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INFORMATION ACQUISITION AND EFFICIENT
MECHANISM DESIGN

By DIRK BERGEMANN AND JUUSO VALIMAKI

We consider a general mechanism design Setting where each agent can acquire (covert)
information before participating in the mechanism. The central question is whether a
mechanism exists that provides the efficient incentives for information acquisition ex-ante
and implements the efficient allocation conditional on the private information ex-post.

It is shown that in every private value environment the Vickrey-Clark-Groves mecha-
nism guarantees both ex-anle as well as ex-post efficiency. In contrast, with common val-
ues, ex-ante and ex-post cfficiency cannot be reconciled in general, Sufficient conditions in
terms of sub- and supermodularity are provided when (all) ex-post efficient mechanisms
lead to private under- or over-acquisition of information.

KeywoRDS: Auctions, mechanism design, information acquisition, ex-ante and ex-post
efficiency.

1. INTRODUCTION
1.1. Motivation

IN MOST OF THE LITERATURE on mechanism design, the model assumes that
a number of economic agents possess a piece of information that is relevant for
the cfficient allocation of resources. The task of the mechanism designer is to
find a game form that induces the agents to reveal their private information.
An efficicnt mechanism is one where the final allocation is efficient given all the
private information available in thc economy.

In this paper, we take this analysis one step further. We assume that before
participating in the mechanism each agent can covertly obtain additional private
information at a cost. After the information has been acquired, the mechanism
is executed. Hence the primitive notion in our model is an information gathering
technology rather than a fixed informational type for each player. It is clear that
the properties of the mechanism to be played in the second stage affect the
players’ incentives to acquire information in the ex ante stage.

The main results in this paper characterize information acquisition in €x post
efficient mechanisms. Efficiency of a mechanism in this paper is understood in
the same sense as in the original contributions by Vickrey, Clarke, and Groves. In
particular, we do not impose balanced budget or individual rationality constraints

! The authors thank Sandeep Baliga, Jeff Ely, Steve Matthews, Stephen Morris, Joe Ostroy, Nicola
Persico, Martin Pesendorfer, Phil Reny, Bill Zame, and particularly Jon Levin for several helpful
discussions. We arc especially grateful for suggestions from two anonymous referees and a co-editar.
Comments from seminar participants at Minnesota, U.C.LLA., and Yale are greatly appreciated.
Financial support from NSF Grant SBR 9709887 and 9709340, respectively, is acknowledged.
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on the mechanism designer. In the in'dcpcndent private values case, we show
that the Vickrey-Clarke-Groves (henceforth VCG) mechanism induces efficient
information acquisition at the ex ante stage.

The common values case is much less straightforward to analyze. In light of
the recent results by Dasgupta and Maskin (2000) and Ichiel and Moldovanu
{(2001), it is in general impossible to find mechanisms that would induce ex post
efficient allocations. Adding an ex ante stage of information acquisition does not
alleviate this problem. The two basic requirements for incentive compatibility of
the efficient allocation rule are that the signals to the agents be single dimen-
sional and that the allocation rule be monotonic in the signals. Even when these
two conditions are met, we show that any efficient ex-post mechanism does not
result in ex ante efficient information acquisition. We use ex post equilibrium
as our solution concept. An attractive feature of this concept for problems with
endogenously determined information is that the mechanisms do not depend on
the distributions of the signals. By the revenue equivalence theorem, any allo-
cation rule that can be supported in an ex post cquilibrium results in the same
expected payoffs to all of the players as the VCG mechantsm, provided that the
lowest type receives the same utility in the mechanisms. But the defining charac-
teristic of the VCG mechanism is that an agent’s payoff changes only when the
allocation changes due to his announcement of the signal. As a result, the pay-
offs cannot reflect the direct informational etfects on other agents, and hence
the private and social incentives will differ in general.

We also investigate the direction in which the incentives to acquire information
are distorted. We restrict our attention to the case where the efficient allocation
rule can be implemented in an ex post equilibrium and derive new necessary
and sufficient conditions for the ex post implementability. It turns out that under
our sufficient conditions for implementability, the information acquisition prob-
lem also satisfies the conditions for the appropriate multi-agent generalization of
a monotonc environment as defined in Karlin and Rubin (1956) and Lehmann
(1988). As a result, we can expand the scope of our theory beyond signal struc-
tures that satisfy Blackwell’s order of informativeness to the much larger class of
signals ordered according to their effectiveness as defined in Lehmann (1988).
We show that in settings with conflicting interests between agent [ and all other
agents, as expressed by their marginal utilities, every ex post efficient mechanism
results in excessive information acquisition by agent i. With congruent interests
between agent i and agents —i, there is too little investment in information by
agent i at the ex ante stage,

The paper is organized as follows. The model is laid out in the next section.
Section 3 presents the case of a single unit auction as an example of the general
theory. The analysis of the independent private values case is given in Section 4.
Results on efficient ex post implementation are presented in Section 5. Section 6
deals with ex ante efficiency in the common values case and Section 7 concludes.
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1.2. Literature

This paper is related to two strands of literature in mechanism design.
It extends the ideas of efficient mechanism design pionecred by Vickrey
(1961), Clarke (1971), and Groves (1973) in an environment with fixed private
information to an environment with information acquisition.

Our results on cx-post efficient mechanisms in common values environ-
ments complement recent work by Dasgupta and Maskin (2000) and Jehiel and
Moldovanu (2001). Dasgupta and Maskin (2000) suggest a generalization of the
VCG mechanism to obtain an efficient allocation in the context of multi-unit
auctions with common values. Jehiel and Moldovanu analyze the efficient design
in a linear setting with multidimensional signals and interdependent allocations.
We give necessary conditions as well as weaker sufficient conditions for the effi-
cient design in a general nonfinear environment. The results here are valid for
general allocation problems and not only for single or multi-unit auctions.

The existing literature on information acquisition in mechanism design is
restricted almost entirely to the study of auctions.’ In the private values set-
ting, Tan (1992) considers a procurement model where firms invest in R&D ex-
penditure prior to the bidding stage. In the symmetric equilibrium with decreas-
ing returns to scale, he observes that revenue equivalence holds between first
and second price auction. Stegeman (1996) shows that the second price auction
induces efficient information acquisition in the single unit independent private
values case. Our results in the private values case can thus be seen as extensions
of these earlier results. We show that analogous results hold for a much larger
class of models and that as long as the conditions of the revenue equivalence
theorem are satisfied, there is no need to analyze separately different indirect
mechanisms that result in efficient allocation. Matthews (1977 and 1984) consid-
ers endogenous information acquisition in a pure common values auction and
analyzes the convergence of the winning bid to the true value of the object when
the number of bidders increases. Those papers are different [rom our papers in
at least two respects, First, Matthews compares given auction forms for a single
unit auction rather than taking a mechanism design approach to general alloca-
tion problems, Second, as Matthews considers the pure common value model,
the efficient level of information acquisition is always identical to zero. Persico
(2000) compares the equilibrium incentives of the bidders to acquire informa-
tion in first and second price auctions within a model of affiliated values. Persico
(2000) also uses the same notion of informativeness of information structures as
we use. Again the main difference between his approach and ours is that we take
the mechanism design approach rather than compare given auction formats for
a single-unit auction,

