# The Comparison of Information Structures in Games: <br> Bayes Correlated Equilibrium and Individual Sufficiency 

Dirk Bergemann and Stephen Morris

USC
February 2014

## Robust Predictions

- game theoretic predictions are very sensitive to "information structure" a.k.a. "higher order beliefs" a.k.a "type space"
- Rubinstein's email game
- information structure is hard to observe - no counterpart to revealed preference
- what can we say about (random) choices if we do not know exactly what the information structure is?
- robust predictions: predictions that are robust (invariant) to the exact specification of the private information
- partially identifying parameters independent of knowledge of information structure


## Basic Question

- fix a game of incomplete information
- which (random) choices could arise in Bayes Nash equilibrium in this game of incomplete information or one in which players observed additional information
- begin with a lower bound on information (possibly a zero lower bound)


## Basic Answer: Bayes Correlated Equilibrium

- set of (random) choices consistent with Bayes Nash equilibrium given any additional information the players may observe $=$
- set of (random) choices that could arise if a mediator who knew the payoff state could privately make action recommendations


## Basic Answer: Bayes Correlated Equilibrium

- set of (random) choices consistent with Bayes Nash equilibrium given any additional information the players may observe $=$
- set of (random) choices that could arise if a mediator who knew the payoff state could privately make action recommendations
- set of incomplete information correlated equilibrium (random) choices


## Basic Answer: Bayes Correlated Equilibrium

- set of (random) choices consistent with Bayes Nash equilibrium given any additional information the players may observe $=$
- set of (random) choices that could arise if a mediator who knew the payoff state could privately make action recommendations
- set of incomplete information correlated equilibrium (random) choices
- we refer to this very permissive version of incomplete information correlated equilibrium as "Bayes correlated equilibrium (BCE)"


## Basic Answer: Bayes Correlated Equilibrium

- set of (random) choices consistent with Bayes Nash equilibrium given any additional information the players may observe $=$
- set of (random) choices that could arise if a mediator who knew the payoff state could privately make action recommendations
- set of incomplete information correlated equilibrium (random) choices
- we refer to this very permissive version of incomplete information correlated equilibrium as "Bayes correlated equilibrium (BCE)"
- and we will prove formal equivalence result between BCE and set of (random) choices consistent with Bayes Nash equilibrium given any additional information the players may observe


## Many Applied Uses for Equivalence Result

- robust predictions and robust identification
- "Robust Predictions in Games with Incomplete Information" (linear best response games with continuum of agents), Econometrica, forthcoming;
- tractable solutions
- "The Limits of Price Discrimination" (joint with Ben Brooks);
- optimal information structures
- "Extremal Information Structures in First Price Auctions" (joint with Ben Brooks);
- volatility and information in macroeconomics (joint with Tibor Heumann)
- "Information, Interdependence and Interaction: Where does the Volatility come from ?"


## Today's Paper and Talk: Foundational Issues

(1) basic equivalence result
(2) more information can only increase the set of feasible (random) choices...

- ..what is the formal ordering on information structures that supports this claim?
(3) more information can only reduce the set of optimal (random) choices...
- ..what is the formal ordering on information structures that supports this claim?

4 "individual sufficiency" generalizes Blackwell's (single player) ordering on experiments

- how does our novel ordering on information structures relate to other orderings?


## Outline of Talk: Single Player Case

- Bayes correlated equilibrium with single player: what predictions can we make in a one player game ("decision problem") if we have just a lower bound on the player's information structure ("experiment")?
- we suggest a partial order on experiments: one experiment is more incentive constrained than another if it gives rise to smaller set of possible BCE (random) choices across all decision problems


## Single Player Ordering and Blackwell $(1951 / 53)$

- an experiment $S$ is sufficient for experiment $S^{\prime}$ if signals in $S$ are sufficient statistic for signals in $S^{\prime}$
- an experiment $S$ is more informative than experiment $S^{\prime}$ if more interim payoff vectors are supported by $S$ than by $S^{\prime}$
- an experiment $S$ is more incentive constrained than experiment $S^{\prime}$ if, for every decision problem, $S$ supports fewer Bayes correlated equilibria


