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Robust Predictions

• game theoretic predictions are very sensitive to "information
structure" a.k.a. “higher order beliefs" a.k.a "type space"

• Rubinstein’s email game

• information structure is hard to observe - no counterpart to
revealed preference

• what can we say about (random) choices if we do not know
exactly what the information structure is?

• robust predictions: predictions that are robust (invariant) to
the exact specification of the private information

• partially identifying parameters independent of knowledge of
information structure



Basic Question

• fix a game of incomplete information
• which (random) choices could arise in Bayes Nash equilibrium
in this game of incomplete information or one in which players
observed additional information

• begin with a lower bound on information (possibly a zero
lower bound)



Basic Answer: Bayes Correlated Equilibrium

• set of (random) choices consistent with Bayes Nash
equilibrium given any additional information the players may
observe =

• set of (random) choices that could arise if a mediator who
knew the payoff state could privately make action
recommendations

• set of incomplete information correlated equilibrium (random)
choices

• we refer to this very permissive version of incomplete
information correlated equilibrium as "Bayes correlated
equilibrium (BCE)"

• and we will prove formal equivalence result between BCE and
set of (random) choices consistent with Bayes Nash
equilibrium given any additional information the players may
observe
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Many Applied Uses for Equivalence Result

• robust predictions and robust identification
• “Robust Predictions in Games with Incomplete Information”
(linear best response games with continuum of agents),
Econometrica, forthcoming;

• tractable solutions
• “The Limits of Price Discrimination” (joint with Ben Brooks);

• optimal information structures
• “Extremal Information Structures in First Price Auctions”
(joint with Ben Brooks);

• volatility and information in macroeconomics (joint with Tibor
Heumann)

• "Information, Interdependence and Interaction: Where does
the Volatility come from ?"



Today’s Paper and Talk: Foundational Issues

1 basic equivalence result

2 more information can only increase the set of feasible
(random) choices...

• ..what is the formal ordering on information structures that
supports this claim?

3 more information can only reduce the set of optimal
(random) choices...

• ..what is the formal ordering on information structures that
supports this claim?

4 "individual suffi ciency" generalizes Blackwell’s (single player)
ordering on experiments

• how does our novel ordering on information structures relate to
other orderings?



Outline of Talk: Single Player Case

• Bayes correlated equilibrium with single player:
what predictions can we make in a one player game ("decision
problem") if we have just a lower bound on the player’s
information structure ("experiment")?

• we suggest a partial order on experiments:
one experiment is more incentive constrained than another if
it gives rise to smaller set of possible BCE (random) choices
across all decision problems



Single Player Ordering and Blackwell (1951/53)

• an experiment S is suffi cient for experiment S ′ if signals in S
are suffi cient statistic for signals in S ′

• an experiment S is more informative than experiment S ′ if
more interim payoff vectors are supported by S than by S ′

• an experiment S is more incentive constrained than
experiment S ′ if, for every decision problem, S supports fewer
Bayes correlated equilibria



Notions Related to Blackwell (1951/1953)

• an experiment S is more informative than experiment S ′ if
more interim payoff vectors are supported by S than by S ′

• an experiment S is more permissive than experiment S ′ if
more random choice functions are supported by S than by S ′

• an experiment S is more valuable than experiment S ′ if, in
every decision problem, ex ante utility is higher under S than
under S ′ (Marschak and Radner)



Blackwell’s Theorem Plus: One Player

Theorem
The following are equivalent:

1 Experiment S is suffi cient for experiment S ′

(statistical ordering);

2 Experiment S is more incentiveconstrained than experiment S ′

(incentive ordering);

3 Experiment S is more permissive than experiment S ′

(feasibility ordering).