2The notable exceptions are Rogerson (1992), who analyzes an n-person investment and sub-
sequent allocation problem in Bayesian-Nash equilibrium; Crémer, Khalil, and Rochet (19982 and
1998b}, who study information acquisition in a Baron-Myerson adverse selection model; and Auriol
and Gary-Bobo (1999), who consider decentralized sampling in a collective decision mode! for a
public good.
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2. MODEL
2.1. Payoffs

Consider a setting with 7 agents, indexed by i € ¥ = {1,...,I}. The agents
have to make a collective choice x from a compact set X of possible alternatives.
Uncertainty is represented by a set of possible states of the world, 2 = x/_,£2,,
where (2, is assumed to be a finite set for every i3 An element w € {2 is a vector
w=(w,w_)={(w,...,0,...,0;). The prior distribution ¢(w) is common
knowledge among the players. The marginal distribution over w; is denoted by
g;(w;) and we assume that the prior distribution g(w) satisfies independence

across I, or
!
glw) = ﬂ g;(@;).
i=1

We assume that agent {’s preferences depend on the choice x, the state of the
world @, and a transfer payment ¢; in a quasilinear manner:

u(x, w)—t,.

We also assume that #; is continuous for all i. The mechanism designer is denoted
with a subscript 0, and her utility is assumed to be

r
>t ug(x).
=1

The model is said to be a private value model if, for all w, o',
(1) w, =, = u,{x, v} =u,(x, o).

If condition (1) is violated, then the mode! displays common values.

2.2. Signals and Posteriors

Agent [ can acquire additional information by receiving a noisy signal about
the true state of the world, Let §; be a compact set of possible signal realizations
that agent { may observe. Agent { acquires information by choosing a distribution
from a family of joint distributions over the space $; x £2;:

(2) {Fai (Sr" m!’)}a,-e.fl,-r

parameterized by a; € A,. We refer to F“(s;, w;) as the signal and s, as the
signal realization. Since the conditional distribution of s, depends only on {2,
and since the prior on {2 satisfies independence across £, s; is independent of

* The extension to a compact, but not necessarily finite, state space would only change sums to
integrals in the appropriate formulae.
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s; for all { # j.* Each 4, is assumed to be a compact interval in R. The cost of
information acquisition is captured by a cost function ¢;(«;) and c;(-) is assumed
to be continuous in «; for all i. We endow A(S, x £2,) with the topology of weak
convergence and assume that F%(s;, w;) is continuous in ¢; in that topology. This
ensures that the marginal distributions on $; are continuous in «; as well.

Agent i acquires information by choosing ;. Each fixed «; corresponds to a
statistical experiment, and observing a signal realization s; € §; leads agent { to
update his prior belief on w; according to Bayes’ rule. The resulting posterior
belief, p,(w,ls;, ¢;) summarizes the information contained in the signal realiza-
tion s;, with

_ fun e
pilwls;, o) = zw;en;fa"(sf’ W)’

Considered as a family of distributions on {2, parameterized by s;, we assume
that p;(w,]s;, ;) is continuous in s; in the weak topology on 2,

A profile of signal realizations § = (s;,...,s;) leads to a posterior belief
plw|s, @), which can be written by the independence of the prior belief and the
signals as

i
plwls, a) =[] plwls;, ;).
II:I
In many instances, it is convenient to let the signal rcalization s; be directly a
postcrior belicf p,(-). The experiment a; can then be rcpresented directly by a
joint distribution over w; and p;.

2.3. Efficiency

The ex-ante efficient allocation requires each individual agent i to acquirc the
efficient amount of information and the allocation x to be optimal conditional on
the posterior beliefs of all agents. Since the model has quasilinear utilities, Parcto
efficiency is equivalent to surplus maximization.® The social utility is defined by

u(x, w) & ZI: w,(x, w).
i=0

The expected social surplus of an allocation x conditional on the posterior belief
p(w) is given by

3) u(x, p) 2 3 u(x, w)p(w).

wed2

4 Since we focus on ex post equilibria, this independence is not needed for the results on efficient
implementation. If we wanted to extend the analysis to Bayesian implementation, then this assump-
tion would have real strength. The independence assumptions allow us to give conditions on the
economic fundamentals that lead to over- and underacquisition of information in the ex ante stage.

*The continuity and compaciness assumptions made above are sufficient to guarantee that the
choice set of each agent is compact and that the objective function is continuous in the choice variable.

6 Recall that the mechanism designer collects all the payments and receives utility from them.



A/99/9500R

1012 D. BERGEMANN AND J. VALIMAKI

The ex-post efficient allocation x{p) maximizes u(x, p} for a given p. Given the
assumptions made in the previous subsection, it is clear that a maximizer exists
for all p. _

Similarly, denote by p_; the information held by all agents but i, with p_,(w) =
g;(@;) [, pj{w;) and let x_;,(p_;) be the allocation that maximizes the expected
social value u_,(x, p_,) of all agents excluding {, with

(4) u_i(x, 0) & 3 uy(x, w)

J#

and

(5) u_i(x, p_y) £ Z u_i(x, w)p_(w).

well :

Let F7*(p) be the distribution induced on posteriors by the vector of experiments,
where @ = (a@,..., ;) and let c(a) = 3, ¢,(a;). An ex-ante efficient allocation
is a vector of experiments, a*, and an ex-post efficient allocation x(p), such that
a* solves

6)  max [u(x(p), p)dF(p) — c(a).

Observe that since we have used the posterior probabilities as arguments in the
choice rule, the optimal allocation x(p) does not depend on a. Again, given
the continuity and compactness assumptions made in the previous subsection, a
solution is guaranteed to exist.

3. ILLUSTRATING EXAMPLES

In this section, we present an example of a single unit auction with two bidders.
It is meant to introduce the basic arguments for the private and common values
results and to indicate how to extend the logic of the arguments to any number
of agents and allocations. A similar example is discussed in Maskin (1992) with
a signal space but without an underlying state space. After presenting the exam-
ple, we briefly discuss the role of the independence assumptions of w; across i
by arguing how it could arise in the auction setting and then in a different envi-
ronment, namely procurement.

3.1. Information Acquisition in an Auction

The set of allocations is the set of possible assignments of the object to bidders,
or X = {x,, x,}, where x, denotes the decision to allocate the object to bidder
i € {1,2}. The state space of agent i is given by 2, == {0, 1}. We begin with a
private value model, where the value of the object for bidder { is u;(x;, w) = 2w,
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and u,(x, w) =0 for x # x;. We let the signal of agent i be simply his posterior
belief p, = Pr(w; = 1). The expected (ex-post) utility for agent i/ depends on p,
and p;: u;(x;, p;, pj) = 2p;." The direct VCG mechanism in this setting is the
second price auction where bidder i pays the reported valuation of bidder j con-
ditional on obtaining the object. Ex post efficiency implies that i gets the object if
wi(x;, pir pj) = w;(x;, i, p;)s 1€ if p; = p;. Tt follows that the equilibrium utility
of bidder /, conditional on obtaining the object, is w;(x;, p;, p;) —u;(x;, p;, p;)-
For an arbitrary fixed realization p; = p, the valuations by / and j are depicted
in Figure la as functions of p,. The equilibrium net utility of bidder i has the
same slope in p; as the social utility, as displayed in Figure 1b.

