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LEARNING AND STRATEGIC PRICING

By DIRK BERGEMANN AND JUUSO VALIMAKI'

We consider the situation where a single consumer buys a stream of goods from
different sellers over time. The true value of each seller’s product to the buyer is initially
unknown. Additional information can be gained only by experimentation. For exoge-
neously given prices the buyer’s problem is a multi-armed bandit problem. The innovation
in this paper is to endogenize the cost of experimentation to the consumer by allowing for
price competition between the sellers. The role of prices is then to allocate intertempo-
rally the costs and benefits of learning between buyer and sellers. We examine how
strategic aspects of the oligopoly model interact with the learning process.

All Markov perfect equilibria (MPE) are efficient. We identify an equilibrium which
besides its unique robustness properties has a strikingly simple, scemingly myopic pticing
rule. Prices below marginal cost emerge naturally to sustain experimentation. Intertempo-
ral exchange of the gains of learning is necessary to support efficient experimentation. We
analyze the asymptotic behavior of the equilibria.

KeEYWORDS: Learning, experimentation, dynamic oligopoly, Markov perfect equilib-
rium, infinite stochastic game, muiti-armed bandit.

1. INTRODUCTION

MUCH OF THE EXISTING LITERATURE on dynamic choice under uncertainty has
focused on the case where a single decision-maker chooses sequentially among a
fixed set of alternatives. In many economic situations, the alternatives are
supplied by a separate economic agent (or a group of economic agents) and the
decision theoretic analysis then provides only a description of the demand side
of the market.

We develop a simple dynamic equilibrium model of price formation under
learning and uncertainty. In an infinite horizon model with price competition, a
buyer chooses sequentially between products whose qualities are initially un-
known to all parties in the mode!l; the buyer does not know the underlying
characteristics of the products while the producers are uncertain about the
tastes of the buyer. Each purchase yields additional information about the true
product quality to all parties in the model.

In the decision theoretic situation where prices are exogenously fixed, it is
well known that the optimal purchasing strategy by the buyer may involve
experimentation. That is, in some periods the buyer is willing to sacrifice some
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thank Avner Shaked for his hospitality during a stay at the SFB 303, University of Bonn. Financial
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of her current payoff in order to gain additional information which is valuable
for future decisions. This temporal separation of costs and benefits causes no ex
ante efficiency losses in the single player case since the costs of experimentation
have to be bom by the same agent who enjoys any gains from successful
experiments. However, if prices are set by profit maximizing producers, a
nontrivial problem of intertemporal allocation arises as current and future
prices determine the costs and benefits of experimentation to all the parties in
the model.

To illustrate the point, consider a factory manager (the buyer) choosing
between two alternative technologies supplied by outside contractors (the sell-
ers). In each period, she signs a one period lease with one of the contractors.
The output from each technology is a random variable depending on both the
true productivity of the technology in the factory (the value of the match
between the factory and the technology) and some outside random effects. If
output is publicly observable, then all parties receive a common noisy signal
about the true productivity of the technology chosen in each period. Beliefs are
updated in a Bayesian fashion and posterior beliefs determine the relative
competitive positions of the two contractors. We want to compare the incentives
of the factory manager in the equilibrium model, where the contractors react
optimally to changes in beliefs, to the decision theoretic model, where prices are
exogenously fixed. In particular, the incentives to undertake experimentation
may be fundamentally different under the two scenarios.

Suppose that the beliefs about product qualities are such that the optimal
stratcgy in the decision theoretic case suggests experimentation (i.c., choosing
the product with lower expected quality) in the current period. Is the buyer stifl
willing to pay for an experiment in the equilibrium model if the outcomes of
experiments are publicly observed? A bad outcome in the experiment results in
more pessimistic beliefs on the quality of the product purchased. If the buyer
decides to switch suppliers, the bad outcome results in a higher price to be paid
in the next period since the relative competitive position of the nonselling firm
has improved. On the other hand, if the outcome of the experiment is good, the
buyer becomes more optimistic about the product quality and as a consequence,
her willingness to pay for the product is increased. Since the outcome is publicly
observable, the seller observes an increase in her monopoly power relative to
the competitors and has an incentive to raise the price in future periods to
appropriate the maximal amount of consumer surplus from the buyer. Since
neither a good nor a bad outcome leads to an increase in consumer surplus, the
willingness of the buyer to experiment is reduced. If it is in the firms’ interest to
sustain experimentation, the consumer will have to be compensated for experi-
mentation costs in the current period.

For the case of two sellers and one buyer, we characterize the set of Markov
perfect equilibria. The central result of the paper states that in spite of future
rent secking by the firms, all Markov perfect equilibria in the model are
efficient, i.e. the discounted expected sum of consumer surplus and the two
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firms’ profits is maximized along any equilibrium path.? In particular, an
efficient amount of experimentation is undertaken on any Markov perfect
equilibrium path. Using this fact, we can deduce the sequencing of consumer
purchases immediately, since the efficient paths coincide with the solution paths
of the buyer’s decision problem when prices are fixed to be identically zero. A
solution for this decision problem is available in the statistical literature on
multi-armed bandits. The remaining task is thus to calculate the prices that
support efficient experimentation in equilibrium and determine the division of
surplus between the buyer and the sellers along the efficient path.

In analogy with the one-shot pricing game with heterogeneous product
quality, we need a refinement similar in nature to trembling hand perfection to
select a unique equilibrium. In this equilibrium, which we call the cautious
equilibrium, current prices provide the buyer with insurance against future rent
seeking resulting from successful experiments. Note, however, that a bad out-
come for the currently selling firm is a good outcome for the nonselling firm. As
a consequence, prices do not provide insurance against bad outcomes in the
experimentation. The buyer is left worse off since the nonselling firm acts as an
outside option for the buyer in the determination of selling prices. Rent seeking
by the nonselling firm in these contingencies allows the selling firm to charge
higher prices. The equilibrium pricing rule is quite simple. In each period, the
selling price is equal to the difference in expected qualities and is hence similar
to the equilibrium price in the myopic Bertrand game. The identity of the seller
does not, however, coincide with the myopic game since the efficient path
involves experimentation at some nodes.

