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Partnerships between economic agents commonly endure many periods. The
commitment of the parmmers is documented in a contract, which may exist only
implicitly or may be written explicitly. Contracts typically don't cover the entire
life-span of the partnership. Insurance policies are typically renewed every year,
managerial contracts often extend for several years and only tenure appointments
involve the (remaining) professional life span. It is a question of both theoretical
interest and practical importance to determine the contractual time horizon and to
analyze how the time horizon influences the incentives provided by the contract.

The purpose of this paper is to develop an explicit model in which the optimal
dynamic design of the contractual regime of parterships can be analyzed. The
essential advantage of a long-term contract over a short term contract resides in
its ability to commit to certain acts in the future. This paper will argue that the
very element which constitutes the advantage of a long-term contract can turn into
a liability. In the presence of uncertainty, the contracting partners improve over
time their knowledge about the value of the partnership. ‘As they learn more about
the nature of their match, they may decide to continue or else one of the partners,
possibly both, may want to dissolve the partnership and seek for a better match.
Thus a long-term contract allows for efficient incentives, between the current
contracting partmers, but it also prevents the individuals from searching for more
favorable conditions elsewhere,

The paper is written in the context of a simple two period moral hazard model
where one partner is the risk-neutral principal and the other is the risk-averse
agent. The model has two features which sets it apart from the standard static or
repeated moral hazard model. First, the early information the principal receives
about the agent’s performance is noisier than the later arriving information.
Second, principal and agent are initially uncertain about the value of their
partnership, More specificaily, they don’t kmow how the technology of the agent
performs in the context of the task assigned by the principal. As they receive
information about the agent’s performance they will become more informed. In

i T would like to thank George Mailath, Andrew Postlewaite and Rafael Rob for their
criticism and helpful suggestions.
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The intertemporal contract policy will in fact display a strong relation between
short-term contracts and strong incentive based reward schemes. And conversely
the period-by-period incentives will be relatively weaker in long-term contracts.

The study of agency relationships has, for the most part, focused on single
period arrangements. 2 Recently, however, a number of analyses have investigated
the implicatons of extending the model to multi-period settings. Holmstrdm
(1982) argued very early for dynmamic considerations regarding incentive
problems. In the case of managerial incentive problems he tied the incentive issue
to the learning process about the managerial ability. A more recent treatment of
this issue appears in Fudenberg, Holmstrdm, and Milgrom (1990). The main
theme of their work is the question: under which sufficient conditions can short-
term contracts constitute an efficient incentive scheme and successfully
implement a long-term relationship. Their central conditions are (1} that the agent
can access a bank on equal terms with the principal and (2) that recontracting
takes place with common knowledge about technology and preferences. It is
precisely condition (2) which is not met by our model. The principal will not
know the distribution function of the final outcome once the agent has chosen his
effort level, since the current signal will provide only partial information.

Malcomson and Spinnewyn (1988) show that if the short-term contract can
punish the agent sufficiently, then long-term contracts do not need to improve on
short-term contracts. The importance of long-term contracts, finally, for the
consumption smoothing of the agent when the agent’s access to borrowing is
constrained has been emphasized by Rey and Salanie (1987).

The next section of the paper develops the structure of the model. In the third
section we study in some detail the properties of the short-term contract in a noisy
environment and analyze how the optimal incentive system and the induced
actions change as the environment gradually becomes less informative. The next
section presents the main results on the optimal choice between short-term and
long-term contracts. The last section discusses some extensions and concludes.

The Model

The model presented in the first subsection is essentially a static principal-agent
model repeated over time. In the second subsection we introduce the noisy
learning environment.

2 See Holmstrim (1579), Shavell (1979), and Grossman/Hart (1983).



122 Dirk Bergemann

Principal and Agent

The principal owns an investment project with a finite lifespan. For simplicity of
exposition it is assumed that there are two periods, ¢ = 1,2. The realization of the
project requires the assistance of an agent. In each period ¢ for which the agent is
under contract he chooses an action ¢, (g €]=E /R The principal cannot

directly observe effort e, and hence the agent’s action cannot be used to
determine the agent’s payoff. The principal can, however, observe the final
outcome x, of the action e, The outcome x, is, without loss of generality, the
payoff of the principal gross of what is paid to the agent. The final outcomes x,
and x, are only realized at the end of the investment project, which is #=2. The
index ¢ of the outcome x, traces the outcome to the gemerating effort e. In
addition, the principal can observe in each period f and without delay a
contemporaneous signal y, which is stochasticaily related to the final outcome x,.
We assume for simplicity that both, contemporaneous signal y, and final outcome
x,, can take only the following realizations:

X, e{xL,xH} and y, E{ylvyh‘}'

The outcome x, is modeled as a random variable conditional to the agent’s effort
with a probability distribution, common knowledge to both principal and agent:

PL(er) = p(er) = Pr():, =xLIe:)’
PH(EJ) = I_P(er) = Pr(x, =JCH|8,),

The contemporaneous signal y, is a noisy garbling conditional on x;, to the details
of which will be dealt with in the next subsection. In the tradition of the first-
order-approach to moral hazard models, it is assumed that the probability of the
low outcome x, is decreasing, convex and twice differentiable in the effort e:3

pP<o, p (>0

We call p(-) simply the technology of the agent. The technology ple,) is time
independent and uncorrelated over time. Throughout the exposition we shall use
{p(e).1-ple)} and {pyle)pule)} interchangeably. Since p(e,) completely
characterizes the probability distribution over x;, we shall refer to p(e,), whenever
we compare two technologies or discuss properties of the technology. Since many
long-term projects exhibit some form of time dependence, we note that all
arguments remain valid for a general valuation function fx;.x;) of the outcomes x,

3 The first-order approach has been developed by Grossman and Hart (1983) and Rogerson
(1985).
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and x;, as long as f{) is increasing and concave.# Moreover all arguments
presented in the paper extend paturally to the situation when ple,,,) is only
conditionally independent of p(e,).

We say that technology b dominates technology a, if the probability of a low
outcome x; is smaller under technology & than under technology a for all effort
levels e: pye) < p,le). If the difference between technology a and b increases
convexly as a function of the effort e, then we call b convex dominant over a.

Definition 1. (Convex dominant}
The technology b convexly dominates rechnology a if

@ Pa(e)=p,fe)
@) pile)s pae),
(i)  pyle)spile) forallecE.

We shall denote the relation of convex dominance by >, so that &>, a2 means
that b convexly dominates a. The ordering >, reflects the intuition that existing -
differences in abilities or technologies become more apparent as the intensity of
effort increases. Condition (i) merely states that if the lowest possible effort level
is chosen, then the probability distribution over outcomes is independent of the
technology, One important consequence of convex dominance is that the
difference in expected profits between two technologies a,b which can be ranked
by -, with b >, &, is increasing and convex in e:

(Pb(e) —Pa (‘-’))xl. + (Pa(e) - Pb(e))’ﬁ-

The agent is risk averse and effort is costly for him:
U(e)-Cle).

The agent's utility function is additively separable over time. The utility function
U() is twice differentiable, strictly increasing and strictly concave. The effort
function C(-) is also twice differentiable, strictly increasing and strictly convex.
The principal is risk neutral. Both, agent and principal, maximize expected utility
over the two periods and there is no discounting between the periods.

There are many competing agents and their reservation utlity U is determined
through the market. The principal can offer choose between different contractual
regimes ¥. The regime ye{s,{} can be a sequence of short-term contracts 5 with

4 Suppose the successful completion of the inital project phase x; is a necessary prerequisite
to accomplish anything in the final phasc x; at any level, then we would have
Sapxg) = fxnxn) < flxwx) < fxgan).
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possibly different agents or a single long-term contract /. We index Y as ¥, and
identify the contemporaneous elements of the contractual agreement. The contract
can be conditioned on y, and x, and is legally enforceable.

