The Limits of Price Discrimination

Dirk Bergemann, Ben Brooks and Stephen Morris

University of Zurich May 2014

Introduction: A classic economic issue ...

- a classic issue in the analysis of monpoly is the impact of discriminatory pricing on consumer and producer surplus
- if monopolist has additional information beyond the aggregate distribution of valuations (common prior), he can discriminate among segments of the aggregate market using the additional information about consumers' valuations
- a monopolist engages in third degree price discrimination if he uses additional information - beyond the aggregate distribution - about consumer characteristics to offer different prices to different segments

...information and segmentation...

- with additional information about the valuations of the consumers
 seller can match/tailor prices
- · additional information leads to segmentation of the population
- different segments are offered different prices
- what are then the possible (consumer surplus, producer surplus) pairs (for some information)?
- in other words, what are possible welfare outcomes from *third* degree price discrimination?

... and a modern issue

- if market segmentations are exogenous (location, time, age), then only specific segmentations may be of interest,
- but, increasingly, data intermediaries collect and distribute information, and in consequence segmentations become increasingly endogeneous, choice variables
- for example, if data is collected directly by the seller, then as much information about valuations as possible might be collected, consumer surplus is extracted
- by contrast, if data is collected by an intermediary, to increase consumer surplus, or for some broader business model, then the choice of segmentation becomes an instrument of design
- implications for privacy regulations, data collection, data sharing, etc....

A Classical Economic Problem: A First Pass

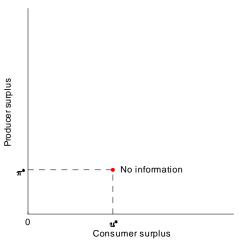
- Fix a demand curve
- Interpret the demand curve as representing single unit demand of a continuum of consumers
- If a monopolist producer is selling the good, what is producer surplus (monopoly profits) and consumer surplus (area under demand curve = sum of surplus of buyers)?

A Classical Economic Problem: A First Pass

- Fix a demand curve
- Interpret the demand curve as representing single unit demand of a continuum of consumers
- If a monopolist producer is selling the good, what is producer surplus (monopoly profits) and consumer surplus (area under demand curve = sum of surplus of buyers)?
- If the seller cannot discriminate between consumers, he must charge uniform monopoly price

The Uniform Price Monopoly

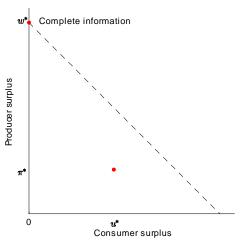
• Write u^* for the resulting consumer surplus and π^* for the producer surplus ("uniform monopoly profits")



- But what if the producer could observe each consumer's valuation perfectly?
- Pigou (1920) called this "first degree price discrimination"
- In this case, consumer gets zero surplus and producer fully extracts efficient surplus $w^* > \pi^* + u^*$

First Degree Price Discrimination

• In this case, consumer gets zero surplus and producer fully extracts efficient surplus $w^* > \pi^* + u^*$



 But what if the producer can only observe an imperfect signal of each consumer's valuation, and charge different prices based on the signal?

- But what if the producer can only observe an imperfect signal of each consumer's valuation, and charge different prices based on the signal?
- Equivalently, suppose the market is split into different segments (students, non-students, old age pensioners, etc....)

- But what if the producer can only observe an imperfect signal of each consumer's valuation, and charge different prices based on the signal?
- Equivalently, suppose the market is split into different segments (students, non-students, old age pensioners, etc....)
- Pigou (1920) called this "third degree price discrimination"

- But what if the producer can only observe an imperfect signal of each consumer's valuation, and charge different prices based on the signal?
- Equivalently, suppose the market is split into different segments (students, non-students, old age pensioners, etc....)
- Pigou (1920) called this "third degree price discrimination"
- What can happen?

- But what if the producer can only observe an imperfect signal of each consumer's valuation, and charge different prices based on the signal?
- Equivalently, suppose the market is split into different segments (students, non-students, old age pensioners, etc....)
- Pigou (1920) called this "third degree price discrimination"
- · What can happen?
- A large literature (starting with Pigou (1920)) asks what happens to consumer surplus, producer surplus and thus total surplus if we segment the market in particular ways

The Limits of Price Discrimination

- Our main question:
 - What could happen to consumer surplus, producer surplus and thus total surplus for all possible ways of segmenting the market?

