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Abstract

A seller wishes to sell an object to one of multiple bidders. The valuations of the bidders are privately
known. We consider the joint design problem in which the seller can decide the accuracy by which bidders
learn their valuation and to whom to sell at what price. We establish that optimal information structures in an
optimal auction exhibit a number of properties: (i) information structures can be represented by monotone
partitions, (ii) the cardinality of each partition is finite, (iii) the partitions are asymmetric across agents. We
show that an optimal information structure exists.
© 2007 Elsevier Inc. All rights reserved.

JEL classification: C72; D44; D82; D83
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1. Introduction

The optimal design of an auction has received considerable attention in the economics literature.
Myerson [14] constitutes the seminal paper in the field. Myerson shows which auction rules
achieve the largest revenues to the seller in a single object auction. Most of the subsequent literature
on mechanism design maintains the assumption that the information held by market participants
is given as exogenous. Little is known about optimal mechanisms when the information of the
participants is allowed to be endogenous.

This paper considers the optimal auction design problem when the seller can determine bidders’
information precision. We consider a problem in which a seller offers a single object to a number
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of risk neutral bidders. The seller wishes to maximize revenues from the sale. Bidders’ valuations
for the object are private and not known prior to the bidding. The seller controls the bidders’
information structures which generate the bidders’ private information. The information structure
determines the accuracy with which buyers learn their valuations prior to the auction. The seller
may assign an information structure that informs a bidder perfectly or an information structure
that gives the bidder only a rough guess about her true value for the object. The seller’s choice of
information structure is made prior to the auction and does not involve transfer payments from the
bidders. After the choice of information structure by the seller, the bidders then report their value
estimate to a revelation mechanism which determines the probability of winning the object and
a transfer payment for every bidder. We study information structures and revelation mechanisms
that maximize the seller’s revenues. The solution in Myerson [14] arises in our model as a special
case when the seller informs the bidders perfectly.

We analyze the optimal information and mechanism design problem under strong informational
assumptions. We assume that the seller has full control in his choice of the information structure
and there is no cost to adopt a particular information structure. Our set-up allows us to emphasize
two opposing effects that determine the endogenous choice of the precision of information: first,
more information increases the efficiency of the auction and thus seller’s revenues; second, more
information increases the rents of the bidders in form of information rents which lower the
seller’s revenues. We analyze this trade-off and characterize the properties of optimal information
structures.

The model assumes that the optimal information and mechanism design is subject to the interim
incentive and interim individual rationality constraints of the bidders. By imposing the interim
individual rationality constraint, each bidder is allowed to assess the value of the transaction
conditional on his private information. In particular, this means that the seller cannot request
payment for the private information, separately from the auction of the object itself. The adoption
of the interim individual rationality constraints here can be motivated by a temporal distinction
between the adoption of a set of rules governing an auction or an entire series of auction and
the actual auction event. Within such a sequencing context, the individual rationality constraints
arises naturally at the interim stage. 1

Empirical applications that share features with some of our assumptions can be given, but we
wish to emphasize that we are not aware of an application that fits our assumptions precisely. Our
study makes strong assumptions and our results may not be directly applicable for auction design
in practice. In light of the results, we shall discuss the role of the assumptions in detail in the final
section.

The linkage principle of Milgrom and Weber [12] is related to our work but obtained in a distinct
informational setup. In a symmetric model with affiliated values, they show that the seller can
increase revenue by releasing information publicly to all bidders. The public information reduces
the winner’s curse and hence the information rent of the winning bidder. In contrast, with private
values, an increase in information to an individual bidder increases that bidder’s information rent.
While we consider the choice of information structure by the seller, a related literature considers
the incentives of the buyers, to obtain more information, e.g. Cremer and Khalil [4], Persico [15],
and Bergemann and Välimäki [2], Jehiel and Compte [18] and for a recent survey Bergemann and
Välimäki [19].

Our paper is organized as follows: Section 2 describes the model. Section 3 considers the ex-
ample of bidders with uniformly distributed valuations on the unit interval. Section 4 analyzes

1 We thank an anonymous referee for suggesting this point of view.
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the optimal information structure when the signal space is finite. We show that: (i) the optimal
information structures are partitions, (ii) the optimal partitions are asymmetric, and (iii) optimal
partitions exist. Section 5 extends the characterization results to the class of all measurable in-
formation structures (possibly with infinite and uncountable signals) and shows that the above
characterization results remain to hold, in particular the optimal information structure remains a
finite monotone partition. Section 6 concludes and discusses the limits of our analysis.

2. Model

2.1. Utility

A seller has a single object for sale. There are I potential bidders for the auction, indexed by
i ∈ {1, . . . , I }. Each agent i has a compact set Vi = [0, 1] of possible valuations for the object,
where a generic element is denoted by vi ∈ Vi , and

V = I×
i=1

Vi = [0, 1]I .

We occasionally adopt the notation v = (vi, v−i ). The valuation vi is independently distributed
with prior distribution function Fi (vi). The prior distribution function Fi (vi) is common knowl-
edge. The associated density function fi (vi) is positive on Vi . The utility of the (winning) agent
is quasilinear and given by

ui (vi, ti) = vi − ti ,

where ti is a monetary transfer.

2.2. Information structure

The signal space is denoted by Si ⊆ [0, 1]. The space Si can either be countable, finite or infinite,
or uncountable. Let (Vi × Si,B (Vi × Si)) be a measurable space, where B (Vi × Si) is the class
of Borel sets of Vi ×Si .An information structure for agent i is given by a pair Si� 〈Si, Fi (vi, si)〉,
where Si is the space of signal realizations and Fi (vi, si) is a joint probability distribution over
the space of valuations Vi and the space of signals Si . 2 We refer to this class of information
structures as (Borel) measurable information structures.

The distribution and the information structure for all agents are denoted by omitting the subscript
i, or F (v, s) and S, respectively. The joint probability distribution is defined in the usual way by

Fi (vi, si) � Pr (̃vi �vi, s̃i �si) .

The marginal distributions of Fi (vi, si) are denoted with minor abuse of notation by Fi (vi) and
Fi (si), respectively. For Fi (vi, si) to be part of an information structure requires the marginal dis-
tribution with respect to vi to be equal to the prior distribution over vi . The conditional distribution
functions derived from the joint distribution function are defined in the usual way:

Fi (vi |si ) �
∫ vi

0 dFi (·, si)∫ 1
0 dFi (·, si)

,

2 By assumption, the signal of agent i is independent of agent j ’s valuation, for j �= i. If agent i’s signal were to depend
on agent j ’s valuation, then full rent extraction is possible, see Cremer and McLean [5].
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and similarly

Fi (si |vi ) �
∫ si

0 dFi (vi, ·)∫ 1
0 dFi (vi, ·)

.

The auctioneer can choose an arbitrary information structure Si for every bidder i subject only to
the restriction that the marginal distribution equals the prior distribution of vi . The cost of every
information structure is identical and set equal to zero. The choice of Si is common knowledge
among the bidders. At the interim stage every agent observes privately a signal si rather than her
true valuation vi of the object. Given the signal si and the information structure Si each bidder
forms an estimate about her true valuation of the object. The expected value of vi conditional on
observing si is defined and given by

wi(si)�E [vi |si ] =
∫ 1

0
vi dFi (vi |si ) .

Every information structure Si generates a distribution function Gi (wi) over posterior expecta-
tions given by

Gi (wi) =
∫

{si :wi(si )�wi }
dFi (si) .

We denote by Wi the support of the distribution function Gi (·). Observe that the prior distribution
Fi (·) and the posterior distribution over expected values Gi (·) need not coincide. For future
discussions it is helpful to illustrate some specific information structures. The information structure
Si yields perfect information if Fi (vi) = Gi (vi) for all vi ∈ Vi . In this case, the conditional
distribution F (si |vi ) has to satisfy

Fi (si |vi ) =
{

0 if si < s (vi) ,

1 if si �s (vi) ,
(1)

where s (vi) is an invertible function. An information structure which satisfies (1) without neces-
sarily satisfying the invertibility condition is called partitional. An information structure is called
discrete if Si is countable and finite if Si is finite.

After the choice of the information structures Si by the auctioneer, the induced distribution
of the agent’s (expected) valuations is given by Gi (wi) rather than Fi (vi) The signal si and
the corresponding expected valuation wi (si) remain private signals for every agent i and the
auctioneer still has to elicit information by respecting the truthtelling conditions.

2.3. Mechanism

The seller selects the information structures of the bidders and a revelation mechanism. The
objective of the seller is to maximize his expected revenue subject to the interim participation and
interim incentive constraints of the agents. By the revelation principle we may restrict attention to
the direct revelation mechanism. The direct revelation mechanism consists of a tuple (Wi, ti , qi)

I
i=1

with transfer payment of bidder i:

ti : I×
i=1

Wi → R,
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and the probability of winning the object for bidder i:

qi : I×
i=1

Wi → [0, 1].

We sometimes write Ti(wi) for the expected transfer payment

Ti(wi)�Ew−i
ti (wi, ·),

where the expectation is taken over w−i = (w1, . . . , wi−1, wi+1, . . . , wI ). Similarly, Qi(wi)

denotes the expected probability of winning

Qi(wi)�Ew−i
qi(wi, ·).