Consider next information acquisition within this auction. With a binary state
structure, a signal is more informative if the posteriors are more concentrated
around 0 and 1. Around p, a local increase in informativeness can be represented
as a lottery (with equal probability) over p — & and p+ ¢ for some & > 0. The
convexity of the equilibrium net utility (see Figure 1b) implies that information
has a positive value. More importantly, the private marginal value of the lottery
coincides with the social marginal value. As a result each agent acquires the
socially efficient level of information, The logic of this argument extends to all
private value problems as the utility u_,(x, p) of all agents but i is constant in p,.

To extend the example to a common values environment, let #,{x,, w) = 2w, +
;. The expected valuation is then u,(x;, p;, p;) = 2p;+ p; and under an efficient
allocation rule i gets the object when p; = p;. For a given p; = p, the utilities
are displayed as functions of p, in Figure 2a. The valuation of bidder j now
varies with p;, even though it is less responsive to p; than the valuation of i.
The valuations therefore satisfy a familiar single-crossing condition. However, as
the valuation of bidder j varies with p;, the original VCG mechanism does not
induce truth telling in ex post equilibrium. If we were to apply the mechanism,
the equilibrium utility of agent 7 would be w,;(x;, p;, p) —u;(x;, p;, p), but for any
p; > p, there is an € > 0 such that bidder i could lower his report to p, — &, still get
the object, but receive MI-(JC", Pis ﬁ) - uj(xj’ b.—¢& ﬁ) > u‘-(x;-, Pis 13) - u:‘(xi’ Pir ﬁ)
The above argument remains valid until p; = p, where a lower report would
induce an undesirable change in the allocation. Thus by asking bidder i to pay
u;(x;, p, p), incentive compatibility is preserved. The equilibrium utility of agent
is then u;(x;, p;, p)—u,(x;, p, p). When we now compare the slopes of individual
payoffs and social payoffs locally at p, we find that the equilibrium utility of agent
i has a sharper kink than the social utility as depicted in Figure 2b.

As before, more information can be represented locally as a randomization
over posteriors around p. In equilibrium bidder i has excessive incentives to
acquire information relative to the socially optimal level as his objective function

" The notation in this section is in minor conflict with the generai notation presented in the previous
section 1o take advantage of the binary structure of the example: (i) p; in this section is simply a
scalar rather than a probability distribution and (ii) the expected gross utility is written as a function
of p, and p; rather than the implied probability vector p over the state space £2, which is here simply:
={0,1} x {0,1}.
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FIGURE 1.— (a) Private value utilities u,(x;, p,, p) and u,(x,, p,, p) for p; = p =3/8. (b) Social

value w(x(p;, P), p,, P) and equilibrium utility u,(x(p,, B), pi. P} —t:(ps, P).

is (locally} more convex. Conversely, agent i has insufficient incentives to acquire

information if du(x;, p;, p;)/dp; < 0.

Next we briefly sketch how these insights generalize beyond the current exam-
ple. The (single) crossing of the utilities at p, = p has two important implications.
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FIGURE 2.— (a) Common value utilities #,(x;, p;, £} and u;(x;, p;, p} for p; = p =3/8. (b} Social
value u(x(p;, p), p;» P) and equilibrium utility u,(x(p;, B), p., )~ t:(p,; P)-

First, it indicates that it is socially efficient to change the assignment from agent
J to agent i at p, = p. Consequently the social utility satisfies at p, = p; = p:
dulx;, p;, Pj) _ 3“(3‘;’ Pis Pj)

> 0.
ap; dp; -

™
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Consider an order > on X, such that x; > x;. If the local condition (7) holds
for alt p;, p; € [0, 1}, then u(x Dis p;) is supermodular in (x, p,) The second
implication of the single crossing condition is that at p, = p; = p

ou;(x;, p;s Pj) _ ou;(x;, piy P;‘)
op; ap;

where the latter condition is necessary for truth telling by agent i. (The partial
derivative of the second term is naturally equal to zero for all (p;, p;) in auctions
without externalities.) If u;(x, p;, p;) is supermodular in (x;, p;), i.€., if we require
(8) to hold globally for all p;, p; € [0, 1], we obtain a sufficient condition for
truth telling by agent i. Finally, the condition for under- or overacquisition of
information by bidder { was related to the responsiveness of the utility of agent
J» w;(x, p;, p;) to p;. We can now restate the conditions for overacquisition of
information by agent / in terms of

>0,

(8)

duy(xi, pry py) _ Iy (x5, Pis P))
ap ap;

or equivalently that ud(x, p;, p;) 18 submodular in (x, p;). We shall see in the
subsequent sections that the supermodularity conditions for u(x, p;, p;) and

u;(x, p;, p;) are sufficient and almost necessary conditions for efficient imple-
mentation and that sub- or supermodularity conditions for u_;(x, p,, p_;), pro-
vide sufficient conditions for over- and underacquisition of information in ex-post
efficient mechanism.

SU:

9

3.2, Independence

The example just discussed is a linear version of an auction model introduced
by Maskin (1992) and Dasgupta and Maskin (2000} to analyze privatization and
related asset sale problems. A very similar model with common values and bid-
ders with independent private information appears in Bulow, Huang, and Klem-
perer (1999) to analyze takeovers (with toeholds). The sale of a company is a
fine example to see how the independence of w; across / might arise in substan-
tive economic problems. Consider the sale of a company whose primary value
is its client list. The state w; would then describe the extent to which the client
list of the target company overlaps with the acquiring firm. The acquiring firm
could either value differing client lists (to gain access to new clients) or over-
lapping client lists (to enhance the cross-selling of products). For competitive
reasons, it also matters for firm j how the client list of the target compares with
the client list of firm j, which is represented by w,. This introduces the common
value aspect into the takeover contest. The single crossing condition in this envi-
ronment simply states that the marginal value of information about the extent of
the intersection between the client list of firm i and the target is larger for firm
i than for firm j. The independence of w; across i then amounts to assuming
that the clients are distributed independently across the acquiring firms / and J.



A/99/9500R

EFFICIENT MECHANISM DESIGN 1017

The general interpretation in the context of an asset sale, where the value of the
asset could arise from a proprietary technology, a marketing strategy, a specific
product or market niche or alike, is then that value of the asset for the acquir-
ing firm is determined by the match of the asset with the characteristics of the
acquiring firm. The independence assumption requires that the characteristics of
the acquiring firms are distributed independently across firms.