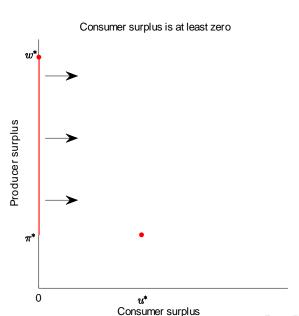
The Limits of Price Discrimination

- Our main question:
 - What could happen to consumer surplus, producer surplus and thus total surplus for all possible ways of segmenting the market?
- Our main result
 - A complete characterization of all (consumer surplus, producer surplus) pairs that can arise...

Three Payoffs Bounds

1 Voluntary Participation: Consumer Surplus is at least zero

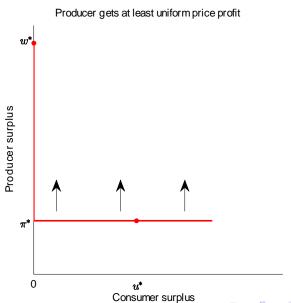
Payoff Bounds: Voluntary Participation



Three Payoff Bounds

- 1 Voluntary Participation: Consumer Surplus is at least zero
- 2 Non-negative Value of Information: Producer Surplus bounded below by uniform monopoly profits π^*

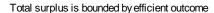
Payoff Bounds: Nonnegative Value of Information

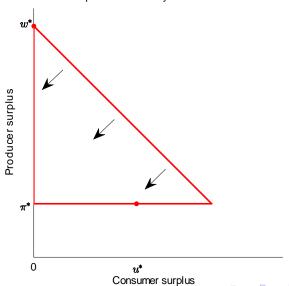


Three Payoff Bounds

- 1 Voluntary Participation: Consumer Surplus is at least zero
- 2 Non-negative Value of Information: Producer Surplus bounded below by uniform monopoly profits π^*
- 3 Social Surplus: The sum of Consumer Surplus and Producer Surplus cannot exceed the total gains from trade

Payoff Bounds: Social Surplus



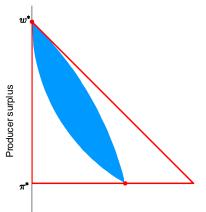


Beyond Payoff Bounds

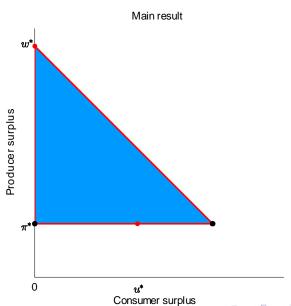
- 1 Includes point of uniform price monopoly, (u^*, π^*) ,
- 2 Includes point of perfect price discrimination, $(0, w^*)$
- 3 Segmentation supports convex combinations

Payoff Bounds and Convexity

- 1 Includes point of uniform price monopoly, (u^*, π^*) ,
- 2 Includes point of perfect price discrimination, $(0, w^*)$
- 3 Segmentation supports convex combinations



Main Result: Payoff Bounds are Sharp



Main Result

 For any demand curve, any (consumer surplus, producer surplus) pair consistent with three bounds arises with some segmentation / information structure....

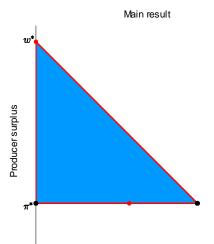
Main Result

- For any demand curve, any (consumer surplus, producer surplus) pair consistent with three bounds arises with some segmentation / information structure....in particular, there exist ...
- 1 a consumer surplus maximizing segmentation where
 - 1 the producer earns uniform monopoly profits,
 - 2 the allocation is efficient,
 - 3 and the consumers attain the difference between efficient surplus and uniform monopoly profit.

- For any demand curve, any (consumer surplus, producer surplus) pair consistent with three bounds arises with some segmentation / information structure....in particular, there exist ...
- 1 a consumer surplus maximizing segmentation where
 - 1 the producer earns uniform monopoly profits,
 - 2 the allocation is efficient,
 - 3 and the consumers attain the difference between efficient surplus and uniform monopoly profit.
- 2 a social surplus minimizing segmentation where
 - 1 the producer earns uniform monopoly profits,
 - 2 the consumers get zero surplus,
 - 3 and so the allocation is very inefficient.

The Surplus Triangle

- convex combination of any pair of achievable payoffs as binary segmentation between constituent markets
- it suffices to obtain the vertices of the surplus triangle



- 1 Main Result
 - Setup of Finite Value Case
 - Proof for the Finite Value Case

- 1 Main Result
 - Setup of Finite Value Case
 - Proof for the Finite Value Case
 - Constructions (and a little more intuition?)