The interim utility of bidder i with an expected valuation wi and announced valuation ŵi is

Ui (wi, ŵi) = wiQi(ŵi) − Ti(ŵi).

The mechanism has to satisfy the interim participation constraints:

Ui (wi) �Ui (wi, wi) �0 for all wi ∈ Wi

and the interim incentive constraints:

Ui (wi) �Ui (wi, ŵi) for all wi, ŵi ∈ Wi.

A mechanism that satisfies both, the interim participation constraints and the interim incentive
constraints, is called incentive compatible. The timing of the events is graphically summarized
below:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→�⏐ �⏐ �⏐

information structure S, (si)
I
i=1 realized (ŵi)

I
i=1 reported

mechanism (Wi, qi, ti)
I
i=1 , (wi)

I
i=1 observed (qi (·) , ti (·))Ii=1 assigned

determined
Time line of events.

We note that the transfers and the information structures are determined simultaneously for
all bidders. In particular, we do not consider sequential mechanisms in which the information
structure for some agents may be determined after some information has already been revealed
about a certain subset of bidders.

3. Examples

This section illustrates properties of optimal information structures for some special cases.
First, we look at single and two-bidder auctions. We illustrate the unconstrained optimal informa-
tion structure. Then, we illustrate the constrained optimal information structure when the seller’s
choice is restricted to (i) identical information structures across bidders and (ii) identical parti-
tions consisting of equally sized intervals. The examples illustrate that the seller prefers sparse
information and treat bidders asymmetrically. Second, we depart from the two-bidder model and
depict properties of the numerical solution to an auction with many bidders when the valuations
are drawn from the uniform distribution. Again, we depict the unconstrained and constrained
symmetric solution.
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Single bidder auction: Consider first the case with a single bidder. The information structure in
which the seller assigns a perfectly informative information structure to the bidder is analyzed in
Myerson [14]. Myerson establishes that the seller can extract at most the virtual valuations in any
incentive compatible selling mechanism. The virtual valuation of a bidder of type with valuation
v equals the valuation of the bidder minus the incentive cost

v − 1 − F(v)

f (v)
.

Notice that the incentive cost is positive and remains positive even if the seller assigns an infor-
mation structure which informs partially only.

In contrast consider the situation in which the seller chooses to assign an uninformative infor-
mation structure to the buyer. Without any information, a bidder is willing to pay up to the ex ante
expected valuation of the bidder to receive the object. In this case, the seller can extract all the
expected surplus. It is therefore immediate that assigning an uninformative information structure
is optimal in a single bidder auction. The seller can post a price equal to the ex ante expected
valuation. This posted price scheme extracts the total surplus and is efficient. Moreover, if the
seller were to assign an information structure that informs the bidder, the seller would be worse
off because he incurs an incentive cost expressed by the virtual utility.

Two-bidder auction: Suppose now we were to add a second bidder to the auction with an
identical prior distribution. The policy to disclose no information does not remain optimal with
two bidders. To see this, notice that assigning an uninformative information structure extracts
at most the ex ante expected valuation of the winning bidder. But with symmetric bidders, the
revenue for the auctioneer would then be the same as in the case of a single bidder. In a two-
bidder auction there is a simple scheme that achieves more rent by exploiting the increase in the
number of bidders. The scheme has the following feature: the seller assigns an uninformative
information structure to the first bidder as in the case of a single bidder auction, but assigns a
binary information structure to the second bidder. A binary information structure permits the
bidder to determine whether the valuation is above or below a certain threshold. The optimal
threshold is exactly equal the ex ante expected value of the object. The scheme then works as
follows: initially, the seller offers the object to the second bidder at a price equal to the conditional
expected valuation in the event that the valuation is above the threshold. If the second bidder rejects
the offer, then the seller offers the object to the first bidder at a price equal to the ex ante expected
valuation. The total revenues to the seller under this scheme exceed the ex ante expected valuation
of a bidder. Thus, the revenues under this scheme are higher than under a scheme in which the
seller assigns an uninformative information structure. We observe that as before, the seller leaves
no informational rent to the bidders. However, the allocation is not necessarily efficient anymore,
as it could be that the first bidder has in fact a higher valuation for the object than the second
bidder with the binary partition. However, the coarse information structure does not allow the
seller to make this contingent decision.

In fact, it can be shown that the described information structure maximizes the revenues to the
seller with two bidders and uniformly distributed valuations. Ignoring elements in the informa-
tion structure which are associated with zero winning probability events, as we do throughout
this paper, ensures that the described information structure is the unique solution. If attention
is restricted to the class of information structures with finite partitions, then this result follows
immediately from the first- and second-order conditions for optimally chosen partitions. Our
results in the subsequent sections establish that the described scheme with two bidders is in-
deed optimal for the uniform distribution under general information structures even permitting



586 D. Bergemann, M. Pesendorfer / Journal of Economic Theory 137 (2007) 580–609

non-partitional and non-finite information structures. For non-uniform prior distributions the opti-
mal information structure may change as both, the location of the boundary points in the partition
and the number of elements in the partition, depend on the distributional assumption.

The scheme with two bidders has a number of features that are worth emphasizing. First, even
if bidders have initially symmetric prior distributions of valuations, they are optimally assigned
asymmetric information structures. The first bidder receives no information, while the second
bidder learns whether the valuation is above or below the ex ante mean. Second, the seller does
not give an informational rent to buyers. Both bidders are offered the object at a fixed price that
they can accept or reject.

Symmetric information structures: Suppose the auctioneer were constrained to offer identical
information structures to bidders. With two bidders and uniformly distributed valuations the binary
nature of the informational structure remains optimal, but the location of the boundary point in
the partition is altered by the symmetry restriction. It is now optimal to set the boundary point
in the partition at one-third and to offer the bidders the object at a fixed price of two-third. If
bidders valuations do not exceed one-third the seller retains the object. The event of no award can
occur because the cost of information revelation is high and offsets the gains from a sale when
valuations are low.

Multiple bidders:A natural question is whether the features of the optimal information structure
for two bidders with uniformly distributed valuations extend to more general settings. We address
this question in the subsequent sections. Before we start our formal analysis we illustrate graphi-
cally optimal information structures with many bidders. 3 The following figure depicts properties
of optimal information structures with uniform distributed valuations as we vary the number of
bidders. The dotted line illustrates the boundary points for constrained symmetric partitions. The
solid line illustrates the boundary points for unconstrained (asymmetric) partition for the bidder
with the largest interior boundary point.

As can be seen in the figure the number of boundary points increases monotone with the number
of bidders participating in the auction. However, the increase is only very gradual. For the optimal
(asymmetric) information structure, we count three elements in the partition with three to six
bidders, four elements with seven to 15 bidders and five elements with 16 or more bidders. The
boundary points of the partitions for the constrained optimal (symmetric) information structure
look very similar to the unconstrained solution. We count three elements in the partition with four
to eight bidders, four elements with nine to 13 bidders and five elements with 14 or more bidders.

Fig. 1 illustrates further that in general it is not the case that the seller leaves no informational
rent to the bidder. With three or more bidders, binary partitions are no longer optimal and as the
auctioneer has to reward agents to report truthfully, he will have to incur incentive costs. As the
number of bidders increases, the information structure becomes finer. The intuition is that with
more competition the incentive costs due to the informational rents are lower and the revenue
gains from improving allocative efficiency due to more information become more important, as
the number of bidders increases.

4. Optimal information structure with finite signals

Motivated by the examples, this section describes the optimal auction and optimal information
structure given a finite number of signals. In the next section, we then show that the characterization

3 The numerical calculations were implemented using the software package GAUSS.
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Fig. 1. Optimal partitions.

and optimality of finite information structure persists with an arbitrary number of signals, finite
or infinite. Section 4.1 characterizes the seller’s expected revenues and optimal mechanism for a
given finite information structure and hence finite types. In Section 4.2 we start the analysis of the
optimal information structure by deriving several features of the virtual utilities of the bidders.
Section 4.3 uses the revenue structure of the optimal auction to show that the information structure
has to be a partition and that an optimal information structure for a given finite number of signals
exists.

4.1. Optimal auction design with finite types

Motivated by the examples, this section characterizes the seller’s expected revenues and optimal
mechanism for a given finite information structure and hence finite types. At this stage we are
merely interested in characterizing the expected revenues of the auctioneer from bidder i. For
a given distribution Gi (wi), we denote the finite set of mass points by

{
w1

i , . . . , w
K
i

}
, and for

every wk
i ,

gk
i �Gi

(
wk

i

)
− Gi

(
wk−1

i

)
> 0,

with gk
i being the positive probability of mass point wk

i . For notational ease, we shall denote the
value of the distribution function Gi (·) at wk

i simply as Gk
i , and likewise refer to the interim

probability of winning at wk
i as Qk

i and the interim transfer at wk
i as T k

i . Lemma 1 describes the
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revenues the auctioneer receives from bidder i with a given prior distribution Gi (·) and a given
expected probability of winning Qi (·).

Lemma 1 (Revenues). The expected revenues from bidder i in an incentive compatible mecha-
nism are

Ri (Gi, Qi) �
K∑

k=1

[
wk

i −
(
wk+1

i − wk
i

) 1 − Gk
i

gk
i

Q̃k
i

Qk
i

]
Qk

i g
k
i − Ui

(
w1

i

)
, (2)

subject to Qi (·) being non-decreasing, Qk
i �Q̃k

i �Qk+1
i and Ui

(
w1

i

)
�0.