## Notions Related to Blackwell (1951/1953)

- an experiment $S$ is more informative than experiment $S^{\prime}$ if more interim payoff vectors are supported by $S$ than by $S^{\prime}$
- an experiment $S$ is more permissive than experiment $S^{\prime}$ if more random choice functions are supported by $S$ than by $S^{\prime}$
- an experiment $S$ is more valuable than experiment $S^{\prime}$ if, in every decision problem, ex ante utility is higher under $S$ than under $S^{\prime}$ (Marschak and Radner)


## Blackwell's Theorem Plus: One Player

Theorem
The following are equivalent:
(1) Experiment $S$ is sufficient for experiment $S^{\prime}$ (statistical ordering);
(2) Experiment $S$ is more incentiveconstrained than experiment $S^{\prime}$ (incentive ordering);
(3) Experiment $S$ is more permissive than experiment $S^{\prime}$ (feasibility ordering).

## Blackwell's Theorem Plus: Many Players

Theorem
The following are equivalent:
(1) Information structure $S$ is individually sufficient for information structure $S^{\prime}$ (statistical ordering);
(2) Information structure $S$ is more incentive constrained than information structure $S^{\prime}$ (incentive ordering);
(3) Information structure $S$ is more permissive than information structure $S^{\prime}$ (feasibility ordering).

## Related Literature

(1) Forges $(1993,2006)$ : many notions of incomplete information correlated equilibrium
(2) Lehrer, Rosenberg and Shmaya (2010, 2012): many multi-player versions of Blackwell's Theorem
(3) Gossner and Mertens (2001), Gossner (2000), Peski (2008): Blackwell's Theorem for zero sum games
(4) Liu (2005, 2012): one more (important for us) version of incomplete information correlated equilibrium and a characterization of correlating devices that relates to our ordering

## Single Person Setting

- single decision maker
- finite set of payoff states $\theta \in \Theta$,
- finite set of actions $a \in A$,
- a decision problem $G=(A, u, \psi)$,

$$
u: A \times \Theta \rightarrow \mathbb{R}
$$

is the agent's (vNM) utility and

$$
\psi \in \Delta(\Theta)
$$

is a prior.

- an experiment $S=(T, \pi)$, where $T$ is a finite set of types (i.e., signals) and likelihood function

$$
\pi: \Theta \rightarrow \Delta(T)
$$

- a choice environment (one player game of incomplete information) is $(G, S)$


## Behavior

- a decision rule is a mapping

$$
\sigma: \Theta \times T \rightarrow \Delta(A)
$$

- a random choice rule is a mapping

$$
\nu: \Theta \rightarrow \Delta(A)
$$

- random choice rule $\nu$ is induced by decision rule $\sigma$ if

$$
\sum_{t \in T} \pi(t \mid \theta) \sigma(a \mid t, \theta)=\nu(a \mid \theta)
$$

## Defining Bayes Correlated Equilibrium

## Definition (Obedience)

Decision rule $\sigma: \Theta \times T \rightarrow \Delta(A)$ is obedient for $(G, S)$ if
$\sum_{\theta \in \Theta} \psi(\theta) \pi(t \mid \theta) \sigma(a \mid t, \theta) u(a, \theta) \geq \sum_{\theta \in \Theta} \psi(\theta) \pi(t \mid \theta) \sigma(a \mid t, \theta) u\left(a^{\prime}, \theta\right)$
for all $a, a^{\prime} \in A$ and $t \in T$.
Definition (Bayes Correlated Equilibrium)

Decision rule $\sigma$ is a Bayes correlated equilibrium (BCE) of $(G, S)$ if it is obedient for $(G, S)$.

