Selling Experiments

Dirk Bergemann ${ }^{1} \quad$ Alessandro Bonatti ${ }^{2} \quad$ Alex Smolin ${ }^{1}$

${ }^{1}$ Yale University
${ }^{2}$ MIT Sloan

Sloan Marketing
December 2015

Introduction

Data buyer - a decision maker under uncertainty:

- has partial and private information
- can acquire additional information

Data seller offers additional information:

- how much information to provide and at what price?
- how to provide different information to different data buyers?

Interpretation: selling access to a database as in Acxiom, Bluekai, DoubleClick Ad Exchange

Example: Behavioral Retargeting

- firms tailor online advertising levels to individual users
- targeting requires information about characteristics of individual users.
- different firms have different "first-party" information on users \Rightarrow heterogeneous valuation for additional information
- data seller has information "third party" on individual characteristics
- data seller can offer to reveal certain attributes

Information via Experiments

- data seller offers "information product":
- = experiment (in the statistical sense of Blackwell)
- provide statistical information about payoff-relevant state
- value of experiment depends on decision maker's private information - his beliefs
- decision maker's private beliefs are his type
- data seller has (common) prior over types

Analysis

- optimal versioning of information product: design of information
- optimal selling of information product: price of information
- importantly: only information product itself is contractible
- by contrast, action of decision maker or realized state are not contractible

Results

- a menu of experiments is offered
- menu contains only "simple" items, experiments
- menu is coarser than diversity of data buyers (types)
- linearity (in probabilities) limits the use of versioning
- systematic distortions in information provided
- screening facilitated by "directional information"

Related Literature

Selling Information

Admati and Pfleiderer (1986, 1990), Eső and Szentes (2007), Babaioff (2012), "Selling Cookies" AEJ Micro (2015).

Information Impacts Prices

Johnson and Myatt (2006), Bergemann and Pesendorfer (2007), "Targeting in Advertising Markets" RAND (2011).

Persuasion
Rayo and Segal (2010), Kamenica and Gentzkow (2011),

Model

- single decision-maker (buyer of information)
- finite actions

$$
a_{1}, \ldots, a_{I} \in A
$$

- finite states

$$
\omega_{1}, \ldots, \omega_{J} \in \Omega
$$

- ex-post utility

$$
u\left(a_{i}, \omega_{j}\right)
$$

- leading example, matching action to state $|I|=|J|$:

$$
u\left(a_{i}, \omega_{j}\right)=\mathbf{1}_{[i=j]} .
$$

Common Prior and Private Information

- common prior probability over states

$$
\mu \in \Delta \Omega
$$

- decision maker privately observes an initial signal $r \in R$:

$$
\lambda: \Omega \rightarrow \Delta R
$$

- decision maker forms initial belief $\theta \in \Delta \Omega$ given signal r :

$$
\theta_{r}(\omega)=\frac{\lambda(r \mid \omega) \mu(\omega)}{\sum_{\omega^{\prime}} \lambda\left(r \mid \omega^{\prime}\right) \mu\left(\omega^{\prime}\right)}
$$

- initial beliefs θ are private information of data buyer
- from data seller's point of view: λ induces distribution of initial beliefs $F(\theta)$.

Experiment

- data seller provides information as "experiment"
- an experiment (information structure) $I=\{S, \pi\}$ consists of signals $s \in S$ and likelihood function:

$$
\pi: \Omega \rightarrow \triangle S
$$

- type r and signal s independent - conditional on state ω :

$$
\operatorname{Pr}((r, s) \mid \omega)=\lambda(r \mid \omega) \cdot \pi(s \mid \omega), \quad \forall r, s, \omega
$$

- costless provision of information (data is already stored);

Data Seller

- data seller can offer a menu of experiments

$$
\mathcal{M}=\{\mathcal{I}, t\}
$$

where each item on menu \mathcal{I} is an experiment I :

$$
\mathcal{I}=\{I\} \quad t: \mathcal{I} \rightarrow \mathbb{R}^{+}
$$

- each experiment I has a price t
- note: action a and state ω are not contractible
- thus: scoring rules and other belief elicitations schemes are not available
- price of information is determined before realization of ω