Learning and Uncertainty

Each agent on the market is endowed with some idiosyncratic qualification,
which could be beneficial for his performance. Principal and agent are, however,
initially uncertain whether the agent's idiosyncratic ability can be made
productive for the success of the specific investment project for which the agent
is contracted. If the agent’s qualification matches the project’s specificity than we
say that he operates under technology b, if not, then he operates under technology
a, where b >, a. The common prior beliefs of agent and principal are given by:

Pr(6=a) =0
Pr(®=5) =p=1-a.

The prior beliefs are identical for all agents and, in consequence, the principal is
initially indifferent among the competing agents. The expected probability of an
outcome x, given a belief o is simply:

Pr(x, =JCL|e,,0.'.) = Pa(“":) = ap,,(e,)+(1~0t)p,,(e,),
Pr(x, =xy e,,a) = l—p‘,(e,) = a(l— pa(e,))+(1 —a)(l -pb(e,))

It is easy to show that for more optimistic beliefs o', with o’ < ¢, the technology
Po-(") convexly dominates the technology pq ().

The principal and his agent receive new information about the true technology
only through the signal y, and the outcome x,. Before we describe how the players
learn about the true technology we first have to clarify how the noisy signal y,
which arrives earlier conveys information about the final outcome x, which arrives
later. From an informational viewpoint the question is: how reliable is the signal
Y7 Suppose the final outcome will be x;, what is the probability that we will be
correctly informed by the earlier corresponding signal y,? We define ¢ & [0.1] as
the conditional probability that the outcome x, is indicated earlier by the
associated signal y,,

q= Pf()’leL)= Pr(yiflxh')‘

The parameter g indicates the noisiness of the first period signal. For g =1, the
correlation between outcome and signal is perfect and hence the signal is as
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informative as the outcome. For g=4, the comelation between outcome and
signal is zero and consequently the signal contains no information.5 The Markov
matrix 0 = [qi-] induced through the parameter of noise g,

|19 1-9
Q_[I—q q ]

garbles the more precise information which the principal will only receive in the
second period into a noisy signal which is received in the first period. If p(e;) and
i-p(e;) are the probabilities for x; and x; determined by the effort level e, then
the probabilities g{e;} and 1-g(e;) for the first period signals, y, and yg,
respectively are given by:

(e) 1-ate)=Gte) 1-re){s_, 1~}

I-q ¢
and we have:
aules)=ale)=1+2ap(e;)- ples)- 4
qau(e)=1-qle;)= ple;)+ - 2p(e;)
For all practical purposes it will be enough to restrict g to g €[4,1], since the
absolute correlation between signal and outcome is the same under g=4+z and
g=%-z, where ze [0, ﬂ We note that the signal y, has no independent
informational content beyond garbling x, and loses therefore all value as soon as
xz, becomes observable, With this understanding we shall refer to signal y; simply
as the signal y, since y, appears by definition in the same period as the outcome
x; and is therefore informationally redundant.
We complete the noisy environment by describing what principal and agent
can learn about the later cutcome x, and the true technology © of the agent by
choosing the first period effort level e; and observing the signal y;. Given the

noise g and the effort level ¢,, the conditional probabilities of the final outcome x;
are given by:

@1

Pe(x)|y.e} fori=LH, j=LH, Ve

5  ‘The reader may be cautioned that the informativeness of a signal is not necessary cqual to
the value of the signal. While the principal, if given the choice between receiving y; and x;
in the same period would aiways prefer x; and thus attach a higher value to x;. In the
sequential framework hees the incremental value of y; in the first petiod may however be
higher for the principal than the incremental value of receiving x; in the second period.
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Similarly the posterior probabilities of the agent’s technology are conditional
probabilities on the signal y; and the effort Jevel ¢;:

()‘.(y,-,e): Pr(a yi,e) fari = L, H. Ve'
B(y.€)=Pribly.e) fori=LH, Ve.

Since the action choice of the agent will influence posterior probabilities on the
agent’s technology and therefore the future terms of his contract or his dismissal,
the intertemporal effort profile will depend on the interaction between current and
future incentives and the optimal learning policy.

At the end of this section we should mention that ali the results generalize to
T>2, but no additional insights seem to arise for a finite number of periods.
Similarly all results extend to the case of a risk-averse principal, as long as she is
less risk-averse than the agent.

2.2)

The Optimal Short-ferm Contract

The aim of this section is twofold. First, it presents some results of independent
interest on the optimal contract under noise. Second, it prepares us for the
analysis of the optimal choice among short-term and long-term contracts by
establishing efficiency and comparative statics for the case of the short-term
contract. For that purpose we recall some standard result for the reader when
g =1 in subsection 3.1. The noisy contracting is then studied in subsection 3.2.

The Contract forg = 1

The principal’s problem can be described as follows. Let A be the set of pairs,
a ={s5,¢), of incentive schemes s and effort levels ¢ such that, under s, the agent
will be willing to work for the principal and will find it optimal to choose ¢. We
call a the set of implementable allocations. The principal then chooses a*€ A so
as to maximize:

%PL(G) (x = s )+ pule) (xy — s} G.D
subject to the individual rationality constraint,
(R) pr{e)U(s)+ pile)U(su)-Cle) 2T, G2
and the incentive compatibility constraint,
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IC) ee argnzlax P (s )+ pu(e)U(sy ) - Cle) (3.3)

We omit in this section the time index as we are looking at a single effort choice.
Moreover as ¢ = 1, there is no need to distinguish between the signal y; and the
outcome ;. The payment 5, is contingent on the outcome x;. We establish next the
first order conditions for the optimal contract. In a first step we replace the
incentive compatibility constraint with the local first order condition. The implied
relaxation of the constraint set is justified under the monotone likelihood ratio
condition and the convexity of the distribution function, conditions which are
satisfied by the assumptions of our model. Differentiating with respect to e we
obtain:

pi(e)[U(sL)- U(sy )]- C'le)=0. (3.4)

Since C’(e) increases and |pj(e) decreases in e, equation (3.4) implies that a

high effort level e can only be sustained through a correspondingly high
difference in the contingent payments s; and sy We assign the Lagrange
multiplier A to the individual rationality constraint (3.2) and the multiplier 1 to
(3.4). The first order conditions for the optimal contract are derived with respect
to the contractual payments and the effort level of the agent:

(s1) —pule)+ipy (e)U’(sy )+ upr(elU (s.)}=0,
and
(sa) —pule)+ 7\1’;{ (YU ()~ mpL{e)U (s }=0.

The initial order condition with respect to the agent’s effort level is, after using
(3.4),

(@) PiONe, ~5) 6w = s )]+ p{pEENU () -UEsa))- (N} =0
Some first observations can be made at this point. Given a certain reservation
utility U and a desired implemented effort level ¢, the corresponding utilities and
implicitly the payments are given by: _

= 1- p.())C(e)
U(s,)=U +Cle)+ ; , (3.5)
( L) ( ) PL( ‘)

and

U(sH)=fI-+C(¢)-ﬂ‘ST)(C§El. (3.6)
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We define AU =U(sy)-U(s,), where AU indicates how much the agent has
to be exposed to risk in order to have the proper work incentives. The difference
between U(sy ) and U(s; ) is strictly positive and is given by:

C'(e)

AU =Ulsy )=Uls )=- >0 37

( H ) ( L) P;. ( e) ( )

The utilities awarded to the agent under (3.5) and (3.6) reflect in their

decomposition the cost of setting incentives. In any event the agent is

compensated for his reservation utility level U and the cost he incurred for

undertaking effort e, which is C{e). We define s(¢) as the pure compensation

payment which renumerates the agent at the level of his reservation value and his
expended effort:

U(s()) =T+ Cle), (3.8)
where s(e) is increasing and convex in ¢, The partial alignment of the agent’s
objectivg_ with the principal’s is governed by payments and induced utilities
beyond U +C(e). Let us give

Definition 2. The contingent utility I(s;) to be received in state { is given by:
I(s)=U(s,)~U~-Cle), i=LH. (3.9
The contingent utility is designed to give the agent the proper incentives at the
margin, with
I- ' :
1(sL)=(—”—L~,(-Q)C—@<o, and 1(s,)=-2LCE 0 310
pLe) pile)
For a marginal increase in e the agent has to be rewarded in the magnitude of the
marginal costs C'(e). Since the payment is contingent on x; and since
I(sg) > 0> I(s;) the marginal shift in probability from x, to x, affected by an
increase in e and indicated by pj](e) <0, determines how much of the necessary
compensation can be realized through the marginal change in probabilities. For
given marginal costs C’(e), the contingent utility I(s;) can be smaller the larger
the marginal change p,:(e)| in the probability. Finally, in order to sustain the
incentives, the contingent utility has to be higher the smaller the probability is that
the associated event occurs. We notice that

AU =U(sy)-Uls )= I{sy )= I{s.)= A1,
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where the expected value of the contingent utilities is given by
p(e)i(s. }+{1- p(e))i(sy)=0. (3.11)

In consequence, the participation comstraint is always met exactly and for
completeness we give the expressions for the Lagrange multipliers as:
r=2ile) | Pule)
U'(sy) U'(sw)

and

Ll=1:nr.(~‘!)mqje_)( 1 1 J

pi(e) V() Ulow)

from which we can immediately infer that A >0 as well as | > 0. The stage is
now set to analyze the optimal contract in the noisy environment.

The Nolsy Single Period Confract

The tansition from the standard model to the noise model requires some
modifications. First, the set of implementable allocations depends on the level of
noise g and is denoted by A(g). Second, the probability of the occurrence of
signal y, no longer coincides with the probability of the outcome x;. In
consequence, the noisy contract in which the payment 5; is induced by the signal
y; has different properties from the noiseless contract discussed in the previous
section. We derived the noisy probabilities g{e) in (2.1). The principal’s problem
is given by:

":fixPL (el — g, (e, + py(e)xy — apledsy, (3.12)
subject to the individual rationality constraint,
R) gq,()U(s, )+ gu(e)(sx )~ Cle)2T, (3.13)

and the incentive compatibility constraint,
(IC) ee ar%qu(eW(sL)+ au(eW(sy)-Cle) (3.14)
e
We establish the first order conditions for the optimal contract as before. In a first

step we will write the incentive compatibility constraints by local first order
conditions. Differentiating with respect to e we obtain:
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(2qp1(e) - PLENU(s2) - Ulsw)]-C'le)=0. (3.15)

We notice immediately that for ¢ = 0.5 the optimal contract cannot exert any
effort at all. Since the probability of any signal y; occurring is independent of the
effort level chosen, all information is completely diluted and pure noise. As the
precision increases with g, the contingent utility difference necessary to sustain a
given effort level e decreases. We assign the Lagrange multiplier A to the
individual rationality constraint (3.13) and the muitiplier p to (3.15). The first
order conditions for the optimal contract are derived first with respect to the
contractual payments and then with respect to the effort level by the agent.

() —dqule)+hay(e)U"(se)+nar(e)U (s.) =0,
and
(SH ) ~ g (€)+ Aqy (€U (s4) - nay (€U’ (sq)=0.
and the first order condition with respect to the agent's effort level

(€) pL(eXx, —xy)+arlesn - 5 )+ H{Pf(e)[u(sr.)" Ulsw )] - C”(e)}: 0.

Given a certain reservation utility U and a desired implemented effort level e, the
corresponding utilities and implicitly the payments are now given by:

U(sL)=E+C(e)+M, (3.16)
QL(")
and
Ulsy)=T +C(e)—%@. G.17)

We first examine in proposition 1-3 how the set of utilities, and hence the
contractual payments of implementable allocations, behaves as a function of the
effort level e to be implemented. Proposition 4 analyses the cost of the contract
and proposition 5 determines the optimal implementable allocation.

Proposition 1. If the effort level e 10 be implemented increases then:
{0 (s, ){de <0,
(i) 3U(sy){de>0.

Proof. By differentiating we obtain,
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3U(s,) _ (PL{e)C"(e)- piEC (@)~ a)epe(e)a—2a)- pule)+a] o

de (2471(e)- pi(e)) '
and symmetrically we have
W (sy) _(PL()C ()~ pL ()C" () - af2g— 1~ 4p.(e)a)+ P ()] o
% (2ap1(e)- P )’

and since for all p,(e)e(0,1) and for all ¢ € (0.5,1)
[(1-9)(4p. (e} - 29) - pre)+g]> Oas well as
[(1 -q)2q-1- 4pL(e)q)+ pL(e)]> 0 hold, the resulis follow.

One would have expected that the utility in the state H, induced through sy
would be required to grow convexly in e so as to offset the convexly increasing
costs of effort. Since the probability of a good signal, g;(e) is also increasing in e,
the curvature of U(s),) as a function of the implemented effort level e depends on
the exact interplay of p(e) and C(e). Since the agent is only concerned with the
expected value of U(sy), a greater chance of obtaining U(sy) also improves his
incentives towards a greater provision of effort. The more interesting issue is the
change in the contingent utilities relative to the utility provided by the pure
compensation. We have the following result

Proposition 2. If the effort level e to be implemented increases then:
() ol(s.)foe <0,
(i) 9Alfde>0.
Proof, By differentiating we obtain
al(s;) _ (pLle)C"(e)- pUEC @)~ a)4p.(e)a - 2a) - pule)+ q] N
de gy’
pL(ey C'(eNdg - 44 - 1)
pi(e)’

<0

and symmetrically we have
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A(sy)_ (PLe)C'(e)- PL(e)C" (@) ~ a)(29 = 1~ 4p,(e)g) + b, (¢)]
de q.e)’
pL(e)' C'(e)4g - 44" - 1)
qz(e)’
which can be positive or negative. Finally
AU 381 _ pi(e)Ce)- pile)C ()
de e pi(e)(24-1)
which concludes the proof.

The intuition developed eatlier in regard to the movement of Ulsy) as a
function of e then carries over to the contingent utility /(s;;) which does not need
to increase for higher effort levels. Since higher effort levels already increase the
probability of a good event, it may be encugh to lower the pure incentive payment
for the occurrence of a bad state, which will always be decreased when a higher
effort level is to be implemented. However, the importance of the incentive pay
increases as measured by the payment differences between the good and the bad
states: AU =U(sy )=U(s, }= I(sy )~ 1(s,) = Al, with dAI/de > 0.

So far we have analyzed the properties of implementable allocations as the
effort € to be implemented changes. The comparative statics were formulated in
the utility space of the agent rather than in the space of contractual payments of
the principal. We shall keep this focus for the moment and analyze how the
properties of implementable allocations change as the environment becomes
noisier. We then turn to the properties of the fee schedule and finally determine
the optimal contract s* effort level e*.