Proof. The proofs for all results are provided in the Appendix.

The similarity with the case of positive density analyzed in Myerson [14] is immediate. The
modification due to the discreteness appears in the obvious places. The density gi

(
wk

i

)
is now

replaced with the positive probability gk
i . The local change dwi = 1 is being replaced by the

discrete change between wk
i and wk+1

i , or wk+1
i − wk

i .
There are two indeterminacies in the expression of revenues (2). First, as in the continuous

analogue, the utility for the lowest type, Ui

(
w1

i

)
, is an arbitrary non-negative number. Second,

the probability Q̃k
i is an arbitrary number in

[
Qk

i , Q
k+1
i

]
. The second indeterminacy arises due to

the discreteness of types and is absent in the continuous analogue. With discrete types, the utility
increment for a bidder of type wk

i attributable to the (hypothetical) gain of mimicking the adjacent
lower type can be weighed with probability Qk

i or Qk+1
i . In fact, any probability Q̃k

i contained in[
Qk

i , Q
k+1
i

]
yields incentive compatible revenues.

Henceforth, we select Q̃k
i = Qk

i and Ui

(
w1

i

) = 0. This choice maximizes the seller’s revenue
for given (Gi, Qi). Since we seek the information structure and mechanism that maximizes seller’s
revenues, we can make this selection without loss of generality. This leads us to the following
expression for seller’s revenues:

Ri (Gi, Qi) =
K∑

k=1

[
wk

i −
(
wk+1

i − wk
i

) 1 − Gk
i

gk
i

]
Qk

i g
k
i .

The associated interim transfers of agent i satisfy the incremental relationship:

T k+1
i = T k

i +
(
Qk+1

i − Qk
i

)
wk+1

i , (3)

and the expected revenues from agent i can alternatively be represented as

Ri (Gi, Qi) =
K∑

k=1

gk
i

[
k∑

l=1

(
Ql

i − Ql−1
i

)
wl

i

]
, (4)

with the convention that Q0
i = 0.

The revenues of the auctioneer from bidder i are characterized as a function of the expected
probability of winning Qi (wi) with a value wi . The interaction with the valuation of the other
bidders is represented by expectations over the valuations w−i . Now, we disaggregate the expres-
sion and consider the dependence on the realizations of all valuations explicitly. The revenue of
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the auctioneer from all bidders is given by

R (G, q) �
K1∑

k1=1

· · ·
KI∑

kI =1

[
I∑

i=1

qi

(
w

k1
1 , . . . , w

kI

I

)

×
[
w

ki

i −
(
w

ki+1
i − w

ki

i

) 1 − G
ki

i

g
ki

i

]
I∏

i=1

g
ki

i

]
, (5)

where qi (w) �0 and
∑I

i=1 qi (w) �1. The optimal auction is then given by the probability
vector q (w) = (q1 (w) , . . . , qI (w)) which maximizes the expected revenue (5). Define the
virtual utility with discrete types by

�k
i �wk

i −
(
wk+1

i − wk
i

) 1 − Gk
i

gk
i

.

If the virtual utilities are monotone, then the optimization problem can be solved pointwise, i.e.

for any type realization w =
(
w

k1
1 , w

k2
2 , . . . , w

kI

I

)
by solving

max
{qi (w)}Ii=1

I∑
i=1

qi

(
w

k1
1 , . . . , w

kI

I

)[
w

ki

i −
(
w

ki+1
i − w

ki

i

) 1 − G
ki

i

g
ki

i

]

subject only to the familiar restriction that qi (w) �0 and
∑I

i=1 qi (w) �1. This pointwise op-
timization becomes possible as the monotonicity of virtual utilities guarantees the monotonicity
of the interim winning probabilities Qi

(
wk

i

)
as a function of wk

i . We can now readily describe
some properties of the optimal auction.

Corollary 1. Suppose the virtual utilities are increasing for every agent. The optimal auction is
described by

1. max
{
�k1

1 , . . . , �kI

I

}
> 0 ⇒∑I

i=1 qi

(
w

k1
1 , . . . , w

kI

I

)
= 1;

2. qi

(
w

k1
1 , . . . , w

kI

I

)
> 0 ⇒ �ki

i �0 ∧ �ki

i ��
kj

j , ∀j ;

3. qi

(
w

k1
1 , . . . , w

ki

i , . . . , w
kI

I

)
> 0 ⇒ ∀w

k′
i

i > w
ki

i , qi

(
w

k1
1 , . . . , w

k′
i

i , . . . , w
kI

I

)
= 1.

The characterization is the exact discrete type analog to the celebrated optimal auction result
for ‘regular environments’by Myerson [14] with a continuum of types. If the virtual utilities �k

i for
a given distribution function Gk

i were not monotone, then the optimal auction would be subject to
a similar “ironing out” procedure as necessary in an optimal auction with a continuum of types.
We conclude the section with a partial characterization of the “ironing out” procedure for future
reference.

Corollary 2. The optimal mechanism satisfies for all �k
i , �

k+1
i with �k

i > �k+1
i : Qk

i = Qk+1
i .

4.2. Virtual utilities

We first argue that the optimal information structure will always generate virtual utilities
which are strictly increasing. Recall the basic incentive compatibility condition for any Bayesian
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implementable auction is that the winning probability Qk
i is increasing in the valuation wk

i . The
revenue formula (5) on the other hand implies that the winning probability Qk

i is increasing in
the virtual utility �k

i of the agent i. If the virtual utilities �k
i generated by a given distribution Gk

i

were not monotone, then the optimal auction would be subject to an “ironing out”. The basic
element in the former procedure is to maintain the expected probability Qk

i constant over a set
of types which covers the non-monotonicity in the virtual utilities. As the constant probability
essentially implies that the incentives and revenues are also constant on the set, the question arises
as to whether the auctioneer has any interest in distinguishing between different types in this set.
In fact, as the information structure is chosen by the auctioneer, he may wish to bundle types to
which identical allocations have to be offered in any case. In other words, when the auctioneer
can choose the information structure for the bidders, the “ironing out” of non-monotonicities in
the virtual utility may be achieved by a sufficient coarsening of the information structure rather
than through constant winning probabilities of the form: Qk

i = Qk+1
i . The consequence of this

argument leads to the next result.

Lemma 2 (Monotone virtual utilities). The optimal virtual utilities are strictly increasing.

By Lemma 2, we can describe the set of optimal virtual utilities for bidder i by an ordered set
�i = {�1

i , . . . , �
k
i , . . . , �

K
i

}
, with �1

i < �2
i < · · · < �K

i . The local argument regarding the benefits
of a coarser information structure has some additional implications for the structure of the set of
virtual utilities �i . Consider two adjacent and positive virtual utilities by agent i, say �k

i and �k+1
i .

Suppose now that these two virtual utilities do not bracket any virtual utility by a competitor, or
more precisely that

{
�j

∣∣∣�k
i < �j < �k+1

i ; �j ∈ �j , j �= i
}

= ∅. (6)

By Corollary 1, the virtual valuations �k
i and �k+1

i would then win against the same type realizations
of the competitors and in turn they would receive the object with the same probability: Qk

i = Qk+1
i .

But then we can use precisely the argument of Lemma 2 to conclude that a coarser information
structure would increase the revenues of the auctioneer.

Lemma 3 (Adjacent and asymmetric virtual utilities).

1. For ∀i, ∀k < K :
{
�j

∣∣∣�k
i < �j < �k+1

i ; �j ∈ �j , j �= i
}

�= ∅.

2. ∃i, j such that �i �= �j .

A direct consequence of the alternating structure of the virtual utilities is the asymmetry of the
virtual utilities indicated by the second part of Lemma 3. With two bidders, the same argument
leads immediately to a stronger result, namely that �i ∩ �j = ∅. With more than two bidders,
our argument does not preclude the possibility that some bidders may have virtual utilities in
common.

The asymmetry of the virtual utilities implies asymmetry of the information structure even if the
underlying distributions over valuations are symmetric. For legal or fairness reasons, symmetric
treatment of bidders may be a requirement in the auction. It is worth emphasizing that if we
impose a symmetry requirement on the information structure, then the basic properties of the
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optimal symmetric information structure will qualitatively remain identical to the ones without
the symmetry requirement. 4

4.3. Monotone partitions

A partitional information structure can be represented without recourse to a joint distribution
over the space of valuations and signals by a partition of the original space Vi . A partition is a
collection of subsets, with slight abuse of notation, denoted by Si = {

Sk
i

}
such that for all k, k′

we have Sk′
i ∩ Sk

i = ∅ and

K⋃
k=1

Sk
i = Vi.

The partition is monotone if for any vi, v
′
i ∈ Sk

i , �vi + (1 − �) v′
i ∈ Sk

i for all � ∈ [0, 1].

Theorem 1 (Monotone partition).

1. For every fixed K < ∞, an optimal information structure exists.
2. The optimal information structure is a monotone partition.