Recent papers by Smith (1992) and Bolton and Harris (1993) also introduce
dynamic learning models with many agents. Smith considers a sequence of
sellers entering the market. Each seller can individually observe the fraction of
incumbents charging a low price, before solving his own bandit problem. He
shows that the most profitable pricing option is eventually chosen by the market
with probability one, as opposed to the case of an individual seller, who might
charge the less profitable price forever even under optimal learning, as
Rothschild (1974) showed. Bolton and Harris introduce strategic interaction in a
learning model in which N players face simultaneously the same experimenta-
tion problem. Although the alternatives are still exogenously given, the informa-
tional externality, which arises through the public good aspect of experimenta-
tion, transforms the bandit problem into a game of strategic experimentation.
The idea of an informational externality arising in a sequential learning model is
already central to Rob (1991), who studies a dynamic model of entry when the
size of the market is uncertain. In our work, public observability of the signals
creates no informational externalities since the product qualities are assumed to

2 With multiple buyers and publicly observed signals, the externalities involved in the experimen-
tation process cannot be fully internalized by the firms and hence the equilibrium path will differ
from the efficient path, in general. The restriction to two sellers is made purely for expositional
convenience. We discuss various extensions to the model in Section 3.
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be statistically independent. With multiple buyers and publicly observed signals,
free riding on other buyers’ experimentation becomes a problem. The firms are,
however, able to internalize this externality to a large extent and this may
reverse the typical results on underinvestment in information as discussed in
Section 3.

While we consider the situation where a single consumer makes purchases
over time in an oligopolistic market, several other economic applications could
be analyzed within our framework. The bandit framework is often used as a
matching model in the analysis of the labor market as in Jovanovic (1979) and
Miller (1984), which ignore however the aspect of strategic interaction between
employee and employer? The choice and financing of new and uncertain
technologies and R & D projects also fits exactly into the framework we develop
in this paper.

A brief outline of the paper follows. The duopoly model is introduced in
Section 2, In Section 3 we investigate the efficiency of the Markov perfect
equilibria for the infinite game. In Section 4 we single out a particular equilib-
rium (we call it cautious equilibrium), which besides its unique rtobustness
properties, has very appealing cconomic features. Subsequently we analyze the
asymptotic properties of the equilibria and characterize the entire set of Markov
perfect equilibria by the lower and upper bounds of the payoffs. We conclude in
Section 5 with a discussion of some variants of the basic model.

2. THE MODEL

In this section, we describe the players, the learning environment, and the
strategics. Then we compare the strategic pricing model briefly with the multi-
armed bandit model. The comparison will prove useful for the welfare analysis
of the equilibrium model in Section 3.

Price competition between two firms, indexed by i=1,2, takes place in
discrete time with an infinite horizon, t = 0,1,2, ... . The firms announce in each
period their prices, p{, simultaneously. The goods produced by the two firms
differ only with respect to their (expected) quality. Firms have the same unit
costs normalized to zero, The buyer has unit demand in each period. At time ¢,
the buyer’s expected valuation of a purchase is a linear function of the expected
quality and the price:

EIX:. _pti =xti AP:"

where the random realization of the quality of product  in period ¢ is denoted
by X/* Each X/ is a nonnegative real valued random variable with finite
expectations on some probability space ({£2,.#, #). The expected value of the

*Recently, Felli and Harris (1994) introduced a matching model in continuous time where wages
are renegotiated at every instant of time. The equilibrium in their basic model is the continuous time
equivalent of the cautious equilibrium in our model,

‘Any quasilinear utility function U(X;) — p could be used alternately.
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quality realization, X/, conditional on the history until period ¢, is given by
x!=E X/. All parties have common priors about the reward processes X ‘=
{X'¥_, at the beginning of the game. Moreover, the sample realization X, is
publicly observable.

We concentrate our attention for simplicity on sampling processes. A sampling
process is a sequence X' ={X/}_, of independent, identically distributed ran-
dom variables X{, X/,..., drawn from a distribution with an unknown (vector-
valued) parameter ¢ belonging to a family of distributions &. The associated
density functions are denoted by f'(-8'). The prior density for the parameter
' € R" is given by 7i(-). The posterior beliefs are represented by o, = (#/, 7).
After observing the random variable X in period ¢, 7, is converted by Bayes
rule into =/, |

i (87)-f(X}]6°)
fri()-fiX]\pYdd

Starting with prior beliefs and applying (2.1) recursively, we obtain a sequence of
beliefs {7 J_ .

The consumer and the firms discount the future with the same discount factor
B, with 0 < 8 < 1. Past quality realizations together with past prices and past
consumer decisions constitute the history of the game. We denote with H, the
set of all possible histories up to, but not including period ¢. An element 4, € H,
includes ali past prices, p, ={(p!, p}), 0 < s <¢, the consumers decision variable,
d, = (d!,d?}), where

2D wlexH =

di =

k)

1 if the consumer accepts the offer of firm ¢ in period s,
0 if the consumer rejects the offer of firm ¢ in period s,

and the random realizations X! of the purchased product i, 0 <s <t. Hence h,
is

ht: (p(}’dU’X!;""7p£7]’dr-l’Xls—l)!

where the upper index s = 1,2 indicates the identity of the selling firm.
A pricing strategy of seller i at any time ¢ is a function from the history into a
distribution on the real numbers,

pis H, — A(R).

The buyer makes her purchase decision knowing the past play and the prices
currently offered. Her acceptance strategy is a function from the history and the
current prices into her decision space A({0, 1} X {0, 3\ (1, 1)x

d,: H X R xR - A({0,1} X {0, 1)\ (1,1)).
SWhile our exposition will be restricted to sampling processes, ali our results remain true for a

peneral non-iid. filtration set-up. Similarly all our results extend naturally from a duopoly to a
general N-seller oligopoly model.
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Notice that unit demand imposes the constraint d! + d2 < 1, which allows the
buyer not to purchase at all, if she prefers to do so. We denote by d, = {d)_,
the sequence of decision functions starting in period s. Similarly p! = {p; 18
the sequence of future pricing strategies of firm starting in period s.

The discounted expected profit for firm i under a given strategy triple
(d,, p}, p?) at time s is

22) Es[ > B"’dfpf},

t=5

and the expected present value for the consumer in period s is

(2.3) ES[Z,B“’[d}(X} —p) +dX (X2 -pH]|.

=y

Each player acts so as to maximize the expected discounted return given the
beliefs over the return processes and the strategies of the other players. To
facilitate the equilibrium analysis in the next section, we compare our model
with the multi-armed bandit problem.

An n-armed bandit consists of » statistically independent alternatives (arms)
which may be chosen in any order and one at a time. We concentrate our
attention without loss of generality to n = 2. The maximization problem of the
decision maker is to find an allocation strategy d* which solves

(24)  maxg,| ¥ pdiX}+ ¥ B'd2X?|, subject to
d =0 t=0

d +dr<1.

The solution to (2.4) is the celebrated index policy. Gittins and Jones (1974)
showed that it is possible to assign to each altcrnative i an index function M'(m)
which depends only on the state o/ of project i. The optimal policy based on the
index function is simple: Compute at any given time the indices of the different
alternatives and select a project with maximal index. The index of project { is
defined in terms of the following optimization problem involving only project i.
Suppose the decision maker is facing in each period only the choice between
continuing with the random sequence X’ or stopping the sequence to obtain a
terminal reward z. The value G*(/, z) of this problem is defined by the dynamic
programming equation

25)  G'(w/.2) =max{z, £, [ X] + BEG!(w/, |, 2)]).