Blackwell’s Theorem Plus: Many Players

Theorem
The following are equivalent:

1 Information structure S is individually suffi cient for
information structure S ′

(statistical ordering);

2 Information structure S is more incentive constrained than
information structure S ′ (incentive ordering);

3 Information structure S is more permissive than information
structure S ′ (feasibility ordering).



Related Literature

1 Forges (1993, 2006): many notions of incomplete information
correlated equilibrium

2 Lehrer, Rosenberg and Shmaya (2010, 2012): many
multi-player versions of Blackwell’s Theorem

3 Gossner and Mertens (2001), Gossner (2000), Peski (2008):
Blackwell’s Theorem for zero sum games

4 Liu (2005, 2012): one more (important for us) version of
incomplete information correlated equilibrium and a
characterization of correlating devices that relates to our
ordering



Single Person Setting

• single decision maker
• finite set of payoff states θ ∈ Θ,
• finite set of actions a ∈ A,
• a decision problem G = (A, u, ψ),

u : A×Θ→ R

is the agent’s (vNM) utility and

ψ ∈ ∆ (Θ)

is a prior.
• an experiment S = (T , π), where T is a finite set of types
(i.e., signals) and likelihood function

π : Θ→ ∆ (T )

• a choice environment (one player game of incomplete
information) is (G , S)



Behavior

• a decision rule is a mapping

σ : Θ× T → ∆ (A)

• a random choice rule is a mapping

ν : Θ→ ∆ (A)

• random choice rule ν is induced by decision rule σ if∑
t∈T

π (t|θ)σ (a|t, θ) = ν (a|θ)



Defining Bayes Correlated Equilibrium

Definition (Obedience)

Decision rule σ : Θ× T → ∆ (A) is obedient for (G ,S) if∑
θ∈Θ

ψ (θ)π (t|θ)σ (a|t, θ) u (a, θ) ≥
∑
θ∈Θ

ψ (θ)π (t|θ)σ (a|t, θ) u
(
a′, θ

)
(1)

for all a, a′ ∈ A and t ∈ T .

Definition (Bayes Correlated Equilibrium)

Decision rule σ is a Bayes correlated equilibrium (BCE) of (G ,S) if
it is obedient for (G , S).

• random choice rule ν is a BCE random choice rule for (G , S)
if it is induced by a BCE σ



Blackwell Triple

• with the decision rule

σ : Θ× T → ∆ (A)

we are interested in a triple of random variables

θ, t, a

• an elementary property of a triple of random variable, as a
property of conditional independence, was stated in Blackwell
(1951) as Theorem 7

• as it will be used repeatedly, we state it formally



Blackwell Triple: A Statistical Fact

• consider a triple of variables (x , y , z) ∈ X ×Y × Z and a joint
distribution:

P ∈ ∆ (X × Y × Z ) .

Lemma
The following three statements are equivalent:

1 P (x |y , z) is independent of z ;

2 P (z |y , x) is independent of x ;

3 P (x , y , z) = P (y)P (x |y)P (z |y) .

• if these statements are true for the ordered triple (x , y , z), we
refer to it as Blackwell triple

• “a Markov chain P (x |y , z) = P (x |y) is also a Markov chain
in reverse, namely P (z |y , x) = P (z |y)”



Foundations of BCE

Definition (Belief Invariance)
A decision rule σ is belief invariant for (G , S) if for all

θ ∈ Θ, t ∈ T , σ (a|t, θ) is independent of θ.

• belief invariance captures decisions that can arise from a
decision maker randomizing conditional on his signal t but not
state θ...

• ... now (a, t, θ) are a Blackwell triple, hence σψ (θ|t, a) is
independent of a ...

• ...motivates the name: chosen action a does not reveal
anything about the state beyond that contained in signal t

• a decision rule σ could arise from a decision maker with access
only to the experiment S if it is belief invariant



Combining Experiments

Definition (Bayes Nash Equilibrium)

Decision rule σ is a Bayes Nash Equilibrium (BNE) for (G , S) if it
is obedient and belief invariant for (G , S).