Timing of Information

(1) type θ of decision maker is realized
(2) seller offers menu of experiments \mathcal{I}
(3) decision maker θ chooses among experiments \mathcal{I}
(1) signal s of experiment is realized, action a is taken

Interpretation: Big Data

- a continuum of consumers: $i \in[0,1]$,
- comsumer i spends $\omega \in \mathbb{R}_{+}$per website (budget ω)
- distribution of budgets $\mu \in \Delta(\Omega)$ in population
- type θ of retailer is distribution of consumer budgets at its website
- distribution of consumers with budget ω over retailer $\theta: \lambda(\cdot \mid \omega)$
- think $\theta=$ Walmart, JC Penney, Sears, Macy

Interpretation: Data Base and Demand for Data

- data seller (data base) has record of past digital purchases of i, thus knows of budget ω of i
- database can offer estimate, narrower or wider income brackets for every i and ω
- at random times consumer i with budget ω has change of taste
i.e. new/renewal draw according to $\lambda(\cdot \mid \omega)$
- when i appears for the first time at retailer θ website, retailer might wish to acquire more information about ω of i
- query or "machine" interpretation: for every i generate an estimate of ω
- $\pi(s \mid \omega, i)$ is independent of i conditionally on ω
- $\pi(s \mid \omega)$ is independent of r conditionally on ω

Value of Experiment

- buyer's payoff under partial information

$$
u(\theta) \triangleq \max _{a \in A} \mathbb{E}_{\theta}[u(a, \omega)]
$$

- value of experiment (net value of augmented information)

$$
V(I, \theta) \triangleq \mathbb{E}_{I, \theta}\left[\max _{a \in A} \mathbb{E}_{s, \theta}[u(a, \omega)]\right]-u(\theta)
$$

Initial and Incremental Information

- interim probability

$$
\theta_{i}=\operatorname{Pr}\left(\omega=\omega_{i}\right)
$$

- likelihood function under experiment I...:

$$
\pi_{i j}=\operatorname{Pr}\left(s_{j} \mid \omega_{i}\right)
$$

- ... and in matrix form π :

$$
\begin{array}{cccc}
& & s_{j} & \\
& \pi_{11} & \pi_{1 j} & \cdots \\
\omega_{i} & \pi_{i 1} & \pi_{i j} & \cdots
\end{array}
$$

Specific Experiments

- locally noise free (at s_{j}):

		s_{j}	
	π_{11}	0	\cdots
		0	
ω_{i}	$\pi_{i 1}$	$\pi_{i j}$	\cdots
		0	

- locally non-dispersed (at ω_{i})

			s_{j}	
	π_{11}		$\pi_{1_{j}}$	\cdots
ω_{i}	0	0	1	0

- perfectly informative

$$
\pi_{i j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

is noise free and non-dispersed, globally

Value of Experiment

- given matching action and state:

$$
u\left(a_{i}, \omega_{j}\right)= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

- value of experiment I for buyer θ :

$$
V(I, \theta)=\sum_{j} \max _{i}\left\{\theta_{i} \pi_{i j}\right\}-\max _{i}\left\{\theta_{i}\right\}
$$

- posterior belief: interim belief θ_{i} and signal s_{j} :

$$
\theta_{i} \pi_{i j}
$$

- experiment provides a random allocation, s_{1}, \ldots, s_{J} to an agent with unit demand $\max _{i}\left\{\theta_{i} \pi_{i j}\right\}$

Geometry of Value of Experiment

- three states $\omega_{1}, \omega_{2}, \omega_{3}$
- perfect information experiment
- interim belief $\theta=\left(\theta_{1}, \theta_{2}, 1-\theta_{1}-\theta_{2}\right)$
- every edge represents a change in decision given interim belief