The dynamic allocation or Gittins index M “(arf} is given through the equation
(2.5).
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DEEINITION 1: The dynamic allocation index of alternative i is defined as
Mi(w}) = sup{z € RIG'(#/, 2) >z},
= inf{z € RIG (@}, z) =z}.

In words, the index M(mr}) of alternative i in state 7, is the supremum over
all terminal rewards, such that the decision-maker still prefers to continue with
the random stream; or alternatively, it is the infimum over all terminal rewards
such that the decision maker is indifferent between continuing with the random
sequence and retiring with the stopping reward M‘(w)). The index process
M/ = {M(z]),t € N} reduces the n-dimensional problem to a comparison of n
1-dimensional problems.®

The buyer’s decision problem in our model differs from the multi-armed
bandit problem in two important aspects. First, in the strategic model the return
stream of the buyer is affected by the pricing policies of the sellers, where each
pricing policy is in turn the solution to the firm’s profit maximization problem
(2.2). The second difference is central to the intertemporal aspect of the game.
In the multi-armed bandit problem, the value of the random sequence i depends
only on the information acquired along the sequence i, but not on the history of
the other random sequences. In the duopoly game, however, we naturally expect
any pricing strategy of seller i to react not only to its own quality realizations,
but also to those of the competing alternative. Hence, the current expected
reward, x! —p} or x?—p?, and the expectation over future rewards of the
competing alternatives are naturally dependent.

3. EQUILIBRIUM PRICE COMPETITION AND EFFICIENCY

The conceptual distinction between our strategic model and the decision
theoretic learning model is that in our model the alternatives are owned by
separate economic agents. The pricing of alternative i is now a strategic decision
made by seller i in each period. By introducing the separation in ownership we
can examine how the costs and benefits of learning are allocated intertemporally
between the buyer and selters in equilibrium. First, we investigate the efficiency
of the learning process in the presence of strategic interaction. In the next
section, we analyze the dynamic allocation of the payoffs needed to sustain the
equilibrium learning process.

We are interested in Markov perfect equilibria of the game for which =, is
the state variable.” By requiring that players base their decisions in equilibrium
only on payoff relevant variables, current prices, and current information
(summarized in the densities 7, = (7}, w2)), we focus the equilibrium analysis

Whittle (1982) and Gittins (1989) arc excellent references for more details on the multi-armed
bandit theory.
"See Maskin and Tirole (1994) for a detailed account of the Markov perfect equilibrium concept.
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on the strategic effects of the learning process. The Markoy property will also

limit the set of equilibria significantly and we will discuss the main differences

between Markovian and non-Markovian equilibria briefly in the next section.
An equilibrium in the game is defined as follows.

DEFINITION 2: A subgame perfect equilibrium (SPE) is a triple of decision
rules {d, p', p*} which form a Nash equilibrium in every subgame.®

Player i’s strategy is Markov if it depends only on the payoff relevant history.

DEFINITION 3: A Markou perfect equilibrium ( MPE) is an SPE, where
pih) =p'(x), and
di(m,, p!,p?) =d'(ir, p', p*) fori=1,2.

The definition explicitly states that the Markov strategies shouid be time-
invariant or stationary in the sense that whenever m, = m,,,, then p'(m)=
pi(wws) and also df(wrv Prl’ ptz) = d:.+:(7r1+s’ pt1+s’ Pr2+s) have to hold.”

For the characterization of the Markov equilibria we cast the players’ decision
problems in a stochastic dynamic programming framework. We define the value
function of each player i as

Vi(ﬂ'l) = V‘I('ﬂ"l' ] ')9

where we take the strategies of the other players as given and =, as the state
variable of the system. The buyer has to choose simultaneously between the
current returns, X, —p‘(m,) or X/ — p(ar,) and their associated learning oppor-
tunities as indicated by (7, X;) or (w,, X/). We shall write V5(x,, X?) rather
than V#(m,, ) to indicate which sample, X; or X, conditions the transition
from 7, to ,, ;. The Bellman equation for the buyer is given by

3.1y V() =max E{X] ~p! + BVE(xm,, X]),
X! —pl+ BV (r, X)), 0+ BVE(m,)).

The consumer can always refuse to make a purchase and receive a reservation
value of zero. If the best decision for the buyer should be to accept neither
offer, then under the Markov assumption, this will remain her best possible

®There are two alternative ways to look at this game. The first is an incomplete information game
where nature moves at the first node to select the types of sellers. Information is partially revealed
at subsequent nodes. In this representation the game has no proper subgames. An alternative
representation, adopted for this paper, is a complete information game with a unique starting node
given by the priors and a perfectly observed move by nature in each period determining the
transition on the state variables of all players. In this representation, each choice by the buyer starts
a new subgame.

’We index 7 with ¢ henceforth only as a matter of recording time.
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decision forever. Consider next the dynamic programming problem for the firms.
Each seller, when choosing his price, has to consider the benefits of realizing a
sale today, or foregoing that possibility today and instead betting on future sales
in a possibly changed environment, The value function for the first seller is

32 Viw)= maxE,{d}[pl(qr,) + BV (a,, X
o

+d2BV ' (m, X2 + (1 —dHQ —dH) BV (=)},
and for the second seller it is symmetrically

33y Viwm)= m:;xE,{df[pz(w,) + BV Hm,, XD
P

+d! BV, X+ (1—d)A - d) v},

If the buyer decides not to accept any offer in =, then we have of course
W1 = Ty )

We concentrate our attention for the moment on MPE in pure strategies. It
will be shown in Proposition 1, that this involves no loss of generality.

LEMMA 1: In any pure MPE the buyer makes a purchase in every period and
VE(w,) =E[X; —p*(m) + BVE(m, XD)] = 0,

where 5 = 1,2 is the accepted seller.

PROOF; Notice first that V¥(x,) >0, Vm,, by the no purchase option and
Vi(m,) = 0, Y, since the seller can always ask for positive prices, which can at
most be refused. Suppose that no purchase is made in period t. By Markov
assumption no sales are made in future periods cither and hence all agents’
value is zero. Since E, X/ > 0 by nonnegativity of X ¢ one of the firms can offer a
strictly positive price 0 < p{ < E, X/ that yields a strictly positive value to the firm
as well as the buyer. Hence a sale has to be made in all periods in equilibrium.

Q.E.D.