Yet a different environment where independence of the state variable w, arises
quite naturally, is in the context of procurement and R&D. The following is
a stylized version of a model recently analyzed by D’Aspremont, Bhattacharya,
and Gerard-Varet (2000). Their analysis focuses on bargaining with information
sharing, whereas we adopt a procurement interpretation. Suppose there are two
firms who compete for a contract by the government, regarding a project, say a
weapons or software system, which has a social value v. The two firms, { € {1,2},
are pursuing the realization of the same project, but follow different design routes
or approaches. Uncertainty in the model is described by, for simplicity, a binary
state space £2; = {0, '}, where w, represents the probability that the research of
firm i will eventually be successful. If there are many possible ways of pursuing
the same goal, it is sensible to assume that the priors on (2; satisfy independence.
Denote the (expected) cost of firm / of completing the project, independent of
eventual failure or success, by ;. The government agency designs a game form
that decides which of the firms should pursue the project. The space of possible
decisions is then X = {0, 1,2, 12} where x =/ stands for the case where firm i
continues with its research, x = 12 denotes the case where both firms continue in
the race, and x =0 denotes the casc where neither firm continues with research
in the second stage. In the first stage, each firm can obtains information about its
research project by observing a signal realization s; generated by an information
structure a,. Each choice of ¢; and realization of s; result in a posterior belief
pi(w;ls;, ;). We may assume that if w, = w, =1, then firm { wins the race with
probability 7; and firm j with probability #;. Assuming quasilinearity of the pay-
offs in the cost, we can write the ex-post utilities «;(x, w;, ;) for the case that
both projects receive support by

u;(12,1,0) =v—-vy;, u;(12,1,1)=mv—vy,
u;(12,0,0) = u,(12,0,1) = —y,,

and for the case that only a single project receives support by
wi(i, @5, ) = @V —;,
ui(J, ) =0.

Since u;(12, w;, w;) depends nontrivially on w; when w; = 1, this model is one
with common values. Let p; £ p;(w; = 1|s;, «;) and we observe that the socially
optimal decision (conditional on the posterior beliefs) is to have firm i engage
in the race (possibly jointly with firm j) whenever

pv—v>0 and pv—y > Piv—7%;.
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It is efficient to have both firms doing research in the second stage if

p{l—-pv>y, and p{l-pHv>vy,.

In words, only the superior firm should continue with the research if its success
is sufficiently certain {this is to avoid duplication of costly effort). If the posterior
probability of success is in the intermediate range for both firms, then they should
engage in further research jointly.® The independence here reflects the fact that
each firm is pursuing an independent research program.

4, PRIVATE VALUES

This section considers information acquisition in the context of independent
private values. For this environment Vickrey (1961), Clarke (1971), and Groves
(1973) showed in increasing generality that the ex-post efficient allocation can be
implemented in a direct revelation mechanism.

DEFINITION 1: A direct revelation mechanism is defined by a pair (x, ¢), where
x is an outcome function, x : $ — X, and ¢ is a transfer scheme, ¢: § — R’.

In the private value environment we may consider without loss of generality
the set of signal realizations S to be the probability simplex 4 over the state space
2. The efficient allocation is implemented in dominant strategies if the transfer
function has the following form: For all / € .%,

(10)  4(p)=hi(p_)) —ui(x(p), P,

where h;(p_;) is an arbitrary function of p_;. We refer to the class of mecha-
nisms that implement the efficient allocation with a transfer function of the form
displayed in (10) as the Vickrey-Clark-Groves (VCG) mechanism.

DEFINITION 2: A vector of experiments, «, is a local social optimum if for
every i, «; solves

& e argmax! [ ux(p), p)aF 0 (p) ~ (et ]

wEA,

Notice that local here refers to the property that « solves the maximization
problem for each agent separately, or Nash locality. In consequence, a local social
optimum may not necessarily be a solution to the problem when the experiments
of all agents are jointly maximized.

THEOREM 1 (Private Values): With independent private values, every local
social optimum can be achieved by the VCG mechanism.

1t can also be verified that the ex-post efficient allocation satisfies the required single crossing
properties and hence our results apply to this example as well.
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PROOF: See Appendix.

With the VCG mechanism the equilibrium net utility of agent { behaves as the
social utility up to A;(p_;), which does not depend on p;. It therefore follows that
the decision problem of agent i with respect to the information acquisition in
terms of the posterior belief p; is equivalent to the problem faced by the social
planner. An immediate consequence of Theorem 1 is the following coroliary.

COROLLARY 1: The ex-ante efficient allocation can be implemented by the VCG
mechanism.

PROOF: See Appendix.

The ex-ante stage has many equilibria if there are multiple local social optima.’
It follows that the VCG mechanism uniquely implements the ex-ante efficient
allocation only if there is a unique local and hence globat optimum in the infor-
mation acquisition stage. This efficiency result can also be generalized to envi-
ronments where each agent can invest ex ante in technologies that increase their
private payoffs. The ex-ante efficiency result derived for the VCG mechanism
can also be extended to any ex-post efficient mechanism by the revenue equiva-
lence theorem.

In the current model, information is acquired by all agents simultaneously.
However, it is well known in statistical decision theory that a sequential decision
procedure may dominate any simultaneous procedure as it economizes on the
cost of information acquisition. This observation is valid in the current model as
well. An important conscquence of a sequential version of the VCG mechanism
is that the efficient allocation is now strongly implementable as every agent acts
at every node as if he were maximizing the social value function {for a more
detailed argument see Bergemann and Viliméki (2000)).

The essential property that allows us to prove ex-ante efficiency with indepen-
dent private values is the restriction that only agent i can (efficiently) invest in
information about his own utility associated with various allocations. The logical
next step is therefore to ask whether efficiency can be maintained in environ-
ments where the information of agent i is relevant to the utility calculus of agent
j. We pursue this question in the context of the interdependent values model
investigated recently by Dasgupta and Maskin (2000) and Jehiel and Moldovanu
(2001). Before we analyze the information acquisition per se, we give a com-
plete characterization of the ex-post efficient allocation and associated equilib-
rium utilites for each agent in the following section.

5. COMMON VALUES: EX POST EFFICIENCY

We adopt the model of Dasgupta and Maskin (2000) to our environment with
uncertainty about the true state of nature in subsection 5.1, where we present

7 Tan (1992) makes a similar observation in the context of ex-ante R&D investments in procure-
ment auctions.
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necessary and sufficient conditions for efficient implementation with a direct rev-
elation mechanism.'® Similar results arc briefly stated for a continuous allocation
space in subsection 5.2.

5.1. Finite Allocation Space

We start by considering a set of finitely many allocations: X = {x% x',..., xV}.
For a fixed a;, player {’s expected utility from an allocation x" after observing
signal s is, using independence, given by

u’r’(xn’ S) = Z ui(x”i w) l_[ pj(wj;‘s‘jﬁ aj)'
wefl jed

In anticipation of the requirements for the implementability of the efficient
allocation rule, we restrict our attention to an arbitrary class of one-dimensional
signal realizations S, = [s;, 5;] C R with the result that the associated posterior
beliefs p;(-|s;, @;) form a one-dimensional manifold in A(£2;). In this section the
allocation problem is analyzed exclusively at the ex-post stage. The utilities are
therefore written as functions of (x, s5) rather than (x, w) and consequently x{s)
is an ex-post efficient allocation rule conditional on the signal s. We assume u,{x, 5)
to be continuously differentiable in s for all /.

Next we present necessary and sufficient conditions for efficient implementa-
tion in an ex-post equilibrium. By the revelation principle, we can restrict our-
selves to direct mechanisms and truth telling strategies.

DEFINITION 3: A direct revelation mechanism (x, f) permits implementation
in an ex-post equilibrium if Vi, Vs € S:

wi(x(s), 5) = 1(8) = w;(x(8;, 5_), 8) — (81, 5,), V5 €8,

An ex-post equilibrium, while not requiring dominant strategies, remains a
Bayesian equilibrium for any prior distribution over types. For the rest of this
subsection, we fix the realization of the signals s_; and focus on truth telling
condittons for agent i. Let the set S} be defined as the subset of S, for which x”
is an efficient allocation;

S ={s; €8 | u(x", 5, 5_;) = u(x, SiaS_i), Vi # x, )

) : , .
For any two sets Sf and §/ with a nonefpty intersection, we call a point
st € SN St a k 1o | change point if there exists an & > 0 such that either:!!