Suppose for the moment we would hold the implemented effort level e
constant while the noise increases as the precision ¢ decreases. The informational
consequence for the principal is that she will more often receive a positive signal
when the final outcome is negative, or inversely, she will register a negative
signal although the eventual outcome will be to her satisfaction. Agent and
principal then recognize that the signal y; becomes less responsive to the agent's
effort and, in consequence, high effort appears to be less desirable to the agent.
The last resort for the principal is to make the point more forceful by increasing
the relative difference in contingent utility,

+

>(Q,

Proposition 3. As the noise decreases, the implementation of a constant effort
level e requires:

(i) oU(s,)/3g>0, 3*U(s, ) 34" <0,
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() U(sy)fdg<0, 32U (sy)/3q* > 0.
Proof. By differentiating we obtain

Wls)__Clepife) o (3.18)
9 gi(e)
and symmetrically for the high effort payment we have
BU(SH) - C (f)pLz(e) <0, (319)
9q q; (e)
The utility increase in the low state is concave in
b2 o 4 2
d U(:L) _4c (:z)pLS(e) <0, (3.20)
dq q1(¢)
whereas the utility decrease in the high state is convex in ¢
z () (e)
3 U(:,,) __4c (f)pL € 5o @3.21)
dg (gile))

It remains to mention that U (s, )/dg =—3U(sy)/9q for all ¢ and ail e. The

concavity of U(sy), like the convexity of U(sy), underlines the fact that the
difference in the contingent utility grow ever faster as the noise increases. The
coincidence of signal and outcome decrease linearly in (1-g) which implies that
the probability of receiving a "truthful” signal decreases in a convex manuer.
Moreover the marginal cost of increasing ¢ increases as the environment becomes
noisier:

3U(s) __pileCTO)- o),
3edq gy

and

3% (sw)_ pife)C"(e)- pEECE)
dedq gi(e)’

Before we give the next result we need to establish a set of claims which relate
the payment space 5; to the utility space U(s;). The lemma which summarizes the
results relies primarily on the concavity of the utility and the property of mean
preserving spreads. For the purpose of the lemma we shall phrase one of the
general properties of the contingent utilities as shown in (3.11) as
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Condition 1. (Zero expected utility)
A quadruple (s, 51, 5y, p) satisfies the zero expected utility condition if
pI(s,)+(1- p)i(sy)=0. (3.22)
where I(s;)=U(s;)-U{s).
The lemma is proved for a given utility function U(-) and some probability

p€{0,1], which for purpose of the lemma need not to have any relationship to the
effort level e. We can now state

Lemma 1. For any quadruples (5,5,5y,p) and (s'.5"y,s"y,p") satisfying condition 1,
the following properties are true:

() fors>s', Hsy)=I(sy) and I(s,)=1(s}).

psy+(1-pls, -5 > psy +(1— plsyy -7 (3.23)
@ ors=s, [h)~16t)> Mou)- 6o} M) 2Msi), and
I(sp)<I(sy), p'sp+ A= psi>ps,+ (= phsu;
(iiiy  fors=s', I(sp)~Hsy), and I(sy)-1(s; )2 1(sy)-I(s,), .

psy+ (1~ p Yy > psy +(1-plsy.

The proof of lemma 1 is given in the Appendix. Here we state the claims verbally.
Claim (i) says that if the contingent utility is maintained at high compensation
levels, then the cost of the contingent payments beyond the pure compensation
fises as the compensation rises. Claim (i) states that if the spread of the
contingent utility rises in both directions, i.e. downwards and upwards, then the
expected costs increase. Claim (i), finally, states that even if the difference in
contingent utility remains constant, as soon I(s;) increases the expected costs
increase.

With the support of lemma | we can translate the results of the concave utlity
program of the agent into the linear cost minimization program of the principal.
We define S(¢.q) as the expected cost of the contract to the principal if he wants
to imnplement effort ievel e at the noise level ¢:

S(e.q)=qule}ss +au(e)su- (3.26)
The net profit for the principal is denoted by Il{e,4) and given by:
Me.q)= p.(e)x, + pylelxy - S(e.q) 321
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Before we come to the optimal contract choice let us first state some properties
under any implementable allocation (e, s) € A(g).

Proposition 4. The contract 5(e,q) has the following cost structure:
(i) 9S(e.q)/de>0,
Gi)  3%5(e.q)fae’ >0,
(iii) 95(e,q)/og <0,
() 35 {e, q)/ 0g° <0 for pe[0,].where p e [0.-%),
(v) 35%(e.q)/3g* >0 jor pe(p.l],where pe [0%).
Proof.
(i) By (3.8) 5’(¢) >0 and from proposition 2 it follows that, dA I/de >0,
which implies by lemma 1 that, 5/de > 0.
(i) By (3.8) 5"(¢) > 0 and by lemma 1 the convexity is transferred to S(e.q).
(iii)Since 0AIfog <0 and dU(3(e))/og=0, it follows by the concavity of
U(-) that 38(e, q){9¢ < 0.

(v and (v). We write the payments s, and s, as a function of the inverse of
the utility function U(-), so that

5= U"[U-&- Cle)+ M}
q;(e)
If U(:) is increasing and concave, then U-X(:) is increasing and convex. By
differentiating twice s; with respect to g we obtain

- -

s, oy [cenel o 4C'(e)p;,(e)’]
el SO aersd (U’*)[ e °
and
2

2 o[ TR ’ ’ e
oy w7y | CQRET ) [4c (e)pie) },a
dq L qile) | q(e)

As we know how the individual payments move we can infer how the contractual
costs evolve:
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’s(e.q) 3%, ( sy
aql aql 9 aqz

from which the statements follow.

We should point out that the convexity of the pure compensation s(e} is only
reinforced by the concavity of the utility function U(-) which implies that the
expected cost of a contract increases as the difference in the contingent utilities is
maintained at increasingly higher levels. It is worthwhile to note that Pp=0is
possible, which means that as the noise decreases the cost of implementing a
given e decreases in a convex fashion. We now have the following proposition
concerning the influence of the noise on the optimal short-term contract and the
induced effort level.

aZ
aqsf (4p,(e)-2)+

9+ 22,0+ -4n,(e)

Proposition 5. As the noise increases,

(f) the optimal effort level e* decreases and,
1)) the incentives become stronger: U (s;, ) -U (sZ) increases.
Proof.

(§) According to proposition 4, the optimal effort choice e* is uniquely determined
through the first order conditions

. dsfe,
PN 00)= 25

Since $(e.q) is strictly increasing in (1-¢), e* is strictly decreasing in (1-g).
(¢6) It follows from (i) that (e*)Y(g) > 0. If we denote by p,(e*(q)) = p*(q) the
optimal induced distribution as a function of ¢ then we have

(p*) (@)=24*(a)-1+(2a-1X(p*) (a)e®) (@) (3.28)

For p*(g)e[0,p) with p>%, this implies () (p*)(g)<0 and (i)

p*{g)€[Pi], we have {p*) (¢)>0. Notice that it is possible that F=1, in
which case the latter simation is not relevant at all. Since
Ulsy)=U(sy)=1I(sy)—I(s,) we continue our argument with /. It will be
enough to prove the claim for (i), the argument for (#) is just the reverse of the
one for ({). Following from condition 1, we have pi(s, )+ (I - p) (s5)=0 or

I—P*!Q!_ I(SL] (3.29)

p*(g)  I(sk)



Learning and Commitment in Incentive Contracts 137

As the noise increases with (1-g), the probability ratio in (3.29) has to decrease
by (3.28) which in turn means a change in the ratio of the incentive payments.
The decrease can come as |I(sL] decreases or as |I(sL] increases, but also
I (sH) increases. According to proposition 2 and 3 a noise induced decrease in e
cannot be accompanied by a decrease in |I(s ), hence both |7(s) and I(sy)
have to increase which concludes the proof.

The optimal strategy of the principal in response to a less informative
environment is then twofold. While she will increase the incentives for the agent,
the cost of doing so increase too much to maintain the agent at the prior effort
level and thus the principal will lower the implemented effort level Her
consequences are described in

Proposition 6. As the noise increases, the principal-agent relationship becomes
less efficient and the profit to the principal decreases.

Proof, The first-best efficient solution is given by
p'(e)x, —xu)=51(e)

where s(e) is the payment.to cover reservation utility and cost of effort as defined
in (3.8). Since S(e.q) > s(e) for all levels of g, the second-best solution always
involves lower effort levels. Furthermore, they decrease with an increase in noise.
Lower effort levels decrease the gross profit and higher noise levels increase the
cost of implementation, hence the net profits to the principal decrease with more
noise.

