on the following two lemmas. The first
states that the difference Pg(a) Qp(o) —vz(a) satisfies the same single-
crossing properties as pg(a) g.(oc} —vz(x) does and the second shows that
the crossing points of the two differences coincide.

Denote by A, the crossing point for the static revenue function.

Lemma 3. 1. The difference Py(a) Qp(a) — v (o) crosses zero at most
once and only from below.

2. The critical point A, satisfies A. > w,,.
3. A necessary condition for crossing Is p; < s < fiy.
4. A necessary and sufficient condition for crossing to occur is:

[Pe(0) Qe(0)]'=05(0) <0 and  [Px(1) Qu(1)] —vi(1) <0.

Proof. (1) Observe injtially that Pp(0) Qz(0)—v,(0y=0 and P.(1)
Q,(1)—0vg(1) =0. We first show that if g, < u, <3, or s < g, < u,,, then
Pg(a) Qo) —vg(e) never crosses at any e € (0, 1). By Lemma 1, v {a) is
linear in a, and by Proposition 2, P (a) Q. (x) is either convex or concave,
respectively. This together with the behavior at the end points excludes an
interior crossing point. Consider next g; < s < j,;, then the revenue func-
tion Py (x) @(x) changes curvature behavior exactly once at ¢ = «,,. As the
curvature changes from convex to concave, the boundary behavior then
implies that Py(a) Qz{x)—uvg(a) has to cross from below and can cross
zero at most once.
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(2) It is casily verified that at « = a,, Pz(a,,) Qg(a,,)—vg(a,) <0.
(3) The necessary condition follows from the arguments given for (1).

(4) The necessary and sufficient conditions follow from the curvature
and boundary behavior of the static and long-run revenue functions. ||

LemMa 4. o, = A,.

Proof. As pg(a) gz(x) and v;(x) are continuous, a change in sign for
pelo) gs(0) —vg(a) Tequires a point a = «, at which

pe(a.) gz(a.) —vg()=0. 27)

At such a point «_, either g(o,) = @{a.) or gg(o.} # Qx (2. ). Suppose first
that gz(«,) = Qg(a,) were to hold, then it follows by the equilibrium con-
ditions (10) and (8)(9) that p(«.} = Pp(x.) as well. But then it is has to be
the case that o, = 4,. Suppose to the contrary that g.{«. ) # Qg(a.) would
hold, then we show that (27) can’t hold. Since gz(a.) # Qx{a.), it has to be
the case that V'%(x,) # 0, by the first-order conditions from the Bellman
equation (10). But then the hypothetical policies at «, don’t satisfy the
Bellman equation and hence cannot be equilibrium conditions. Thus
if «.€(0,1) it has to be that a,=A_. It remains to show that if
P (o) Q@p(a)—vg(a) changes sign, then pg(x)gg{a)—ve(«} necessarily
changes signs as well. This is established easily as at «,, gz{u.) = Qp(a,) is 2
solution to the first order condition (10), and as the solution is unique the
claim foliows. ||

Proof of Proposition 4. (1-3) By Lemma 3, the difference pg(a) gg()
—vg(a) shares the single-crossing behavior with the difference P (a) Qz{a)
— (). By Lemma 4, they also share the crossing point.

(4) As the myopic and intertemporal policies are identical at the
endpoints, or gg(e) = Qx(a) and py(a) = Pr(a) for ae {0, 1}, it follows
that the gradient of the flow revenues at the endpoints are necessary and
sufficient conditions as well. |

Proof of Proposition 5. The asymmetry in the relationship between
myopic and intertemporal quantities for the sellers follows directly from
the best response function based on (10). It is therefore sufficient to con-
sider the relationship between gz(«) and Qg(a). It follows from the first
order condition of the entrant that g,(«) > Qg(«) if and only if VZ{a) > 0.
Likewise gz(a) < Qz(a) if and only if ¥'z(a) < 0. The results concerning the
equilibrium quantities follow then directly from Proposition 4.

For the equilibrium prices consider first the interval « € [0, «,,]. As the
inequality gz(a) > Qg(a) leads to ¢,(x) < @;(«), the best response function
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based on (10) implies together with the market clearing condition (8) that
pele) < Pylo), which in turn leads to p;(n) < Pi(¢). Consider next the
interval a € [w,, «,]. The inequality gz(«) > Qp(«) leads to g,(x} < O, (a).
The best response function based on (10) together with the market clearing
condition (9) implies that p,(e) < P(x), which in turn leads to
pe(e) < Pg(or). In the remaining interval a € {a,, 1], the inequality g.(x) <
O:(x) leads to ¢,(a) >, (). The best response function (10) together with
the market clearing condition (9) implies that p,(x) > P;(a), which in turn
leads to pg(&) > Pgla).