Seller's Problem

- seller offers a menu of experiments

$$
\mathcal{M}=\{\mathcal{I}, t\}
$$

with

$$
\mathcal{I}=\{I\} \quad t: \mathcal{I} \rightarrow \mathbb{R}^{+}
$$

- direct mechanism

$$
\mathcal{M}=\{I(\theta), t(\theta)\} .
$$

- seller's objective function is subject to incentive and participation constraints:

$$
\begin{array}{ll}
& \max _{\{I(\theta), t(\theta)\}} \int t(\theta) \mathrm{d} F(\theta), \\
\text { s.t. } & V(I(\theta), \theta)-t(\theta) \geq V\left(I\left(\theta^{\prime}\right), \theta\right)-t\left(\theta^{\prime}\right) \quad \forall \theta, \theta^{\prime}, \\
& V(I(\theta), \theta)-t(\theta) \geq 0 \quad \forall \theta .
\end{array}
$$

First Steps

- possible continuum of experiments $I(\theta)$
- each experiment has a potentially complicated map:

$$
\text { states } \rightarrow \text { signals } \rightarrow \text { actions }
$$

- merge signals in $I(\theta)$ leading to the same action for type θ

Proposition (Maximal Cardinality of Signals)

In an optimal menu, the cardinality of the signal space of every experiment has at most the cardinality of the action space.

- $V(I(\theta), \theta)$ stays constant but $V\left(I(\theta), \theta^{\prime}\right)$ decreases $\forall \theta^{\prime} \neq \theta$ as value of misreport is reduced

An Illustration: Binary States

- binary state, binary action:

$$
\begin{array}{c|cc}
u(a, \omega) & a=a_{H} & a=a_{L} \\
\hline \omega=\omega_{H} & \mathbf{1} & \mathbf{0} \\
\omega=\omega_{L} & \mathbf{0} & \mathbf{1}
\end{array}
$$

- let $\theta=\operatorname{Pr}\left(\omega=\omega_{H}\right)$
- by Proposition 1 restrict attention to experiments:

$$
I=\begin{array}{c|cc}
& s_{H} & s_{L} \\
\hline \omega_{H} & \alpha & 1-\alpha \\
\omega_{L} & 1-\beta & \beta
\end{array}
$$

- wlog convention that $\alpha+\beta \geq 1$ (equivalent to monotone likelihood ratio)

Value of Experiment with Binary Model

- value of experiment (α, β)

$$
V(\alpha, \beta, \theta)=[\alpha \theta+\beta(1-\theta)-\max \{\theta, 1-\theta\}]^{+} .
$$

- locally non-dispersed at $\omega=\omega_{L}$, locally noise free at s_{H} :

$$
I=\begin{array}{c|cc}
& s_{H} & s_{L} \\
\hline \omega_{H} & \alpha & 1-\alpha \\
\omega_{L} & 0 & 1
\end{array}
$$

- directionally informative: information valuable for some types, but not for others
- valuable for DM who deems ω_{L} very likely
- not valuable for DM who deems ω_{H} very likely
- directionally informative for null hypothesis of ω_{L} :
- minimize false positive (type 1 error) to zero for ω_{L},
- maximize false negative (type 2 error) for ω_{H}

Value of a Perfectly Informative Experiment

- value of experiment $(\alpha, \beta)=(1,1)$ for type θ.

- highest type is in the interior rather than on the boundary
- more than local incentive constraints, more than local participation constraints

Value of a Directionally Informative Experiment

- distance $|\theta-1 / 2|$ not sufficient for value of experiment
- different slopes - differential gains of avoiding type 1 errors
- information has horizontal and vertical dimension of differentiation, information is always high-dimensional
- high degree of incompleteness in ranking of information structures

Preferences over Experiments

Value of experiment (α, β) for type θ

$$
V(\alpha, \beta, \theta)=(\alpha-\beta) \theta+\beta-\max \{\theta, 1-\theta\} .
$$

- $\beta=$ baseline informativeness (from payoff normalization).
- $\alpha-\beta=$ relative informativeness.
- two "goods" that cannot be produced independently.