We conclude this section with finding in regard to the influence of the
technology of an agent on the optimal contract. Suppose we compare the optimal
contract implemented under two different technologies a and b, where technology
a increasingly dominates technology b, or a =, & as in Definition 1. The question
is whether the dominant technology will allow the principal to elicit a higher
effort level and benefit through higher net profits.

Proposition 7. If a >, b, then e, > e, and H,(e;,q)> H,,(e;.q).

Proof, Since the expected returns are strictly higher under a than under b, it is
enough to show that for ali e,

S.(e,q)< Silesq),
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where S{-) is the cost of implementing {(¢.q} under technology j. According to the
dominance property, p;(e")s p;(eb), which implies using (3.7) that
L(sy)- (s, )$ Iy(si )— 1,(s,) Notice that the pure compensation se) is the
same under technology @ and b. We have either () I,(sp)>1,(s)) or (ii)
I,(s.)<1,(s;) According to lemma 1 (i), this implies for (i) directly that
5.(,.9)<S,(e,.q) On the other hand, since p,{e)= p,(e), we can apply
lemma 1 (ii) in the case of (ii), which leads us again to the conclusion that
S, (eb"I) < Sb(eb"?)-

It is easy to verify that the statement would need some modification if the
ordering of the technologies is merely stochastic dominance, i.e. technology a
dominates technology b if p,(e}< p,(e) under all effort levels e. The net profit
would still be higher under g than under b, however the assertion that ¢, 2 ¢, is
no longer true. The reason is that the effort level is determined by the marginal

incentive costs which could be higher almost cverywhere for a dominant
technology.

Short vs, Long Term Confract

The optimal long-term contracts in the stationary and stochastic environments
are analyzed in the first subsection. The optimal choice between short-term and
long-term contract in the stochastic environment is presented in the second
subsection.

The Optinal Long-Term Contract

We will first describe the optimal long-term contract when effort is only chosen
once and in the first period. We will establish the main result in regard to the
benefits of a long-term contract due to improved incentives in proposition 8. This
result is extended to the general stochastic environment when effort is chosen in
the first as well as in the second period. We will restrict our formal discussion to
the situation in which the agent is allowed to leave the contract after the first
period. In consequence, the principal has to observe two participation constraints,
First, the agent has to be willing to participate in the long-term contract over the
entire life-span of the contract and hence an intertemporal participation
constraint has to be satisfied. As the agent is allowed to leave the contract after
the first period, he must be willing to continue with the principal in the second
period under all contingencies induced by the signal y; in the first period. We call
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the associated constraints in the principal's program the contingent participation
constraints.

In the first period, principal and agent observe a signal y;. The signal y; is a
random draw conditional on the realization of the cutcome x; The signal y; is
received by the players prior to the outcome x; The principal proposes a long-
term contract { to the agent by which she commits to make payments in the first
and second pericd contingent upon y; and y; and x; respectively. A contract [ is
specified by

= {sL’sH'sILvSIH'SHL'SHH}

where the first subscript refers to the realization of y; and the second (if available)
to x;. The principal’s objective function is

max Z[Pi (e)x; —g; (3)54‘]_ g Y. pi(e)si ~(1-q) X pileks,

ity fm L H i=LH isLH
The notation s_,; documents the events {y,.x;} and {yzx;} when signal y; and
final outcome x; do not correspond. The principal’s optimal choice of e, s; and s
is subject to pMClpauon and incentive constraints. The mtertemporal
participation constraint is,

®) Yg (e)U(Si)w Ep,(e)U(s Y- q) Ep,(e)U( )= Cle)z 2T,

i=LH

whereas the contingent participation constraints are;

(R,) U5, )+ 2222y o7,

‘IL() q.(e)

and

(1~g)p.(e) qpnﬂel 7
(IRy) Ulsyy )+ Ulsy )2 U.
H q;:(e) ( HL) q,h'(e) (HH)
Since the payments in the second period can be contingent on the first period’s
signal y; the second period’s individual rationality constraints have to hold
separately for the two events y; and yy. Finally, the effort level ¢ is chosen by the
agent in the first period so as to maximize his intertemporal utility, given the
proposed contract [,

(C) e argmax T.q,(e)V(s)+4 Zpl(e)U(s )+(-9) Zm(e)U( 1)~ Cle)

€€ =LH

We shall write the incentive compatibility constraint directly in its first order
condition:
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, (2¢I—1)[U(SH)—U(SL)]+Q[U(SHH)_U(SLL)]}_ e
Pif ){ HU=gU () -Ulswn)] “ela @

We observe again that, conditional upon satisfying the individual rationality
constraints, all that matters in eliciting effort is the difference in utility derived
from 5; and sy (or 8; and spy, or sy and sz, for that matter). The contingent
difference AU(s) has more weight the closer the contingency itself is
probabilistically related to the effort choice, which is apparent after rewriting the
incentive compatibility constraint to
” (2q~ DU (s ) - Uls, )+ Ulsiw ) - Ul )]+
L
(1= QU5 )~ Ulsio }+ Ul ) - Ul )]
From (4.2) one can infer that if g=4 and hence the signal y; is pure noise,
U(s,)-U(sy) carries no weight, and all the incentives have to be provided
through payments in the second period where the final outcome x; contains
infinitely more information. On the other hand if =1, then the signal y; is as
informative as the outcome x; and payments based only on the signal y; contribute
as much to the incentives as payments based on the outcome x;. It is interesting to
observe that the payments ;5 and 5,y do not contribute at all to the incentives if
g =1. For g < 1, these payments work as correctives, since signal and outcome
don’t need to comrespond. In the case of 5; < 575, which holds for g <1, it is
better to receive an initial bad signal but end up with a high outcome than receive
a high signal initially but nltimately realize a low outcormne.

We will now develop the first-order conditions for the long-term contract. The
Lagrange multiplier A is associated with the intertemporal participation constraint,
A, and Ay with the contingent participation constraints respectively and | with the
incentive compatibility constraint. The first-order conditions for the optimal
contractual payments in the first period are given by:

(s2) aulefM(s,)-1)+ugz (e)U"(s.)=0, 4.3)

}= C'le) (42)

and

(%) au(efMU’(sy)-1)- ngi(e)U’ (s )=0. (4.4)

The first-order conditions for the optimal contractual payments in the second
period are given by:
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6w) o)« 2 ru)-a 69

(siu) Pule (Mf (5ua)+ M ) up, (e (s )=0,  (4.6)
g

HU sm.

(sa) Pale )(M] (S )* +upr{elU (s, )=0, (47

() pu(e{w'(m)«»%j)ﬂla)-upz(e)v'(sm,)-—-o- @

The first-order conditions for the long-term contract which only needs to satisfy
the intertemporal participation constraint are obtained by setting A; = Ay=0. The
profit function is denoted by

g,Y) 4.9)

which is a function of the noise g and the contractual regime, where y=s5,/. We
recall that the relationship will endure for two periods and vy indicates only
whether the relationship is managed through a sequence of short-term contracts
with ¥ = s or through a long-term contract with y = [,

Proposition 8. I1{g,!)-T1(g,s)> 0 and ¢; — ¢, > 0.