For pure strategy equilibria, price competition implies that the consumer is
indifferent between the choices offered by the two firms (or between one firm
and the no-purchase option) at all points in time. At equilibrium prices, the
selling firm, s, must (weakly) prefer to make the sale, whereas the nonselling
firm, 7, must (weakly) prefer to concede in the current period. The following
(in-) equalities for the buyer (B), the selling firm (§°), and the nonselling firm
(87) are equilibrium conditions and central to the following analysis. We state
them independently in the following lemma.

LEMMA 2: Assume EJ[X;—p*(w)+ BV5(w, X)) >0. The strategy triple
{d, p*, p*} is a pure MPE if and only if the conditions (B), (5°), and (S") are met
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for all t and m,:

(B E[Xi-p(m)+ BV, X)] = E[ X7 ~ p"(m) + VP (m,, x1)],
(8) pim) + BEV (=, XY = BEV (7w, XM,
(S BEV™(w, X)) zp"(w) + BEV"(m,, X1,

where n + s.

PROOF: (=) Consider (B) first. Suppose not. Then the two terms in the
Bellman equation (3.1) of the consumer differ by a strictly positive number,
which implies that the firm offering the higher value to the consumer could raise
her price by €> 0 and, by E[X; - p'(sm,) + BVE(m,, X)1> 0, this would not
atfect the consumer’s decision, which contradicts the equilibrium assumption,
Consider now (5°) and ($"). If (5*) does not hold, then by (B) we know that a
deviation to a higher price induces the buyer to switch seilers and consequently
is a profitable deviation. Similarly, if (§") does not hold, a downward deviation
by # is profitable for the nonselling firm by (B).

(=) Recall that the value function of each player is defined given the
opponents’ strategies. Conditions (B), ($°), and (8§") are then the appropriate
conditions to make sure that no one-shot deviations are profitable for any of the
players. Since the payoffs are bounded from below, we refer to the principle of
optimality to conclude that strategies satisfying conditions (B), (5%), and (8")
are optimal given the other players’ strategies and hence form an equilibrium.

Q.E.D.

REMARK: Lemma 2 is true for all pure MPE for which E[X] -p*(m)+
BVE(mr, X)) > 0 holds along the equilibrium path for all #,. If the assumption
doesn’t hold, an equilibrium, and some 7,, could conceivably exist such that
ELX; —p*(m) + BVE(m,, X?)]=0. The equilibrium price p"(m,} would then
not necessarily satisfy (5”) and this could possibly break the equality (B). It is
easy to verify that whenever such an equilibrium exists, an outcome equivalent
MPE with price p"(m,) < p"(m,) also exists, which contrary to the latter satisfies
both conditions (B) and ($”). We will sce in Proposition 3 that all pure MPE for
which (B), (5°), and (§”) are satisfied have E[X; —p*(m) + 3 VE(m, X9 >0,
which allows the conclusion that all pure MPE are characterized by (B), (§*),
and ("), and that the qualification made for the moment is only a temporary
one.

Price competition between the scilers in each period makes the stage game
similar to a static Bertrand pricing game in which firms have different costs. To
illustrate this point, we take the continuation values of each subgame for the
moment as given. Upon entering the competition each firm has to consider the
benefits as well as the costs of making a sale today. The benefits for firm i of
selling today come from the realized current price and the future sales following
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(,, X}), but by doing so firm i foregoes all possible sales along the continuation
game of (m, X/).

benefits of making a sale costs of making a sale

pi(m) + BEV(m, X}) — BEV(m, X]).

If we take the difference in the future payoffs of the two paths, BEV(m,, X])
and BEVi(m,, X, to be the net costs ¢'(ar,) of making a sale today, which are
of course endogenous in equilibrium:

(34)  ci(w)=BEVi(m, X)) - BEV(m, X)),
then we can read conditions {$°) and (8") simply as
(8°  piw)=c(m),

(%) plm) =<ct(m).

The equilibrium price for the selling firm, s, must exceed the costs of making a
sale, whereas the price of the conceding seller, 7, must not exceed the costs of
making a sale, for otherwise he could lower his price slightly and attract the
consumer. We may note at this point that the dynamic duopoly model inherits
the muitiplicity of equilibria present in the static Berirand game with different
costs.!" Since the buyer is indifferent between the sellers in equilibrium,
choosing # instead of s is without costs for her. By quoting a high enough price,
seller n makes sure that a deviation by the buyer is not to his disadvantage. In
other words, he is cautious enough to ask for a price which he does not regret
should he be chosen against all expectations. For future reference we shall call
the equilibrium in which the conceding seller bids exactly his intertemporal costs
of competition, cautious equilibrium.

DEFINITION 4: An MPE is cautious if seller n is indifferent between selling
and conceding to the competitor:

(35  p*m)+BEV™(m, X)) =BEV" (7, X}).

Before we attack the question of how efficient the learning process is under
competition, we clarify a more technical issue concerning the similarity of the
mixed strategy equilibria with the pure strategy equilibria.

PROPOSITION 1: Every Markov perfect equilibrium is outcome equivalent to some
Markou perfect equilibrium in pure strategies.

PROOF: We notice first that there is no MPE in which all sellers use mixed
strategies in any one period simultaneously. For given continuation payoffs the

18 The reader may recall that in a static Bertrand game where firms have different costs ¢, <c;,
the “standard” equilibrium is p; = p, =c, and the low cost firm is making the sale. However any
price combination p, =p; €[ ¢j,¢;) can also be sustained as an equilibrium if the consumer
chooses the low cost producers with probability one.
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price setting game in any period is just like a static Bertrand duopoly game with
different costs for each scller and unit demand. By a standard, but tedious,
argument which we omit here, one can show that both sellers do not simultane-
ously engage in mixed strategies. We now show that only the seller who is not
chosen by the consumer in equilibrium can ever use mixed strategies. Consider a
pure strategy p'(ar,) by seller ; when seller J is employing a mixed strategy. Take
the price /() at which the buyer is just willing to buy from j:

E:[’Yfi _pi('"t) + BVB(TTI’ Xai)] =Et[X:j _ﬁj(ﬂ'r) + ﬁVB(ﬂ'n X:J)] .
Should the inequality
7))+ BEV! (7, X)) > BEVi(m,, X1

hold, then seller j would never use a price lower than F/(m,) in his mixed price
strategy. But at any price higher than $/(sr,), he would be rejected by the buyer;
thus seller j offers a unique price p’(ar,). If seller j is then using a mixed
strategy with p/(s7,) in its support, it must satisty

P )+ BEV(m, X)) < BEVi(m,, X).