Feasible Set of Experiments

Indifference Curves for Given Type

- value of experiment is

$$
V(\alpha, \beta, \theta)=(\alpha-\beta) \theta+\beta-\max \{\theta, 1-\theta\}
$$

- higher θ have stronger preference for differential $\alpha-\beta$

Value of Baseline Information

- incremental change in the baseline information β
- while keeping the relative informativeness $\alpha-\beta$ constant

$$
V(\alpha+\delta, \beta+\delta, \theta)-V(\alpha, \beta, \theta)=\delta, \quad \forall \theta
$$

- uniform increase in value of experiment for all types

Set of Optimal Experiments

- maximal baseline informativeness for any given relative

informativeness
- reduce choice of experiment to one-dimensional problem:

$$
q \triangleq \alpha-\beta
$$

Structure of Optimal Menu

- for finitely many states and actions, possibly continuum of types

Proposition (Optimal Menu and Non-Dispersed Information)

(1) The fully informative experiment, $\pi_{i i}=1$ for all i, is always part of the optimal menu.
(2) Every experiment in an optimal menu is locally non-dispersed, i.e., $\pi_{i i}=1$ for some i.

states/types	binary	continuum
binary	\cdots	\ldots
finite	\cdots	\checkmark

Binary Types and Binary States: First Example

- binary types: $\theta \in\{2 / 10,7 / 10\}$ with equal probability
- type $\theta=7 / 10$ is less informed
- a possible solution (with slack incentive constraints)

Binary Types: An Optimal Solution

- two experiments
- no distortion at the top (θ closer to $1 / 2$);
- no rent at the bottom;
- corner solution - no rent at the top

Binary Types and Binary States

- two types are congruent if they choose the same action given their interim belief, otherwise non-congruent
- high type is less informed than low type:

$$
\left|\theta^{H}-1 / 2\right| \leq\left|\theta^{L}-1 / 2\right|, \quad \theta^{H} \geq 1 / 2
$$

- recall prior probability of high type

$$
\gamma=\operatorname{Pr}\left(\theta=\theta^{H}\right)
$$

- critical frequency of high vs low types:

$$
\bar{\gamma} \triangleq \frac{1-\theta^{L}}{1-\theta^{H}}
$$

Optimal Experiment

Proposition

(1) With congruent priors, the seller offers the perfectly informative experiment only; both types participate if and only if $\gamma \leq \bar{\gamma}=\left(1-\theta^{L}\right) /\left(1-\theta^{H}\right)$.
(2) With non-congruent priors and $\gamma \leq \bar{\gamma}$, both types buy the fully informative experiment.
(3) With non-congruent priors and $\gamma>\bar{\gamma}$, the high type buys the fully informative experiment and the low type buys a partially informative experiment:

$$
\alpha=\frac{2 \theta^{H}-1}{\theta^{H}-\theta^{L}} \quad \text { and } \quad \beta=1 ;
$$

and the seller extracts the entire surplus.

- quality of information and comparative statics of $1-\alpha$ in $\gamma, \theta^{L}, \theta^{H}$

Many States and Many Actions

- we maintain binary states

$$
\theta \in\left\{\theta_{L}, \theta_{H}\right\}
$$

and allow for many states (and many actions)

- order the states ω by their likelihood ratios:

$$
\frac{\theta_{1}^{L}}{\theta_{1}^{H}} \leq \cdots \leq \frac{\theta_{i}^{L}}{\theta_{i}^{H}} \leq \cdots \leq \frac{\theta_{N}^{L}}{\theta_{N}^{H}}
$$

- states ω_{i} with low indices are deemed more likely by θ^{H}

Optimal Experiment

- use disagreement across states to drive screening across types

Proposition

There exists i^{*} such that the optimal experiment $I\left(\theta^{L}\right)$ has $\pi_{i i}=0$ for all $i<i^{*}$ and $\pi_{i i}=1$ for all $i>i^{*}$.