(1 S; € [sf’—s,sf“’)=>si eSf‘,s,- g&’Sf

' Dasgupta and Maskin (2000} actually restrict attention to multi-object auctions and achieve
implementation through an indirect mechanism in which the bidders report their valuations contin-
gent on the reports by the other bidders, but not directly their signals. Jehiel and Moidovanu {2001)
present sufficient conditions in a linear model for general allocation problems with a direct revelation
mechanism. ‘

' The condition is written as an either/or condition as the social utility may display the same partial
derivative with respect 10 s; for the alternatives x* and x' over an interval where the social values of
the alternatives x* and x' are equal.
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or
(12) Vs e (5K, s, +e]l =5, & 55,5, €8],

Symmetrically, we can define s ¢ S¥NS! to be an { to k change point, By exten-

ston, let s £ (s¥,5_,). Bvery change point s* has the property that at s = s*/.

duf(x*, 5) - du(x', s)
ds, — ds,

4 ]

Consider next the ex-post truthtelling condition for agent i:
u;(x(s), 8) - 1,(8) = ui(x(5;,53), (5, 5.)) = 4:(8;,5_), V§ €S,

It follows that the transfer payment of agent / has to be constant conditional on
the allocation x(s) = x” and we denoted it by ¢

PROPOSITION 1: A necessary condition for ex-post implementation is that for
Yk, Vi at s=s"

du;(x*,5)  du(x',s)
<
(13) as - s

PROOF: See Appendix.

The inequality (13) is a familiar local sorting condition and implies that the
incentive compatible transfers are uniquely determined (up to a common con-
stant) at the change point s* by

19 f-f=u () —u (5,

As the transfer payments ¢” for every allocation x" are necessarily determined at
the change points, it follows that (generically) every pair of sets $F and S} must
have an intersection that forms a connected set, as otherwise ¥ and ¢/ would be
overdetermined. The latter condition can be rephrased as follows:

DEFINITION 4: The collection {87}¥_ satisfies monotonicity if for every n:
s,5leS'=> A5+ (1-A)s;ie S, YAaeg]0, 1]

A sufficient condition for monotonicity is that the social value w{x",s) be
single-crossing in (x", 5;). If monotonicity is satisfied, then there exists an optimal
policy x(s) such that x" is chosen on a connected subset R} C S and nowhere
else.? After possibly relabeling the indices, we can endow the allocation space
X with the following order, denoted by <:

(15) X<t << xV,

12 The socially optimal policy x(s) is not unique as any (randomized) aliocation over the set {x*, x'}
is optimal for all 5; € §¥ NS/, and in particular at the change points. Moreover for some x* the
corresponding set RY may be empty and, in consequence, the associated optimal allocation policy
would use only a strict subset of the feasible allocations. Naturally, the order defined in (15} and (16)
would then extend only over the subset of allocations selected by the allocation rule x(s).
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such that for all s, € R¥ and s/ € R/, with
(16) 5; <S;:>x(s,-,s_l-)=xk <x' = x(s;, s_;).

For the remainder of this section we continue to work with the order defined by
(15) and (16).

PROPOSITION 2: A generically necessary condition for ex-post implementation is
monotonicity.

PrROOF: See Appendix.

The class of mechanisms that implement the efficient allocation with the trans-
ters determined by (14) is referred to as the generalized Vickrey Clark Groves
mechanism, where we initialize 1 by

(17) f? = i (5.p) —u (X0, (855 52,)),

for some arbitrary £,(s_;). Next we strengthen the local sorting condition to
obtain sufficient conditions for ex-post implementation by extending the local to
a global sorting condition.

PROPOSITION 3: Sufficient conditions for ex post implementation are:
(i) monotonicity is satisfied for all i and s;
(i1) for all i, s and n,

du(x"1, 5) - au(x", s)
ds; - ds,

i 1

(18)

PROOF: See Appendix.

Thus if the utility of every agent i displays supermodularity in (x",s;) and
monotonicity is satisfied, then an ex-post implementation exists. We wish to
emphasize that the particular order imposed on the allocation space X may
depend on { and s_;, and all that is required is that for every s_, an order on X
can be constructed such that the conditions above for necessity and sufficiency
can be met.

It may be noted that monotonicity and supermodularity are strictly weaker
than the conditions suggested by Dasgupta and Maskin (2000) in the context of
a multi-unit auction. In the linear (in the signals) version of the model that is
investigated by Jehiel and Moldovanu (2001), where

u(x") = Z: uy(x7)$)
j=1

the necessary and sufficient conditions coincide. For details we refer the reader
to an earlier version of the paper (Bergemann and Valimaki (2000)).
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5.2, Continuum of Allocations

The sorting and monotonicity conditions naturally extend to the case of a
continuum of allocations. Let X C R be a compact interval of the real line. As
before, fix the realization of signal s_; and let x(s) denote the efficient allocation
rule. We also assume that (s, x) is twice continuously differentiable, and thus
x(s) is differentiable almost everywhere. If x(s;, s_;) is monotonic in s;, we can
impose a complete order, denoted by <, on the allocation space X such that the
order on X mirrors the order of the signal space by requiring that for all s;, s/
and x(s;, 5_;) # (s, 5_;),

(19) s; < 8 = x(s;, ) < x(s), 5_,).
We endow X with the complete order defined by (19).

PROPOSITION 4: Sufficient conditions for ex-post implementation are:
(i) monotonicity;
(ii) global sorting condition:

s oo i v, v,
ds, dx

PROOQF. See Appendix.

As in the discrete case, monotonicity is generically necessary. If the global
sorting condition is weakened to a local sorting condition at x = x(s),

w(x(s).9) |

, Vi, Vs,
ds;dx T

then we obtain the corresponding necessary conditions for implementation,
Proposition 4 generalizes an carlier proposition by Jehiel and Moldovanu (2001)
from a linear to a nonlinear environment with one-dimensional signals. The
transfer payments in the generalized VCG mechanism can be represented as

s du_{(x(v;, 5_;), (v, 5_;)) 8x(v;, 5.,
@) n(=- [ b Qs ) O gy s,

where £,(s;, s_,) = h;(5_;) for some arbitrary i,(s_;).

0. COMMON VALUES: EX-ANTE INEFFICIENCY

In this section, we analyze the implications of ex-post efficient mechanisms
for the ex-ante decisions of the agents to acquire information. This problem is
addressed by extending the monotone environment for a single decision-maker
defined by Karlin and Rubin (1956) to a multiple agent decision environment.
The monotone environment is introduced first in subsection 6.1 and the infor-
mational inefficiency is analyzed in subsection 6.2,
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6.1. Monotone Environment

We investigate the possibility of achieving efficient ex-ante decisions, while
requiring efficiency in the second stage mechanism for an arbitrary choice of sig-
nals by the agents. This implementation requircment imposes certain restrictions
on the posteriors and the utility functions. As we consider the ex-ante decision
problem, the appropriate sorting and monotonicity conditions have to be formu-
lated for the state space (2, rather than the signal space S.