The prices p’(w,) which are in the support of the mixed strategy, cannot be
lower than p/(m,), because otherwise J would be chosen by the buyer, although
- he prefers not to. Thus the support can only contain p/(mr,} and higher prices.
But at higher prices than $/(w,), j will never be chosen by the buyer. Thus this
equilibrium is outcome equivalent to the' one in which the seller, who plays the
mixed strategy, simply charges the lower bound in the support of his mixed
strategies, namely /(). Finally, if the buyer is randomizing, then both sellers
have to be indifferent between selling and nonselling; otherwise one of them
would deviate. And if both sellers are indifferent, then choosing one of them
with probability one is again a pure strategy equilibrium. Q.E.D.

It will prove instructive to express the value function of each player for given
(equilibrium) policies explicitly by the entire sequence of payoffs. The buyer’s
alternating between the sellers as she acquires experience can be represented by
two sequences of switching times, which are in fact stopping times: {¢,}_, and
{7,}7_,. The switching times are random times which depend on the sample path
and the prices offered along the sample path. We define 7, as a (stochastic) time
at which the consumer stops buying from the first seller and switches to the
second, and o, as a (stochastic) time at which the reverse switching behavior
occurs. In other words, o, is a time period in which the buyer begins her nth
round of purchases from the first seller and 7, is the period in which the buyer
begins her nth round of purchases from the second seller. The value function of
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the buyer then admits the following representation

n=1s=0,

w T,—1
(3.6) VB(frr,);E,{ Y ¥ g x!-pla)]

w Gyail
RS> B“[Xf—pz(m)]}-

n=1 s=r1,

The value of the buyer is the discounted expected sum of the per period net
gains, X! — p'(w,) or X2 — p*(m,), along all sample paths.!’ For seller i it is the
expected discounted sum of ali realized sales. The value of the game for the first
seller is then

n=1s=o,

w Ty 1
viores £ E v,

and for the second seller

® gyl

Vz(wz)=Er E 2 strPZ(,n.s) .
n=1 s=7,

The social value W(,) of the game in any state r, is simply W(w) =V?(r) +

V(s,) + V*(m,) and can be explicitly expressed through

@ Tl o Ty

1
3.7 W(’:‘T,)=E,{ Z E B"‘X}.F Z Z BSﬂXSZ}-

n=1s=0, n=1 s=r1,

We define an efficient equilibrium.

DEFINITION 5: An equilibrium is efficient if it maximizes the social value
W(m,) for all =,.

The notion of efficiency should, of course, be understood as a notion of
(informationally) constrained or ex ante Pareto cfficiency.

The problem of maximizing the social value of the game as depicted in B.7Dis
in fact identical to the multi-armed bandit problem given in (2.4). An equilib-
rium is then efficient if and only if the stopping times {g,f,_, and {r,J;_,
coincide with the stopping times prescribed by the dynamic allocation index
policy. With this identification in place no ambiguity should arise when we refer
to the efficient path or the efficient (inefficient) or superior (inferior) alternative
i(j), by which we simply mean that M‘(r,} > Mi(a,).

"By Lemma 1, there is no time period where she does not buy at all, so that the purchasing
behavior is completely described by {e.F;_ ) and {r,};_|.

2By the index theorem efficiency follows already by M‘(w/) > M/(w}), i.e. the index M it} is
independent of =;. To save on notation we shall neglect this distinction.
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The explicit representation of the payoff sequence of the buyer in (3.6)
suggests also that the buyer should be willing to support the efficient allocation
path through her choices if she is guaranteed to share sufficiently, today and in
the future, in the gains from learning, which are limited only by the prices she
has to pay. Ultimately, the question of efficient experimentation then hinges on
the price path induced through the duopoly game,

We may distinguish two different situations. When long-tun efficiency as
indicated by the allocation index and high current return coincide in alternative
i, ie. M'(m) = M'(m) and E, X} > E, X/, then firm i should be able to attract
the buyer and yet obtain a relatively high price for its product since the
competing product is inferior on both accounts. The inferior irm’s best strategy
Is t0 wait, since a price low enough to attract the consumer today would not be
justified on the current expectation for future profits.

The intertemporal incentives are more complicated when long-run efficiency
and current high returns do not coincide, i.e. M(m,) > M/(w,) but E, X, S <E X}
Suppose for simplicity of the argument that the quality of firm j's product is
known with certainty. We may ask how long firm i is willing to make sales. In
this simplified case, we know by the Markovian assumption that once the buyer
selects firm j, she will buy from firm j forever and conscquently firm i’s profit is
zero from then on. As long as the total surplus along paths beginning with a sale
by firm i exceed the total value of paths switching immediately, firm i can offer
low enough prices today to attract the consumer while making a positive
expected profit in future periods. But this is exactly the condition stated earlier
in the form of the dynamic allocation indices: M‘(w,) > M/(w,). The following
theorem shows that this intuition extends to the case of two uncertain products.
In the following section, we determine equilibrium prices needed to support the
appropriate intertemporal division of gains from trade.

THEOREM 1 (Efficiency): All Markov perfect equifibria are efficient: If seller i is
chosen in period ¢, then

Mi(m,) = M/(m,).

Proor: © Suppose that firm i is chosen in period ¢. By Lemma 2 the
following (in-)equalities have to hold:

(B) E[X! - p'(m)+ BVE(r,, XD =E[X] - p/(x) + BVE(m,, xH],
($Y  pla) +BEVi(w, X]) = BEVi(n,, X7), and
(8*)  BEVHm, X)) 2p/(w)+ BEVi(m, Xi).

We thank the editor for suggesting a different proof strategy, which led to a shorter and more
transparent argument.
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By summing both sides of the three (in-)equalities and recalling the definition of
W), we get

E, X+ BEW(m,, X)) 2 E X/ + BEW(m,, X]).

Hence the social value of the game, W(ar,), calculated along the equilibrium
path, satisfies the following functional equation:

(3.8)  W(m,) = max{E, X/ + BEW(m,, X}, E X] + pW(r,, X])}.

But (3.8) characterizes the value function of the planner’s problem as well. An
easy application of the contraction mapping theorem establishes the uniqueness
of solutions to (3.8). Consequently, firm { is selected in equilibrium only if firm ¢
is selected along some optimal path in the planner’s problem. By the Gittins
index theorem, this is equivalent to M'(m,) > M/(m,). Q.E.D.

The message of Theorem 1 is unambiguous. The fact that all MPE are
efficient demonstrates that no firm has an interest in stopping the efficient
learning process, since the costs involved in doing so are too high at cach stage.
In particular, the conceding seller, rather than forcing a sale through a very low
price, prefers to postpone any sales in the expectation of a more favorable
competitive context in the future.

The efficiency result of Theorem 1 continues to be valid in more general
settings. If the buyer is not restricted to a single experiment, but can allocate up
to N experiments among the sellers in ecach period, the resulting equilibria are
still efficient. The necessary modification to establish efficiency in this frame-
work is to allow firms the use of nonlinear pricing schemes.

