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Market diffusion with two-sided learning

Dirk Bergemann*
and

Juuse Villimiiki**

We analyze the diffusion of a new product of uncertain value in a duopolistic market.
Both sides of the market, buyers and sellers, learn the true value of the new product
Jrom experiments with it. Buyers have heterogeneous preferences over the products
and sellers compete in prices. The pricing policies and market shares in the unique
Markov-perfect equilibrium are obtained explicitly. The dynamics of the equilibrium
market shares display excessive sales of the new product relative to the social optimum
in early stages and too-low sales later on. The diffusion path of a successful product
is S-shaped.

1. Introduction

® The design of a new product or the improvement of an existing product is only
the necessary first step in launching a product in the market. Commercial success
depends critically on the speed and cost at which buyers learn the relevant character-
istics of the product. An eventually successful product may go through a phase of
sluggish sales in the beginning of its life cycle simply because buyers are not aware
of its true quality. It may then be in the firm’s interest to engage in strategies that
sacrifice current revenue to generate more information about the product, for example
through aggressive penetration pricing, to capture a larger clientele,

In this article we model dynamic competition in a duopolistic market for experi-
ence goods. An established firm and a firm with a new product compete in prices in
an infinite-horizon, continuous-time model. Buyers have to try the new product to learn
how well it suits their needs. We assume that the product incorporates both a common
and a private-value component to the buyers. To keep the model analytically tractable,
we assume that the private-value component of every buyer is common knowledge and
may reflect idiosyncratic taste, location, or the like. In contrast, the common component
is learned gradually over time as more experience is accumulated. The information
obtained in any single trial with the new product is a noisy signal of product quality

* Yale University and Institut d’ Analisi Economica, CSIC, Barcelona, Spain; dirk.bergemann@yale.edu.

** Northwestern University; valimaki @nwu.edu.

The authors would like to thank Colin Campbell, Ron Goettler, Phillip Leslie, Ariel Pakes, Jim Peck,
Mike Riordan, and seminar participants at the Institut d’ Andaiisi Econdmica, Barcelona, Ohio State University,
and the University of Wisconsin for manv helpful comments. We are erateful to three anonvmous referees



774 / THE RAND JOURNAL OF ECONOMICS

or more generally of the utility it provides to the consumer. The total available infor-
mation on the common-value component then depends on the cumulative sales. We
assume that a statistic on the aggregate performance of the new product (obtained via
either consumer reports or an unmodelled process of word-of-mouth communication)
is available to all parties in the model. This introduces an informational externality into
the model. Each individual purchase has effects on all buyers in this model through
changes in the market statistic.

The simplest economic example for our story is a linear city with, for example,
two fish markets located at the ends of the city. Consumers are uniformly distributed
along the segment between the fish markets and incur a transportation cost linear in
distance to the stores. One of the stores has been in operation for a long time, whereas
the ownership of the other has recently been changed. Buyers choose the store at the
beginning of each period depending on their beliefs on the quality of the fish in the
new store, their transportation cost, and current prices. The quality of the storekeeping
has to be learned through experience, while the idiosyncratic transportation cost to
every buyer is common knowledge at the outset. Every purchase in the new store
yields an imperfect signal on the quality (taste, freshness, etc.) of the fish in the new
market. Based on the buyers’ experiences, the two firms and the consumers update
their belief on the value the new fish market provides to the buyers in the city.

We characterize the diffusion path of the new product (or the time path of the
clientele of the new seller in the fish market example) and derive the equilibrium price
path in the unique Markov-perfect equilibrium. Our continuous time specification al-
lows us to derive analytical solutions to both the price paths of the firms and the
associated path of market share evolution. The pricing policies display an interesting
asymmetry. Both firms prefer ex post differentiation, as is typical in models of price
competition, and hence the value of information is positive for both firms. Only sales
of the new product, however, produce more information. Hence, if the firms want to
speed up the information transmission, the new firm must make relatively large sales
in early periods. Since both firms benefit from sales by the new firm, competitive
pressures in the stage game are reduced, and uncertain (and vertical) product differ-
entiation relaxes competition in a similar sense as deterministic product differentiation
in Shaked and Sutton (1982). In equilibrium, this results in the new firm’s collecting
higher revenues due to increased market share early on. As buyers and sellers become
more convinced about the true quality of the new product, the market shares converge
to those of the full-information game. The value of accumulating more information
thus has two components for the established seller: Due to product differentiation, he
expects to get higher profits in expected terms, and as the information becomes more
accurate, the need to distort sales in favor of the new firm diminishes as well.

The asymmetry is also apparent in the intertemporal behavior of the market share
of the new firm. In the myopic case, i.e., the case where the stage game is played
repeatedly as a one-shot game and all players ignore the informational effects, the
expected market share of the new firm is constant. In the Markov-perfect equilibrium,
however, the expected market share of the new firm is decreasing (its market share is
a supermartingale). High initial sales reflect the value of information to both sellers.
Furthermore, the expected revenues of both sellers are increasing over time. Thus firms
are sacrificing current profits early on to enhance the accumulation of information.

In equilibrium, the pricing strategies induce sales paths that differ from the socially
optimal path. As long as the beliefs about the type of the new product are sufficiently
pessimistic, the level of experimentation and hence purchases of the new product ex-
ceed socially optimal levels. The intuition behind this result is straightforward: At
pessimistic beliefs, the market share of the new firm is small and the cost of attracting
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prices, is small. The established firm has a large market share and concedes some
market share to protect inframarginal profits. On the other hand, if beliefs about the
new product are optimistic, then the old firm prices more aggressively and experimen-
tation falls below the social optimum.

The time path of product adoption, or the diffusion curve of a successful new
product, displays the S-shape documented in empirical work such as Mansfield (1968)
and Gort and Klepper (1982). At relatively pessimistic beliefs, increases in the number
of adopting consumers increase the inflow of new information. As beliefs about the
product quality become sufficiently optimistic, the growth in the market share of the
new firm eventually slows down.

Our model of dynamic competition involves simultaneous determination of two
value functions representing the sellers’ intertemporal problems in an infinite-horizon
model. The dynamic programming equations under positive discounting, which de-
scribe the equilibrium of the model, are, unfortunately, nonlinear differential equations
and can only be solved numerically. To avoid these complications we use a technique
recently employed by Bolton and Harris (1993), considering the limiting model as
discounting in the model becomes small. The limiting model preserves all the desirable
features of the original discounted dynamic program, and in particular, the optimal
policies in the limiting model are the unique limits of optimal policies with discounting.