The first restriction concerns the implementability of the efficient allocation.
Jehiel and Moldovanu (2001) show that it is generically impossible to imple-
ment the efficient allocation if the players must submit multi-dimensional reports.
Hence we assume that for each player /, there exists a one-dimensional sub-
manifold M,, with M; C A({f2,), and a function A, : §; x A; —» M; such that the
ex-post efficient allocation x(:) can be determined by x(A(s, @)) rather than
x(p{w|s, a)), where

)“(S! CE) = (1\1(5‘1,&1), Tty Al(sh a!))'

In the most straightforward case A; is an invertible mapping that associates to
every posterior p; in M; exactly one signal realization s, that generates the pos-
terior. Then (M, A;) can be thought of as a direct dimensionality restriction on
the posterior beliefs that can be generated by a family of signals. However, A,
does not have to be invertible and then A; can be thought of as a sufficient statis-
tic relative to the social allocation problem. We briefly present illustrations for

- this condition below.,

First, observe that for a binary state space {2; = {0, w!} the dimensionality
assumption is satisfied for every class of signals, as the posterior on {2; can be
represented by a single number in the unit interval, say p.(s;, @) = p;(oVls;, a;).
Since p(s;, a;) € [0, 1], we can take M; =[0, 1] for all i,

A second class of information structures satisfying the assumption is giyen by
the following model, sometimes referred to as the “hard news” model in the lit-
erature. Suppose {2; C R. The signal rcalization is with probability «; perfectly
informative or s; € {2;, where the conditional probability of s, = w, being realized
is given by the prior distribution ¢;(w,); and with probability 1 — «;, the signal
realization is completely uninformative and hence the agent i maintains his prior
as his posterior. In this class of models, the choice of a; determines the prob-
ability of observing a completely informative signal of the state.’* This class of
models can be further extended to the case where conditional on receiving infor-
mation, the signal is not perfectly informative, or §; = w; + ¢;, where g, can be
distributed arbitrarily and passibly dependent on w,, or &, ~ g,(-; w;). As long as
the distribution of the error term is assumed to be independent of the choice of
a;, the posterior p(m,|s;, @;) is independent of «; € 4; and as long as s, is one-
dimensional, the posterior will lie on a one-dimensional submanifold of 4((2,)
and the requirement is satisfied.

13 We thank the co-editor for suggesting this class of information structures.
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A third class of models where the dimensionality condition holds for arbitrary
families of information structures is one where the payoffs are linear in the states.
In this case, the payoff from allocation x in state w to agent i is given by

I
(21) u(w,x) 2 Y u(x)w;.
=1

The linear setting is the one investigated in Jehiel and Moldovanu (2001) as
well. In our model, the state w is the primitive notion rather than the vector
of signals s as in Jehiel and Moldovanu (2001), and as a result, the linearity
is assumed here with respect to the state rather than the signal. The reason
why the dimensionality condition holds in the linear model, is that the posterior
expectation of w,;, expressed by

(s, @) = E[wls;, o],

is sufficient for the determination and implementation of the efficient choice
rule. Thus we let the A, : S, x A; — M, define a set of equivalent signal realiza-
tions and information acquisition decisions in the sense that each element in the
equivalence class generates the same posterior expectation, or

V(Si: at‘): (S;! CI!:) € Si’ ﬂf(sz‘r az‘) = WE(S;’ Cf:) L4 A'r'(‘sr's' a;‘) = Ai(sfr Ct’:-)-

As 7r; is a real number, we can find a one-dimensional manifold M, such that
A(s;, ;) € M, for all (s;, ;) € §; x A;.1* Thus with linear preferences, the dimen-
sionality restriction on the signals is satisfied for every family A; of signals. This
argument also shows that the basic intuition developed in the introductory exam-
ple for a binary state space extends to an arbitrary state space (2,.

With this dimensionality restriction in place, we can assume without loss
of generality that every signal realization s5; leads to a fixed posterior belief
p:w,s;, a;) independent of the choice of signal «;. Two distinct signal choices
a; and «f differ in the frequency by which signal realizations s; are observed.

Next we consider the appropriate sorting and monotonicity conditions in the
state space 2. We require that for every 1, the allocation space X can be endowed
with a complete order, denoted by <, such that u;(x, w;, w_,} and u(x, w,, w_;)
are supermodular in {(x, @;) for all w_,.*° Observe that the ranking of the allo-
cations is allowed to vary with i as in the previous section, but here the rank-
ing has to be invariant with respect to w_;. In addition we require that for all
i, the posterior probabilities satisfy the monotone likelihood ratio property: for

1% Observe that M; can always be embedded in A(42,) so that the restriction M, C A(£2,) is satisfied
as well.

15 In the monotone environment of Karlin and Rubin (1956), the utility function of the decision
maker was only assumed to be single-crossing in (x, w,). The stronger condition of supermodularity
is imposed here as we consider a multi-dimensiona! signal space and when taking the expectations
over w_,, supermodularity in (x, w,;) is preserved while the single-crossing property is not.
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all 5 > 5, and @ > w;, Pl p,(y]s;) — p,(@!]s.) pi(w]s)) = 0. The supermod-
ularity of u,(x, ) in (x, ;) guarantees {globally) the sorting condition, whereas
the supermodularity of u(x, w;, w_;) guarantees the monotonicity of the efficient
allocation. The monotone likelihood ratio condition implies that supermodular-
ity in (x, ;) translates into supermodularity in (x,s;} when taking expectations
with respect to the posterior beliefs based on the signal realizations.

PROPOSITION 5! Suppose the monotone likelihood ratio and supermodularity
conditions hold for all i; then:

(1) ui(x,s;,8_;) and u(x, s, s_;) are supermodular in (x, s;);

(ii) for all s;, s, with x(s;, s_;) # x(s], 5_;),

5 <8 = x(s, 5_) < x(sl, 5_;).

PROOF. See Appendix.

6.2. Inefficiency

In order to determine whether agent / has the socially correct incentives to
acquire information, we must compare the returns from information acquisition
for the social planner and agent {. The information provided by a signal real-
ization s; affects both the valuation of any particular allocation x as well as the
choice of the (socially) optimal allocation x(s). By incentive compatibility, the
genecralized VC(G mechanism guarantees that the social utility and the private
utility of agent { are evaluated at x(s) for every s. In the private values environ-
ment, the congruence between social and private utilities go even further since
as functions of s; they are identical up to a constant, possibly dependent on s_,.

In the common value environment, in contrast, the marginal utility of s; is
in general different for the social utility and the private utility of agent i. This
discrepancy is due to the fact that with common values, the utility of all agents
but i, u_;(x, 5), is responsive to the signal realization s;. As a result, the social
planner’s preferences for information are in general different from the individual
preferences. In order to determine how this discrepancy affects the incentives to
acquire information, we make use of a characterization of the transfer function
associated with the generalized VCG mechanism.

THEOREM 2 (Inefficiency in Mechanisms): Every ex-post efficient mechanism:

(i) leads (weakly) io underacquisition of information by agent i if u_,(x, w;, w_,;)
is supermodular in (x, w;).

(ii) leads (weakly) to overacquisition of information by agent | if u_,(x, w;, w_,)
is submodular in (x, w,).

PROOF: See Appendix.