The sellers are offering nonlinear pricing schedules to the buyer:

pi={plpL-... "},

where p/* denotes the unit price of firm j’s product if the buyer purchases &
units. The purchasing decision of the buyer is then represented by two numbers:

d, = {n!,n?},

where n/ denotes the number of units demanded from firm j.
The optimization problem of the consumer in the value function form is then
given by

V{w,)=  max E,{n}(){',1 ——p}"})

O<nl+ni<N
2
+n?(X2=p2) + BV nlnD)).

The sellers’ problems are described similarly. As in the case of a single unit, the
consumer will always buy N units and will never use her no-purchase option.
Analogues to Lemmas 1 and 2 continue to hold in this setting and using the
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same equilibrium concepts and welfare criteria as above we are able to prove
the following theorem.

THEOREM 2: All MPE in the multi-unit game are efficient.

Furthermore, all the results pertaining to the price path of the cautious
equilibrium discussed in Section 4 continue to hold in the multi-unit case. We
also point out that the efficiency result would continue to hold if the quality
realizations of the products were mutually dependent.™

Extending these results to a game with multiple buyers proves to be substan-
tially more difficult. Since the experiments are publicly observed, each purchase
creates an informational externality on the other buyers. In the case of fixed
prices this leads to well-known free-rider problems as in Bolton and Harris
(1993). In our model, the firms are able to internalize some of these effects since
a successful experiment by one consumer leads to an improved competitive
position with respect to all consumers in the next period. It turns out, however,
that we cannot expect efficient experimentation in general, even with nonlinear
prices. A consumer has to be compensated for her experimentation costs only,
while the gains of experimentation are collected from all consumers through
higher prices. As a consequence, experimentation tends to be ‘00 cheap from
the firm’s point of view in the multiple buyer case and ex ante optimal
experimentation is not achieved.'”” This has to be contrasted to the single buyer
with multiple unit demand, who perfectly internalizes the price increase on alf
units in future periods.

4. CHARACTERIZATION OF THE MARKOV PERFECT EQUILIBRIA

The equilibrium choice path of the buyer has been established by the
efficiency property of the MPE and we focus now on the equilibrium price path.
Prices determine the intertemporal allocation of gains from experimentation
between buyer and sellers. We focus on the caurious equilibrium where the
pricing path provides the intertemporal incentives to experiment in a surpris-
ingly simple and intuitive way. Finally, we characterize the entire set of MPE by
giving upper and lower bounds on the payotfs for the players in Proposition 3.

4.1. The Cautious Equilibrium

We recall that the equilibrium condition as given in Definition 4 made the
conceding seller (S”) indifferent between realizing a sale or foregoing the sale in

“A1l model extensions as mentioned above have, however, the drawback that efficient policies
cannot be characterized by index policies anymore, since they are either not known or simply don’t
exist as in the case of mutually dependent alternatives.

A well known fact on ex ante efficient experimentation in multi-armed bandit models states that
ex post efficiency fails with positive probability. Since experimentation is relatively cheap in the
multiple buyer case, an interesting conjecture to be checked in future research is that equilibrium in
the pricing game is closer to the ex post efficient path than the ex ante efficient path.
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the current period,
@1 p™w)+BEV™(w,X")=BEV"(7,, X/}

In other words, in the cautious equilibrium the conceding seller always sets his
price equal to his net costs of competing c"(m) = BEV"(m, X]) —
BEV™w,, X'}

prim) =c"(m).
The intertemporal allocation of the costs and benefits of the learning process in
the cautious MPE are described completely in the following theorem.
THEOREM 3: The cautious equiltbrium is unique, efficient, and
4.2) p'(a)=EX —EX=x]—x{,
43  p(m)=BEV™w, X;)— BEV"(7,X).
The pricing rule of the conceding seller is a submartingale:
44 p(m)<BE{p"(7, X))}

Proor: The nonselling firm in period ¢, say j, is indifferent between selling
and not selling by the definition of the cautious equilibrium:

(45 pl(w)+ BEYV(m,, X)) = BEV(m, X}).

By the consumer’s indifference,

(4.6)  E[X!-pi(m)+BV3(x, XD)| =E[ X/ —p/(m) + gV (7, X))],
we can express V' (sr,) for a given equilibrium either as

4.7 Vi#)=E|X —p(m)+ BVE(7, X)),

or as

@8  VEw)=E[Xx!-pix)+BVim, X))

We can extend (4.7) and (4.8) in this way for any number of periods. Since the
equality (4.6} has to hold in each period, we are free to choose which alternative,
i or j, to use in any period in the particular extensions. For now we extend “.7n
and (4.8) by the continuation game in which j is accepted forever. Extending
(4.7) we get

(49)  VE(m) =E{{ Y B[ xi —pj(ws)]},

F=t

and extending (4.8) we have

(4.10) VB(W,)=E,{X{—p*'(w,)+ f} 5-”[)(;‘—;;!‘(@)]}.

s=¢+1
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A

We decorated the state variable #, in (4.10) to distinguish it from the state
variables 77, in (4.9), since their experimenting paths are different. We solve
equation (4.6} for the price of the superior seller i in period ¢, when the inferior
seller j adheres to his pricing policy (4.5). By extending (4.5) in the same manner

as (4.9 or (4.10) we obtain

E,{):Bs“p"(m)}=5,{ » Bs-*pf(frg}.

5=t s=t+1
We can finally use equality (4.5) to simplify equality (4.6) and obtain
Pi(ﬂ'r) = ErXri - Erer =x1i _x{’

describing the price of the successful seller in period . To obtain an expression
of p/(ar,) for the nonselling firm, we start again with ¢quation (4.5) and extend
both sides by one period. Since the Gittins index of seller j might rise above the
one of seller { in 7 + 1 after an observation of X/ in ¢, equality (4.5) might turn
into an inequality in ¢ + 1, conditional on X/:

@A) pm, X))+ BEYV/(m,, X], X}, ) = BEV(m,, X, X)),
As a consequence we obtain from (4.5):
p(m) + BEVi(m,, Xi, X!, ) < BE,pi(m,, X1
+B2EV(m, X/, X/, ),

resulting in

pj(ﬂ':) = ﬁE,p‘i(W, ’ Xri)’
which concludes the proof. Q.E.D.

A few aspects of the pricing strategies in the cautious equilibrium deserve
discussion. Experimentation is efficient and all sales are made at pilm) =
E, X7~ E, X7 Notice that efficiency, M*(w,) > M"(xr,), does not imply E, X; >
E,X[. 1t may be that M°(w,) = M"(w,), although E, X7 <E, X", in which case
p'(m)=E X} —E X! <0. Negative (or below cost) prices then appear in equi-
librium as a natural instrument to support the learning process of the consumer,
Negative prices are associated with states w, where M'(7)>M "(m,) but
E,X; <E,X/. In these states seller 5 is willing to offer negative prices because
the superiority of his dynamic allocation index indicates that he will be able to
recover the initial losses through higher future prices. On the other hand, the
consumer expects negative prices as an advance payment because the gains from
learning will eventually be diluted through higher prices.