The result that the optimal information structure is a partition as well as the monotonicity
of the partition itself stem from the same elementary argument based on a necessary condition
of optimality. The argument is local in the sense that we hold the information structures and
conditional winning probabilities of other bidders constant and look only at the revenues to the
auctioneer from bidder i. The focus on the single agent i allows us to illustrate the result with a
simple diagram, which represents the incentive compatible revenues from bidder i. The diagram
depicts the valuations wi of agent i on the x-axis and the interim probabilities Qi on the y-axis.
In the diagram every rectangle of surface wk

i Q
k
i represents the gross social surplus generated

by type wk
i with the winning probability Qk

i determined by the optimal auction. We showed in
Section 4.1 that the interim incentive compatible transfers satisfy the relationship

T k+1
i = T k

i +
(
Qk+1

i − Qk
i

)
wk+1

i . (7)

The horizontal rectangles in Fig. 2 represent the share of marginal surplus from the next higher type
which goes to the auctioneer and the vertical rectangle represents the share which goes to agent i.
Notably absent from the diagram are the probabilities gi of agent i and indeed the interim transfer
payments Ti are independent of gi . From the diagram, we can infer several general properties of
the optimal auction. First, the social surplus is increasing in wk

i and this property is shared by
the indirect utility of the auctioneer and the agent. Second, while there is genuine sharing of the
surplus, the sharing rule is not linear and depends on the winning probabilities determined by the
optimal auction.

The optimality of a given information structure requires that the auctioneer does not wish to
introduce further randomization into the information structure. A specific and local version of

4 The earlier example illustrates the similarity of the optimal information structure with and without the symmetry
requirement.
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such a randomization can be represented as a mass preserving mixture between two adjacent
expected valuations, wk

i and wk+1
i , which is given by the following modification:

wk
i (ε) =

(
gk

i − ε
)
wk

i + εwk+1
i

gk
i

(8)

and

wk+1
i (ε) =

(
gk+1

i − ε
)

wk+1
i + εwk

i

gk+1
i

, (9)

for some ε satisfying, 0 < ε�gk
i , g

k+1
i . Clearly, we can find a signal structure and joint distribution

to generate the expected valuations for every ε. The effect of a positive ε is depicted in Fig. 2. It
increases wk

i and the marginal revenue from type k, but decreases wk+1
i and likewise the marginal

revenue from type k+1. By mixing, we understand here that we associate (via the signals) low true
valuations with high expected valuations, and conversely high true valuations with low expected
valuations.

Suppose now that the optimal information structure (and auction) requires ε = 0. In conse-
quence an increase in ε would decrease the revenues. With the local changes as suggested by (8)
and (9) the marginal revenue as a function of ε is linear as can be immediately inferred from the
incentive compatible revenue representation:

K∑
k=1

gk
i

[
k∑

l=1

(
Ql

i − Ql−1
i

)
wl

i

]
,

as we keep the conditional probabilities Qk
i and type probabilities gk

i constant. The argument for a
monotone partition is now based on the following idea. Suppose an optimal information structure
is not a monotone partition. Then by the first-order conditions further mixing would decrease
the revenues. But the same conditions also allow us to infer the converse. Further de-mixing
would increase the revenues. As every information structure which is not a monotone partition
presents the possibility of some de-mixing between at least two adjacent types, this demonstrates
the optimality of a monotone partition.

5. Optimal information structure without finite signals

So far we have obtained a number of qualitative results for optimal information structures when
the signal space of each agent contained at most K elements. In this section we establish that the
optimal information structure is indeed finite and monotone partition in the class of all measurable
information structures as defined in Section 2.

Consider any incentive compatible mechanism (q, t) and the distribution G over expected
valuations induced by any arbitrary information structure. Types in the distribution G can have
zero density, positive density, or positive probability.

Proposition 1 (Approximation). Let G be a distribution generated by an arbitrary information
structure S and let (q, t) be an incentive compatible mechanism. For any ε > 0 there ex-
ists a distribution function Ĝ generated by a finite information structure Ŝ and an incentive
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compatible mechanism
{
q̂, t̂
}

such that

R
(
Ĝ, q̂

)
�R (G, q) − ε.

Proposition 1 establishes that the set of revenues generated by any incentive compatible mech-
anism with a finite information structure is dense in the set of revenues generated by incentive
compatible mechanism with an arbitrary information structure. Hence the incentive compatible
revenues generated by an arbitrary information structure can be approximated arbitrarily well by
a finite information structure. 5

A similar local variation allows us to establish an important property of the conditional winning
probabilities Qi . This property will play a central role in the argument to demonstrate that a finite
information structure is optimal.

Lemma 4 (Increasing differences). The conditional winning probabilities Qk
i satisfy strictly in-

creasing differences.

Lemma 4 establishes that the conditional winning probabilities of any bidder have the property
of strictly increasing differences, or that

Qk+1
i − Qk

i > Qk
i − Qk−1

i .

Henceforth we shall refer to this property for simplicity as the convexity of the conditional winning
probabilities even though they are defined over a finite set of indices. 6 The proof of the above
lemma relies again on a local argument as we examine the revenue from bidder i only.

Theorem 2 (Existence). An optimal information structure in the class of all Borel measurable
information structures exists and it is a finite monotone partition.

The proof of Theorem 2 proceeds in three steps: (1) an optimal information structure and as-
sociated revenues exist in the class of finite information structures; (2) the revenues from the
optimal finite mechanism are maximal in the class of all discrete (possibly non-finite) informa-
tion structures; and (3) the finite information structure revenues are also maximal in the class
of all measurable information structures. Theorem 2 builds immediately on our earlier results:
by Proposition 1, we can restrict attention to sequences of mechanisms with finite information
structures instead of arbitrary information structures. By Theorem 1, for every finite K a solution
exists. If we consider any sequence, then by Lemma 4 any element of the sequence must have
convex conditional winning probabilities for every bidder. It follows that the limiting values have
to be convex as well. Consider now the limit of the conditional winning probability of the type of

agent i with the lowest strictly positive virtual utility for every finite K . If the limit Q
1
i is positive,

then by Lemma 4 we can conclude that at most 1/Q
1
i signals can have a positive probability.

In particular, the convexity of the conditional winning probability allows us to assert that the

5 We would like to thank an anonymous referee for suggesting this continuity result.
6 We chose to first establish properties of the virtual utilities in Lemmas 2 and 3, and then use these properties to derive

the partition property of the information structure and increasing differences of the winning probabilities. Alternatively,
we could start by establishing the increasing difference property and then proceed to virtual utilities and the partition
property.
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conditional winning probabilities of agent i have to satisfy for all i and k

Q
k

i − Q
k−1
i �Q

1
i ,

and thus the optimal information structure has to be finite. If the limit Q
1
i is zero, then the argument

is a little more subtle. Essentially, we use the fact of Q
1
i = 0 to show that there exists at least one

agent j whose lowest type has strictly positive probability g1
j and strictly positive probability of

winning Q
1
j . This in turn allows us to show that at most a finite number of types of agent i can

win and win in particular against w1
j . We are thus lead to conclude that the optimal information

structure exists, is finite, and by Theorem 1 it has to be a monotone partition.
The joint optimality of discrete information structures and convex winning probabilities is now

illustrated using the following informal reasoning, based on well-known results for continuous
rather than discrete types. Consider again the interim problem with a single bidder i. The social
surplus from type vi is given by viQi (vi).We know that the marginal indirect utility of type vi in an
incentive compatible mechanism is Qi (vi). The residual marginal gains viQ

′
i (vi) consequently

belong to the auctioneer. It further follows that the indirect utility of the agent is convex as Qi (vi)

is increasing and that the social surplus as well as the auctioneer’s surplus is convex if Qi (vi) is
not too concave. The auctioneer receives from agent i the expected revenue given by∫ 1

0

[∫ vi

0
riQ

′
i (ri) dri

]
dFi (vi) . (10)

The single bidder scenario suppresses the decision as to how large Qi (vi) should be. This will be
naturally determined by the opportunity cost stemming from allocating the object to the competing
bidders. We now pursue the following thought experiment. Suppose the auctioneer had decided
to give a small interval of types, say

[
vi, vi

]
a fixed aggregate probability, say Q̂, with

∫ vi

vi

Qi (vi) dFi (vi) = Q̂, (11)

and all he had to decide is how to allocate this total probability inside the interval. If further he
were only concerned with maximizing the surplus that he can extract from all higher types, then
he should pursue the following objective function:

max
Qi(vi )

∫ vi

vi

viQ
′
i (vi) dFi (vi) ,

subject to the constraint (11), to maximize the integral of marginal gains.As the marginal increment
in Qi (vi) is weighed by vi , it is then easily seen that the auctioneer would indeed like to choose
a very convex function for the winning probabilities as the marginal increases Q′

i (vi) would then
receive the largest possible weight. However, this exclusive concern with the marginal revenue
is mitigated in the ‘standard’ optimal auction by the concern for the inframarginal revenue as
represented by the complete revenue function (10). However, by controlling the information
structure we can bundle types together to (locally) eliminate the inframarginal concern and pursue
only the maximization of the marginal revenues.
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6. Discussion

This paper reconsidered the design of the optimal auction by making the information structure
an integral part of the design problem. Notable features of the optimal information structure were
the partitional character, the finiteness of the partition and therefore of private types as well, and
the asymmetry of the information structures. The analysis reveals an important trade-off between
the minimization of information rent and the maximization of allocational efficiency. The optimal
information structure balances these two conflicting objectives.