There are a mumber of related articles in which issues of strategic pricing are
analyzed in a learning environment. Aghion, Espinosa, and Jullien (1993) and Har-
rington (1995) consider product-differentiated duopolies in which firms learn about the
substitutability of their products. In their models learning is one-sided. More precisely,
the firms try to learn the degree of substitutability between their products. The goods
are not experience goods, as consumers have perfect information about the products at
the outset and it is observed demand conditional on the price differential between the
products, rather than cumulative sales of a new product, that generates the learning.
Caminal and Vives (1996) analyze a two-period duopoly model where a sequence of
short-lived buyers are uncertain about the quality differential. As consumers are re-
stricted to observe only quantities of past sales, the long-lived firms attempt to signal-
jam the learning process of the buyers.

Our techniques are similar to those used by Bolton and Harris (1993), who were
the first to consider a continuous-time model of strategic experimentation. Bergemann
and Vilim#ki (1996) analyze strategic experimentation in a duopoly with a continuum
of identical consumers. The homogeneity excludes market sharing, and the analysis
there concentrates on how the informational externalities affect the efficiency of the
market. Issues of informational externalities in a market for new products were already
present in the competitive-entry and capacity-expansion model of Rob (1991) and its
extension to a two-sided learning model by Vettas (forthcoming). Our focus on strategic
interaction between the firms results in very different price dynamics and welfare con-
clusions.

Judd and Riordan (1994) analyze a two-sided learning model in a monopoly with
two periods. Their information structure differs from ours, as the consumption of the
experience good yields a private signal to the individual buyer and the aggregate signal
of sales is a private signal to the monopolist. Finally, Schlee (1996) has analyzed the
incentives of a monopolist to engage in introductory pricing of a new experience good
in a two-pericd model where the signals are publicly observed.

The model and the Bayesian learning process are introduced in Section 2. The
socially efficient allocation policy is described in Section 3. The definition of the Mar-
kov-perfect equilibrium is given in Section 4, where we completely describe the pricing
policies and market shares in the unique equilibrium. The diffusion path of a successful
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2. The model

B In a dynamic duopoly, firms with differentiated products compete in prices in an
infinite-horizon, continuous-time setting. The first firm is well established in the market,
and its product characteristics are common knowledge at the beginning of the game,
The second firm has a new product whose value has to be learned over time.

The preferences of the buyers are described by a Hotelling location model. The
buyers are uniformly distributed on the interval [0, 1] and they have unit demand at
each instant of time. The value of the certain product for individual » is given by s,,
with

5, = § + nh, ne [0, 1]. D

The parameter & > 0 represents the horizontal differentiation between the products,
and as such Ak is a measure of the heterogeneity among the buyers. Symmetrically, the
value of the uncertain product for individual » is given by u,, with

p, =+ (1 — nh, ne [0, 1] )

The value, p, of the new product is initially unknown to all parties. It can be either
low or high:

JIAS {)U'L- ﬂ'ﬁ}s 3)
with
O<s—h<y <s<pu,<s+h )]

The inner inequalities in (4) imply that the new product can be of either lower or higher
value than the established one. The outer inequalities assert that in either case, the
efficient allocation would assign a positive measure of buyers to both products.! The
marginal cost of production for both products is normalized to zero.?

The size of 4 determines how much the value of the product to the buyer and
ultimately the choice behavior of the buyer is influenced by her location. The model
in (1)~(3) is one of horizontal and vertical differentiation, where the horizontal differ-
entiation is common knowledge at the outset but the extent of vertical differentiation
is uncertain.

The uncertainty about the value of the second product can be resolved only by
experimentation, i.e., through purchases of the new product. The performance of the
new product is, however, subject to random disturbances, and any single experiment
with the new product provides only a noisy signal about the true underlying value. The
information conveyed by an experiment depends on the size of the experiment. As
each buyer is of measure zero, the size of her purchase is negligible and hence the
information generated by an individual experiment is also negligible. In consequence,
all relevant information is contained in the aggregate outcome. The aggregate or market
outcome is the performance of the product over all buyers, which is assumed to be
publicly observable.

' In other words, the innovation is not drastic.

? The parameter g is to be interpreted as an unknown mean governing the random payoff realizations
from the nncertain alternative The new nradnct ic of randam anality and aach additinnal Ahcarsatinn wialda
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To derive the law of motion for the market outcome, it is most intuitive to start
with the discrete approximation of the model. The approximation is discrete in time as
well as in the number of buyers. In an economy with N buyers, each individual ex-
periment, XV, is an independent draw from a normal distribution with an unknown
mean, p, = u/N, where p € {p,, uy}, and a known variance, o3, = o*/N, for fixed
and o2 Since the mean and the variance of each individual draw are normalized by
the number of buyers in the market, the aggregate mean and the aggregate variance of
the market experiment,

remain constant at (i, o). For & = N, we may compute the expected value and variance
of the & buyer experiment,

k k k
E Xy ~ N(-",u,, —0'2).
=1

Taking the limit as N - ®, we can express the distribution of the aggregate experiment
of a fraction

k
n=_
N

of the buyers’ experiment as?
X(n) ~ N(np, no?. &)

In the continuous-time formulation, the market outcome process, dX(n(#)), becomes a
stochastic differential equation:

dX(n(0)) = n(Hudt + &V n(dB(1), t € [0, «), (6)

where the instantaneous or flow payoffs dX{(n(1)) in continuous time take the same form
as (5) in discrete time. As before, n(#) is the fraction of buyers who use the new product
at time 2. The expected flow payoff from the aggregate experiment is n(f)u. Its variance
is o2n(r), and dB(¢) is the increment of a standard Brownian motion. At each instant,
dX(n(¥)) provides a noisy signal of the true value of the uncertain alternative, n(f)u,
subject to a random perturbation o'V n(f)dB(7).

It is immediately verified that the instantaneous mean and the variance of the
market outcome are linear in the market share of the new seller. As the value of u can
only be u, or u posterior beliefs about the quality are completely characterized by
a(1), with

a() = Pr(u = py| F), ¢))

3 This construction does not really require the individual experiments to be normal, since we can use
the central limit theorem in the limiting procedure. as the number of buvers become laree. to derive normalitv



718 / THE RAND JOURNAL OF ECONOMICS

where 7 (#) is the history generated by X(n(#)). The conditional expected quality p(c(r))
of the uncertain product is

wa() = (1 — ey + aDpy. (8)

The market players extract the information provided by the noisy market outcome (6)
to improve their common prior beliefs a(0) = a, over time. The game is thus one of
incomplete but symmetric information, and no issues of asymmetric information arise.*

The learning process of the market represents a signal-extraction problem: Given
the information generated by X(n()), what is the posterior belief about the value of
the uncertain alternative? As the beliefs are completely characterized by a(?), the signal-
extraction problem reduces to the description of the law of motion of the posterior
belief a(z).