- optimal experiment has lower-triangular shape

0	\cdots	0	$\pi_{1 i}$	\cdots	\cdots	$\pi_{1 n}$
\vdots		\vdots	\vdots			\vdots
\vdots		\vdots	$\pi_{i i}$	\cdots	\cdots	$\pi_{i n}$
\vdots		\vdots	0	1	\cdots	0
\vdots		\vdots	\vdots	\vdots	\ddots	\vdots
0	\cdots	0	0	0	\cdots	1

- distribution of π_{i}. is not uniquely determined

Continuum of Types

- return to binary states, allow continuum of types $\theta \in[0,1]$
- recall the value of experiment $q \in[-1,1]$ for type $\theta \in[0,1]$:

$$
V(q, \theta)=[\theta q-\max \{q, 0\}+\min \{\theta, 1-\theta\}]^{+} .
$$

- single-crossing suggests q increasing in θ.
- types $\theta=0$ and $\theta=1$ receive zero rents.
- consider type $\theta=1 / 2$, derive additional condition.

Incentive Compatibility

- rent of type $\theta=1 / 2$

$$
U(1 / 2)=U(0)+\int_{0}^{1 / 2} V_{\theta}(q, \theta) \mathrm{d} \theta=U(1)-\int_{1 / 2}^{1} V_{\theta}(q, \theta) \mathrm{d} \theta
$$

- define an allocation $q(\cdot)$ to be responsive if, for any θ

$$
\begin{gathered}
\theta q(\theta)-\max \{q(\theta), 0\}+\min \{\theta, 1-\theta\} \leq 0 \\
\Rightarrow q(\theta)=\left\{\begin{array}{lll}
-1 & \text { if } & \theta<1 / 2 \\
+1 & \text { if } & \theta \geq 1 / 2
\end{array}\right.
\end{gathered}
$$

- if net utility of experiment is negative for θ, then assign zero information experiment

Incentive Compatibility

- rent of type $\theta=1 / 2$

$$
U(1 / 2)=\int_{0}^{1 / 2}(q(\theta)+1) \mathrm{d} \theta=-\int_{1 / 2}^{1}(q(\theta)-1) \mathrm{d} \theta
$$

Proposition (Necessary Conditions)

If the allocation $q(\theta)$ is implementable and responsive then

$$
q(\theta) \in[-1,1] \text { is non-decreasing, }
$$

and

$$
\int_{0}^{1} q(\theta) d \theta=0
$$

- note: a different kind of constraint, a global constraint

Seller's Problem

$$
\begin{gathered}
\max _{q(\theta)} \int_{0}^{1}\left[\left(\theta-\frac{1-F(\theta)}{f(\theta)}\right) q(\theta)-\max \{q(\theta), 0\}\right] f(\theta) \mathrm{d} \theta \\
\text { s.t. } q(\theta) \in[-1,1] \text { non-decreasing, } \\
\int_{0}^{1} q(\theta) \mathrm{d} \theta=0
\end{gathered}
$$

Piecewise linear (concave) problem with integral constraint.
Absent the integral constraint, corner solutions:

- $q^{*} \in\{-1,0,1\}$, i.e., all-or-nothing information, flat price.
- E.g., truncated support or symmetric distribution.

Optimal Menu

Proposition (Optimal Menu)

An optimal menu consists of at most two experiments.
(1) The first experiment is fully informative.
(2) The second experiment is locally non-dispersed and locally noisefree.

- coarse menu
- a continuum of types - yet only a binary choice is provided

Properties of the Optimal Menu

Optimal mechanism involves ≤ 2 bunching intervals.
Ideally, would sell $q=0$ at two different prices (for $\theta \lessgtr 1 / 2$).