- random choice rule $\nu$ is a $B C E$ random choice rule for $(G, S)$ if it is induced by a BCE $\sigma$


## Blackwell Triple

- with the decision rule

$$
\sigma: \Theta \times T \rightarrow \Delta(A)
$$

we are interested in a triple of random variables

$$
\theta, t, a
$$

- an elementary property of a triple of random variable, as a property of conditional independence, was stated in Blackwell (1951) as Theorem 7
- as it will be used repeatedly, we state it formally


## Blackwell Triple: A Statistical Fact

- consider a triple of variables $(x, y, z) \in X \times Y \times Z$ and a joint distribution:

$$
P \in \Delta(X \times Y \times Z)
$$

## Lemma

The following three statements are equivalent:
(1) $P(x \mid y, z)$ is independent of $z$;
(2) $P(z \mid y, x)$ is independent of $x$;
(3) $P(x, y, z)=P(y) P(x \mid y) P(z \mid y)$.

- if these statements are true for the ordered triple $(x, y, z)$, we refer to it as Blackwell triple
- "a Markov chain $P(x \mid y, z)=P(x \mid y)$ is also a Markov chain in reverse, namely $P(z \mid y, x)=P(z \mid y)$ "


## Foundations of BCE

## Definition (Belief Invariance)

A decision rule $\sigma$ is belief invariant for $(G, S)$ if for all $\theta \in \Theta, t \in T, \sigma(a \mid t, \theta)$ is independent of $\theta$.

- belief invariance captures decisions that can arise from a decision maker randomizing conditional on his signal $t$ but not state $\theta$...
- ... now ( $a, t, \theta$ ) are a Blackwell triple, hence $\sigma_{\psi}(\theta \mid t, a)$ is independent of a ...
- ...motivates the name: chosen action a does not reveal anything about the state beyond that contained in signal $t$
- a decision rule $\sigma$ could arise from a decision maker with access only to the experiment $S$ if it is belief invariant


## Combining Experiments

## Definition (Bayes Nash Equilibrium)

Decision rule $\sigma$ is a Bayes Nash Equilibrium (BNE) for $(G, S)$ if it is obedient and belief invariant for $(G, S)$.

- we want to ask what happens when decision maker observes more information than contained in $S$
- introduce a language to combine and compare experiments


## Combined Experiment

- consider separate experiments,

$$
S^{1}=\left(T^{1}, \pi^{1}\right), \quad S^{2}=\left(T^{2}, \pi^{2}\right)
$$

- join the experiments $S^{1}$ and $S^{2}$ into $S^{*}=\left(T^{*}, \pi^{*}\right)$ :

$$
T^{*}=T^{1} \times T^{2}, \quad \pi^{*}: \Theta \rightarrow \Delta\left(T^{1} \times T^{2}\right)
$$

## Combined Experiment

## Definition

$S^{*}$ is a combined experiment of $S^{1}$ and $S^{2}$ if:
(1) $T^{*}=T^{1} \times T^{2}, \pi^{*}: \Theta \rightarrow \Delta\left(T^{1} \times T^{2}\right)$
(2) marginal of $S^{1}$ is preserved:

$$
\sum_{t^{2} \in T^{2}} \pi^{*}\left(\left(t^{1}, t^{2}\right) \mid \theta\right)=\pi^{1}\left(t^{1} \mid \theta\right), \quad \forall t^{1}, \forall \theta
$$

(3) marginal of $S^{2}$ is preserved:

$$
\sum_{t^{1} \in T^{1}} \pi^{*}\left(\left(t^{1}, t^{2}\right) \mid \theta\right)=\pi^{2}\left(t^{2} \mid \theta\right), \quad \forall t^{2}, \forall \theta
$$

## Combining Experiments and Expanding Information

- there are multiple combined experiments $S^{*}$ for any pair of experiments, since only the marginals have to match
- If $S^{*}$ is combination of $S$ and another experiment $S^{\prime}$, we say that $S^{*}$ is an expansion of $S$.