We emphasize that the inefficiency result above is only a local result in the
sense that we compare the decision of agent / with the planner’s decision for
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agent 7, when both take the decisions of the remaining agents as given. In particu-
lar, the theorem is not a statement about the (Nash) equilibrium decisions of the
agents. The interaction between the information structures chosen by the agents
may conceivably lead to an equilibrium outcome in which all agents acquire too
much information relative to the social optimum even though the local predic-
tion, based on u_;(x, w) being, say, supermodular in (x, w;) for all {, is that all
agents acquire too little information. In this case, the theorem would still tell
us that relative to the equilibrium information structure a_;, the social planner
would like agent { to acquire more information than / chooses to acquire in
equilibrium. Observe, however, that for an important class of models, the result
above is also global. This is the case where a single player has the opportunity
to acquire (additional) information.

Next we give a brief outline of the proof, The key function in the proof is the
difference between the social utility function and agent i’s private utility func-
tion. We show that this difference (i) has a global maximum at x(s) and (ii) is
supermodular in (x, 5;). The first attribute holds locally in the generalized VCG
mechanism and can be suitably extended to a global property. The difference
between social and private utility is composed of the gross utility of all agents
but { and the transfer payment of agent i. The latter is constant in s; condi-
tional on x in the generalized VCG mechanism and hence the second attribute
follows by the hypothesis of supermodularity of u_;(x, w) in (x, ®,) after using
Proposition 5. Finally, since the difference satisfies the same supermodularity
conditions as u{x, @) and u;(x, @), we can order signa! structures in their infor-
mativeness according to the criterion of effectiveness suggested by Lehmann
(1988). As the difference is increasing in the effectiveness order, we know that
the marginal value of information is larger to the social utility than to agent i’s
private utility.

The inefficiency results in Theorem 2 are stated simply in terms of the marginal
utility of the remaining agents after excluding agent i. If the marginal pref-
erences of the complement set to ¢ are congruent {(in their direction) with
agent /, then i has insufficient incentives to acquire information. With congruent
marginal preferences, the ex-post efficient mechanism induces positive informa-
tional externalities that lead agent i to underinvest in information. If the marginal
utilities of agent i and all remaining agents move in opposite directions, then
the resulting negative informational externality leads the agent to overinvest in
information.

We conclude this section with a generalization of the single unit auction model
presented earlier to a finite number of bidders and a finite state space. In a
single unit auction, the feasible allocations are simply the assignments of the
object to the various bidders, and we denote by x; the assignment of the object
to agent f. We restrict attention to symmetric environments where for all @ =
(0, w_;) and o' = (w}, ®_;) such that x(w), x(w') # x;, we have x(w) = x(w’).
In other words, information about w; is never pivotal for an allocative decision
between x; and x,. The nature of the inefficiency in the information acquisition
can then be decided on the basis of the properties of the utility function of each
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bidder at x;: u;{(x;, w). The utility of agent j is trivially zero for u;(x,, @) for all
X ?é xj-.

THEOREM 3 (Inefficiency in Auctions): Every ex-post efficient single-unit auc-
tion:

(1) leads (weakly) 1o underacquisition of information by agent i if u{(x;, w;, ©_;)
is nonincreasing in w; for all j # I,

(i) leads (weakly) to overacquisition of information by agent i if u(x;, w;, w_;)
is nondecreasing in w; for all j #i.

PROOF: See Appendix.

7. CONCLUSION

This paper considers the efficiency of information acquisition in a mechanism
design context. In the private values world, any mechanism that implements the
efficient allocation, also leads to an efficient level of information acquisition by
the agents ex-ante. The efficiency results with private values also extend to a set-
ting where the information is acquired sequentially before a final social allocation
is implemented.

The common value model we investigated here is one where the components
w; of the state of the world @ = (w,, ..., w,;) are distributed independently. The
results in this paper can be generalized to settings including ones where the sig-
nals are single dimensional and independent conditional on the state of the world
as long as we make the appropriate assumptions on atilities in terms of allo-
cations and signals directly. If we move away from ex-post implementation to
Bayesian implementation, the mechanisms suggested by Cremer and McLean
(1985, 1988) can be adapted to our environment to induce efficient information
acquisition in models with correlated signals.

Finally, this paper considered information acquisition with a fixed number of
agents, It may be of interest to investigate the limiting model as the number of
agents gets large. Intuitively, one might expect that the problem of each individ-
ual agent might be closer to the private value model. If the responsiveness of the
marginal utility of all other agents to the signal of agent { declines, then the sub-
or supermodularity of u_,(x, s) in (x, s;) may vanish and yield efficiency in the
limit,
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APPENDIX

The appendix collects the proofs to the propesitions and theorems in the main body of the text.

PROOF OF THEOREM 1: A necessary and sufficient condition for a local social optimum « is that
for all i, o, solves

(22) w € argmax | [ u(x(p), p) dF*-V(p) - c(a, ).

’
-'1‘,644"

In contrast, the expected equilibrium utility of agent / under the VCG mechanism is maximized by
a; where

o; cargmax | [ (u(p), p) +u_,(5(p), p_) ~ h(p_)) dF - (p) - c (@),

@ Etil

or

@) seagmax| [u(x(p), p)dF 0 (p) — (e,

n; Fr‘i(

where 2(p ;) can be omitted from the objective function using independence: Fa-0(py =
Fi(p, YF@-3(p_.). The equivalence of (22) and (23) follows from the additive separability of the
cost function c(n). QED

PROOF OF PROPOSITION 1: The argument is by contradiction. We suppose that condition (11)
for the change point 5% is met; a similar argument would apply if instead (12) would hold. Suppose
that (13) deesn't hold; then there exist some € > 0 such that

(24) (x5 =€y sL)) =y (', (s~ €,5.)) < (¥, 5*) — (o, s),
But at the same time we require implementation, or

u (2, (55 —€,5.)) — tf = u (X, (s —€,5.)) =4
and

u, (2, My~ tf <u(x, sy — i,
which jointly imply that

(s (st — e, s.)) = (x5 -6, 5)) = (65, 59) — (2, £,
which leads i;nmediatcly to a contradiction with (24), QED.

PROOF OF PROPOSITION 2: Suppose monotonicity fails to hold. Then there exists at least one

set S¥ such that for s;, s; € S¥ and for some A & (0, 1), As,; + (1 — A)s) € S%, but As; + (1 ~ A)s; e §!. By
Proposition 1, the differences ¢f — ¢ are uniquely determined by the change points. It follows that if
a set S¥ is not connected, then there are more equations (as defined by the incentive compatibility

conditions at the change points) than variables, £’s, and generically, in the payoffs of «,(x, s}, the
system of equations has no solution. QED

PROOF OF PROPOSITION 3: By Proposition 1, the transfers are uniquely determined up to a
common constant. Consider any adjacent sets Rf~! and R™:

Vs, e ROV u(xt, sy —w(xm L s) < o -0,
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and

Yse RV w(x", ) —u (" L s) 2=l
Now consider any arbitrary pair S} and 5 ordered so that x; < x,,. We want to show that
{25) Yx, <X, Yse R u(x, ) —u (x™, 8) = 1f -1,

as well as

nmo_ Ik

i i

Yx, =, Vs e R ux™, s) - (xF, ) = 1

Consider (25). We can expand the difference on the right-hand side to

-

(26) w(x, 8y —u(x, sy = Yol =1
1=k

Consider the uppermost element of the sum:

IJ_w—l _ l:“ — u!(xnr—l, S!ll) _ u¢(x’". Sm),

and for all 5 < 5™,
e < (27 8 - (x5,
or
27 w{x”, sy — " < (e s)— e
by {18). Replacing the left-hand side by the right-hand side of (27) in the inequality (26), the modified

inequality becomes a priori harder to satisfy. Doing so leads to

m=2

w (X, ) — (" ) 2 Yt
ik

and by repeatedly using the argument in (27), (26} is eventually reduced to
TR CAPE ) BN THE SRR I I A
which is satisfied by {18}, when the transfers are as in (14} Q.E.D.