Proposition I {posterior belief). The process a(t) is a Brownian motion with zero drift
and variance n(f) 2% a():

a( — oWy — po)|°
- .

n(HZ*(a(t)) = n(p) )

Proof. See Liptser and Shiryaev (1977), Theorem 9.1. Q.E.D.

The posterior belief a(f) is a martingale, as the posterior belief incorporates all
predictable information. The variance of a{f) can be interpreted as the amount of in-
formation generated by the market outcome, as it indicates how rapidly a(z) can
change. The variance increases linearly in the market share of the new firm and depends
on the signal-to-noise ratio (u, — u,)/o and the diffuseness of the prior information
a(B)(1 — a(n).

The only payoff-relevant source of uncertainty in this model is the value of the
new product. All available information in period ¢ is incorporated in the common
posterior belief «(z), and the dynamics in the model are driven by the process of belief
change. The focus in subsequent sections is the analysis of Markovian policies where
the posterior belief « is a natural state variable. We start by solving for the socially
efficient experimentation policy to get a benchmark for the equilibriurmn model.

3. Efficient experimentation

B This section has two objectives. First, we want to introduce the basic technique of
dynamic programming with zero discounting to describe intertemporal policies in our
model. Second, we apply the technique to characterize the socially efficient experi-
mentation policy, which maximizes the social surplus. The technique is most clearly
illustrated here, since the efficient allocation is the solution to a single optimization
problem without any strategic interaction.

The reader mainly interested in the duopoly may want to go directly to Section 4
and refer back to this section for details only when needed.

An experimentation policy prescribes for every posterior belief « the shares of
buyers allocated to the sellers. Denote by n(a) the market share of the new product
and by 1 — n{a) the share of the established product. The average flow value from the
established product when the 1 — n{a) buyers receive the product is with preferences
as in (1) and (2):

4 Because of this simplifying assumption, we do not have to address issues of prices signalling the
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snie)) =5 + %)—)&, (10)
and for the new product it is similarly
2 - h
wn(e) = p + % (1)

The expected flow value of consumption from the two alternatives under posterior
belief a and allocation policy n(c«) is then given by

n(@p(n(e)) + (1 — n(a))s(r(a)).

The optimal allocation problem with discounting can be written as a dynamic program-
ming problem in continuous time:

V() = max {n(a)u(n(a)) + (1 — n(a)s(n(a)) + %n(a)zz(a)V”(a)}, (12)

r{cx)

where V(a) is the value function of the allocation problem and r > 0 is the discount
rate.’

The expression (12) has a very simple interpretation. The flow benefit rV(a) from
an experimentation policy n(«) consists of two parts. The first part is the aggregated
flow payoff from the two alternatives, and the second part is the flow value of exper-
imentation ¥%n{a)2*(a)V"(a). Notice that since a{f) is a posterior belief and hence a
martingale, terms involving the first derivative V'(«a) disappear in the dynamic pro-
gramming equation. The last term captures the impact that oscillations in « have on
the flow value. The instantaneous variance 22(a) of the belief process indicates the
quantity of information released through a unit of experimentation, and n(«) is the
current size of the experiment. The curvature V"(«) of the value function is the shadow
price of information. If V"(«) is positive, then additional information is valuable for
better future allocation decisions. The flow value of the optimal experimentation policy
then maximizes the sum of the flow payoff and the flow value of information.

The optimal allocation n(«) can be obtained in principle from the first-order con-
ditions of the right-hand-side term of (12). But the differential equation that results
when n(a) is replaced by its solution is quadratic in the second-order term V"(«). As
a consequence, solutions to the differential equation implied by (12) can be obtained
only through numerical methods, and no analytical solutions are available. This feature
is present in all specifications with idiosyncratic preferences as long as the value of
information, %2 *(a)V"(a), is nonzero, since the optimal market share, n(a), for the new
firm is a function of V"(«) and the Bellman equation is

rVi{a) = f(V'(a)),

where f is a nonlinear function of V"(a).

‘We sidestep these problems by analyzing the optimal allocation problem under
zero discounting. With the appropriate optimality criterion, called the *‘strong long-run
average criterion” in Dutta (1991}, we preserve the recursive representation of the

5 See Dixit and Pindvyck (1994) or Harrison (1985) for a detailed derivation of the dynamic programming
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dynamic programming equation (12) as » - 0. Most importantly for our purposes, the
optimal policies under this criterion are the unique limits to the associated policies
under discounting and as such maintain the intertemporal aspect of the experimentation
policies. In other words, all the qualitative properties of the equilibrium we derive in
the following will hold also for small, but positive, discount rates r > 0.

The strong long-run average criterion refines the long-run average criterion, which
discriminates insufficiently between alternative intertemporal policies.®* The long-run
average under the initial belief o, is given by

1 T
vmasswﬁm;EJ'@mwmmn+(1—mmanMdd%, (13)
0

nla) T

where we suppress dependence on . The long-run average v(a) is equal to the expected
full-information payoff

vie) = av(l) + (1 — a)w(0), (14

if a(t) converges almost surely to zero or one, as is the case here. Hence almost any
allocation policy in finite time is consistent with long-run payoff maximization. The
full-information payoffs v(0) and v(1) are the solutions to the static allocation problems,
when i is known to be either u, or w,. These values can be computed immediately
and hence so can all long-run average values w(a).” The strong long-run average is
defined by the following optimization problem:

Viay) = sup lim E

nla) T—oo

T
.ﬂmwmwuwwmmwwm%(m
4]

where v(a) is as defined in (13). The strong long-run average maximizes the expected
returns net the long-run average. As the flow value n{@)u(n(a)) + (1 — n{a))s(n(a))
of the optimal allocation policy under imperfect information is necessarily less than
the expected full-information payoff v(a), a different interpretation of the strong long-
run average criterion is that it minimizes the losses due to imperfect information com-
pared to the maximum achievable under full information. The limit as 7 — « is well
defined and finite, and hence this criterion discriminates between policies based on
their performance on finite time intervals as well. The infinite-horizon problem (15)
can be presented via the dynamic programming equation as

max {n(a:)p,(n(a)) + (1 — n{a))s(n(a)) — via) + %n(a)Ez(a)V"(a)} =0, 16)

nia)

under the condition that n(a) is bounded away from zero for all a. The latter condition
means that even for low values of «, it is optimal to allocate some buyers to the new
product. The condition is satisfied with the inequalities (4) introduced in the previous section.