We would like to emphasize that the current results may not inform us directly about auction
design in practice. 7 While we expect the trade-off between information rent and allocational
efficiency to remain important, the current analysis makes a number of assumptions which would
have to be weakened to provide a better fit with empirical observations. We briefly discuss the
restrictions imposed by the three key assumptions of the model: (i) the seller has complete control
over the precision of each bidder’s signal, (ii) each bidder is initially uninformed and (iii) the
seller cannot price the information directly (through ex ante payments).

In the model, the seller is free to choose from the set of all information structures, and in
particular, the seller can choose to leave the bidder uninformed about her true valuation. However,
in practice the seller may be severely constrained in his choice of the information structure. For
example, the information structure might be restricted to a noisy sampling process as in the
offshore oil tract auctions, where the choice of informativeness is determined by the number of
samples. In addition, each bidder may have some private information and thus leaving the bidder
uninformed may not be a feasible information structure.

In our analysis, the seller offers allocations and prices only after each bidder has received
her private signal. In particular, the seller cannot price the information structure directly. This
assumption might be justified in light of the observable lack of direct pricing of information in
auctions, as in the auctions mentioned in the above footnote. Yet, from a theoretical point of view
there might be a tension between the ability to control the information structure and an inability to
price the information structure. In fact, Eso and Szentes [6] and Gershkov [9] consider a similar
setting to the one presented here, but allow the seller to price the information. Gershkov [9] shows
that the optimal solution then consists of participation fees equal to the expected bidders’ rent
followed by a standard Vickrey auction. In Eso and Szentes [6] each bidder receives an initial
private signal and possibly a second signal that can be released by the seller later on. They show
that the seller can extract the rent associated with the signal released by the seller, but cannot
extract the rent associated with the initial private signal. The empirical absence of a price for
information in auctions suggests that additional factors might be at work. In a richer environment,
the optimal information structure will then have to incorporate these factors. The basic trade-off

7 There are many auctions in which the precision of the information available to the buyers is at least partially controlled
by the seller. In US offshore wildcat oil tract auctions, the bidding firms are permitted to gather information about the lease
value and their drilling costs prior to the sale using seismic information, but no on-site drilling is allowed. In contrast, in
US offshore drainage oil leases, some bidders are intentionally given access to superior information by allowing them
prior drilling in the area, see Porter [16]. Similarly, Genesove [8] reports that in wholesale used car auctions, different
auctioneers adopt strikingly different rules as to how potential bidders may inspect a used car before they place a bid on it.
Auctions in which the seller intentionally limits the amount of information are sometimes referred to as “blind auctions”
and documented examples are the licensing procedure for motion pictures, see Kenney and Klein [11] and Blumenthal [3],
and the competition of brokers for the trade of a large portfolio on behalf of an institutional asset manager, see Kavajecz
and Keim [10] and Foucault and Lovo [7].
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analyzed here would then be augmented, but also rendered more complex by the nature of the
constraints.
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Appendix

The appendix contains the proofs to all lemmata, propositions and theorems in the text.

Proof of Lemma 1. The proof consists of two arguments: first, we establish a bound on the
utility difference of two adjacent types, wk−1

i and wk
i as a function of the expected probability

of winning Qk−1
i and Qk

i . Second, we use the bound repeatedly to obtain an expression for the
expected transfer payment and thus revenue from bidder i. Along the way we shall show that the
expected probability of winning Qi (·) is non-decreasing.

Incentive compatibility requires that the allocation {Qi (wi) , Ti (wi)} satisfies the interim in-
centive and participation constraints. The incentive constraint for a bidder wk

i mimicking a bidder
with expected valuation wk−1

i yields

Ui

(
wk

i

)
= wk

i Q
k
i − T k

i �wk
i Q

k−1
i − T k−1

i . (12)

Similarly, for bidder wk−1
i who considers mimicking a bidder with expected valuation wk

i yields

Ui

(
wk−1

i

)
= wk−1

i Qk−1
i − T k−1

i �wk−1
i Qk

i − T k
i . (13)

Now, subtracting (13) from (12) yields the following set of inequalities:(
wk

i − wk−1
i

)
Qk

i �Ui

(
wk

i

)
− Ui

(
wk−1

i

)
�
(
wk

i − wk−1
i

)
Qk−1

i , (14)

which gives bounds on the utility difference of two adjacent types, wk−1
i and wk

i , as a function of
the expected probability of winning Qk−1

i and Qk
i . We observe that the outer inequality in (14)

requires that(
wk

i − wk−1
i

) (
Qk

i − Qk−1
i

)
�0,

which implies that Qi (·) is non-decreasing. Observe also that the interim participation constraint
implies that Ui

(
w1

i

)
�0.

Next, we repeatedly apply the inequality in (14) to obtain an expression for the expected transfer
payment and ultimately the revenue expression (2). An indeterminacy arises as the utility gain
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based on mimicking the adjacent lower type can be weighed with the left or the right-hand side
probability, or any number in between. Accounting for this indeterminacy, the expression for the
equilibrium utility equals

Ui

(
wk

i

)
= Ui

(
w1

i

)
+

k∑
l=2

(
wl

i − wl−1
i

)
Q̃k

i ,

where Q̃l−1
i ∈

[
Ql−1

i , Ql
i

]
accounts for the indeterminacy. By definition, T k

i = wk
i Q

k
i −Ui

(
wk

i

)
,

and the expression for the expected transfer payment is given by

Ti

(
wk

i

)
= wk

i Q
k
i − Ui

(
w1

i

)
−

k∑
l=2

(
wl

i − wl−1
i

)
Q̃l−1

i ,

which takes again the indeterminacy into account. The seller’s revenues are obtained by the
equivalent of integration by parts for the discrete probabilities. Doing so, leads to the formula

Ri (Gi, Qi) =
K∑

k=1

[
wk

i −
(
wk+1

i − wk
i

) 1 − Gk
i

gk
i

Q̃k
i

Qk
i

]
Qk

i g
k
i − Ui

(
w1

i

)
. �

Proof of Corollary 1. The characterization follows immediately from pointwise optimization of

the objective function (5) for any realization of values w =
(
w

k1
1 , . . . , w

kI

I

)
. �

Proof of Corollary 2. Suppose to the contrary (and by Lemma 1) that Qk
i < Qk+1

i . Then there

must exist w−i such that qi

(
wk

i , w−i

)
< qi

(
wk+1

i , w−i

)
. The incentive compatibility conditions

of all agents except i, and in particular their conditional winning probabilities remain constant
under qi (·) and a modified probability assignment q̂i (·) as long as

gk
i qi

(
wk

i , w−i

)
+ gk+1

i qi

(
wk+1

i , w−i

)
= gk

i q̂i

(
wk

i , w−i

)
+ gk+1

i q̂i

(
wk+1

i , w−i

)
. (15)

By the hypothesis of �k
i > �k+1

i , any q̂i (·) such that (15) is maintained and displays qi

(
wk

i , w−i

)
<

q̂i

(
wk

i , w−i

)
must strictly increase the revenues of the auctioneer, which delivers the

contradiction. �

Proof of Lemma 2. Suppose to the contrary and hence that there exists �k
i and �k+1

i such that
�k
i ��k+1

i . Suppose initially that indeed �k
i > �k+1

i . Then by Corollary 2, it follows that Qk
i =

Qk+1
i . In contrast, consider the revenues from agent i if the original information structure were

modified by sending a single signal ŝi whenever the original information structure emitted the
signal sk

i or sk+1
i . The so modified information structure effectively joins the types wk

i and wk+1
i

into a single type, denoted by ŵi . The probability of the newly created type is given by

ĝi = gk
i + gk+1

i ,

and its conditional expected value is

ŵi = wk
i g

k
i + wk+1

i gk+1
i

gk
i + gk+1

i

.



D. Bergemann, M. Pesendorfer / Journal of Economic Theory 137 (2007) 580–609 599

The difference in the revenue between the original and modified information structure is given,
after some initial cancellations, by

Ri

(
Ĝi, Qi

)− Ri (Gi, Qi)

=gk
i

[(
Q̂i−Qk−1

i

)
ŵi−

(
Qk

i −Qk−1
i

)
wk

i

]
+ gk+1

i

[(
Q̂i−Qk−1

i

)
ŵi−

(
Qk

i −Qk−1
i

)
wk

i −
(
Qk+1

i −Qk
i

)
wk+1

i

]

+
K∑

l=k+2

gl
i

⎧⎪⎨⎪⎩
[(

Q̂i−Qk−1
i

)
ŵi+

(
Qk+2

i −Q̂i

)
wk+2

i

]
−
[(

Qk
i −Qk−1

i

)
wk

i +
(
Qk+1

i −Qk
i

)
wk+1

i +
(
Qk+2

i −Qk+1
i

)
wk+2

i

]
⎫⎪⎬⎪⎭ .

