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Abstract

This note shows that the optimal choice of k simultaneous experiments in a stationary
multi-armed bandit problem can be characterized in terms of the Gittins index of each
arm. The index characterization remains equally valid after the introduction of switching
costs. © 2001 Elsevier Science B.V. All rights reserved. ’
JEL classification: D81, D83
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1. Introduction

It is well known that in a multi-armed bandit situation, the optimality of the
Gittins index policy is sensitive to changes in the number of experiments
performed in each period.! A different generalization to which the index policy is
not robust is the introduction of switching costs between the arms as shown in
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Banks and Sundaram {1994). The purpose of this note is to show that with
a countable infinity of ex ante identical arms, the problem is much better
behaved. This setup was called a stationary bandit problem in Banks and
Sundaram (1992), who analyzed the optimality of the index policy with de-
numerably many arms. More precisely, we find that the main problem in the
case with finitely many arms is the possible need to revert back to arms that were
once abandoned. In a stationary bandit problem, once an arm is abandoned, it
will never be revisited in either of the two environments just mentioned.

The basic setup of a stationary bandit has been used in the theory of job
search as a description of a labor market. Hence it is of interest to note that the
simple index rules characterizing optimal search can be generalized for station-
ary bandits. Within the context of a job market, the generalization to multiple
searches in each time period seems relevant to models where 2 firm is searching
for the most productive workers to fill k vacancies or, alternatively, a model of
job search among family members when the resources within a family are
pooled. In the context of allocating research and development expenditure, one
can imagine a mode! where k separate research teams direct their efforts among
a countable set of ex ante equally profitable projects. In each of these cases, our
results demonstrate that selecting the alternatives with the highest individual
indices is an optimal strategy. We also show that the use of a generalized index
rule with a large but finite set of arms is approximately optimal,

2. Basic model

The general problem in this note is to operate k arms in a multi-armed bandit
simultaneously so as to maximize the expected discounted sum of returns from
all operated arms in all future time periods. Time is discrete and indexed by
te{0,1,...}. The set of available arms is given by N = {1, 2, ... } and a particular
element of the set is indexed by i. All arms are assumed to be ex ante identical
and statistically independent. In period t, arm i yields a reward x! if operated
and zero otherwise. In the most general setup, the reward from arm i follows
a stochastic process, not necessarily Markov, that depends only on past realiz-
ations from arm i.2 For ease of notation, we focus on the case where each arm is
a sampling process. In other words, x! ~ G(- |8), where 6 ® < R" is an un-
known parameter. Assume also that infy E[x}| 8] > 0 so that selecting an arm is
always strictly better than not selecting one and also that sup, F[x{|8] < <.
Let ©§ be the prior on 6 (common to all i). The posterior belief %! is updated
using Bayes’ rule in the periods when arm i is operated. Let m, = (n},n2,n3,...)
and observe that for all ¢, z! = = for all but finitely many i. Let 5&(0,1) be the

2See Varaiya et al. {1985) for the extension to the non-Markovian case.
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discount factor between periods. The problem is then to choose for each t and
7, a subset A,(m,) of N to solve the following:

mx £, 5 T ]
A (2} =N =0 ied(x)

subject to

A < &,

where |A,(r,)| denotes the cardinality of the set A,(x,).

We briefly recall the definition of the Gittins index in its flow characterization.
For arm i at posterior }, the Gittins index is given by m'(n}) if a decision maker
is indifferent in period ¢ between the following two payoff flows: (i) she can either
receive a fixed reward of mi(n}) in the current period as well as in all future
periods or (i) she can receive the random payoff x{ in the current period and
maintain the option to continue sampling from x! or receive m'(x}) in all future
periods.® An alternative characterization of the index m'(x}) is given by

Eu ey 6°'x!
(7O 3
m'(n}) = max EaS, o (1)

T

where 7 is a stopping time. In words, the index m'(r) is the maximal expected
average discounted payoff per unit of expected discounted time. We denote the
Gittins index of any arm in period Q by

my 2 mi(x).

The following recursive definition extends the Gittins index rule to the case
where k arms are selected simultaneously. Let

Ag(mo) = {1,...,k}, .

and associated with A,, let
By(=,) = {ier(nq)]m‘(rzi) = my}.