- Symmetric distribution or truncated support \rightarrow flat pricing.
- Second-best menu may contain $q=0$ only...
- ... or distort the "least profitable side."
- No further versioning is optimal.

Least informed types \neq most valuable to the seller.
Type $\theta=1 / 2$ need not get efficient $q=0$.

Conclusions: Selling Information

- selling incremental information to privately informed buyers.
- costless acquisition \& transmission, free degrading
- "uninterested seller" - packaging problem
- bayesian problem for buyers
- linear in probabilities: limited use of versioning
- screening across agents through directional information

Seller's Problem

$$
\begin{gathered}
\max _{q(\theta)} \int_{0}^{1}\left[\left(\theta-\frac{1-F(\theta)}{f(\theta)}\right) q(\theta)-\max \{q(\theta), 0\}\right] f(\theta) \mathrm{d} \theta \\
\text { s.t. } q(\theta) \in[-1,1] \text { non-decreasing, } \\
\int_{0}^{1} q(\theta) \mathrm{d} \theta=0
\end{gathered}
$$

Seller's Problem

$$
\begin{gathered}
\max _{q(\theta)} \int_{0}^{1}[(\theta f(\theta)+F(\theta)) q(\theta)-\max \{q(\theta), 0\} f(\theta)] \mathrm{d} \theta \\
\text { s.t. } q(\theta) \in[-1,1] \text { non-decreasing, } \\
\int_{0}^{1} q(\theta) \mathrm{d} \theta=0
\end{gathered}
$$

Consider "virtual values" for each experiment q separately:

$$
\phi(\theta, q) \triangleq\left\{\begin{array}{ll}
\theta f(\theta)+F(\theta) & \text { for } \quad q<0 \\
(\theta-1) f(\theta)+F(\theta) & \text { for }
\end{array} \quad q>0\right.
$$

- $\phi=$ marginal value of going from $q(\theta)=-1$ to 0 to 1 .
- Problem is not separable: virtual value ϕ depends on q.

General Case

- Let λ denote the multiplier on the integral constraint (shadow cost of providing higher "quantity").
- Let $\bar{\phi}(\theta, q)$ denote the ironed virtual value for experiment q.

Proposition (Optimal Allocation Rule)

Allocation $q^{*}(\theta)$ is optimal if and only if there exists $\lambda^{*} \geq 0$ s.t.

$$
q^{*}(\theta) \in \underset{q \in[-1,1]}{\arg \max }\left[\int_{0}^{q}\left(\bar{\phi}(\theta, x)-\lambda^{*}\right) d x\right] \text { for all } \theta
$$

has the "pooling property," and satisfies the integral constraint.

- Myerson (1981), Toikka (2011), Luenberger (1969).

Example 1: Uniform Distribution

Virtual Values: $\phi(\theta,-1)$ in blue; $\phi(\theta, 1)$ in red.

Example 1: Uniform Distribution

Virtual Values: $\phi(\theta,-1)$ in blue; $\phi(\theta, 1)$ in red.

Example 1: Uniform Distribution

Optimality of Flat Pricing

Proposition (Flat Pricing)

The optimal menu contains only the fully informative experiment when any of the following conditions hold:
(1) the density $f(\theta)=0$ for all $\theta>1 / 2$ or $\theta<1 / 2$;
(2) the density $f(\theta)$ is symmetric around $\theta=1 / 2$.
(3) $F(\theta)+\theta f(\theta)$ and $F(\theta)+(\theta-1) f(\theta)$ are strictly increasing.

A second experiment is offered only if ironing is required.

Non-monotone Density

Probability Density Function: informed types are frequent

Example 2: Combination of Beta Distributions

Example 2: Beta Distributions

need not get efficient $q=0$.

Implications for Observables

- how to damage an information good
- should not observe arbitrarily damaged goods
- directional information: only type- I or $I I$ errors
- should not observe multiple distortions of the same kind
- directional distortions \sim disclosure of specific attributes (correlated with high- or low- value consumers).