- 1 Main Result
 - Setup of Finite Value Case
 - Proof for the Finite Value Case
 - Constructions (and a little more intuition?)
 - Continuum Value Extension

- 1 Main Result
 - Setup of Finite Value Case
 - Proof for the Finite Value Case
 - Constructions (and a little more intuition?)
 - Continuum Value Extension
- 2 Context
 - The Relation to the Classical Literature on Third Degree Price Discrimination, including results for output and prices

- 1 Main Result
 - Setup of Finite Value Case
 - Proof for the Finite Value Case
 - Constructions (and a little more intuition?)
 - Continuum Value Extension
- 2 Context
 - The Relation to the Classical Literature on Third Degree Price Discrimination, including results for output and prices
 - The General Screening / Second Degree Price Discrimination Case

- 1 Main Result
 - Setup of Finite Value Case
 - Proof for the Finite Value Case
 - Constructions (and a little more intuition?)
 - Continuum Value Extension
- 2 Context
 - The Relation to the Classical Literature on Third Degree Price Discrimination, including results for output and prices
 - The General Screening / Second Degree Price Discrimination Case
 - Methodology:
 - Concavification, Aumann and Maschler, Kamenica and Gentzkow

- 1 Main Result
 - Setup of Finite Value Case
 - Proof for the Finite Value Case
 - Constructions (and a little more intuition?)
 - Continuum Value Extension
- 2 Context
 - The Relation to the Classical Literature on Third Degree Price Discrimination, including results for output and prices
 - The General Screening / Second Degree Price Discrimination Case
 - Methodology:
 - Concavification, Aumann and Maschler, Kamenica and Gentzkow
 - Many Player Version: "Bayes Correlated Equilibrium"

1 Main Result

- Setup of Finite Value Case
- Proof for the Finite Value Case
- Constructions (and a little more intuition?)
- Continuum Value Extension

2 Context

- The Relation to the Classical Literature on Third Degree Price Discrimination, including results for output and prices
- The General Screening / Second Degree Price Discrimination Case
- Methodology:
 - Concavification, Aumann and Maschler, Kamenica and Gentzkow
 - Many Player Version: "Bayes Correlated Equilibrium"

 Characterize what can happen for a fixed "basic game" (fundamentals) for any possible information structure

- Characterize what can happen for a fixed "basic game" (fundamentals) for any possible information structure
- we refer to this as "robust predictions", robust to the details of the structure of the private information of the agents

- Characterize what can happen for a fixed "basic game" (fundamentals) for any possible information structure
- we refer to this as "robust predictions", robust to the details of the structure of the private information of the agents
- A solution concept, "Bayes correlated equilibrium," characterizes what could happen in (Bayes Nash) equilibrium for all information structures

- Characterize what can happen for a fixed "basic game" (fundamentals) for any possible information structure
- we refer to this as "robust predictions", robust to the details of the structure of the private information of the agents
- A solution concept, "Bayes correlated equilibrium," characterizes what could happen in (Bayes Nash) equilibrium for all information structures
- Advantages:
 - do not have to solve for all information structures separately
 - nice linear programming characterization

Papers Related to this Agenda

Bergemann and Morris: A general approach for general finite games ("The Comparison of Information Structures in Games: Bayes Correlated Equilibrium and Individual Sufficiency")

Papers Related to this Agenda

- Bergemann and Morris: A general approach for general finite games ("The Comparison of Information Structures in Games: Bayes Correlated Equilibrium and Individual Sufficiency")
- 2 IO applications (with Ben Brooks)
 - 1 ...today...
 - 2 Extremal Information Structures in First Price Auctions

Papers Related to this Agenda

- 1 Bergemann and Morris: A general approach for general finite games ("The Comparison of Information Structures in Games: Bayes Correlated Equilibrium and Individual Sufficiency")
- 2 IO applications (with Ben Brooks)
 - 1 ...today...
 - 2 Extremal Information Structures in First Price Auctions
- 3 Linear Normal Symmetric
 - Stylised applications within continuum player, linear best response, normally distributed games with common values (aggregate uncertainty) ("Robust Predictions in Incomplete Information Games", Econometrica 2013)
 - Unformation and Volatility" (with Tibor Heumann): economy of interacting agents, agents are subject to idiosyncratic and aggregate shocks, how do shocks translate into individual, aggregate volatility, how does the translation depend on the information structure?
 - 3 "Market Power and Information" (with Tibor Heumann): adding endogeneous prices as supply function equilibrium