• we want to ask what happens when decision maker observes
more information than contained in S

• introduce a language to combine and compare experiments



Combined Experiment

• consider separate experiments,

S1 =
(
T 1, π1

)
, S2 =

(
T 2, π2

)
• join the experiments S1 and S2 into S∗ = (T ∗, π∗) :

T ∗ = T 1 × T 2, π∗ : Θ→ ∆
(
T 1 × T 2

)



Combined Experiment

Definition
S∗ is a combined experiment of S1 and S2 if:

1 T ∗ = T 1 × T 2, π∗ : Θ→ ∆
(
T 1 × T 2

)
2 marginal of S1 is preserved:∑

t2∈T 2
π∗
((
t1, t2

)
|θ
)

= π1
(
t1|θ

)
, ∀t1, ∀θ.

3 marginal of S2 is preserved:∑
t1∈T 1

π∗
((
t1, t2

)
|θ
)

= π2
(
t2|θ

)
, ∀t2, ∀θ.



Combining Experiments and Expanding Information

• there are multiple combined experiments S∗ for any pair of
experiments, since only the marginals have to match

• If S∗ is combination of S and another experiment S ′, we say
that S∗ is an expansion of S .



(One Person) Robust Predictions Question

• fix (G , S)

• which (random) choices can arise under optimal decision
making in (G , S∗) where S∗ is any expansion of S?

• as a special case, information structure may be the null
information structure:

S◦ = {T ◦ = {t◦} , π◦ (t◦ |θ ) = 1}



Epistemic Relationship

Theorem
An (random) choice ν is a BCE (random) choice of (G ,S) if and
only if there is an expansion S∗ of S such that ν is a Bayes Nash
equilibrium (random) choice for (G ,S∗)

Idea of Proof:

• (⇐) S∗ has "more" obedience constraints than S
• (⇒) let ν be BCE of (G ,S) supporting σ and consider
expansion S∗ with T ∗ = T × A and π∗ (t, a|θ) = σ (t, a|θ).



Example: Bank Run

• a bank is solvent or insolvent:

Θ = {θI , θS}

• each event is equally likely:

ψ (·) =

(
1
2
,
1
2

)
• running (r) gives payoff 0
• not running (n) gives payoff −1 if insolvent, y if solvent:

0 < y < 1

• G = (A, u) with A = {r , n} and u given by

θS θI
r 0 0∗

n y∗ −1



Bank Run: Common Prior Only

• suppose we have the prior information only - the null
information structure:

S◦ = (T ◦, π◦) , T ◦ = {t◦}

• parameterized consistent (random) choices:

ν (θ) θS θI
r ρS ρI

n (1− ρS ) (1− ρI )

• ρS = ν [θS ] (r) : (conditional) probability of running if solvent

• ρI = ν [θI ] (r) : (conditional) probability of running if insolvent



Bank Run: Obedience

• agent may not necessarily know state θ but makes choices
according to ν (·)

• if "advised" to run, run has to be a best response:

0 ≥ ρSy − ρI ⇔
ρI ≥ ρSy

• if "advised" not to run, not run has to be a best response

(1− ρS ) y − (1− ρI ) ≥ 0⇔
ρI ≥ (1− y) + ρSy

• here, not to run provides binding constraint:

ρI ≥ (1− y) + ρSy

• never to run, ρI = 0, ρS = 0, cannot be a BCE



Bank Run: Equilibrium Set

• set of BCE described by (ρI , ρS )

• never to run, ρI = 0, ρS = 0, is not be a BCE



Bank Run: Extremal Equilibria

• BCE minimizing the probability of runs has:

ρI = 1− y , ρS = 0

• Noisy stress test T =
{
t I , tS

}
implements BNE via

informative signals:

π (t |θ ) θI θS
t I 1− y 0
tS y 1

• the bank is said to be healthy if it is solvent (always) and if it
is insolvent (sometimes)

• solvent and insolvent banks are bundled



Bank Run: Positive Information

• suppose player observes conditionally independent private
binary signal of the state with accuracy:

q >
1
2

• S = (T , π) where T =
{
tS , t I

}
:

π θS θI
tS q 1− q
t I 1− q q

• strictly more information than null information q = 1
2



Bank Run: Additional Obedience Constraints

• conditional probability of running now depends on the signal:
t ∈

{
tS , t I

}
• ρI , ρS become

(
ρII , ρ

I
S

)
,
(
ρSI , ρ

S
S

)
• conditional obedience constraints, say for tS :

r : 0 ≥ qρSSy − (1− q) ρSI

n : q
(
1− ρSS

)
y − (1− q)

(
1− ρSI

)
≥ 0

or

r : ρSI ≥
q

1− qρ
S
Sy

n : ρSI ≥ 1−
q

1− q y +
q

1− qρ
S
Sy



Bank Run: Equilibrium Set

• set of BCE described by (ρI , ρS )

• ρI = 1, ρS = 0, is complete information BCE



Incentive Compatibility Ordering

• Write BCE (G ,S) for the set of BCE (random) choices of
(G ,S)

Definition
Experiment S is more incentive constrained than experiment S ′ if,
for all decision problems G ,

BCE (G , S) ⊆ BCE
(
G , S ′

)
.

• Note that "more incentive constrained" corresponds,
intuitively, to having more information



Permissiveness

Definition (Feasible Random Choice Rule)

A random choice rule ν is feasible for (G , S) if it is induced by a
decision rule σ which is belief invariant for (G , S).

• write F (G , S) for the set of feasible (random) choices of
(G ,S)

Definition (More Permissive)

Experiment S is more permissive than experiment S ′ if, for all
decision problems G ,

F (G ,S) ⊇ F
(
G ,S ′

)
.



Back to the Example: Feasibility

• suppose we have the prior information only - the null
information structure: S0 = (T0, π), T0 = {t0}

• feasible (random) choices ν (θ) can be described by (ρI , ρS ):



Back to the Example: Feasibility

• suppose player observes conditionally independent private
binary signal of the state with accuracy q ≥ 1

2 :
• feasible (random) choices ν (θ) can be described by (ρI , ρS ):



Statistical Ordering: Suffi ciency

• Experiment S is suffi cient for experiment S ′ if there exists a
combination S∗ of S and S ′ such that

Pr
(
t ′|t, θ

)
=

π∗ (t, t ′|θ)∑
t̃ ′∈Θ

π∗
(
t, t̃ ′|θ

)
is independent of θ.



Suffi ciency: Two Alternative Statements

1 (following from statistical fact): for any ψ ∈ ∆++ (Θ),

Pr
(
θ|t, t ′

)
=

ψ (θ)π∗ (t, t ′|θ)∑
θ′∈Θ

ψ
(
θ′
)
π∗
(
t, t ′|θ′

) .
is independent of t ′.

2 (naming the θ-independent conditional probability) there
exists φ : T → ∆ (T ′) such that

π′
(
t ′|θ
)

=
∑
t∈T

φ
(
t ′|t
)
π (t|θ) .



Aside: Belief Invariance = Suffi ciency of Signals

• An (random) choice ν : Θ→ ∆ (A) embeds an experiment
(A, π) where

π (a|θ) =
ν [θ] (a)∑̃
a
ν [θ] (ã)

• An (random) choice can be induced by a belief invariant
decision rule if and only if S is suffi cient for (A, ν).



Blackwell’s Theorem Plus

Theorem
The following are equivalent:

1 Experiment S is suffi cient for experiment S ′

(statistical ordering);

2 Experiment S is more incentive constrained than experiment
S ′ (incentive ordering);

3 Experiment S is more permissive than experiment S ′

(feasibility ordering).