The sequence {A(1,), By +1(me41)};20 is then extended recursively by
Ay(my) = By(m)Olk + 1, .., 2k — |By (m)l}.

and

By(ma) = {i€ Ay (my) | mith) = mo),

3For a more complete exposition of the theory of multi-armed bandit processes and the
optimality of index policies, see Gittins (1989), Whittle (1982) or Banks and Sundaram (1992).
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and for any arbitrary t by

=1 4
Aw) =Btk +1='F BN, €+ Dk 3 1B}

=1
and
By 1 (s 1) = {iEAr(nt)!m'(ﬂriﬂ) =my}.

We call the sequence {A{n,)}> the Gittins index k-rule. We may omit the
obvious dependence on the sample path and posterior belief and simply write
{4, }2 0. The sequence A, operates all those arms whose Gittins indices are
above the common index of the untried arms and abandons those arms with
indices below that value. New arms are tried in the order of their labels. In the
next section, we prove that this rule is optimal and we also establish the limit
result that a finite version of this rule achieves approximately the optimal payoff
in an economy with N arms as N gets large.

3. Optimality of the index rule
3.1. An example with finitely many arms

We start by giving an example of the failure of the index rule when k arms are
to be selected in every period and there are only finitely many arms. For
simplicity, we assume that the arms are not identical at the beginning of the
problem. The reader may want to think of this situation as one arising as
a continuation problem in an initially symmetric situation.

Consider three arms, of which at most two can be employed in any given
period. The rewards of the arms are given by

1 — 1 with probability p* = 1 for all t.

5 {2 with p? =4,
x =

for all ¢
0 withi—p2=3

3 withp*=4%}
S = >, forall t.
* {0 with1—p?=4% O °

Future payoffs are discounted with a discount factor & = 4. Due to the simple
structure of the uncertain arms 2 and 3, all uncertainty is resolved in a single
trial*

4 This is assumed only to make the example computationally simple. The qualitative nature of the
example does not depend on this,
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It is straightforward to verify that m' = m? = m? = 1, as the Gittins index of
each arm i can be computed by

i
P+ st 15213

Spixt t—pm_ m }

m = max{m

The Gittins index rule is hence completely indifferent about the temporal
order in which the arms are selected. However a simple calculation shows
that the values to the decision maker are different depending on the order by
which she chooses among the arms. In particular, setting A, = {1,2} or
Ay = {1,3} yields an overall value of §§ while starting with the two uncertain
arms, Ao = {2,3} yields only §%. If we parametrize the value, V, of the entire
program by the reward, and thus the Gittins index, of the certain alternative, x,,
it is easy to show that ¥(x,) is a continuous function of x;. But this tells us
immediately that for small enough ¢ and x; = m; = 1 — &, the optimal choice of
Ap includes alternative 1 even though it has a lower Gittins index than the other
alternatives.

The loss resulting from the choice of {2,3} rather than {1,2} or {1,3} can
be understood as follows. If an uncertain arm fails, i.c. generates a reward of
0 in the first period, then it is optimal to abandon that arm and choose the
safe arm in the following period. The option value of an uncertain arm is
defined as the (expected) gain resulting from a switch to the safe arm. If
both uncertain arms are chosen in the initial period, then the option value of
one of the arms is lost immediately. Since, if both arms fail in the initial
period, only one of the arms can have a positive option value. The probability
of failing is % for arm 2 and % for arm 3. If {1,2} are chosen in the initial
period, then this loss in option value is delayed by one period and hence the
difference in the losses is given by (1 — 6)4 - # = 1%. If the decision maker had two
certain arms available, each yielding a reward of 1 per period, then all policies
not using dominated arms would yield a payoff of 4. The simultaneous use of the
uncertain arms would not result in any losses in terms of the option value as
there would be sufficiently many safe arms available after all histories. In
a stationary bandit problem, the unlimited supply of untried arms guarantees
that the option value of any given arm is not dependent on the past choices of
arms.