Proof. It is sufficient to show that for any effort level ¢ which is implemented by a
cost minimizing short-term contract, we can find an implementation in a long-
term contract so that S(g,5.¢} > 5(g./,€) holds. Suppose then that the short-term
regime

s={8, 8.5}
implements e cost-minimizing, where § is the non-contingent payment made to
the agent in the second period. We construct a long-term contract

I= {SL’SH'SLL'SLH’SHDSHH}
which implements ¢ at lower costs. Define A = U(§y)- U(5,) and
U(s)= qu (U (5. )+ 9u(e)U G}

Wesets; =sy=s,and 5, =5,, =5 and claim that with
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U (s )-U(E)+ (1)U (5) - U s )) = (24 = 1)A,
we obtain a less expensive contract, which satisfies the remaining constraints. By
setting I{syy )= (U {5 )-U(8)) and I(s,,}=U(3 ) - U(sy), the payments s
and 5y; have to satisfy the following two equations
gl (s )+ (1= QM (s )= (29 - DA,
which is necessary to maintain the incentive compatibility constraint (4.2) and
Py (e} (spr ) +(1- ) P (€} (51 ) =0,
which is the contingent participation constraint. Solving these equations we get

I(sm)=—%‘:—)(2q—l)ﬁ, and 1(;,,,,):“7(‘)(2:;-1)&

Since 1(3;)=-qy(e)A<I(sg) and I(Sy)=q.(e)A> I(syy) we know that
the required utility difference [(3y)—1(5;)> I{syy )= I{s,.) is higher in the
short-term contract. Finally since s<§ , we can apply lemma 1 () to conclude
that $(,g,¢} < S(5,g,¢). It then follows that ¢, > e, since the expected returns are

noise independent.

The construction of an improving contract in the proof is an illustration of the
relative strength of the incentives based on final outcomes. Note that we only
imposed incentives on the contingent payments following the revelation of the
signal y, and hence did not even use the full strength of the long-term contract.
The prevalence of the outcomes x; over the signals y; in the establishment of the
incentives is documented by:

Proposition 9. The optimal long-term contract without contingent participation
constraints partially defers punishment and reward.
() Suy =5 >y
(il') SLL=SHL <SL.
Proof. By (4.3) and (4.4), we get
pile)+ ';?-s:'
Moufe)+ Ao+ upi(e)

U'(s,)= (4.10)

and
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pule)+ %
Apw(e)+ Ayt —wpi(e)
Since the optimal contract when there are no contingent participation constraints
amounts to setting A; = A4 = 0, by (4.5) and (4.7), we have s;; = 5y, and

U'(sy)= {4.11)

e Vo PL(e)
V)= 0+ e @D

similarty we conclude from (4.6) and (4.8) that 57, = 5,4 and

’ Py (e)
U'syy )= m———te—r. 4.13)
) e oife (
We can then conclude, since & > 0 and p > 0 following from (4.10) and (4.12),
that s; > 515, = 57 and following from (4.11) and (4.13) that sy < 575 = 5.

The ranking of the payments may change when we require in addition that the
contingent participation constraints should be satisfied. The latter may severely
limit the possibility of punishment in the second period. As to the reward scheme
after the inclusion of the contingent participation constraint, we have the
following corollary from proposition 9 and the incentive compatibility (4.2):

Corollary 1. The agent receives a strictly positive rent in state H in the second
period.

We turn our attention to the general case in which the agent undestakes effort
in both periods. The agent and the principal receive an effort-related signal y; and
the principal either continues her relationship with the agent or recontracts with a
new agent. As the principal considers whether or not she should employ the
specific agent for a second period, y, generates not only information about the
effort of the first period, but also about the true technology under which the agent
operates. The conditional posterior probabilities,

a(y;.e)=Pr(aly, e) i=LH,
1-(y,.e)=PB(y.e)=Pr(Hy,e) i=LH,

of the agent’s technology are in general dependent on the signal y; and the effort
level e. In consequence, the principal has to incorporate embed the new
information in the remaining part of the contract. The expected technology
pa(yh,)(-) of the agent in the second period is then a function of y; and the first

(4.14)

period effort level e
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pﬂ(yw)(') =(I(yl-,e)pd(-)+ B()’i-e)Pb(')' i=LH.

The general two period problem is then given by:

zx, 3 (e -aleki-a £ pey ToieNe s )}

o nd i=LH

-(1-q) E pi{e jg’f;i(e-i)(xj - S;')}

i=L.H

4.15)

Notice that we index the second period technology p’("} as well as the action i
chosen under it by the random realization of y, in the first period, The contingent
effort {¢; } and the contingent technology {p‘ (-)} indicate that agent and principal
will learn more about the value of their partnership when the first signal y; is

realized. The incentive compatibility of the contract insures that the agent chooses
the effort level as agreed and hence principal and agent make the same inference

after observing y;. The indices of the contractual payments s; or s},‘ refer to the

contemporaneous elements in the subscripts, y; or x;, x; and to past signal y, in the
superscipt, The intertemporal participation constraint is given by:

Ta(W)-C)+a 3 Ps(e){jgf}(ei)u(‘f})‘C(ei)}

i=LH

Hi-q) ¥ p,.(e){j g ;f?;i (e (s')- ol )} 220

i=L.H

(4.16)

The second period contingent participation constraints are given by:

{qu(e) ;HP!' (e"W(sh)+(1-g)pule) T pHe W (Sﬁa)} / qi(e)-C(e")2U
i=L, i=L,H
(4.17)
for y;, and the participation constraint contingent on yy is given by:

{(1 ~g)PL (e)i‘%;'f (eH)U(s#‘.)+ qPu (e)h%:’f;f (e”)U(sﬁ)}/qH (e)- C(e”)z U.
4.18)

The participation constraints (4.17) and (4.18) are, as "last-period” constraiats,
similar to the static constraints. In particular, the first order conditions which
determine the actual effort levels L and e¥ involve the conditional probabilities
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induced through the first period effort e only as constants. We omit the explicit
representation here. Given the contract proposal 1, which involves the contingent
payments:

- t . L L H H H H

= {SL’SH1SL.L’SLH'SHLvsHH’Su’SLHvsHL!SHH}

and the effort choices el and e, the expected utility derived from e can be
represented compactly. By setting

()= 3, nlefpe ()~}

=LK

and correspondingly
sv(ef)= 3 atefer(e )=o)
we can write the incentive compatibility constraint for e as,
¢ € arg max i}ﬁ q{e)U(s;)- Cle)+ qiEHEV (ef)+01- q)j} HEV () @19

Tt is easy to see that the first order condition for e in the general model is similar
to the one introduced earlier. The first order condition implies then directly that
proposition 8, which indicates the superiority of the long-run regime as opposed
to the short-run regime, remains true in the general setting,

intertemporal Effort Choice

While we recognized that different effort levels may induce different second
period technologies, we did not yet investigate systematically how the possibility
of improved knowledge may effect the choice between short and long-term
contracts. Proposition 7 informed us that a more valuable technology in the sense
of convex dominance results in an optimal short-term contract which yields a
higher effort level and, consequently, higher profits. In the dynamic situation the
question is how much learning is dynamically efficient.