## (One Person) Robust Predictions Question

- fix $(G, S)$
- which (random) choices can arise under optimal decision making in $\left(G, S^{*}\right)$ where $S^{*}$ is any expansion of $S$ ?
- as a special case, information structure may be the null information structure:

$$
S^{\circ}=\left\{T^{\circ}=\left\{t^{\circ}\right\}, \quad \pi^{\circ}\left(t^{\circ} \mid \theta\right)=1\right\}
$$

## Epistemic Relationship

Theorem
An (random) choice $\nu$ is a BCE (random) choice of $(G, S)$ if and only if there is an expansion $S^{*}$ of $S$ such that $\nu$ is a Bayes Nash equilibrium (random) choice for $\left(G, S^{*}\right)$
Idea of Proof:

- $(\Leftarrow) S^{*}$ has "more" obedience constraints than $S$
- $(\Rightarrow)$ let $\nu$ be BCE of $(G, S)$ supporting $\sigma$ and consider expansion $S^{*}$ with $T^{*}=T \times A$ and $\pi^{*}(t, a \mid \theta)=\sigma(t, a \mid \theta)$.


## Example: Bank Run

- a bank is solvent or insolvent:

$$
\Theta=\left\{\theta_{l}, \theta_{s}\right\}
$$

- each event is equally likely:

$$
\psi(\cdot)=\left(\frac{1}{2}, \frac{1}{2}\right)
$$

- running ( $r$ ) gives payoff 0
- not running ( $n$ ) gives payoff -1 if insolvent, $y$ if solvent:

$$
0<y<1
$$

- $G=(A, u)$ with $A=\{r, n\}$ and $u$ given by

|  | $\theta_{S}$ | $\theta_{l}$ |
| :--- | :--- | :--- |
| $r$ | 0 | $0^{*}$ |
| $n$ | $y^{*}$ | -1 |

## Bank Run: Common Prior Only

- suppose we have the prior information only - the null information structure:

$$
S^{\circ}=\left(T^{\circ}, \pi^{\circ}\right), \quad T^{\circ}=\left\{t^{\circ}\right\}
$$

- parameterized consistent (random) choices:

| $\nu(\theta)$ | $\theta_{S}$ | $\theta_{l}$ |
| :--- | :--- | :--- |
| $r$ | $\rho_{S}$ | $\rho_{l}$ |
| $n$ | $\left(1-\rho_{S}\right)$ | $\left(1-\rho_{l}\right)$ |

- $\rho_{S}=\nu\left[\theta_{S}\right](r):($ conditional) probability of running if solvent
- $\rho_{I}=\nu\left[\theta_{l}\right](r)$ : (conditional) probability of running if insolvent


## Bank Run: Obedience

- agent may not necessarily know state $\theta$ but makes choices according to $\nu(\cdot)$
- if "advised" to run, run has to be a best response:

$$
\begin{aligned}
0 & \geq \rho_{S} y-\rho_{I} \Leftrightarrow \\
\rho_{I} & \geq \rho_{S} y
\end{aligned}
$$

- if "advised" not to run, not run has to be a best response

$$
\begin{aligned}
\left(1-\rho_{S}\right) y-\left(1-\rho_{I}\right) & \geq 0 \Leftrightarrow \\
\rho_{I} & \geq(1-y)+\rho_{S} y
\end{aligned}
$$

- here, not to run provides binding constraint:

$$
\rho_{I} \geq(1-y)+\rho_{S} y
$$

- never to run, $\rho_{I}=0, \rho_{S}=0$, cannot be a BCE


## Bank Run: Equilibrium Set

- set of BCE described by $\left(\rho_{I}, \rho_{S}\right)$

- never to run, $\rho_{I}=0, \rho_{S}=0$, is not be a BCE


## Bank Run: Extremal Equilibria

- BCE minimizing the probability of runs has:

$$
\rho_{I}=1-y, \quad \rho_{S}=0
$$

- Noisy stress test $T=\left\{t^{\prime}, t^{S}\right\}$ implements BNE via informative signals:

$$
\begin{array}{ccc}
\pi(t \mid \theta) & \theta_{l} & \theta_{S} \\
t^{\prime} & 1-y & 0 \\
t^{S} & y & 1
\end{array}
$$

- the bank is said to be healthy if it is solvent (always) and if it is insolvent (sometimes)
- solvent and insolvent banks are bundled


## Bank Run: Positive Information

- suppose player observes conditionally independent private binary signal of the state with accuracy:

$$
q>\frac{1}{2}
$$

- $S=(T, \pi)$ where $T=\left\{t^{S}, t^{\prime}\right\}$ :

| $\pi$ | $\theta_{S}$ | $\theta_{l}$ |
| :--- | :--- | :--- |
| $t^{S}$ | $q$ | $1-q$ |
| $t^{1}$ | $1-q$ | $q$ |