3.2. Optimality with infinitely many identical arms

The crucial point in the following proof is the observation that, with infinitely
many identical arms, an arm that is abandoned once, will never be employed
again. This form of independence from the state of the other arms is sufficient to
show that the index policy is an optimal policy.
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Theorem 1. The Gittins index k-rule is optimal. The initial value of the stationary
k-choice bandit is given by

kmO
1-6

V()2 @

Proof. The proof proceeds in two steps. In Step 1, we show that the value V()
can be achieved by the Gittins index k-~rule and then, in Step 2, we show that no
other policy can achieve a larger expected payoff.

Step 1: Consider any of the available k slots. The following policy achieves
mo/(1 ~ &) for every slot. Start with an untried arm i and continue with it until
its Gittins index mi(n}) drops below m,. At the first occurrence of this event
switch to an untried arm and play according to the same strategy. We claim that
this strategy achieves mg/(1 — 8). The claim is proved if we show that the
stopping time:

¢! = min {¢t|m'(n}) < mo}

solves the optimization problem on the right-hand side of (1). But this follows
immediately from the optimality of the index policy for k = 1. As the same
argument can be given for all slots, we conclude that this policy results in
a payoff of kmy /(1 — 0).

Step 2: The argument is by contradiction. Suppose that there is another policy
which achieves a strictly higher payoff than kmg /(1 — J). Then there must exist
at least one arm i for which the expected average payoff strictly exceeds my.
Denote by the indicator function I{(m,) the employment of arm i under this
policy:

" )_{1 if ie Ay(m),
™WZV0 ifigA,(m).

Restating the claim just made, it must be that there exists at least one i such that
for some m'e R, with m' > my:

Ex, Y2 ol (m)6'x!

—
E. S oTm)o" m > mg. {3)

Notice that the indicator function depends on #,, and not only on =, and that
the indicator may switch arbitrarily often between 0 and 1. For every policy and
its representation through the indicator function I'(x,) we can construct another
policy and associated indicator function '(n}, 1), depending on =} and time
t only, such that

Pr(li(m,) = 1| nf, 1) = Pr(I(x,1) = 1 | =}, 1)
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for every it and .5 It follows that the ratio formed by the new indicator function
still satisfies the (in-)equalities in (3}
Eg)2 omnf,_t)ﬁ’xf
Eﬂ.‘g Zlu; O-j (E:, t)ét

Consider next a modified stream of payoffs, {#,}2,, based on Ii(x!,t) and
defined as follows:

= m' > m,. ()

r(ﬂ::,t)=l - ut.=x:’
M, )=0 < u =m

Notice that {1, };2o can be thought of as the realized payoffs in a two-armed
bandit problem with one certain and one uncertain arm. Denote the discounted
expected payoff from the policy (=}, ¢) in this modified problem by V(I',m}).
From (4), we have

m!

= 1 < fyy oo e
V(L m) =Eg zo Ot = 1

and for all m < m', we have

m
Vi e
(', m) > 13
Instead of the allocation policy f'(n,?) consider now the optimal allocation
policy between the uncertain arm x' and the certain arm m'. Finding the optimal
allocation policy in this case is a standard two-armed bandit problem. A station-
ary solution to this problem exists. Denote this policy by I**(x;). By definition

V(I m) > V(I m') = I-"_‘—é. (5

As the optimal policy is stationary, there exists a stopping policy t* based only
on 7! that achieves the same payoff as the optimal policy. But by inequality (5),
this implies that

- !
Ez%.zt;O‘sf X > ',
E. Z b

=0

3 At thig point, we are using the stochastic independence of the arms, ie. the fact that
E[x |71 = E[xfIn{}
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which yields the desired contradiction as the initial hypothesis stated that
Bt Z:=c 8'x;

i
max ——=s——7/="Mg <Mm
Z g 9 ’
" Eﬂ, 1=06

and this concludes the proof. O
An immediate consequence of Theorem 1 is the following:

Corollary 1. The Gittins index k-rule is optimal in any bandit problem with
infinitely many arms where all but k' < k arms have initially the same Gittins index.

We conclude this section by providing a limit result for approximate optimal-
ity of the Gittins index k-rule when there are N arms and N goes to infinity. Let
V{(k, N) denote the optimal value in a problem with N arms. Denote the value in
the case with an infinite number of identical arms by V(k).

Lemma 1. V(k,N) is increasing in N.