The net value of the sale to the buyer is the current expected quality of the
dynamically inefficient firm: E, X; —p*(w,) = E, X". As long as the buyer does
not switch from seller i to seller j, her net value of a purchase remains thus
constant at E, X/ and the price of the successful seller i forms a martingale.
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Marginal gains and costs of experimentation are reflected in the price set by
selier { in response to new information. The buyer is thus insured during any
single round of experimentation with a particular seller and realizes intertempo-
ral costs or benefits only when she is switching from one seller to the other.

The conceding seller hence represents, in equilibrium, the insurance or
outside option to the buyer. If the buyer continues to experiment with ¢
although the estimate E,X; decreases, she weakens her future insurance
position vis-2-vis seller j. Or, put differently, the future switching costs from i to
j are increasing when the expected quality of seller i decreases. Consequently, if
seller i still intends to make the sale, i has to compensate the buyer for the
induced future risk of higher switching costs. Conversely, if the buyer expects to
switch from i to j because the value of learning is high, but not because the
current return of j dominates i, then i provides the buyer with a comparatively
high insurance level in the future. In consequence scller i can ask today for a
price higher than that justified by current quality differences. The discrepancy
between the intertemporal pricing rule and the static pricing rule can be
systematically linked to this insurance effect.

In a myopic environment the optimal pricing rule p.(m,) of the successful
seller i is given by

(4.12)  pi(m) —pilw) =xi—x.

The price p’(m,) at which i can make a sale is such that the price difference
between i and j equates the estimated quality difference between the competing
products. We contrast this with the incentives provided by the intertemporal
pricing rules. Recall from the definition of the cautious equilibrium that

(4.13) pJ(’Tr,) = BE,[V"("T,, X:) - VJ("'TI?XIJ)]’
and from Theorem 4.1 that
(4.14) pilw) =x!—x].

Comparing equations (4.12) and (4.14) we observe immediately that the price
differential in the cautious equilibrium is smaller than in the myopic case if
pi(m) > 0. By (4.13) we can relate this condition to the future competitive
position of the currently conceding seller j. When p(ar,) > 0, then the expected
continuation payoff for firm j is higher if the buyer experiments today with firm
i’s product rather than with j’s product:

pim) > 0= EVila,, X)) > EVi{a, XD.

Experimentation with seller i must hence provide better prospects for an
improvement in j’s competitive position than a direct experiment with j himself.
The improvement can only come through a decrease in the expected quality of
firm i’s product along the path of the play. But the decrease in E X/ along the
equilibrium path implies that the outside option seller i provides to the buyer,
conditional on switching from seller 7 to seller j, is expected to decrease. Since
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the buyer realizes the negative future impact of experimentation with seller i
today, she is not willing to pay the myopic price P} and seller i has to scttle
for less than the myopic price:

Pj(ﬂ'r) <P;in('"'r)'

The potential of future rent-seeking by seller j, after current experimentation
with i, is consequently expressed in the fact that only a strictly positive price
determined by (4.13) makes seller j indifferent between a sale today and the
improvement in the competitive position induced by experimenting with seller i.
A similar argument can be given for p’(m,) <0, in which case seller i can extract
a higher than myopic price since he provides the buyer with a relatively stable
insurance value and consequently:

pi(m) > p(m,).

With more accurate estimates of the product qualities, the changes in the
competitive environment become smaller over time. In turn, we would expect
the deviation from the myopic pricing policy to become less significant as more
information accumulates. In the next subsection, we describe the asymptotic
properties of the cautious equilibrium and show that in general, the long-run
prices are different from the myopic Bertrand prices under perfect information.

4.2. The Asymptotic Behavior of the Cautious Equilibrium

As time goes by, the buyer will learn more about the true value of the
purchased products. By Lemma 1 a purchase is made in every period and at
least one seller will be chosen infinitely often. The value of learning, (1-3)
Mi(x,) —x!, as distinct from the value of the current return, diminishes as the
dynamic allocation index (and the posterior mean) converges to the true mean
of the reward process. Consequently the value of sampling decreases and the
ranking of the aiternatives with respect to their current pay-off tends to coincide
with the ranking of the indices. Below cost prices associated with states w,,
where the learning effects dominate the current return effect, should therefore
gradually disappear. We may ask whether the pricing and acceptance policies
will approach those of the static Bertrand competition in the limit.

PROPOSITION 2 (Asymptotic Behavior): The asymptotic behavior of the cautious
MPE is given by

W) lim, . p*(w)=x*—lim, . E X" >0,

(i} lim, , (&) = 0.

PRrOOF: (i) By Definition 1 and the Martingale convergence theorem,

lim M*(7,) =x"/(1 — B) as.
{— >
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where M™ and x™ are the dynamic allocation index and the true mean of any
alternative which is chosen infinitely often. Since

MS(Trt) ZM"(’IT‘.) ZEIXIH/(]‘ - B)
has to hold by the efficiency of the MPE, we have
lim p*(#7,) = im [E X - E X =x"— lim E, X" > 0.
I f—r o

f—> o
Since the claim applies to the prices of all sellers who are chosen infinitely often,
we don’t exclude the case where switching between the sellers occurs infinitely
often. Lim, , E X may not converge to x”, since if a selier j is abandoned
after a finite time, convergence to x” is by no means guaranteed.

(i) Clearly liminf, , V" () = 0 by the no sale option and we want to show
that in fact lim, , _V""(m,) = 0, where n, is the conceding seller in period ¢, and
s, is the successful seller in period u. We proceed by contradiction. Assume that
limsup, _, V"{m,} > 0, which implies that there exists e > 0 such that

lim Prls, =n,,u>tlm,] > €,

i—=m
where Pr[-] is the probability assessment of the players along the path of the
play. Standard convergence arguments imply that

lim Pr[su =n,,u>tlx’ #xf] =,

t— o
and consequently if

lim Pr[m,,s, =n,,u>tlm] =€,

[—= o

then

lim Pr[x‘ =x/|m,] =1,

oo
in which case it has to be that

lim p*(=,,s,=n,) = lim [E X’ —E X"] =0,
o

t— >

which implies that limsup, , V" () = 0, concluding the proof. Q.E.D.