Prior to that question we have to know how to generate the desired degree of
information. The prior belief of the agent and his technology was given by
Pr(8 =a)=0. If the technology p,() is a probabilistic mixing of the two

technologies a and b, then the posterior beliefs Pr(9|i, e) are affected by the

signal y; and the effort level e. Thus, for example, the principal should be more
inclined to believe that the true technology is a if she observes a low signal
despite a high effort level chosen by the agent. In fact, we have the following
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Lemma 2. The conditional probabilities ®(y,,e) and 1-0(yy.e) are in-
creasing in e:
Pridype) , 3Plrpe) 4.20)
de de
Proof. Through the increasing dominance ordering, we can set
p.(e)=py(e)+cle), with c(e}20,c(e)20 and ¢”(e)>0. The conditional
probability Pr(alx Ls e) under prior belief o and noise g is given by

(1+2q[p,,(e )+c{e)]-(p,(e)+c)- q)
[1+2gp,(e) - p,(e) - a]+ 0| 2ac(e) - c(e}]

>a, (@21

o(y;.e)= Pr(ab’b )

which is increasing in e:
3 Prialys.e) _ all-a)fe’eNI- pule) -+ 2py(e)a) - Pi(eN2ac(e)-c(e))]
de [1+2gp,(¢)- py ()~ g1+ a[2c(e) - ()]
To show the monotonicity of the conditional probability B{yy.e) it will prove
convenient to show that the ratio of the conditional probabilities is increasing in e,

BOwe)__ (U-a)p,(e)+a-2qp,(e))
ayp.e) alpy(e)+cle)+q—29(pyle)+c(e)))
which is sufficient for the claim. We have
or(yy.e) (1-a)Qq- [ €Xp, () + g~ 2p, (€)g)+ i (e)2g¢(e) C(e))]]
de a(py (e)+ cle)+ g~ 2q(py () +c(e)))’
(422)
The numerator is positive at e=g, since c¢(¢)20 and we remain with

c'(e)[ps(e)+q-2p,{e)g]> 0. It is then enough to show that the numerator is

increasing in e. But when we omit the constant coefficients, we obtain after
differentiating once more

c”(eXps(e)+a-2ps(€)g)+ P3(29¢(e)—cle))> 0,

and hence the ratio r{yy,e) is increasing in ¢ by (4.22).

The posterior beliefs about the agent as given according to (4.20) indicate that
any signal y; tends to reinforce the beliefs of the principal in the sense that a low
signal leaves the principal with ot(y;,e)>«, whereas a high signal changes her

"(yﬂre)=
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belief to B(yy. e)> B. While the probability that the agent provides a low
techmology conditional on y; increases with e, a principal who signed a short-term
contract is almost entirely interested in the conditional belief following the signal
Yu

Proposition 10. The principal retains the agent after observing yy and dismisses
the agent after observing y, in the short-term regime.

Proof. According to lemma 2, we have o.(y;,e)>o for all e, which implies that
for the technologies associated with o(y,,e) and o, respectively, & =, a.(y,,e)
According to proposition 7, this implies that the principal can obtain higher net
profits with o then with .y, ,e) for all e. Since she is not forced to continue to
employ the agent of the last period in the short-term regime, her optimal action is
to recruit a new agent with technology o and fire the old one with technology
o(y,.e). If the positive signal y, is received, then &t(yy,e)>o for all e and the
conclusion follows again from proposition 7,

The principal will fire the agent upon observation of y; independent of the
effort level e, since she can recruit a new agent with technology p,() which
dominates the technology of the previous agent following (4.20). While she
retains the agent after having observed y, at any effort level, the higher the
posterior beliefs P(yy,e) are, the higher are her expected gross profits. An
increase in the posterior belief that the agent operates with an efficient technology
has two implications for the optimal contract and the elicited effort level. The
more obvious effect is the increase in expected gross profits due to a superior
technology. But, equally important, an increase in the posterior beliefs B(yy.e)
assures the agent that the matching between his abilities and the required task is
successful. In consequence, the incentive scheme can be more aggressive, since
he responds more favorably to success contingent payments. Hence the
conclusion in proposition 7 that an increase in B(yy.e) is associated with higher
effort levels and higher net profits.

The optimal dynamic learning policy of the principal is, however, sensitive to
the contractual regime. From an informational point of view, the principal’s
interest in the short-term regime focuses exclusively on maximizing the posterior
belief B(yy.¢). Since the principal will not continue the relationship with the
current agent after observing y,, her policy is to create optimal condition for
recontracting after the occurrence of y,. Lemma 2 then indicates that the optimal
policy will require more incentives in the first period than we could expect in a
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static sitnation, In contrast to the short-term regime, the long-term regime has to
take into account the occurrence of y;. Since maximizing P(yy,e) requires an
increase in e, the principal is more hesitant to follow this pelicy siace it
simultaneously decreases P(y,e) following lemma 2. The dilemma for the
principal in the long-term regime is the polarization in beliefs. While the
realization of y, induces more incentives and more effort in the future, since the
motivation of the agent becomes easier, the realization of y, decrease the
expected value of any future effort, and impedes the principal in motivating the
agent by contingent payments,

Before we state the central result we need to establish some preliminaries. We
call any implementable triple (¢, eb,e¥) an intertemporal effort profile or plan. The
profit associated with the plan (e, eL,e) and implemented under a cost minimizing
incentive scheme is denoted by

I'I(e,e“‘,e"’r 9.7 ) fory =s,1.

The periodic profit associated with the plan (el e") and likewise implemented
under a cost minimizing incentive scheme is denoted by:

II(e. e ,e”lq,'y,), fory=sl, t=12

The intertemporal profit is given as the sum of first and second period profits,
M(e.e" e”lgy)=N(e.e” gy, )+ e.et elay,),  fory=sl.
which is partially separable,
H(e,e",e"lq.y) =M(dg.y,)+ H(e,e",e"]q,y 2), for y =s,1.
The expected profit in the second period is given by:
H("a"Lv e"lgy 2)= ‘IL(‘)H(*’:ELIQ-Y l)+ qu (c)I'I(e, e"lay 2), fory=s.l.

We denote the net profit of the principal as' a function of the noise g, the
contractual regime 7, and the first period effort level ¢ as:

I1{g,7,)= max l'[(e" elg.y ,e), fory =s,1.
The following lemma provides the starting point for our next result.

Lemma 3. The second period profits T1(g.Y ;.€) conditional on any effort level ¢
have the property:
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(g, 5,,€)>1{g.};.¢)

Proof. We note first that the long-term contract carries over some of the
incentives for the first-period effort in the second period, so that the payments in
the second period are contingent on the realization of the outcome x;:

55 #si,s,-?, #s)ﬁ,.s;f#sf,sg, #sf, forij=L H andiz#]

Suppose for the moment that the principal always rehires the agent in the short-
term regime, so that the employed technology is the same under the short-term
regime as under the long-term regime. Since x; and x; are independent random
variables, it then follows by the concavity of the utility function that state by
state, el and ¢¥ are implemented at less cost under the short-term contract s, than
under the long-term contract [;. By the concavity of the principal’s maximization

program it then follows that e“(s,)>e"(1,) and e(s,)>e"(l;) and that
H(e"‘[q,sz,e)> I'l(e"lq,lz,e) as well as H(e”]q,s,,e)ﬂ'l(e” |q,lz,e). It remains
to add that following proposition 10 the principal employs in the short-term
regime a convex dominant technology « in the state following y, as compared to
the long-term regime 0(y, ¢}, which only reinforces the implications above.

The next proposition compares the optimal effort levels of the short-term and
long-term contracts in the stationary environment and the learning environment. If
the environment is stationary, then the principal’s belief about the agent does not
change from period to period and is given by & . The optimal first period effort
level ¢ under the short-termn and long-term contracts are given by é,] <é,, and

the intertemporal profits are fI(q,I) > fI(q, 5) following proposition 8. For the

purpose of this proposition all variables and values referring to the stationary
environment are specified by "™

Proposition 11. The optimal intertemporal learning policy (e:l ,e,'l) reduces the

underinvestment in the short-term contract,
* Ll ~ -~
€ Ty <€ ey
and
" .o .
e,l < e,| ,e!l < etl .