The simplicity of the Bellman equation (16) in the case of no discounting is trans-
parent, as it contains only the second-order term but no lower-order terms of the value
function. The flow value rV(a) that appeared in the discounted case is replaced by the

¢ See Dutta (1991) for a very careful and detailed analysis on the connection between optimality criteria
under discounting and under no discounting.
7 The long-run average values for the efficient and the equilibrium program are recorded in Lemma A1
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long-run average v(a) in the undiscounted case. The interpretation of the value-of-
information term, Y%n(a)2*(a)V"(a), remains the same as in the discounted case.

We proceed to solve for the optimal experimentation policy with the assistance of
the Bellman equation (16). As the optimal allocation n*(a) achieves a maximum value
of zero for the left-hand term of (16), and as n*(a) is bounded away from zero, we
may divide the term inside the maximum operator through rn(a) and claim that the
maximizer of the modification,

s+ g — via) |
max |———— — hn{a)| + @) — 5 + h + =2 (@V"(a) = 0, an
n(a) nio) 2

is identical to the maximizer of the original expression (16). The optimal allocation is
found by the first-order condition of {17), which is independent of the second-order
term of the value function.

Proposition 2 (efficient experimentation policy). The efficient allocation n*(a) is given by

n*(a) =

(18)

with n*(a) > 0 for all « € [0, 1].
Proof. See the Appendix.

The optimal allocation n*(a) is naturally an increasing function of «. The com-
parative statics are as expected, and »*(a) is increasing in wg, M, and decreasing in s
and h. As we compare n*(a) with the myopically optimal allocation m*(a) that solves
the static problem

m*(a) € argmax n(a)u(n(a)) + (1 — n(a))s(n(a)),
nia)

it is verified after some computations that n*(a) > m*(a) for all « € (0, 1). This
provides additional evidence that the optimal policy under the strong long-run average
preserves the intertemporal aspect of the experimentation policy as the optimal size of
the experiment n*(a) is larger than the myopically efficient allocation. The difference
is of course attributable to the additional incentive to use the new product to generate
information for future decisions. This intertemporal benefit is absent in the static de-
cision.

4. Dynamic equilibrium

B In this section we first define our solution concept, the Markov-perfect equilibrium.
Next we characterize the unique equilibrium and the associated equilibrium policies.
Finally we consider the efficiency of the equilibrium and examine its dynamic prop-
erties.

O Equilibrium and policies. In this model of dynamic competition, buyers and
sellers learn over time more about the true value of the new product. We focus on
Markovian strategies with the posterior belief a(r) as the state variable to emphasize
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The sellers choose at each instant of time their prices noncooperatively. We con-
sider only pricing policies, p(a), of the sellers that are measurable with respect to the
state variable a. The strategic considerations of the sellers involve both current revenues
and the influence that experimentation has on future revenues. Again, we are interested
in the limiting case of no discounting, and the value functions of the sellers can be
constructed in the same way as the value function of the efficient program in (16). The
dynamic programming equation for the established seller is

p1(e)

1
0 = max {(1 = n{a))p, () — v(a)} + En(a)zz(a)V’{(a)} (19

and for the new seller it is

0 = max {n(a)Pz(a') — wla) + %n(a)y(a)V'z'(a)}, (20)

pala)

where v,(a) and v,(a) are the long-run average payoffs of the sellers.? The equilibrium
market share,

n(a) = n(“» pl(“)a Pz(a));

naturally depends on the prices offered by the sellers.

The buyers, in turn, make their purchase decisions as a function of the current
estimate u(a) of the new product, the current prices, and their individual preferences.
As a single buyer is negligible in the market, the informativeness of the market outcome
is independent of any individual purchase. In consequence, the buyer’s decision is based
exclusively on the current (expected) values and prices, as she cannot influence the
informativeness of the market outcome. The equilibrium market shares are then deter-
mined by the critical consumer a(a) who is indifferent between the two alternatives:

s+ ma)h — pla) = uwla) + (1 — n(a)dh — py(e).

After rearranging, the equilibrium share of the new seller n{e) emerges as a function
of the current values and prices and the degree of horizontal differentiation:

_ (a) = ps(@)) — (s —p(a) + h

n(@) 2

(21)

As the buyers decide as they would under myopia, the equilibrium share condition
(given the prices) is as in the static pricing game. We now formally define the Markov-
perfect equilibrium (Maskin and Tirole, 1995).

Definition 1 (Markov-perfect equilibrium). A Markov-perfect equilibrium is a triple
{p1(a), px(a@), n(a)} such that equations (19)(21) are satisfied for all o € [0, 1].

The process of experimentation gradually establishes whether the new product is
of low or high value. Experimentation then leads ultimately to an increase in the {ver-
tical) differentiation between the products. The expected joint profits for the sellers are
higher after differentiation, as the superior seller will be able to extract a larger part of

# The long-run average payoffs are again the expected full-information pavoffs. which are the static
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the social surplus from the buyers via higher prices. Ex ante, both sellers could become
the sellers with the superior product, and thus both sellers attach positive value to
additional information. Consequently, the shadow price of information, represented by
Vi(a), is positive to both of them.® This has important but different implications for
the strategies of the sellers.

By inserting the equilibrium share condition (21) in the optimization problems of
the competing sellers, the strategic considerations of the sellers become more trans-
parent:

(1 _ pla) — pa) ;hs + P + h)p] (@ - vi(a)
0 = max B s n (22)
pyia) + ‘(L(a) Pz(a) s pl(a) Ez(a)vrlf(a)
4h
and
- —~ s+ pa) +h
(o) — prla) 2hs pa@) (@) — v(a)
0 = max _ oy . . (23)
paad + o) — p(a) — s + pila) SV (@)

4h

The equilibrium conditions (22) and (23) illustrate that for both firms, an increase in
their respective market shares requires a decrease in the price at which their product
is offered. But the equilibrium conditions also show that the incentives to acquire a
larger market share are quite different for the two sellers. The value of information,
which is generated by sales of the new product only, operates like an additional revenue
source. And while it is associated with sales of the new product, new information
actually benefits both firms. The additional value from sales will prompt the new seller
to price more aggressively and seek a larger market share than he would in a static
world. In contrast, the incentives for the established seller to increase his market share
are relatively weaker because a larger market share would imply less experimentation
and hence reduce the informational gains. This will lead the established firm to adopt
a less aggressive pricing policy in equilibrium.