The equilibrium converges exactly to the myopic Bertrand equilibrium if both
sellers are chosen infinitely often and all learning possibilities are exhausted, in
which case even lim, , E, X =x" holds. The asymptotic behavior is somewhat
different when only one seller is chosen infinitely often in equilibrium. The price
p"(=,) is determined by Theorem 4.1 as

p*(m) = BEV"(m,, X}) — BEV™(m,, X7).

By Proposition 2 we also have lim, , V"(7,)=lim, . BEV"(m, X}) =0, so
that

lim p™(@,) = —BEV" (7, X).
Fy-
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Now, if a single experiment with n at m, could change the ranking of the
indices, then we have BEV"(w,, X]') >0 and therefore p"(m,) <0. The fact
that I/*(w,} converges nevertheless to zero is only confirming that in equilibrium
it is optimal not to explore the remaining learning opportunities, This has to be
contrasted to statistical decision problems which generally converge in the limit
to the short-run, myopic decision problems as in Aghion et al. (1991, Proposition
2.2-2.4). Here it is the strategy of the conceding seller which indicates that if
some uncertainty remains unresolved in the game then the convergence will not
be compiete.

4.3. The Set of MPE

We come to the characterization of the entire set of MPE. By Theorem 1, all
MPE are efficient and hence have the same social value W*(ar,). The multiplic-
ity of equilibria then pertains only to different allocations of the surplus,
W*(1r,), among the players. The equilibrium which maximizes the buyer’s payoff
is therefore simultaneously minimizing the sellers’ payoff. Conversely, the equi-
librium which is maximizing the seller’s payoff is simultaneously minimizing the
buyer’s payoff. The characterization of these two extremal equilibria is then
sufficient to describe the lower and upper bounds on the payoffs of the players.

PRroPOSITION 3 (Characterization of MPE): The set of Markov perfect equilibria
is characterized by the lower and upper bounds on the payoffs. The lower bounds are
given by:

w T,—1

Y Y pul4 ¥

n=1s=uga, n=1 s=r1,

Ty —1

(b) VE(m,)=E,

ﬁ:-—rxl },
(sH Vi(m) =0,

(s%) V() =0.

The upper bounds are given by:

(B} V3(m)=w*(m,),

(shH Vi(m,) =E,

w  T,— 1
>y ﬁs—f[x:—x;]},

n=1s=o0,

Tpr—1

T

n=1 s=m1,

(§7) V=) =E,

o fat -]

We omit the proof, which can be found in Bergemann and Vilimiki (1995),
since the construction of the extremal equilibria, while entirely straightforward,
is long and tedious.
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The equilibrium which generates payoffs {(B),(s'),(s*)} reduces the payoffs
of the sellers permanently to zero, which is their individual participation
constraint. The buyer receives the entire value of the game. The second
equilibrium, which generates {(b),(S'),(5?)} is in fact the cautious equilibrium of
Theorem 4.1. Let us here just recall the payoff structure of this equilibrium. The
consumer is buying the product of the superior seller i at the price p'(w,) =
EX!—EX/=x!—x]. Let i=1 and j=2. Starting at 7,, when the buyer
switches from j to / and until ¢, when she switches back to j, the estimate of
E, X} does not change since no new information on j’s product becomes
available. We can consequently write E, X/ = ETHX;"" =x£n for t between 1, <t <
g, — 1. During this time span the buyer is experimenting with {, and only the
estimate of X/, E, X/ is changing over time. For the same time interval,
T, <t < g, — 1, the buyer’s periodic return is constant and given by E X —
p'(m)=E X/ —(x{ —x] )=xI , which is represented in (b).

The symmetry in the extremal equilibria is apparent. The equilibrium which
maximizes the buyer’s payoff makes the successful seller s always indifferent
between selling and not selling: the equilibrium condition ($°} holds as an
equality. In the equilibrium which minimizes the buyer’s payoff it is, on the
contrary, always the conceding seller » who is indifferent between selling and
not selling and in turn (§") holds as an equality. Since the “successful” prices,
p(w,), and the “threat” prices, p™(m,), that each seller is employing are
strategically almost independent devices, it is not difficult to show that the entire
convex hull spanned by the payoffs of the extremal equilibria constitute the set
of MPE payoffs.

Proposition 3 tells us that the main difference between the set of Markovian
and the set of non-Markovian equilibria lies in the possibility of collusion among
the sellers. This may imply efficiency losses as the following example demon-
strates. Consider the following collusive equilibrium, in which the sellers alter-
nate in selling at prices p* =F, X’ and p" < E, X, and use the trigger strategy
to convert to the equilibrium {(B),(s'),(s?)} should a price deviation by one of
the sellers occur. The buyer’s payoff is now reduced forever to zero and the
allocation path is clearly inefficient, since the alternating is independent of the
actual learning experience.

5. CONCLUSION

We presented a simple dynamic equilibrium pricing model under uncertainty
where the players take into account the costs and benefits of learning. All MPE
are efficient. The cautious MPE, which was the focus of our analysis implements
the efficient learning solution by a simple and intuitive equilibrium pricing
policy of the firms. The restriction to Markovian equilibria allowed us to focus
on the interaction of pricing and learning policies.

Since there was only one large consumer and the qualities of the firms were
statistically independent, experimentation did not give rise to any externalities.
The extension to statistically dependent alternatives is straightforward and
would yield exactly the same conclusions in terms of efficiency and equilibrium
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prices as the statistically independent case. The reader may verify that the
independence assumption was only used for the characterization of the efficient
policy in terms of the dynamic allocation index. This result underlines the basic
mechanism at work in the dynamic pricing model. Strategic competition can
sustain efficient learning outcomes if the exchange of the costs and benefits is
frictionless both intertemporally and interpersonally. The necessity of intertem-
poral exchange was a major theme throughout the paper. The extension of our
model to a multiple buyer market illustrates the necessity of frictionless inter-
personal exchange to sustain efficient experimentation. While our results for
multiple buyers are only preliminary, they suggest some interesting possibilities.
In the simplest case of one known and one unknown product with many buyers,
market experimentation will continue beyond the social optimum.

As in the case with a single buyer, the seller of the unknown product has to
offer negative prices to compensate for the current quality differential. The
essential difference arises as the seller with the unknown product needs to
compensate his buyers only for their own future expected losses. Since experi-
mentation is public, he will eventually appropriate the benefits of a positive
sample path from all consumers. Conversely, the firm with the known product
would need to offer to each and every consumer a price low enough in order to
completely prevent experimentation with the unknown product. This policy is
very costly and, rather than trying to exclude his competitor entirely, he prefers
to let experimentation continue beyond the social optimum to further weaken
his opponent’s position. In Bergemann and Viilimiki (1996), we show that the
underinvestment in learning result as described in Bolton and Harris (1993) can
be reversed and the equilibrium may involve socially excessive experimentation,
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