ProoOF oF PROPOSITION 4: The sufficient conditions with a continuum of allocations can be
obtained directly by considering the conditions of the discrete allocation model in the limit as the set
of discrete allocations converges to the set of a conlinuum of allocations. The details are omitted.

QE.D.

PROOF OF PROPOSITION 5: By assumption, u{x, w,, w_;} is supermodular in {x, w,) for every
w_;. The supermodularity property is preserved under expectations:

ulx, w5 ;)= Z ulx, w;, w_;) I—[Pj(w_jls;'):
o i
and a fortiori u(x, ew,, s_;) satisfies the single crossing property in (x, w;). By Lemma 1 of Karlin
and Rubin (1956}, it follows that u(x, s;, s_,} satisties the single crossing property in (x, 5,). A similar
argument applies to u;(x, w;, 5_;). Furthermore, by Theorem ! of Karlin and Rubin (1956), it follows
that an optimal strategy which is monotone in s, exists. This proves the first part of the theorem.
If w(x, w,;, s_,) is supermodular in (x, w,) for every s, then u(x, 5, 5_,), defined as

u(x, 5,5} = Z“(x- Wiy S_ ) pi{en]s:),

1

is also supermodular in (x, 5;) by Theorem 3.1C.1 in Topkis (1998) since p,(s;, w,) satisfies the mono-
tone likelihood ratio. QED.
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PrOOF OF THEOREM 2: The following proof is written for a continuum of allocations, but all
arguments go through with the obvious notational modifications for a finite set of allocations. We
start with the net utility of agent { under the generalized VCG mechanism, which is given by

wi(x, 5} = 1,(5),

where s = (s, 5_,) is the true signal by truthtelling under the VCG mechanism. For a fixed 5, we
can rewrite the transfer £,(s;, s_;) to be determined dircctly by x rather than {s;, s_;). This is without
loss of generality as we recall that ¢ (s, s_;) is constant in s, conditicnal on x. The net utility of agent
i can now be written directly as

(28) v,(x, ) = u,(x, 8) = 1,(x).

The transfer function ¢,(x) is given by analogy with (20) as

T Ju_;

® == [ 2D ),
where s(x} is the inverse function of x(s) for a fixed 5_,, or s(z) = x~*(z). The function s(x) is well
defined if x(s) is strictly increasing in s;. If x has ‘flats’ in s;, then the integral would have 10 be
modified in the obvious way. It follows directly from (28) that v,(x,s) is supermodular in {(x,s;) if
and only if u,(x, §) is supermodular in {x, 5,), which in turn is guarantced by the supermodularity of
u;(x, w) in (x, @), as shown in Proposition 5.

Next we show that u(x, s} — v,(x, 5) is (i) supermodular in (x, 5,) and (ii) achicves a global maxi-
mum at x = x{s} for afl 5. The first property is guaranteed by the same argument as before if u_,(x, 5)
is supermodular in (x, 5) as

{30) w{x,8) —v(x, sy =u_,(x,8)+£(x).
Observe next that u_,(x, )+ ,(x} has a stationary point at x = x(s) for all s by (29):

au (x,$) N a1, (x)  du_y(x,s)  du_(x,s(x)) _
ax ax ~ dx ax -

0.

Notice also that locally at x = x(5) the function is concave in x as the second derivative with respect
10 x is given by

Pu_i(x, 5y Fu_dx,s(x))  3%u_{x,5(x)) ds(x)
ax? ax? dxds dx '

as the first two terms cancel at 5 = s(x), and

Fu_(x,s(x)) ds(x) -0
dx ds; dx =

by the supermodularity of u_;(x, s) and u(x, 5} in (x,s;). However our standing assumptions don’t
allow us to conclude that the local maximum is also a global maximum. This final obstacle can be
removed by modifying the objective function u_,(x, s} +¢,(x) through the addition of a new function
glx, 5) with

G(x, 5) 2 u_,(x,$) +,(x) +5(x, 5),
such that the following properties are satisfied:

(a) g(x(s),s}=0, foralls

{b) G(x,s)is supermodular in (x, 5,);
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and
() G(x(s),5)>G(x,5), Vs, x

If a function g(x,s) exists such that G(x,s) satisfies the properties (a)-(c), then G(x,s) satisfies
assumption (i) and (ii) of Lehmann’s theorem, Moreover the expected value of G(x, 5} evaluated
at x = x(s) is equal to u_,(x, s) + t;(x) evaluated at x = x(s). To accomplish this define an auxiliary
function b(s) by

b(s) = u(x(s), ) — u_;(x(s), 8} — ,(x(s)),
and define g(x, 5) to be
2(x,5) = u(x, ) —u_(x,8) — £,(x) ~ b(s).

It is now easy to verify thal G{x,s) shares the supermodularity properties of u(x, s), has a glebal
maximum at x = x(s) for every s, and indeed g{x(s),s) = 0. It remains to take expectatians:. We
maintain 5_; to be fixed. We take the expectation with respect to the distribution F* and F% and
denote

Glay, 5.5) = B, [Ga(sp, 50, (s, SIF™)
and
Gl 5.)) =, [Gx(s,, 5.), (52 5 ))IF7].
Tt then follows by Lehmann’s theorem that if o, is more effective than o, we have
Gla,s.;) 2 Glal, 8.
From (a)-(c), we can then conclude that
oy s+t 5.) 2 (e, 5.) + 1), 5.0),
adopting again the notation that
u_fa, 5. )+ e, 5.,) 2 E, [u (3 (s 52,0y (s s ) + 1, (s, 5. ) F21],
and similarly for aj. By (30), this is equivalent to
(31) (o, s_;) —ulel, s_) = v (e, s,y — (o, s_).

As the inequality holds for every 5_,, it remains to hold after taking expectation over the realization
of s_;, which concludes the proof. The corresponding result for submodularity can be obtained by
simply reversing the inequalities, QED

ProOOF oF THEOREM 3: This theorem is a special case of Theorem 2 after introducing the fol-
lowing ranking for the allocations. With a single unit auction, the set of allocations is simply the
assignment of the object to a particular bidder. For every i, partition the set of allocations X into
x; and x_; and order the assignmenis such that x; > x_;. {The order among the remaining bidders is
irrelevant.) By definition of the single object auction

u(x_;, w)=0.
To verify the supermodularity property, it is therefore sufficient to examine the behavior of
ui(x, @) —u(x_, ),

as a function of w,. Similarly for u_{x,®). The result is now a direct consequence of
Theorem 2. G E.D
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