By the same argument we presented for the efficient program, we can divide (22)
and (23) by n(a), or its equivalent in (21). The resulting equilibrium conditions for the
optimal pricing strategies do not involve the second derivatives of the value functions:

2h(p,(a) — v {a))
(@) — pyle) + ) —s + h

0= lEz(a)v"{(ao + max{
z P

i)

- Pl(a)}, (24)

and similarly for the second seller,

— l 2 " _ZhVZ(a)
0= 2E @V = e {pl(a) ~pa@) t ) — s+ h * pZ(a)}' @

The advantage of this approach is rather obvious. The optimal pricing policies of the
sellers can now be obtained without explicit reference to the second derivatives of the
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value functions. The optimal pricing policies are the sohutions to the first-order con-
ditions of (24) and (25).

Proposition 3 (equilibrium experimentation). There is a unique Markov-perfect equi-
librium. The equilibrium prices are

2
zmm=§@-umn+VMwM) (26)
and
1
paa) = §(u(a) -85+ h 27

The market share of the new seller is given by

vy(a)
2h

nia) =

(28)

Progf. See the Appendix.

The uniqueness property of the equilibrium is naturally due to the Markovian
restriction of the equilibrium strategies, and the set of non-Markovian (perfect) equi-
libria is obviously much larger.

As the market is always completely shared by the sellers, the market share of the
established firm is 1 — n(a). The properties of the dynamic pricing equilibrium are
most easily illustrated by contrasting the dynamic with the static policies. In the cor-
responding static equilibrium, buyers and sellers take the current posterior belief as
given and make decisions as if they were in a one-shot game without any intertemporal
considerations. We denote the static (or myopic) unique equilibrium prices by pr(a)
and pf(a), and the market share of the new firm by n"(a). The following corollary is
immediate.

Corollary 1 (static and dynamic prices).

(1) The level of prices is py(a) > pp(a) and py(a) = pi(a).
(ii) The level of sales is n{a) > n™(a).

The static prices and market shares are recorded in Lemma A1 in the Appendix.
The equality of the new firm’s dynamic price and the myopic price is a joint conse-
quence of the linear preference structure and no discounting. In the linear model with
discounting, the price of the new seller would in fact be below the myopic price, as
one might have expected.

The equality in the case of no discounting can be explained as follows. The revenue
from a marginal buyer to the new firm is the sum of the current price, p,, and the
marginal value of information, vy(a)/n — p,. Notice that when summing up these effects,
current prices cancel out. The losses resulting from lower prices on the inframarginal
buyers are given by 2An. On the other hand, the marginal losses from losing market
share for the established seller are given by [p, — v (a)]/n, and the inframarginal gains
(from higher prices associated with lower market shares) are 2h (1 — n). Summing the
marginal revenues across the firms, we get [p, — v(a)l/n + vy(a)n = 2h, where
(7, — vi(a)V/n and v, (a)/n can be interpreted as the flow gains from the marginal buyer.
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To recover from here the current prices, we solve for p, = v,(a) — v,(a) + 2hn by
observing that in our linear specification, v,(a) — v,(@) = pi(a) — pf(). But then

P = pia) — pf(a) + 2hn 29)

and the marginal buyer is indifferent between the two firms only if p, = p7. The
equilibrium price of the established firm is then linear in the equilibrium market share
by (29), while the equilibrium price of the new firm is constant.

The experience with the new product generates information that is valuable for
both firms. The equilibrium value of information is given by the dynamic programmming
equations (19) and (20) as

1
En(a)zz(a)V'{(a) = w(a) — (1 — n(a)p(a)

and

1
En(a)zz(a)VZ(a) = vy(a) ~ n{a)p,(a),

respectively. For each firm, the equilibrium value of information %n(a)2*(a)V/ (@) is
thus precisely the difference between its expected full-information revenue and its cur-
rent revenue. As the equilibrium prices and allocations are established in Proposition
3, it can be verified that the value of information is twice as large for the established
firm as for the new firm. Thus, the established firm values information about the true
quality of the new product even higher than the new seller does himself. This initially
puzzling result can be traced back to the impact the information flow has on the players’
strategies. To see this better, consider for the moment the value of information if the
sellers would follow myopic policies. In this case, the value of information for the two
sellers is in fact equal:

vi(a) = (1 = n™(a))pi(a) = via) — n™(a)pia),

as the symmetry of the model and the updating process would suggest. In the dynamic
equilibrium, the less aggressive position of the established firm lowers its own revenue
flow and raises the revenue flow for the new firm. Thus the current revenue shortfall
from the expected full-information revenues increases for the established seller relative
to the new seller. In consequence, the resolution of uncertainty is valued more highly
by the established firm.

The influence of the information flow on the pricing strategies has a surprising
consequence for the optimal choice of innovations. Suppose for the moment that the
new seller was currently offering a product of low quality u,. Suppose further that he
can choose between two forms of innovation: either he gets a product with value p(ea)
with certainty, or he gets an innovation of superior quality, i, with probability «, and
with probability 1 — a it presents no improvement beyond u;. Corollary 1 then implies
that the second seller will strictly prefer the uncertain innovation.'® Moreover, the sto-
chastic innovation increases the prices the consumers have to pay on average and thus
relaxes the price competition relative to the certain innovation. Next we analyze the
efficiency and dynamic features of the equilibrium.

10 The established seller also prefers the uncertain innovation. To see this, observe that he can always
deviate to the myopic price in all periods. This gives him the myopic profit in all periods. As the value
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QO Inefficiency of the equilibrium. The pricing policies of the sellers change sys-
tematically in the size of their market shares. As the value functions of the sellers
indicate, the marginal benefit from persuading an additional buyer to experiment at any
instant of time is constant at %Z*(a)V/(a} for seller i and independent of the market
share. But as the marginal buyer has always the lowest valuation for the product among
the current buyers, to convince her, each seller would have to decrease the price on all
inframarginal buyers. The static revenue loss associated with the acquisition of an
additional buyer is therefore increasing in the market share, since the price decrease is
granted to a larger measure of inframarginal buyers. For a seller with a small market
share, the revenue loss is small and his price policy is mostly determined by intertem-
poral considerations. Conversely, a seller with a large market share will not be very
responsive to a lower price from the competitor as he attempts to maintain the current
price level even at the expense of losing some market share.