The combination of wk
i and wk+1

i affects only the revenue from all types starting at k. By con-
struction, the conditional winning probability of the new type satisfies Q̂i = Qk

i = Qk+1
i , and

thus the difference simplifies to

Ri

(
Ĝi, Qi

)− Ri (Gi, Qi) = gk
i

(
Qk

i − Qk−1
i

) (
ŵi − wk

i

)
+ gk+1

i

(
Qk+1

i − Qk−1
i

) (
ŵi − wk

i

)
+

K∑
l=k+2

gl
i

{(
Q̂i − Qk−1

i

) (
ŵi − wk

i

)}
,

but by hypothesis, wk+1
i > wk

i , and hence ŵi − wk
i > 0, and thus each of the three terms are

positive, yielding the desired result. Finally, in the case that �k
i = �k+1

i , there are several optimal
solution for Qk

i and Qk+1
i , but since Qk

i = Qk+1
i is always guaranteed to be one of them, the

same argument goes through for the case of �k
i = �k+1

i . �

Proof of Lemma 3. (1) Suppose to the contrary. Then there exist �k
i such that{

�j

∣∣∣�k
i < �j < �k+1

i , j �= i
}

= ∅.

Observe next that if two adjacent virtual utilities belong to bidder i then the probability of receiving
the good has to be identical on both intervals, Qk

i = Qk+1
i by Lemma 2 and Corollary 1. But by

the same argument as Lemma 2, we may then join the mass points wk
i and wk+1

i and the expected
revenues for the auctioneer will strictly increase, a contradiction.

(2) Suppose to the contrary and thus �i = �j for all i, j . Then there exists an optimal auction
such that for some i and some k, Qk

i = Qk+1
i . We can now appeal to the same argument as in

(1) to conclude that the revenues of the auctioneers can be strictly increased by joining the mass
points wk

i and wk+1
i , which destroys the symmetry in the virtual utilities. �

Proof of Theorem 1. We first establish that there is always a monotone partition which achieves
strictly higher revenues than any other finite information structure. We then argue that a optimal
monotone partition exists.

(2) A necessary condition for an optimal information structure is that given the type proba-
bilities gk

i and the winning probabilities Qk
i , the auctioneer does not wish to introduce further
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randomization into the information structure. A local version of such a randomization is a mass
preserving mixture between wk

i and wk+1
i . If wk

i and wk+1
i are candidate types, then a local

randomization between these two types is given by the following modification:

wk
i (ε) �

(
gk

i − ε
)
wk

i + εwk+1
i

gk
i

(16)

and

wk+1
i (ε) �

(
gk+1

i − ε
)

wk+1
i + εwk

i

gk+1
i

, (17)

for some ε satisfying, 0 < ε�gk
i , g

k+1
i . We denote the revenue resulting from the modification as

a function of ε by Ri (ε| Gi, Qi) for given Gk
i and Qk

i . A necessary condition for the optimality
of the information structure is

R′
i (0| Gi, Qi) �0. (18)

The function Ri (ε| Gi, Qi) is linear in ε and the derivative R′
i ( ε| Gi, Qi) can be written as

R′
i ( ε| Gi, Qi) =

(
wk+1

i −wk
i

)

×
(
Qk

i −Qk−1
i

)
gk+1

i

(
1 − Gk−1

i

)
−
(
Qk+1

i −Qk
i

)
gk

i

(
1−Gk

i

)
gk

i g
k+1
i

�0.

(19)

By hypothesis,
(
wk+1

i − wk
i

)
> 0 and gk

i g
k+1
i > 0, and it follows that:

R′
i ( ε| Gi, Qi) �0 ⇔

(
Qk

i − Qk−1
i

)
(
Qk+1

i − Qk
i

)�
gk

i

(
1 − Gk

i

)
gk+1

i

(
1 − Gk−1

i

) . (20)

Next we argue that in fact the necessary condition for optimality has to be

R
′
i ( ε| Gi, Qi) < 0 ⇔

(
Qk

i − Qk−1
i

)
(
Qk+1

i − Qk
i

) <
gk

i

(
1 − Gk

i

)
gk+1

i

(
1 − Gk−1

i

) . (21)

The argument is by contradiction and thus suppose that R′
i (ε) = 0 over the entire range of ε.

An immediate implication is that the auctioneer would then be indifferent between facing types
wk

i and wk+1
i and all convex combinations represented by (16) and (17). But consider the virtual

utilities of these two types, which are given by

�k
i (ε) = wk

i (ε) −
(
wk+1

i (ε) − wk
i (ε)

) 1 − Gk
i

gk
i

(22)

and

�k+1
i (ε) = wk+1

i (ε) −
(
wk+2

i − wk+1
i (ε)

) 1 − Gk+1
i

gk+1
i

. (23)
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As ε increases wk
i (ε) approaches wk+1

i (ε) and in consequence, eventually �k+1
i (ε) < �k

i (ε). But
by Lemma 2, every information structure with non-monotone virtual utilities is strictly dominated
by one with monotone increasing virtual utilities, and hence we have the contradiction. It follows
that (21) is a necessary condition for optimality. We argue now that every information structure
which is not a monotone partition necessarily fails to satisfy condition (21). Suppose therefore
that at least one agent i has an information structure which is not a monotone partition. It follows
that there must be two adjacent expected valuations wk

i and wk+1
i , where we recall that

wk
i =

∫ 1
0 vi dFi

(
vi

∣∣sk
i

)∫ 1
0 dFi

(
vi

∣∣sk
i

) ,

and an x ∈ (0, 1) such that lower and upper segment of each conditional distribution has strictly
positive probability, or∫ x

0
dFi

(
vi

∣∣∣sk
i

)
,

∫ 1

x

dFi

(
vi

∣∣∣sk
i

)
,

∫ x

0
dFi

(
vi

∣∣∣sk+1
i

)
,

∫ 1

x

dFi

(
vi

∣∣∣sk+1
i

)
> 0.

It follows that∫ 1
x

vi dFi

(
vi

∣∣sk
i

)∫ 1
x

dFi

(
vi

∣∣sk
i

) >

∫ x

0 vi dFi

(
vi

∣∣∣sk+1
i

)
∫ x

0 dFi

(
vi

∣∣∣sk+1
i

) . (24)

We can represent the expected value wk
i and wk+1

i as a bundling of the lower and upper segment:

wk
i = wk

i g
k
i
+ wk

i g
k
i

gk
i
+ gk

i

, wk+1
i = wk+1

i gk+1
i

+ wk+1
i gk+1

i

gk+1
i

+ gk+1
i

,

with the obvious identification:

wk
i =

∫ x

0 vi dFi

(
vi

∣∣∣sk+1
i

)
∫ x

0 dFi

(
vi

∣∣∣sk+1
i

) , gk

i
=
∫ x

0
dFi

(
vi

∣∣∣sk+1
i

)
,

and similar for the other components.We can restate (24) as wk
i > wk+1

i even though by hypothesis
wk

i < wk+1
i . It is this contrast which allows us to come to the conclusion that the optimal

information structure must be a monotone partition. For if we were to consider a local modification
with the segments wk

i and wk+1
i , we would get necessary first-order conditions of the form

(
wk+1

i −wk
i

) (Qk
i −Qk−1

i

)
gk+1

i

(
1 − Gk−1

i

)
−
(
Qk+1

i −Qk
i

)
gk

i

(
1 − Gk

i

)
gk

i g
k+1
i

< 0 (25)

and in contrast a mixing with wk
i and wk+1

i leads to a first-order condition of the form

(
wk+1

i − wk
i

) (Qk
i − Qk−1

i

)
gk+1

i

(
1 − Gk−1

i

)
−
(
Qk+1

i − Qk
i

)
gk

i

(
1 − Gk

i

)
gk

i g
k+1
i

< 0, (26)

but obviously (25) and (26) establish the desired contradiction.
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(1) From the previous argument, it follows that if an optimal information structure exists, then
it must be a monotone partition. An element P k

i of a monotone partition Pi is an interval P k
i =

[zk−1
i , zk

i ) and a point zk
i is called a boundary point of Sk

i and Sk+1
i . We denote by zi the vector of

all boundary points between any two partition elements of bidder i. For every bidder the set of
feasible boundary points zi = {z1

i , . . . , z
K
i } is the K-dimensional cone defined by the inequalities

0�z1
i � · · · �zK

i �1. The space of feasible boundary points is compact. The expected valuation
wk

i is continuous in the location of the boundary points in the partition. Hence, the virtual utility �k
i

and, thus, the objective function of the auctioneer are continuous in the location of each boundary
point in the partition. By Weierstrass’ theorem an optimal partition is guaranteed to exist. �

Proof of Lemma 4. A different set of necessary conditions for an optimal information structure
is that the auctioneer does not wish to modify the type probabilities gk

i of agent i without changing
the aggregate winning probabilities of all the other agents. Given a candidate information structure

Gi and expected valuations
{
wk

i

}K
k=1 one such local change would result from setting

gk
i (ε) = gk

i + ε and gk+1
i (ε) = gk+1

i − ε,

for 0 < ε�gk+1
i . It is sufficient to consider a change in the expected value of wk

i through

wk
i (ε) = gk

i w
k
i + εwk+1

i

gk
i + ε

,

and keep wk+1
i unchanged. For this modification to maintain the winning probabilities of all

other agents, it has to be that the aggregate expected probability of winning of agent i remains
unchanged for all ε, or

gk
i (ε) Qk

i (ε) + gk+1
i (ε) Qk+1

i = gk
i Q

k
i + gk+1

i Qk+1
i ,

where we choose to maintain Qk+1
i (ε) = Qk+1

i for all ε. As in the earlier argument of Theorem
1, the marginal revenue with respect to changes in ε have to be less than or equal to zero:

R′
i ( ε| Gi, Qi) = gk

i

(
−gk

i

((
Qk+1

i − Qk
i

)
−
(
Qk

i − Qk−1
i

))
+
(
Qk+1

i − Qk−1
i

)
ε
)

×
(
wk+1

i − wk
i

) 1 − Gk−1
i(

gk
i + ε

)3 , (27)

and evaluated at ε = 0, we have

R′
i (0| Gi, Qi) = −

((
Qk+1

i − Qk
i

)
−
(
Qk

i − Qk−1
i

)) (
wk+1

i − wk
i

) 1 − Gk−1
i

gk
i

�0. (28)

Finally, (27) and (28) jointly imply that
(
Qk+1

i − Qk
i

)
>
(
Qk

i − Qk−1
i

)
for all k. �

Proof of Proposition 1. We construct a sequence of mechanisms with finite information struc-
tures to establish the desired limiting result. Our construction resembles the well-known result
that any (Riemann) integrable function is the limit of a sequence of step functions. The proof is
complicated by the fact that the mechanism along the sequence has to remain incentive compat-
ible. Fix the information structure G and the allocation (q, t). The approximation argument is
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established by analyzing the associated interim probabilities and transfers, Qi (wi) and Ti (wi),
respectively. To prove the proposition it is sufficient to show that there is a sequence of discrete
information structures

{
Gn

i (wi)
}∞
n=1 and associated interim incentive and individually rational

allocations
{
Qn

i (wi) , T n
i (wi)

}∞
n=1 for all i such that

lim
n→∞

[∫ 1

0
T n

i (wi) dGn
i (wi)

]
=
∫ 1

0
Ti (wi) dGi (wi) , ∀i (29)

and

lim
n→∞

[∫ 1

0
Qn

i (wi) dGn
i (wi)

]
�
∫ 1

0
Qi (wi) dGi (wi) , ∀i. (30)

Condition (29) guarantees that the expected revenues of information structure Gi (wi) can be
approximated arbitrarily close by a discrete information structure. Condition (30) guarantees that
the expected probability by which agent i receives the object is not larger than under the original
mechanism and hence that the incentives for the remaining agents in terms of providing the
object are not adversely affected by the discrete information structure and modified allocation
rule. Provided conditions (29) and (30) can be satisfied, it suffices to give the argument for
a particular agent i with independent distributions Fi (vi) and hence independent information
structures Gi (wi).

By the hypothesis of incentive compatibility, Qi (wi) and Ti (wi) are non-decreasing. By the
interim participation constraints, Qi (wi) , Ti (wi) ∈ [0, 1]. In consequence Qi (wi) and Ti (wi)

can have at most a countable number of discontinuities. It also follows from the interim incentive
constraints that Qi (wi) and Ti (wi) must have discontinuities on the same set of points. Define
the characteristic function of a set E as

IE (wi) �
{

1 if wi ∈ E,

0 if wi /∈ E.

Based on the original allocation {Qi (wi) , Ti (wi)} and for every n = 1, 2, 3, . . . ,∞ and k =
1, 2, . . . , 2n, define

E
k,n
i �

{
wi

∣∣∣∣k − 1

2n
�Ti (wi) <

k

2n

}
. (31)

By the monotonicity of Ti (wi), the set E
k,n
i is an interval for every k and n. For every n, the sets

E
k,n
i generate a monotone partition, denoted by En:

En�
{
E

k,n
i

}2n

k=1
.

We identify the associated boundary points of the partition En in the domain of the valuations,
wi ∈ [0, 1], by w

k,n
i , such that

w
k−1,n
i �wi < w

k,n
i ⇔ k − 1

2n
�Ti (wi) <

k

2n
. (32)

For every interval E
k,n
i , we define the conditional expected valuations w

k,n
i by

w
k,n
i �

∫
E

k,n
i

wi dGi (wi)∫
E

k,n
i

dGi (wi)
. (33)
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Based on the partition En, we define an associated discrete distribution:

Gn
i (wi) �Gi

(
w

k−1,n
i

)
if w

k−1,n
i �wi < w

k,n
i . (34)

We define a simple transfer function T n
i (wi), based on the partition En, by

T n
i (wi) �Ti

(
w

k−1,n
i

)
if w

k−1,n
i �wi < w

k,n
i

and a simple probability function Qn
i (wi) by

Qn
i (wi) �Qi

(
w

k−1,n
i

)
if w

k−1,n
i �wi < w

k,n
i .

The simple functions, Qn
i (wi) and T n

i (wi), converge uniformly to Qi (wi) and Ti (wi), respec-
tively (see [17, Theorem 11.20]).

By construction of T n
i (wi) and Qn

i (wi) it follows that∫
T n

i (wi) dGi (wi) �
∫

Ti (wi) dGi (wi) ,

as well as∫
Qn

i (wi) dGi (wi) �
∫

Qi (wi) dGi (wi) ,

for all n. Moreover, by the dominated convergence theorem (see [1, Theorem1.6.9]) it then follows
that

lim
n→∞

∫
T n

i (wi) dGi (wi) =
∫

Ti (wi) dGi (wi) ,

as well as

lim
n→∞

∫
Qn

i (wi) dGi (wi) =
∫

Qi (wi) dGi (wi) .

From the construction of
{
Qn

i (wi) , T n
i (wi)

}
and Gn

i (wi) we have that for every n,∫
T n

i (wi) dGi (wi) =
∫

T n
i (wi) dGn

i (wi) ,

as well as∫
Qn

i (wi) dGi (wi) =
∫

Qn
i (wi) dGn

i (wi) .

The proof is complete if we show that the allocation rule
{
Qn

i (wi) , T n
i (wi)

}
is interim incentive

compatible for the discrete information structure Gn
i (wi) and the set of expected valuations

w
k,n
i ∈

{
w

1,n
i , . . . , w

2n,n
i

}
generated by (33). While

{
Qn

i (wi) , T n
i (wi)

}
will not generally be

interim incentive compatible, a straightforward modification, denoted by
{
Q̂n

i (wi) , T̂ n
i (wi)

}
will

be. Moreover, the allocation policies will be related as follows:

Qn
i (wi) = Q̂n

i (wi) , T n
i (wi) � T̂ n

i (wi) , (35)
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thus only strengthening our claim. The construction proceeds inductively. For a given n, start with
k = 1, 2. By construction, either one of the following four cases may occur

Qn
i

(
w

2,n
i

)
= Qi

(
w

2,n
i

)
Qn

i

(
w

2,n
i

)
< Qi

(
w

2,n
i

)
Qn

i

(
w

1,n
i

)
= Qi

(
w

1,n
i

)
(a) (b)

Qn
i

(
w

1,n
i

)
< Qi

(
w

1,n
i

)
(c) (d)

(36)

The local incentive compatibility conditions can be written as

w
1,n
i

[
Qn

i

(
w

2,n
i

)
− Qn

i

(
w

1,n
i

)]
�
[
T n

i

(
w

2,n
i

)
− T n

i

(
w

1,n
i

)]
(37)

and

w
2,n
i

[
Qn

i

(
w

2,n
i

)
− Qn

i

(
w

1,n
i

)]
�
[
T n

i

(
w

2,n
i

)
− T n

i

(
w

1,n
i

)]
. (38)

We now discuss the cases (a)–(d) in (36) sequentially. In case (a), the incentive constraints (37) and
(38) are satisfied by the hypothesis of {Qi (wi) , Ti (wi)} being incentive compatible. In case (b),
it follows that incentive compatibility is satisfied for w

1,n
i and w

2,n
i as it is satisfied by construction

for w
1,n
i and w

1,n
i �w

2,n
i . In case (c), the incentive condition for w

1,n
i , or inequality (37) might

be violated as, by hypothesis, (37) is only valid for w
0,n
i �w

1,n
i . However, as w

1,n
i < w

2,n
i ,

we are guaranteed to find T̂ n
i

(
w

2,n
i

)
> T n

i

(
w

2,n
i

)
which would restore the inequality (37) by

means of an equality and leave (38) as a strict inequality. Consider finally case (d). Again, the
incentive compatibility condition for w

2,n
i has to be satisfied as by hypothesis it is satisfied for

w
1,n
i < w

2,n
i . It thus follows that only (37) can be violated and that it can again be restored by

raising T n
i

(
w

2,n
i

)
to T̂ n

i

(
w

2,n
i

)
so that (37) is restored as an equality. Finally if in either (c) or

(d), we raised T n
i

(
w

2,n
i

)
to T̂ n

i

(
w

2,n
i

)
, then raise all transfers T n

i

(
w

k,n
i

)
to T̂ n

i

(
w

k,n
i

)
for k > 2

by the same amount, namely T̂ n
i

(
w

2,n
i

)
− T n

i

(
w

2,n
i

)
. Observe that the participation constraint

remains to hold for all valuations w
k,n
i even under the higher payments as the lowest type is

indifferent and is by construction guaranteed to obtain a non-negative surplus. Furthermore, the
pairwise incentive compatibility conditions for all types k and k + 1 for k�2 remains identical
after the uniform raise of the transfers. We can now repeat the modification inductively for all
local incentive conditions k and k + 1, starting with k = 2 and k + 1 = 3. As the discrete
information structure has a finite number n of elements, the induction is well-defined. Finally by
the single crossing property of the payoff, to verify global incentive compatibility, it is sufficient
to verify the local (pairwise adjacent) incentive constraints. Thus we have shown the existence of
an incentive compatible mechanism