Proof of Proposition 6. (1) By Lemma 2.

(2) It follows directly from Lemma 2 that pg{a) is convex for
() < s and concave for y(a) > s.

(3) By Lemma 2.
{4y By Lemma2. ]

Proof of Proposition 7. The case of m(Qg(a), @r{e)| ) < vg(ex)
was argued in the text. Suppose now that mg(Qg(a}, @,(o) | &) > ve(a).
Suppose first that gp < Qg(x), then we want to show that at g,
75(gz, :(gz) | &) > vg(x). The argument is by contradiction. Suppose not;
then it would follow from the Bellman equation that ¥ ;(a) >0, but then
gx < Qg(a) cannot be an equilibrium as the entrant would have an incen-
tive to deviate and increase the quantity. By a similar argument, we can
exclude the possibility of g > Q(a) where ny(qg, g;(gz) | ®) > v-(a) holds
simultaneously.

Finally, we present sufficient conditions to rule out possible equilibria in
the region where ¢z > Q{(x) and nz{qz, 9,(q:) | @) < vg(a). Observe that
for all ¢, sufficiently close to Q. (a):

g Ore(qz, 9:(4e) [ %)
£ Oqx

<7(gs> 4:(4x) | &) — v (). 28)

A sufficient condition to rule out equilibria with gz > Qz(«) is therefore
that the derivative of the lhs is always below the derivative of the rhs for
gz > Qp(at). Using the fact that

7e{qs, 4:(95) | ) = pe(g5, 9/(92)) 95

we may rewrite the inequality (28) as

7 ,
qi‘ AU 91(9'2))<

aqE — I?E(a).
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The sufficient condition can then be written as

Ope(gs, 4:(4E)) (5’ps(qz, a4x)) , °pe(dqz. 9:(45)) , )
2 8qs T dq 8q,0q; 4145} | <0.
29)

As the first term is strictly negative independent of F(#), it is sufficient to
show that

*pe(de, 3:(q:)) A C q:(qz))
g5 0q,0q;

q:(q5) < 0.

Consider first (o) <s, then the equilibrium price of the entrant can be
written as

pr=p@) F'(1—gz—q;),

and hence

O’pe(ds, 4:(45)) _ 0°Pe(gr, 91(4e))
oq o4:0qs

The sufficient condition (29) can then be written as

) , 9? ) '
2P 6@ | IPslar 4r98)) () gy <0, o)
aq_g aqE

By the assumption of concavity of the profit function of the duopolist,

s ope(qe, 4:(42))

*pe(gs, 9:(4x)) <0.
09k

oq%

+4g

Now if

0’ p(qs, 9/(q5))

>0,
o9
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then (30) holds since ¢}(q;) < 0 by the stability of the best response. On the
other hand, if

62PE (9e>2:(g5))

<0,
oq%

then (30) holds since
pe(ge, 9:(q5)) <0
oqx

and 14+4;(gz) > 0.
Next suppose that u(x) > 5. Then the price of the entrant is given by

Pe =) F ' (1-gg)+s[F'(1~gs—g,)— F~'(1-gs)]

Let H(-) be the inverse function of F, or H=F"", and let & be the first
derivative of H. The condition (29) can be written as:

—2[A(1 —qg)(@(a) —5) +h(1 — gz —q,) 5]
+g: [ (1 —g) () — )+ (1 +47(g)) (1 —gz—¢,) s] <0. 3D
By the concavity of the profit function of the monopolist, we know that

~2h(1 - g, — g )(ha) — )+ g’ (1 — gy —q ) pu(e)—5) <0 (32)
and also that
—2h(1 =gz )(u(a) — ) +qeh'(1 — gz ) (@) —5) < 0. (33)
But since 0 << 1+ ¢g/(gg) <1,
(—2h(1 — gz —q,)(p(0) = 8) + qph'(1 — gy — g, )(pa(2) —sH(1 + 7:(q5)) <0,
and therefore
~2h(1—g5—q,) s+ (1 +q7{gs)) @A’ (1 —gs—¢;} s <0 (34)
Finally, adding (33) and (34) vields (31). |
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