This suggests that for low values of o, the new firm acquires market share ag-
gressively to generate information and the established firm responds only slowly with
lower prices. In conjunction, these two strategies will generate excessive experimen-
tation compared to the socially optimal level. As a increases, the market share of the
new firm increases, and this weakens its aggressive stance. Simultaneously, the estab-
lished firm becomes more responsive in its pricing policy as its market share shrinks.
For high values of w, the new seller captures the market to a large extent and his
incentives to support additional experimentation become very weak.

Proposition 4 (inefficiency). Equilibrium experimentation is excessive for low values
of a and insufficient for high values of o. The difference

n*(a) — nla)

is increasing in « and crosses zero once.
Proof. See the Appendix.

The dynamic response of the sellers to changes in the market condition as repre-
sented in the posterior belief « has several implications for the expected changes in
the market shares and revenues of the sellers over time. The following properties of
the equilibrium prices and market shares are established by Proposition 3 and the fact
that the posterior belief «(¢) is a martingale (see Proposition 1).

Corollary 2 (martingale and convexity).

(i) The price p,(a) is a supermartingale; the price p,(a) is a martingale.
(ii)) The market share n(a) of the new seller is a supermartingale.

(iii) The revenues (1 — n(a))p (@) and n(a)p,(a) are submartingales,
(iv) The value furictions V{a) of the sellers are convex.

For the new seller, the incentives to acquire a larger market share weaken with the
size of his current market share. In consequence, marginal changes in the market share
of the new seller in response to changes in the posterior belief « are more accentated
for low market shares n{a). The concavity of n(a), together with the martingale property
of the posterior belief «(f), turns n(x) into a strict supermartingale. A symmetric ar-
gument leads to a strict submartingale property for the market share of the established
seller and thus to the resilience of the established seller, whose market shares are
expected to increase over time,

The response of the established seller to a decline in his market share mirrors the
behavior of the new firm. His pricing behavior becomes more aggressive and more



BERGEMANN AND VALIMAKI / 787

p.(e) is a decreasing and concave function of & and thus the prices of the established
seller are expected to decrease over time. In consequence, the market share of the
established seller is expected to increase, while its price is expected to decrease over
time. The market share of the established firm responds initially, i.e., for low values
of a(f), very fast to changes in the market condition, whereas his price is initially very
slow in response to changes in the posterior belief a().

We argued earlier that the joint profits of the sellers are increasing in the extent
of (vertical) differentiation. As experimentation induces the process of differentiation,
the revenues of the sellers are expected to increase over time. In probabilistic terms,
the revenues of both sellers are strict submartingales with respect to the posterior belief
a(f). Finally, the positive value of the experiment for the firms, as it generates ex post
differentiation, is documented by the convexity of the value functions.

5. Market diffusion

B So far we have described the equilibrium policies as functions of the state variable
a(f). But as the changes in the posterior belief a(z) are endogenously determined by
the equilibrium policies, one would like to know more about the evolution of the
posterior belief a(r) and the associated policies over real time 1. We therefore take the
analysis one final step further and examine how market shares and prices typically
develop over time for a successful or unsuccessful new product. This will give us a
more detailed description of the diffusion paths of new products in real time rather
than in the state variable c(f) which, after all, only represents the information available
at time ¢.

In the following, we focus on the case when the true value of the product is high,
or u = [y, as only successful products will display on average increasing market shares
over time. While the sample path of the market shares and prices is of course stochastic,
we start by analyzing the expected changes in the posterior belief a(f) under the equi-
librium policies.

The stochastic differential equation that describes the market outcome for the high-
value product is given by

dX(n(a(®))) = n(a(pxdt + Va(a(D)odB(2) (30)

and is similar to the outcome process as defined earlier in (6). Here, n{a(?)) is the
equilibriom market share when the market participants hold the belief a(f). The sto-
chastic differential equation (30) combines two different elements: the true data-gen-
erating process and the equilibrium policies of the imperfectly informed traders, which
were obtained in the previous section. More precisely, in the case of dX(n{«a(r))) the
signal is generated by the true value u,, but as the market participants possess only
imperfect information in the form of a(r), the size n{a(?)) of the experiment is deter-
mined by the equilibrium policies based on of(f). The evolution of the posterior belief
aft) conditional on p = py is given by

da(®) = (s — pa@)l — a@)|dX(n(a®)) — nla@)wel)d], 31

as an application of the general filtering equation; see again Liptser and Shiryaev
(1977). The change in the posterior belief a(#) is then determined by the difference
inside the square bracket, which is simply the difference between the true signat and
the expected signal, where the expectation is based on the current imperfect information
of the market traders. By inserting the differential equation (30) into (31), we obtain
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da(?) = (my — p)a®(1 — a(t))n(a(t)dt
+ (g — p @1 — aD)Va(a@)dB (). (32

The difference between the evolution of the conditional posterior belief a(t) here and
the posterior belief in Proposition 1 is that the former receives a continuous push
upward from the conditioning on py. On average, the signal, which is the outcome
realization, exceeds the expectations of the market, which still puts some positive prob-
ability, namely 1 — o(r), on the event that the product is of low quality, while in fact
the product is of high quality. Hence, a(?) is not a martingale anymore, but a submar-
tingale. The drift of the process a(r) is then given by

Elda(n)] = n(a®) iy ~ p) a1 — a(H)4dr. (33)

Equation (33) presents the drift rate of the conditional posterior belief as a function of
time. Our interest rests with the description of the posterior belief when its evolution
is governed by the expected or mean changes. In other words, we analyze the behavior
of the market when the evolution of a(f) is determined only by the drift of the process
(32). We denote the new and deterministic process by &(¢), and the evolution of the
mean posterior &(r) is given by

da(t) = m(aOXpy — p)*6EN(1 — &)t (34)

As the differential equation (34) is deterministic, &(7) is a function of the initial con-
dition &, = o, and time ¢ only.!' Next we analyze the behavior of the market shares
and the prices under the deterministic process @&(f) rather than under the stochastic
process a(7). The market share n(d@(#)) is a composite function of the state variable 4(r)
and time f. The differential equation that describes the changes in the market share of
the new seller dn{a(r)) is given by

dn(&(t)) = n'(@DEONpy — u)"a@EX1 — &(n)’dr. (35)

As n(-) is given in Proposition 3, we can infer immediately from (35) that the market
share of the new firm increases over time. The market share n(&(r)), as &(t) before, is
a deterministic process, and as such it is a function of the initial condition &, = a, and
time t only. For transparency we relabel

A(t) = n(a(n)

for a given &, = a,. The question we would like to address, then, is the speed by which
the new firm gains market shares. In particular we wouild like to know whether the
acquisition of the new buyers is performed more aggressively over time or whether
the acquisition speed slows down with the passage of time.