Proof. Following stationarity ﬁ(q, 5;.8)= fl(q, sz) for all e and optimality:
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8I=[§ g.5.€) 3l1(g.5,,¢)  i(g.55.€) (g, s,,€)
= + = =0,
de de oe de

In the learning environment fl(q.sz,e) changes in e, since different values of e
imply different technologies in the second period because of different posteriors.
Since the principal is insured in the short-term regime against a(yL,e). higher
first period effort levels increase her second period profit as long as they increase
1-a(yy. €), which is the case by convex dominance,

ai(g. s, ) 50
de '

Since

AMl(g.s,e) M(gspe)
de e

Ve,

and

ol (g5, €) < oIl (g, s, e), Ve,
de de

optimality in the stochastic environment requires e; >é,. For the long-term
regime the optimality condition in the stationary environment is

oMl(g.le) Mg he) Mghe) o

de de de '
where we showed in proposition § that
Bﬂgq.lz,e!‘(&
de

In the stochastic environment the situation deteriorates, since the posterior
beliefs, ey, ,e) and oi(yy,¢), increase and decrease in ¢ respectively. But since
Py M)(-) is 2 martingale and the cost of the contract are convex in ¢ we have

S oll(g.L.€) N ll(g.L,.€)

de de
According to optimality the learning environment then requires &, <#,, which
proves the claim,

0
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The difference in the optimal effort levels of the short-term and the long-term
regimes decreases as a result of the intertemporal leaming policy. Under the
short-term regime the principal can appropriate the gains from learning while she
insulates herself from the potential losses by firing the agent. The first period
choice of effort in the long-term regime is distorted since any increase in e, which
would be beneficial if yy is received is thwarted by the simultaneous and
detrimental increase in &(y, ,e) which we documented in lemma 2.

As the eavironment becomes noisier the long-term regime becomes more
attractive for two reasons. The signal y; becomes less informative and thus the
short-term incentives very inefficient. Simultaneously and again for the non-
informativeness of y, the posteriors (y;,e) and B{yy,e) become very flat and
hence the value of learning decreases. The next result is then the generalization of
proposition 8 and we omit the proof,

Proposition 12. The optimal choice between short-term and long-term contracts
is monotone in q and there exists § € (4,1] such that;

(i) T(a)>M{gs) for qe[47).

(i) Tgs)>T(gl) for @1}
Proposition 12 allows the long-term contract to be optimal over the entire range
of g. If the benefits from learning are very limited, as it is the case when p, ()

and p,() are very similar, then the benefits of diversifying the incentives over
many periods may be dominant throughout.

Renegotiation, The analysis assumed that the principal can commit to a contract
that will not be renegotiated. Suppose now that we would allow the contract to be
renegotiated after the first period effort has been chosen and before the realization
of the final outcome.® The parties could then renegotiate after the effort choice ¢
and the signal reception y;. At that point there is no longer an incentive-based
reason to let the final payment be contingent on x,, since efficient risk sharing
prescribes that the agent bears no risk at all. In consequence, the optimal long-
term contract will not be implemented as initially planned. The reason is easy to

6  Cf. Fudenberg and Tirole (1990), Ma (1990, 1991), and Matthews (1991). Fudenberg,
Holmstrém, and Milgrom (1990) show that the possibility of renegotiation has no
consequences when principal and agent know each other’s preferences over contracts at
every potential recontracting date. The condition is not satsfied here where the agent's
action has long-term consequences and influences the signal today and the final outcome
OMmorrow,
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see. The agent would foresee complete insurance and would have no incentive to
provide a high effort level. The renegotiation constraint then implies in general
that the parameter space for which the long-term contract is optimal is reduced,
since the renegotiation constraint decreases implicitly the value of commitrent.

Conclusion

The aim of this paper was to analyze the optimal choice of dynamic contracts in a
noisy environment in which principal and agent learn over time how valuable
their partership is.

The advantages of a long-term contract were most pronounced in a very noisy
environment in which early signals did not contain too much relevant information
about the final outcomes. Agent and principal are at the outset uncertain about the
quality of their match and learn more about it as they receive signals. Positive
signals confirmed the value of their partnership, whereas low signals led both
agent and principal to suspect that the agent is not suited for the task. If the
principal committed herself earlier to a long-term contract, then bad news is
unfortunate for her in a double sense. She will not only expect lower returns on
any effort provided by the agent, but she will also have to expend more to align
the agent's interest with her own,

The optimal contract balanced the trade-off between the flexibility of a short-
term contract in hiring decisions with the efficient incentive system due to
commitment in the long-term contract.

The noise of the environment influenced the optimal contract choice through
two channels. At a high noise level the contemporaneous signal gave only limited
information about the agent’s action and was hence only of limited use for
offering efficient incentives to the agent. Simuitaneously, the noise constrained
the opportunity of the principal to infer from the signal the true technology of the
agent. The value of leaming, and hence the flexibility offered by the short-term
contract, decreases then complementary as the noise increases. While the paper
treats the noise of the environment as exogenous, an interesting variation of the
model would result in transforming the level of noise into a choice variable of the
agent.

The results obtained here were derived with just two occasions for moral
hazard. The present model can be regarded as the final stage of a finite multi-
period model and exactly the same conclusions are reached by working
backwards sequentially to earlier periods.

The principal-agent model is a small model of optimal organization. The
question of how organizations are designed optimaily in a noisy environment so
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as to solve their tasks efficiently and still respond to arising contingencies in a
flexible manner is, while beyond the scope of this paper, an interesting field of
future research,
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Appendix

The Appendix provides the proof of lemma 1, which translates the comparative
static results of the utility space into the space of transfer payments.

Proof of lemma 1.
(i) According to condition 1 we have

Ulsx)-U(s)_U(s)-Us)_ _p b
U(s)-Uls,) U()-Uls) 1-p
then following the concavity of the utility function we have s, —s> 3y -5 as
well as s—5, > 5" —s7. We also have

U(si')—[{(s') _ U(s;i)- ({(s’) 5 Uls,)-U(s) U(sH)-U(s),

from which we can infer
sp=s  sy-¢ o S17S __ SiT§
UGL)-UG) Uls)-UG) ™ Uls)~UG) Ulsa)-Ul)
Multiplying by U{s} )-U(s") and using (5.1), we get

(st~ s');f’;-(s; ~5)< (s, -s)ﬁ—{sn -s)

from which the result follows directly.
(ii) It is enough to show that the claim holds in the two following cases: (a)

I(sy)= I(s};) and I(s;)>I(s;) and (b) I(sy)<I(s};) and I(s;)=1I(sh) We
start with (). According to condition 1 we have
Ulse)-UE)__p' . _p__Ula)-Uls)
wr - < = . 5.2
U(s)-U(st) 1-¢ 1-p Uls)-Uls)
with p’ < p. Because of the identity of s, and 5}y and (5.2) we can derive

U!SH !_U!SLI_—E
Ulsa)-Uls) #
We notice that the claim to be proven can be reduced to

(5.3)
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Su=S _ £ - (5.4)

Sy—Sp P
Due to the concavity of the utility function we have
Usa)-U(st) | Uls)-Ulsr)
Sy =Sp Sy—S
which following (5.3) directly implies (5.4). Condition (b) can be stated as
U(s)=UG) o _p _Ulen)-Uls)
Us)-U(sy) 1-p" " 1~p Uls)-Ufs,)
with p’ > p and can be reduced similary to our procedure under (a) to
Olei)-Ulw)_1-p (5.5)
Uls)-Uls) 1-p '
and the claim can be restated as

=5y _I-p
sy—s, 1-p”

which follows again direcfly from the concavity of the utility function and (5.5).
(iif) It is sufficient to prove the claim for I(s} )~ I(s] )= I(sy)—I{s;,).
Condition (#if) implies that
U(S;I')—U(S) = p' > P = U(S”)— U(S) (56)
U(s)-U(sz) 1-p° 1-p U(s)-Ulsy)
with p’ > p, where (5.6) can be reduced to
Ulsy)=Ulsa) _Ulsi)=Ulsu) _
UGsi)-U(st) Uln)-UG,)
The concavity of the utility function then implies that
U(s%)—U(sf)(s%_S’f<s}I_SH. (57)
U(sH)-—U(sL) Sy—8, Sg-sg
We can restate (3.25) as
P(sy —s1)— plsg —s.)< sk sy

which follows directly from (5.7).

p-p
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