- strictly more information than null information $q=\frac{1}{2}$


## Bank Run: Additional Obedience Constraints

- conditional probability of running now depends on the signal: $t \in\left\{t^{S}, t^{\prime}\right\}$
- $\rho_{I}, \rho_{S}$ become $\left(\rho_{I}^{\prime}, \rho_{S}^{\prime}\right),\left(\rho_{I}^{S}, \rho_{S}^{S}\right)$
- conditional obedience constraints, say for $t^{S}$ :

$$
\begin{aligned}
r & : \quad 0 \geq q \rho_{S}^{S} y-(1-q) \rho_{l}^{S} \\
n & : \quad q\left(1-\rho_{S}^{S}\right) y-(1-q)\left(1-\rho_{l}^{S}\right) \geq 0
\end{aligned}
$$

or

$$
\begin{aligned}
r & : \quad \rho_{I}^{S} \geq \frac{q}{1-q} \rho_{S}^{S} y \\
n & : \quad \rho_{I}^{S} \geq 1-\frac{q}{1-q} y+\frac{q}{1-q} \rho_{S}^{S} y
\end{aligned}
$$

## Bank Run: Equilibrium Set

- set of BCE described by $\left(\rho_{I}, \rho_{S}\right)$

- $\rho_{I}=1, \rho_{S}=0$, is complete information BCE


## Incentive Compatibility Ordering

- Write $\operatorname{BCE}(G, S)$ for the set of BCE (random) choices of $(G, S)$

Definition
Experiment $S$ is more incentive constrained than experiment $S^{\prime}$ if, for all decision problems $G$,

$$
B C E(G, S) \subseteq B C E\left(G, S^{\prime}\right)
$$

- Note that "more incentive constrained" corresponds, intuitively, to having more information


## Permissiveness

## Definition (Feasible Random Choice Rule)

A random choice rule $\nu$ is feasible for $(G, S)$ if it is induced by a decision rule $\sigma$ which is belief invariant for $(G, S)$.

- write $F(G, S)$ for the set of feasible (random) choices of $(G, S)$

Definition (More Permissive)

Experiment $S$ is more permissive than experiment $S^{\prime}$ if, for all decision problems $G$,

$$
F(G, S) \supseteq F\left(G, S^{\prime}\right)
$$

## Back to the Example: Feasibility

- suppose we have the prior information only - the null information structure: $S_{0}=\left(T_{0}, \pi\right), \quad T_{0}=\left\{t_{0}\right\}$
- feasible (random) choices $\nu(\theta)$ can be described by $\left(\rho_{I}, \rho_{S}\right)$ :



## Back to the Example: Feasibility

- suppose player observes conditionally independent private binary signal of the state with accuracy $q \geq \frac{1}{2}$ :
- feasible (random) choices $\nu(\theta)$ can be described by $\left(\rho_{I}, \rho_{S}\right)$ :



## Statistical Ordering: Sufficiency

- Experiment $S$ is sufficient for experiment $S^{\prime}$ if there exists a combination $S^{*}$ of $S$ and $S^{\prime}$ such that

$$
\operatorname{Pr}\left(t^{\prime} \mid t, \theta\right)=\frac{\pi^{*}\left(t, t^{\prime} \mid \theta\right)}{\sum_{\widetilde{t^{\prime}} \in \Theta} \pi^{*}\left(t, \widetilde{t^{\prime}} \mid \theta\right)}
$$

is independent of $\theta$.