Proof. Let N' < N. Then V{k,N’) < V(k,N) as, with N arms, it is always pos-
sible to restrict all choices to {{,...,N'}. O

In view of this lemma, the value of the problem with a countable infinity of
arms exceeds (weakly) the value of any finite arm problem. The last result in this
section shows that the truncated Gittins index k-rule achieves the value of the
countable arm problem in the limit. By the truncated rule, we mean the rule that
selects arms 4, {l,..., N} in period . Denote this rule by 4 and the value
corresponding to this rule by VA(k, N).

Lemma 2.

1. limy ., VA(k, N) = V(K),
2. limy. o Vik, N) = V(k).

Proof. (1) Let pA(k,N) = Pr{N + 1€ A, for some t}. Then with probability
1 — p(k, N), the realizations of A4 and A coincide. In the complementary case,
the payoff difference is bounded since all the stage game payoffs are bounded
and discounted. Hence we are done if we can show that limy., ,, pi{k,N) = 0.
But this follows readily from the observation that in a sampling bandit process,
Pr{m(n}) > my,¥t} > 0, as proven in Corollary 5.2 in Banks and Sundaram
(1992) and the fact that the arms are statistically independent.

(2) Since the optimal value V(k,N) > V4(k, N), the convergence of V4(k, N)
implies directly the convergence and asymptotic optimality of V{k,N}. [J
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4. Switching costs

In this section, we show that the resuit of Banks and Sundaram (1994) on the
non-existence of an optimal index policy with switching costs disappears in the
stationary bandit setting The basic intuition is that the availability of untried
arms makes it unnecessary to ever switch back to arms which were abandoned
earlier. This observation combined with the result by Weitzman (1979) stating
that an optimal index policy exists if switching costs are paid only on the first
trial with a given arm shows that the Gittins index rule remains optimal in the
stationary bandit setting. Theorem 1 then allows us to conclude that the Gittins
index k-rule is optimal in the simultaneous allocation problem of k arms under
switching costs.

-Let ¢ denote the switching cost to an arm and d denote the switching cost
from an arm.

Theorem 2. The appropriately defined Gittins index k-rule is optimal in a stationary
bandit problem with switching costs.

Proof. 1t is immediately verified that the index can be appropriately modified by
deducting (¢ + d) from the payoff of any untried arm in the initial period of its
use. By Theorem 1, we know that an arm should be abandoned forever once its
index falls below the (modified) index of the untried arms. After abandoning an
arm, switching costs of {¢ + d) would have to be deducted if the arm were to be
reused in any future period. A fortiori, the strategy of Theorem 1 remains
optimal and it is best to never fall back to an earlier abandoned arm whose
Gittins index is strictly below the (modified) one of the untried arms. Since
untried arms are available in all periods, the optimal strategy is to continue with
an arm if and only if its index exceeds the {modified) one of the untried arms. [

5. Conclusion

In many economic problems such as the allocation of workers to firms,
a stationary bandit situation is the most natural idealized description of the
market. This note shows that while the Gittins index rule in a finite multi-armed
bandit problem is not robust to many economically meaningful perturbations,
the problem with infinitely many arms is much better behaved. A generalization
of the Gittins index rule remains optimal in the allocation problem of k simulta-
neous experiments as well as in a problem with switching costs. We also show
that the generalized Gittins index rule performs well in bandit problems with
a large but finite number of arms. In particular, the payoff from the generalized
Gittins index rule converges to that of the optimal policy as the number of arms
tends to infinity.
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On a more technical level, this note clarifies the reason for the failure of the
Gittins index policy in finite arm bandits with multiple experiments. In the
classical multi-armed bandit, a crucial requirement is that the employment of
one arm leaves all other arms unaffected. With multiple experiments, the best
available alternative in the next period to an individual arm depends on the
choice of other experiments in the current period. But the Giftins index is
calculated under the assumption that the payoffs from all but one arm are not
affected by the choices in the current period. As a result, the Gittins index rule is
not optimal with multiple experiments and finitely many arms. An infinite
supply of ex ante identical arms guarantees that the relevant alternatives when
an arm is to be abandoned do not depend on the past choices of arms and hence
the optimality of the Gittins index rule is restored.
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