Proof of Blackwell’s Theorem Plus

• Equivalence of (1) "suffi cient for" and (3) "more permissive"
is due to Blackwell

• (2) "more incentive constrained" ⇒ (3) “more permissive”:

1 take the stochastic transformation φ that maps S into S ′

2 take any BCE ν ∈ ∆ (A× T ×Θ) of (G ,S) and use φ to
construct ν ′ ∈ ∆ (A× T ′ ×Θ)

3 show that ν ′ is a BCE of (G , S ′)



Proof of Blackwell’s Theorem Plus

• (3) "more permissive" ⇒ (2) "more incentive constrained" by
contrapositive

• suppose S is not more permissive than S ′

• so F (G , S) ! F (G ,S ′) for some G

• so there exists G ′ and ν ′ ∈ ∆ (A× T ′ ×Θ) which is feasible
for (G ′, S ′) and gives (random) choice ν ∈ ∆ (A×Θ), with ν
not feasible for (G , S)

• can choose G ′ so that the value V of ν ′ in (G ′,S ′) is V and
the value every feasible ν of (G ′,S) is less than V

• now every there all BCE of (G ′,S ′) will have value at least V
and some BCE of (G ′,S) will have value strictly less than V

• so BCE (G ′,S)  BCE (G ′,S ′)



Basic Game

• players i = 1, ..., I

• (payoff) states Θ

• actions (Ai )
I
i=1

• utility functions (ui )
I
i=1, each ui : A×Θ→ R

• state distribution ψ ∈ ∆ (Θ)

• G =
(

(Ai , ui )
I
i=1 , ψ

)
• "decision problem" in the one player case



Information Structure

• signals (types) (Ti )
I
i=1

• signal distribution π : Θ→ ∆ (T1 × T2 × ...× TI )
• S =

(
(Ti )

I
i=1 , π

)
• "experiment" in the one player case



Statistical Ordering: Individual Suffi ciency

• Experiment S is individually suffi cient for experiment S ′ if
there exists a combination S∗ of S and S ′ such that

Pr
(
t ′i |ti , t−i , θ

)
=

∑
t ′−i∈T ′−i

π∗
(
t,
(
t ′i , t

′
−i
)
|θ
)

∑
t̃ ′i ∈T ′i

∑
t ′−i∈T ′−i

π∗
(
t,
(
t̃ ′i , t

′
−i
)
|θ
)

is independent of (t−i , θ).



Suffi ciency: Two Alternative Statements

• following from statistical fact applied to triple (t ′i , ti , (t−i , θ))
after integrating out t ′−i

• for any ψ ∈ ∆++ (Θ),

Pr
(
t−i , θ

∣∣ti , t ′i ) =

∑
t ′−i∈T ′−i

ψ (θ)π∗
(
(ti , t−i ) ,

(
t ′i , t

′
−i
)
|θ
)

∑
t̃−i∈T−i

∑
θ̃∈Θ

∑
t ′−i∈T ′−i

ψ
(
θ̃
)
π∗
((
ti , t̃−i

)
,
(
t ′i , t

′
−i
)
|θ̃
)

is independent of t ′i .



Suffi ciency: Two Alternative Statements

• letting φ : T ×Θ→ ∆ (T ′) be conditional probability for
combined experiment π∗

• there exists φ : T ×Θ→ ∆ (T ′) such that

π′
(
t ′|θ
)

=
∑
t∈T

φ
(
t ′|t, θ

)
π (t|θ)

and

Pr
φ

(
t ′i |ti , t−i , θ

)
=

∑
t ′−i∈T ′−i

φ
((
t ′i , t

′
−i
)
| (ti , t−i ) , θ

)
is independent of (t−i , θ)



Nice Properties of Ordering

• Transitive
• Neither weaker or stronger than suffi ciency (i.e., treating
signal profiles as multidimensional signals)

• Two information structures are each suffi cient for each other
if and only if they share the same higher order beliefs about Θ

• S is individually suffi cient for S ′ if and only if S is higher order
belief equivalent to an expansion of S ′

• S is individually suffi cient for S ′ if and only if there exists a
combined experiment equal to S ′ plus a correlation device



Example

• Compare null information structure S◦...
• ...with information structure S with T1 = T2 = {0, 1}