## Sufficiency: Two Alternative Statements

(1) (following from statistical fact): for any $\psi \in \Delta_{++}(\Theta)$,

$$
\operatorname{Pr}\left(\theta \mid t, t^{\prime}\right)=\frac{\psi(\theta) \pi^{*}\left(t, t^{\prime} \mid \theta\right)}{\sum_{\theta^{\prime} \in \Theta} \psi\left(\theta^{\prime}\right) \pi^{*}\left(t, t^{\prime} \mid \theta^{\prime}\right)}
$$

is independent of $t^{\prime}$.
(2) (naming the $\theta$-independent conditional probability) there exists $\phi: T \rightarrow \Delta\left(T^{\prime}\right)$ such that

$$
\pi^{\prime}\left(t^{\prime} \mid \theta\right)=\sum_{t \in T} \phi\left(t^{\prime} \mid t\right) \pi(t \mid \theta)
$$

## Aside: Belief Invariance $=$ Sufficiency of Signals

- An (random) choice $\nu: \Theta \rightarrow \Delta(A)$ embeds an experiment $(A, \pi)$ where

$$
\pi(a \mid \theta)=\frac{\nu[\theta](a)}{\sum_{\widetilde{a}} \nu[\theta](\widetilde{a})}
$$

- An (random) choice can be induced by a belief invariant decision rule if and only if $S$ is sufficient for $(A, \nu)$.


## Blackwell's Theorem Plus

Theorem
The following are equivalent:
(1) Experiment $S$ is sufficient for experiment $S^{\prime}$ (statistical ordering);
(2) Experiment $S$ is more incentive constrained than experiment $S^{\prime}$ (incentive ordering);
(3) Experiment $S$ is more permissive than experiment $S^{\prime}$ (feasibility ordering).

## Proof of Blackwell's Theorem Plus

- Equivalence of (1) "sufficient for" and (3) "more permissive" is due to Blackwell
- (2) "more incentive constrained" $\Rightarrow$ (3) "more permissive":
(1) take the stochastic transformation $\phi$ that maps $S$ into $S^{\prime}$
(2) take any BCE $\nu \in \Delta(A \times T \times \Theta)$ of $(G, S)$ and use $\phi$ to construct $\nu^{\prime} \in \Delta\left(A \times T^{\prime} \times \Theta\right)$
(3) show that $\nu^{\prime}$ is a BCE of $\left(G, S^{\prime}\right)$


## Proof of Blackwell's Theorem Plus

- (3) "more permissive" $\Rightarrow$ (2) "more incentive constrained" by contrapositive
- suppose $S$ is not more permissive than $S^{\prime}$
- so $F(G, S) \nsupseteq F\left(G, S^{\prime}\right)$ for some $G$
- so there exists $G^{\prime}$ and $\nu^{\prime} \in \Delta\left(A \times T^{\prime} \times \Theta\right)$ which is feasible for $\left(G^{\prime}, S^{\prime}\right)$ and gives (random) choice $\nu \in \Delta(A \times \Theta)$, with $\nu$ not feasible for $(G, S)$
- can choose $G^{\prime}$ so that the value $V$ of $\nu^{\prime}$ in $\left(G^{\prime}, S^{\prime}\right)$ is $V$ and the value every feasible $\nu$ of $\left(G^{\prime}, S\right)$ is less than $V$
- now every there all BCE of $\left(G^{\prime}, S^{\prime}\right)$ will have value at least $V$ and some BCE of $\left(G^{\prime}, S\right)$ will have value strictly less than $V$
- so $B C E\left(G^{\prime}, S\right) \varsubsetneqq B C E\left(G^{\prime}, S^{\prime}\right)$


## Basic Game

- players $i=1, \ldots, l$
- (payoff) states $\Theta$
- actions $\left(A_{i}\right)_{i=1}^{l}$
- utility functions $\left(u_{i}\right)_{i=1}^{l}$, each $u_{i}: A \times \Theta \rightarrow \mathbb{R}$
- state distribution $\psi \in \Delta(\Theta)$
- $G=\left(\left(A_{i}, u_{i}\right)_{i=1}^{\prime}, \psi\right)$
- "decision problem" in the one player case


## Information Structure

- signals (types) $\left(T_{i}\right)_{i=1}^{l}$
- signal distribution $\pi: \Theta \rightarrow \Delta\left(T_{1} \times T_{2} \times \ldots \times T_{l}\right)$
- $S=\left(\left(T_{i}\right)_{i=1}^{l}, \pi\right)$
- "experiment" in the one player case