{
Q̂n

i (wi) , T̂ n
i (wi)

}
for every discrete information structure

Gn
i (wi), which satisfies the properties (35) and this completes the proof. �

Proof of Theorem 2. We first show that an optimal information structure exists in the class of all
finite information structures. We then extend the argument to all discrete and finally to all Borel
measurable information structures. The proof is by contradiction and relies on the convexity of
the conditional winning probabilities.
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By Theorem 1, for every finite K , the optimal information structure is a monotone partition
for every agent i. We recall from Theorem 1 that an element P k

i of a monotone partition Pi is an
interval P k

i = [zk−1
i , zk

i ) and a point zk
i is a boundary point of P k

i and P k+1
i . We denote by

zK
i =

(
z

0,K
i , z

1,K
i , . . . , z

K,K
i

)
a vector of boundary points of bidder i with k ∈ {0, 1, . . . , K}. Without loss of generality, we may

take the first element in the partition
[
z

0,K
i , z

1,K
i

]
=
[
0, z

1,K
i

]
to be the partition element with

non-positive virtual utility, or �1,K
i �0. Conversely, all remaining elements have strictly positive

virtual utility �k,K
i > 0 for all k > 1. If it happens that all elements in the partition have strictly

positive virtual utility, then we can simply set z
1,K
i = 0.

For every finite K , we can take zK
i to be an element of the infinite countable product space

[0, 1]∞, with the property that zk
i = 1 for all k > K . The space [0, 1]∞ is compact in the product

topology by Tychonoff’s theorem (see [13, Theorem 37.3]). The infinite countable product space
is metrizable in the product topology (see [13, Theorem 20.5]). The Bolzano–Weierstrass property
then states that in every compact metric space every sequence has a convergent subsequence (see
[13, Theorem 28.2]).

Suppose now by way of contradiction that as K → ∞, there is at least one agent i who is
assigned an ever increasing number of signals, all (but one) of which have a strictly positive
conditional expected probability. Consider the limiting information structure as K → ∞ for
this agent i. By the Bolzano–Weierstrass property this limit is well-defined (for a subsequence if
necessary). For notational convenience we denote all the limiting values with an upper bar and
the limiting partition is given by zi = (

z0
i , z

1
i , . . .

)
and correspondingly the limiting conditional

probabilities are given by Qi =
(
Q

1
i , Q

2
i , . . .

)
. The limiting partition preserves the monotonicity

and the limiting conditional winning probabilities will satisfy weak convexity.
It will be sufficient to look at the limit of the conditional probability of the type of agent i with

the lowest strictly positive virtual utility for every finite K , or

lim
K→∞ Q

2,K
i = Q

2
i .

If Q
1
i > 0, then we have an immediate contradiction to the hypothesis of an infinite information

structure. As the first-order conditions for every finite K require that the conditional winning
probabilities have to be strictly convex (see Lemma 4), the limiting values have to be weakly

convex as well. But as Q
k,K
i ∈ [0, 1] and hence Q

k

i ∈ [0, 1] as well, Q
2
i > 0 implies that only a

finite number, and in fact at most 1/Q
2
i signals can have a positive probability of winning in the

limiting information structure.

The case of Q
2
i = 0 can be discarded by a similar but slightly more subtle argument. Suppose

then that Q
2
i = 0. This implies that there must be at least one other agent, say j , who has a positive

probability of winning for all his true types in the limiting distribution, or

lim
K→∞ Pr

(
0�vj �z

1,K
j

)
= 0.

For else Q
2,K
i could not converge to Q

2
i = 0 even though by construction �2,K

i > 0 for all K . Thus

for every valuation vj > 0, it must be that as K becomes large, eventually vj ∈
[
z
k−1,K
j , z

k,K
j

]
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with k > 1 and hence

lim
K→∞ z

1,K
j = z1

j = 0.

We can now show that limiting probability of the second element in the partition of agent j must
be strictly positive and bounded away from zero, or

Pr
(
z1
j �vj �z2

j

)
=
∫ z2

j

z1
j

fj

(
vj

)
dvj > 0.

The proof is by contradiction and we suppose that

lim
K→∞ Pr

(
z

1,K
j �vj �z

2,K
j

)
= 0. (39)

By construction, �2,K
j > 0 for all K. The virtual utility �2,K

j is given by

�2,K
j = w

2,K
j −

(
w

3,K
j − w

2,K
j

) 1 − G
2,K
j

g
2,K
j

.

The virtual utility �2,K
j is clearly bounded above by

�2,K
j = w

2,K
j −

(
w

3,K
j − w

2,K
j

) 1 − G
2,K
j

g
2,K
j

< w
2,K
j −

(
z

3,K
j − w

2,K
j

) 1 − G
2,K
j

g
2,K
j

, (40)

as z
2,K
j < w

3,K
j . By way of contradiction, we can now ask what would happen to the value of

this upper bound if z
2,K
j were to converge to 0 as K grows large:

lim
z

2,K
j ↓z

1,K
j

{
w

2,K
j −

(
z

2,K
j − w

2,K
j

) 1 − G
2,K
j

g
2,K
j

}
, (41)

If z
2,K
j → z

1,K
j (and by construction z

1,K
j → 0), then we have

(
z

2,K
j − w

2,K
j

)
→ 0 as well as

g
2,K
j → 0. We therefore have to use l’Hopital’s rule to establish the limit behavior of (41). We

can write

−
(
z

2,K
j − w

2,K
j

) 1

g
2,K
j

= −
z

2,K
j

∫ z
2,K
j

z
1,K
j

fj

(
vj

)
dvj − ∫ z

2,K
j

z
1,K
j

vjfj

(
vj

)
dvj(∫ z

2,K
j

z
1,K
j

fj

(
vj

)
dvj

)2

and after differentiating denominator and numerator separately with respect to z
2,K
j we get

−
∫ z

2,K
j

z
1,K
j

fj

(
vj

)
dvj + z

2,K
j fj

(
z

2,K
j

)
− z

2,K
j fj

(
z

2,K
j

)
2

(∫ z
2,K
j

z
1,K
j

fj

(
vj

)
dvj

)
fj

(
z

2,K
j

) ,
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which after elimination of terms is equal to

− 1

2fj

(
z

2,K
j

) .

As z
2,K
j → z

1,K
j and also z

1,K
j → 0, we find that

lim
z

2,K
j ↓z

1,K
j

{
w

2,K
j −

(
z

2,K
j − w

2,K
j

) 1 − G
2,K
j

g
2,K
j

}
= − 1

2fj (0)
< 0.

By assumption, the density fj

(
vj

)
is positive everywhere and hence an upper bound for the

limiting virtual utility �2
j would become strictly negative if the hypothesis (39) were to hold.

This delivers the contradiction as by construction �2
j �0. This shows that for agent j the limiting

probability of first partition element with positive virtual utility must be strictly positive as z2
j > 0.

We denote the limiting probability by

g2
j = Pr

(
z1
j �vj �z2

j

)
= Pr

(
0�vj �z2

j

)
> 0.

The limiting conditional winning probability of agent j with his second partition element is now

Q
2
j =

∏
l �=j

Pr
(
�l = �1

l

)
> 0.

It follows that in the limiting information structure, all types k > 1 of all agents except j , and in
particular agent i have positive conditional probability of winning of at least:

Q
k

l �g2
j

∏
l �=j

Pr
(
�l = �1

j

)
for k > 1

by Corollary 1. But now we can again appeal to the convexity of the conditional winning proba-
bilities to conclude that at most a finite number, in fact no more than

1

g2
j

∏
l �=j Pr

(
�l = �1

l

)
of types have a positive probability of winning, which contradicts the hypothesis of an information
structure with unboundedly many winning types. We have now established that the limiting
information structure has a finite number of elements. In the product topology, a function is
continuous if it is continuous component by component. As we have only a finite number of
components, by the convergence property of the sequence, it follows immediately that the revenue
at the limit is equal to limit of the revenues. We can then conclude that the supremum of expected
revenues is reached at a finite K , and that the supremum can be therefore obtained as the maximal
solution of a finite information structure.

Consider next the class of all discrete information structures, finite and infinite. The argument is
again by contradiction. Suppose, thus, that no finite information structure obtains the supremum of
revenues. By Proposition 1 there must exist a strictly increasing sequence of Kn, with Kn < Kn+1,
such that RKn < RKn+1 and such that limn→∞ RKn attains the supremum. But by the first part
of this theorem, there exists K̂ < ∞, such that for all K > K̂ , RK < RK̂ . It then follows that
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the supremum is reached at a finite K , and that the supremum can be therefore obtained as the
maximal solution of a finite information structure. Finally, the argument for all Borel measurable
information structures is identical to the previous one, simply by extending the argument from all
discrete to all measurable information structures. �
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