π (·|0) 0 1
0 1

2 0
1 0 1

2

π (·|1) 0 1
0 0 1

2
1 1

2 0

• Each information structure is individually suffi cient for the
other



Blackwell’s Theorem Plus

Theorem
The following are equivalent:

1 Information structure S is individually suffi cient for
information structure S ′ (statistical ordering);

2 Information structure S is more incentive constrained than
information structure S ′ (incentive ordering);

3 Information structure S is more permissive than information
structure S ′ (feasibility ordering);



Proof of Blackwell’s Theorem Plus

• (1)⇒ (3) directly constructive argument

• (1) "suffi cient for" ⇒ (2) "more incentive constrained" works
as in the single player case

1 take the stochastic transformation φ that maps S into S ′

2 take any BCE ν ∈ ∆ (A× T ×Θ) of (G ,S) and use φ to
construct ν ′ ∈ ∆ (A× T ′ ×Θ)

3 show that ν ′ is a BCE of (G , S ′)

• need a new argument to show (3) ⇒ (2)



New Argument: Game of Belief Elicitation

• Suppose that S is more incentive constrained than S ′

• Consider game where players report types in S
• Construct payoffs such that (i) truthtelling is a BCE of (G ,S)
(ii) actions corresponding to reporting beliefs over T−i ×Θ
with incentives to tell the truth

• In order to induce the truth-telling (random) choice of (G ,S),
there must exist φ : T ×Θ→ ∆ (T ′) corresponding to one
characterization of individual suffi ciency



Incomplete Information Correlated Equilibrium

• Forges (1993): "Five Legitimate Definitions of Correlated
Equilibrium"

• BCE = set of (random) choices consistent with (common
prior assumption plus) common knowledge of rationality and
that players have observed at least information structure S .

• Not a solution concept for a fixed information structure as
information structure is in flux



Other Definitions: Stronger Feasibility Constraints

• Belief invariance: information structure cannot change, so
players cannot learn about the state and others’types from
their action recommendations
• Liu (2011) - belief invariant Bayes correlated equilibrium:
obedience and belief invariance

• captures common knowledge of rationality and players having
exactly information structure S .

• Join Feasibility: equilibrium play cannot depend on things no
one knows given S
• Forges (1993) - Bayesian solution: obedience and join
feasibility

• captures common knowledge of rationality and players having
at least information structure S and a no correlation restriction
on players’conditional beliefs

• belief invariant Bayesian solution - imposing both belief
invariance and join feasibility - has played prominent role in
the literature



Other Definitions: the rest of the Forges’Five

1 More feasibility restrictions: agent normal form correlated
equilibrium

2 More incentive constraints: communication equilibrium:
mediator can make recommendations contingent on players’
types only if they have an incentive to truthfully report them.

3 Both feasibility and incentive constraints: strategic form
correlated equilibrium



Generalizing Blackwell’s Theorem

• we saw - in both the one and the many player case - that
"more information" helps by relaxing feasibility constraints
and hurts by imposing incentive constraints

• Lehrer, Rosenberg, Shmaya (2010, 2011) propose family of
partial orders on information structures, refining suffi ciency

• LRS10 kill incentive constraints by showing orderings by
focussing on common interest games. Identify right
information ordering for different solution concepts

• LRS 11 kill incentive constraints by restriction attention to info
structures with the same incentive constraints. Identify right
information equivalence notion for different solution concepts

• We kill feasibility benefit of information by looking at BCE.
Thus we get "more information" being "bad" and incentive
constrained ordering characterized by individual suffi ciency.

• Same ordering corresponds to a natural feasibility ordering
(ignoring incentive constraints)



Conclusion

• a permissive notion of correlated equilibrium in games of
incomplete information: Bayes correlated equilibrium

• BCE renders robust predicition operational, embodies concern
for robustness to strategic information

• leads to a natural multi-agent generalization of Blackwell’s
single agent information ordering