## Statistical Ordering: Individual Sufficiency

- Experiment $S$ is individually sufficient for experiment $S^{\prime}$ if there exists a combination $S^{*}$ of $S$ and $S^{\prime}$ such that

$$
\operatorname{Pr}\left(t_{i}^{\prime} \mid t_{i},\left(t_{-i}, \theta\right)=\frac{\sum_{t_{-i}^{\prime} \in T_{-i}^{\prime}} \pi^{*}\left(t,\left(t_{i}^{\prime}, t_{-i}^{\prime}\right) \mid \theta\right)}{\sum_{\tilde{t}_{i}^{\prime} \in T_{i}^{\prime}} \sum_{t_{-i}^{\prime} \in T_{-i}^{\prime}} \pi^{*}\left(t,\left(\widetilde{t}_{i}^{\prime}, t_{-i}^{\prime}\right) \mid \theta\right)}\right.
$$

is independent of $\left(t_{-i}, \theta\right)$.

## Sufficiency: Two Alternative Statements

- following from statistical fact applied to triple $\left(t_{i}^{\prime}, t_{i},\left(t_{-i}, \theta\right)\right)$ after integrating out $t_{-i}^{\prime}$
- for any $\psi \in \Delta_{++}(\Theta)$,

$$
\operatorname{Pr}\left(t_{-i}, \theta \mid t_{i}, t_{i}^{\prime}\right)=\frac{\sum_{t_{-i}^{\prime} \in T_{-i}^{\prime}} \psi(\theta) \pi^{*}\left(\left(t_{i}, t_{-i}\right),\left(t_{i}^{\prime}, t_{-i}^{\prime}\right) \mid \theta\right)}{\sum_{\tilde{t}_{-i} \in T_{-i}} \sum_{\tilde{\theta} \in \Theta} \sum_{t_{-i}^{\prime} \in T_{-i}^{\prime}} \psi(\widetilde{\theta}) \pi^{*}\left(\left(t_{i}, \widetilde{t}_{-i}\right),\left(t_{i}^{\prime}, t_{-i}^{\prime}\right) \mid \widetilde{\theta}\right.}
$$

is independent of $t_{i}^{\prime}$.

## Sufficiency: Two Alternative Statements

- letting $\phi: T \times \Theta \rightarrow \Delta\left(T^{\prime}\right)$ be conditional probability for combined experiment $\pi^{*}$
- there exists $\phi: T \times \Theta \rightarrow \Delta\left(T^{\prime}\right)$ such that

$$
\pi^{\prime}\left(t^{\prime} \mid \theta\right)=\sum_{t \in T} \phi\left(t^{\prime} \mid t, \theta\right) \pi(t \mid \theta)
$$

and

$$
\underset{\phi}{\operatorname{Pr}}\left(t_{i}^{\prime} \mid t_{i}, t_{-i}, \theta\right)=\sum_{t_{-i}^{\prime} \in T_{-i}^{\prime}} \phi\left(\left(t_{i}^{\prime}, t_{-i}^{\prime}\right) \mid\left(t_{i}, t_{-i}\right), \theta\right)
$$

is independent of $\left(t_{-i}, \theta\right)$

## Nice Properties of Ordering

- Transitive
- Neither weaker or stronger than sufficiency (i.e., treating signal profiles as multidimensional signals)
- Two information structures are each sufficient for each other if and only if they share the same higher order beliefs about $\Theta$
- $S$ is individually sufficient for $S^{\prime}$ if and only if $S$ is higher order belief equivalent to an expansion of $S^{\prime}$
- $S$ is individually sufficient for $S^{\prime}$ if and only if there exists a combined experiment equal to $S^{\prime}$ plus a correlation device


## Example

- Compare null information structure $S^{\circ}$...
- ...with information structure $S$ with $T_{1}=T_{2}=\{0,1\}$

| $\pi(\cdot \mid 0)$ | 0 | 1 | $\pi(\cdot \mid 1)$ | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $\frac{1}{2}$ | 0 | 0 | 0 | $\frac{1}{2}$ |
| 1 | 0 | $\frac{1}{2}$ | 1 | $\frac{1}{2}$ | 0 |