Proposition 5 (S-shaped diffusion path).

(1) The mean posterior belief &(f) is increasing over time. There exists @ € s %)

1 An alternative approach would derive the distribution of the state variable «(f) by the Kolmogorov
forward equation. The nonlinearities present in this model don’t allow us fo solve the partial differential
eauation exolicitlv. but numerical cimnlationg indicata the came Anulitatius hahowvine ne e ame s Jocioon 1o
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such that if &(f) = =, then the rate of increase is increasing in time; if &(r) > @, then
it is decreasing in time.

(ii) The mean market share A(¢) is increasing over time. The rate of increase is
increasing if &(¢) = %, and decreasing if &) > %.

Proof. See the Appendix.

If the initial beliefs about the new product are pessimistic enough, then its
expected market share, conditional on being of high value, is an S-shaped function,
increasing, and initially convex and then concave. A symmetric result holds for the
expected market share of a low-value product and optimistic initial beliefs. In that
case, the market share of the new firm is decreasing, initially concave and then
convex.

The evolution of the market shares over time is a composition of the behavior of
the equilibrium market share #(&(z)) as a function of & and the evolution of the posterior
belief &(¢) as a function of time z. The drift in &(7) is increasing when starting from
low values of &(#). This in turn accelerates the growth in market shares and increasingly
increases the drift of n(&(r)) as a function of ¢ But as & approaches one, the learning
process slows down and the drift in &(¢), while remaining positive, approaches zero.
In conjunction with the concavity of n(-), this decreases the drift dn(&(?)) and hence
the speed of market acquisition by the new seller.

The evolution of the mean market share A(#) and an actnal sample path of the
stochastic share process n(a(f)) are displayed in Figure 1. The evolution of the market
shares is accompanied by a similar but somewhat shifted movement in the prices. The
differences in the drift rates of market share and price processes reflect again the
strategic tradeoffs for the sellers. We continue the discussion here for the case when
the true value of the new product is high and state the results first. Again, symmetric
results hold for the case when the true value of the new product is low. By analogy
we denote ) = pa(1)).

FIGURE 1

THE MARKET SHARE OF THE NEW FIRM (a, = 1, st = 2, iy = 6, S = 4, h = 1)

1 I !

nft
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Proposition 6 (prices over time).

(i) The price process p,(?) is strictly decreasing in ¢, first at a decreasing then at
an increasing rate.

(ii) The price process p(t) is strictly increasing in ¢ first at an increasing then at
a decreasing rate.

(iii) The concavity of p,(¢) prevails strictly longer than the convexity of pAed.

(iv) The convexity of p,(¢) prevails strictly longer than the convexity of 7(f).

Proof. See the Appendix.

The movements of the price processes can again be decomposed along the state
and time space dimension, and together they reveal a rather rich dynamic process. The
changes in the prices p(f) as described in (i) and (ii) follow a pattern parallel to the
market shares of the respective sellers. But if we compare the price processes across
the sellers and similarly if we compare the price and share processes for a given seller,
then the different rates of adjustment elucidate the strategic incentives of the sellers
over time.

The drift in the price process $,(-) of the established seller continues to decrease
longer than the drift in the price p,(-) of the new seller continues to increase. In other
words, as &(7) increases, the downward movement in the price ,(-) accelerates, even
when the upward movement of f,(-) decelerates. This result translates the increasing
responsiveness of the established seller to the success of his competitor, documented
in Proposition 3, into the time profile of the pricing policy of the established seller,

The dynamic movement of the prices is displayed in Figure 2 in the behavior of
the mean prices, along with an actual sample path of the prices. The underlying sample
path of a(f) is the same as the one in Figure 1.

Finally, the tradeoff for the new seller between higher market share and higher
price is changing over time. As a(f) increases over time, the expected gains in market
share n(-) start to decrease earlier than the gains in the prices p,(-). So for a larger

FIGURE 2

THE EVOLUTION OF THE PRICES (o, = 1, 1, =2, uy = 6. 8= 4, h = 1)
1.6 | 7

1.4

1.2

ot
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FIGURE 3

THE EVOLUTION OF PRICE AND MARKET SHARE (o, = 1, pt, = 2, uy=6,8=4,h=1)
1.6 f I

o)

14— ¢

1.2

Po(t), n(t)

market share, the new seller is using his competitive edge to increase prices rather than
to increase market shares. Again, we display the dynamics for the mean processes as
well as for an actual sample path in Figure 3.

6. Conclusion

B In this article we analyzed the dynamic aspects of pricing policies and market
shares following the introduction of a new product with uncertain value. The strategic
aspect of the learning process led to an increase in prices in the dynamic competition
relative to the static competition with given beliefs. The (uncertain) value of the new
product was not a choice variable of its seller and, in particular, it was assumed to be
constant over time. While this restriction should clearly be removed in future research
on dynamic innovation, the comparison between entry with a certain or uncertain value
is nonetheless suggestive. The premium to uncertain innovation for the new firm, as
well as the positive externality the innovation has on the competing seller, implies that
stochastic innovation reduces competition and increases profits in oligopolistic markets.
This suggests excessive innovations in differentiated markets, as the search for inno-
vations is the dynamic equivalent of the static vertical differentiation in Shaked and
Sutton (1982).

We recall in this context that the established seller valued information about the
true quality of the new product higher than the new seller did and this in spite of the
purely strategic role of information. If the established firm could use the information
beyond its strategic aspect, say for product improvements of its own, then the value of
information would a fortiori even be higher, and might relax competition even further.