- Each information structure is individually sufficient for the other


## Blackwell's Theorem Plus

Theorem
The following are equivalent:
(1) Information structure $S$ is individually sufficient for information structure $S^{\prime}$ (statistical ordering);
(2) Information structure $S$ is more incentive constrained than information structure $S^{\prime}$ (incentive ordering);
(3) Information structure $S$ is more permissive than information structure $S^{\prime}$ (feasibility ordering);

## Proof of Blackwell's Theorem Plus

- $(1) \Rightarrow(3)$ directly constructive argument
- (1) "sufficient for" $\Rightarrow$ (2) "more incentive constrained" works as in the single player case
(1) take the stochastic transformation $\phi$ that maps $S$ into $S^{\prime}$
(2) take any BCE $\nu \in \Delta(A \times T \times \Theta)$ of $(G, S)$ and use $\phi$ to construct $\nu^{\prime} \in \Delta\left(A \times T^{\prime} \times \Theta\right)$
(3) show that $\nu^{\prime}$ is a BCE of $\left(G, S^{\prime}\right)$
- need a new argument to show $(3) \Rightarrow(2)$


## New Argument: Game of Belief Elicitation

- Suppose that $S$ is more incentive constrained than $S^{\prime}$
- Consider game where players report types in $S$
- Construct payoffs such that (i) truthtelling is a BCE of $(G, S)$ (ii) actions corresponding to reporting beliefs over $T_{-i} \times \Theta$ with incentives to tell the truth
- In order to induce the truth-telling (random) choice of $(G, S)$, there must exist $\phi: T \times \Theta \rightarrow \Delta\left(T^{\prime}\right)$ corresponding to one characterization of individual sufficiency


## Incomplete Information Correlated Equilibrium

- Forges (1993): "Five Legitimate Definitions of Correlated Equilibrium"
- $\mathrm{BCE}=$ set of (random) choices consistent with (common prior assumption plus) common knowledge of rationality and that players have observed at least information structure $S$.
- Not a solution concept for a fixed information structure as information structure is in flux


## Other Definitions: Stronger Feasibility Constraints

- Belief invariance: information structure cannot change, so players cannot learn about the state and others' types from their action recommendations
- Liu (2011) - belief invariant Bayes correlated equilibrium: obedience and belief invariance
- captures common knowledge of rationality and players having exactly information structure $S$.
- Join Feasibility: equilibrium play cannot depend on things no one knows given $S$
- Forges (1993) - Bayesian solution: obedience and join feasibility
- captures common knowledge of rationality and players having at least information structure $S$ and a no correlation restriction on players' conditional beliefs
- belief invariant Bayesian solution - imposing both belief invariance and join feasibility - has played prominent role in the literature


## Other Definitions: the rest of the Forges' Five

(1) More feasibility restrictions: agent normal form correlated equilibrium
(2) More incentive constraints: communication equilibrium: mediator can make recommendations contingent on players' types only if they have an incentive to truthfully report them.
(3) Both feasibility and incentive constraints: strategic form correlated equilibrium

## Generalizing Blackwell's Theorem

- we saw - in both the one and the many player case - that "more information" helps by relaxing feasibility constraints and hurts by imposing incentive constraints
- Lehrer, Rosenberg, Shmaya $(2010,2011)$ propose family of partial orders on information structures, refining sufficiency
- LRS10 kill incentive constraints by showing orderings by focussing on common interest games. Identify right information ordering for different solution concepts
- LRS 11 kill incentive constraints by restriction attention to info structures with the same incentive constraints. Identify right information equivalence notion for different solution concepts
- We kill feasibility benefit of information by looking at BCE. Thus we get "more information" being "bad" and incentive constrained ordering characterized by individual sufficiency.
- Same ordering corresponds to a natural feasibility ordering (ignoring incentive constraints)


## Conclusion

- a permissive notion of correlated equilibrium in games of incomplete information: Bayes correlated equilibrium
- BCE renders robust predicition operational, embodies concern for robustness to strategic information
- leads to a natural multi-agent generalization of Blackwell's single agent information ordering