A final remark concerns the information structure in our model. Buyers and sellers
make their choices over time under imperfect but symmetric information. As the new
product is an experience good, it may be natural to ask what would happen if the
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information-aggregation device. While sufficient care is required in specifying the sig-
nal structure with a continuum of agents, the surprising answer is that a model with
private signals would have the same structure and dynamics as the current model. As
a first approximation we observe that the private signals create heterogeneity among
the buyers similar to the heterogeneity due to the horizontal differentiation. As the
strategic weight of each buyer is small relative to the market, the bias in their purchase
decision due to the effort to manipulate the sellers’ beliefs is small, and zero with a
continuum of buyers. The sales in the subsequent period then reveal to the sellers the
average experience of the buyers and enable the sellers to update their beliefs about
the true quality of the new product.’? Thus many of the basic properties of the model,
in particular the structure of the inefficiency and the qualitative behavior of the diffusion
rates, would be present in the private-signal model. The basic difference is the endog-
enous change in the heterogeneity over time. The influence of a single private signal
on the posterior decreases over time, since the posteriors become more concentrated
around the true value of the alternative, and so the heterogeneity among buyers de-
creases over time as well.

Appendix
B Proofs to Propositions 2-6 follow.

Lemma Al (long-run averages). The long-run average in the efficient program is given by

(s + wa) + 2h)
2 (e = 8V Gy = 57
o .

=E—t (1l - Al
via) 5 (1—a h ah (Al)
The long-run averages of the two sellers in the strategic program are given by
1 : 1 :
(5(5 TRt h) (5(5 ~ M) T h)
=(1 — a) + ()
vy = (1 - &) > (o) o (A2}
and
1 2 1 :
(5(#’1. -5+ h) E(F-H -5+ h)
={1-a + . A
vilay = (1 — o) Y (a) Y (A3)

Proaf. The long-run average values () and v{a) are equal to the expected full-information payoffs:
vi{a) = {1 — awl0) + av(l),

as n(a) and n*(a) are bounded away from zero under the condition (4). But v,(0) and v{1) are the values to
the static allocation and equilibrium problems when the value of the new product is known to be either Ly
or {4 The composite values are then computed immediately. In particular, the equilibrium prices and allo-
cations are

1 1
P1=§(3*.U-.)+h and pz=§(u.-*5)+h,

and the market share of the new firm is

'? Judd and Riordan (1994) essentially analyze this private-information model with 3 monopolist under
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1

“(— 5) + A
3(.LL, 5)
=

2h

Proof of Proposition 2. The first-order condition for the efficient program,

2 e
5 3 via

max ————— — hnla),
n{a) n{a)
is given by

1
hn(a)? + 5 + Eh — v(a) = 0,

and the positive root of the quadratic form is the solution with

n*) =

Proof of Proposition 3. The first-order conditions for the sellers are given by

2 - 2h(p,(0) ~ ¥1())
P — (@ + pl@) =5 + B (pla) - pola) + ple) = 5 = h)

~1=0

and

_ 2hv, (@)
(7{a) — pyla) + pla) — 5 + k)2

+1=0

Rearranging the first-order condition (AS5),
v,{a)2h = (p(a) — py(a) + wla) — s + h)2,
and by the equilibrium share condition (21) we have

va(e)
2%

n{a) =
By rewriting (A4) and using again the equilibrium share condition (21) we obtain
2hn(o) + vi(a) — pla) = 2hn¥(a),

which after using (A6) gives us

pi(ey = VZ2Zhv(a) + vi(a) — v(a).

Q.ED.

Q.ED,

(Ad)

(A5)

(AB)

(AT)

Finally, the equilibriumn share condition (21) gives us an explicit expression for the price of the new seller

by using {A6) and (A7)

P} = w(e) — 5 + vi(a) — wie) + A

{(AB)

As vi{a) — vo(a) = %#(s — #{a@)) by Lemma Al, we obtain the unique equilibrium prices as in {26) and (27).

The martingale and supermartingale characterizations follow directly from the linearity of v{a@) in e,

O.ED.

Proof of Proposition 4. We first prove the strict monotonicity and then the single-crossing property. By
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n*a) — nla) = (A9)

A sufficient condition for n*(a) — n(a) 1o be strictly increasing is that (i) n*(0) < r(0) and (i) 2v' () > Vi(a). By

Lemma Al, (ii} is equivalent to
1 N :
(E(FLH -5+ h) (5(#':_ -8+ h)

(ty — 5)° _ (g — 5)2 - B
2h 2h 2h 2h ’

Ba — py t

which in turn is equivalent to

2;;,_+3h*4s+2y‘h.>

0.
W (A1)

2
5(#;,- - )
Since py — u, is strictly positive,
Gh + 2(u, + ) — 45) > 0, (All)
the inequality (A10) is implied by condition (4). The single-crossing property is satisfied after verifying that
200} — 25 — h < (D) (A12)
and
2v(1) — 25 — h > (1), (Al13)

which can be computed directly from the long-run averages given in Lemma Al. Q.E.D.

Proof of Proposition 5. (1) The evolution of the mean posterior 4(r) as a function of time is given by
Aty = (g — )@l — &())? n(dds))dt.

By Proposition 3 we have

va(aln)

n(d(n} = h

By Lemma Al, v,(d&(f)} is linear in &(¢) and we can express n(&(z}) for the moment simply as the root of a
linear function

nla(n) = Vb, + ba), (Ald)

with by, b, > 0 as positive constants. The second time derivative is then given by

d2a(r) X _ i i § 1. (1 - amy
do;f = (py — ML)Z((I = &OPVE + Ba(t) — 2&(0(1 — aEWVh, + ba() + Ea(f)\;m%bz)ﬂ

It can then be verified that there exists & € (Y, %) such that

d?&(t) R - d2a(s)
o >0 & < a& and “&tT

<0 e dn) > a

(ii) The evolution of the mean market share of the new seller as a function of time is given by

dn(@(1)) = n'(GINREON gy — ) G — &)t (Al5)
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presents the curvature of the market share of the new firm as a function of time. We may replace n(d(s))
again by (Al4) to obtain

dn{&(t 1
% = Ebz(.”-ﬁ — w a1 - ant

The second time derivative is given by

d’n(@(n) _

1 da(t)
dr? 2

batu — w2((1 = @92 - 240001 — aun)= 5,

As we have [d&(n/d?] > 0 for all &) € (0, 1), the sign of the curvature is determined by the first term,
from which we infer directly that

dn(a()) . 1
o >0 ane (0, 3).

Q.ED,

Proof of Proposirion 6. The proofs of the four claims rely on the same technique as the ones in Proposition
5 and are therefore omitted. Q.E.D.
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