- continuum of consumers
- finite set of valuations:

$$0 < v_1 < v_2 < ... < v_k < ... < v_K$$

constant marginal cost normalized to zero

- continuum of consumers
- finite set of valuations:

$$0 < v_1 < v_2 < ... < v_k < ... < v_K$$

- constant marginal cost normalized to zero
- a market is a probability vector

$$x = (x_1, ..., x_k, ..., x_K)$$

where x_k is the proportion of consumers with valuation v_k

- continuum of consumers
- finite set of valuations:

$$0 < v_1 < v_2 < ... < v_k < ... < v_K$$

- constant marginal cost normalized to zero
- a market is a probability vector

$$x = (x_1, ..., x_k, ..., x_K)$$

where x_k is the proportion of consumers with valuation v_k

set of possible markets X is the K-dimensional simplex,

$$X \triangleq \left\{ x \in \mathbb{R}_+^K \middle| \sum_{k=1}^K x_k = 1 \right\}.$$

Markets and Monopoly Prices

• the price v_i is optimal for a given market x if and only if

$$v_i \sum_{j \geq i} x_j \geq v_k \sum_{j \geq k} x_j, \quad \forall k$$

Markets and Monopoly Prices

• the price v_i is optimal for a given market x if and only if

$$v_i \sum_{j \geq i} x_j \geq v_k \sum_{j \geq k} x_j, \quad \forall k$$

• write X_i for the set of markets where price v_i is optimal,

$$X_i \triangleq \left\{ x \in X \middle| v_i \sum_{j \geq i} x_j \geq v_k \sum_{j \geq k} x_j, \ \forall k \right\}.$$

Markets and Monopoly Prices

• the price v_i is optimal for a given market x if and only if

$$v_i \sum_{j \geq i} x_j \geq v_k \sum_{j \geq k} x_j, \quad \forall k$$

• write X_i for the set of markets where price v_i is optimal,

$$X_i \triangleq \left\{ x \in X \middle| v_i \sum_{j \geq i} x_j \geq v_k \sum_{j \geq k} x_j, \ \forall k \right\}.$$

• each X_i is a convex polytope in the probability simplex

Aggregate Market

• there is an "aggregate market" x^* :

$$x^* = (x_1^*, ..., x_k^*, ..., x_K^*)$$

• there is an "aggregate market" x^* :

$$x^* = (x_1^*, ..., x_k^*, ..., x_K^*)$$

define the uniform monopoly price for aggregate market x*:

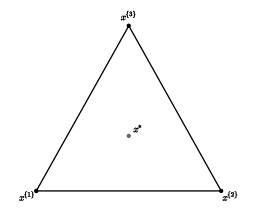
$$p^* = v_{i^*}$$

such that:

$$v_{i*} \sum_{j \geq i*} x_j \geq v_k \sum_{j \geq k} x_j, \quad \forall k$$

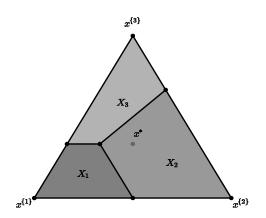
A Visual Representation: Aggregate Market

- given aggregate market x^* as point in probability simplex
- here $x^* = (1/3, 1/3, 1/3)$ uniform across $v \in \{1, 2, 3\}$



A Visual Representation: Optimal Prices and Partition

• composition of aggregate market $x^* = (x_1^*, ..., x_k^*, ..., x_K^*)$ determines optimal monopoly price: $p^* = 2$



Segmentation of Aggregate Market

• segmentation: σ is a simple probability distribution over the set of markets X,

$$\sigma \in \Delta(X)$$

• $\sigma(x)$ is the proportion of the population in segment with composition $x \in X$

Segmentation of Aggregate Market

• segmentation: σ is a simple probability distribution over the set of markets X,

$$\sigma \in \Delta(X)$$

- $\sigma(x)$ is the proportion of the population in segment with composition $x \in X$
- a segmentation is a two stage lottery over values $\{v_1, ..., v_K\}$ whose reduced lottery is x^* :

$$\left\{\sigma \in \Delta\left(X\right) \left| \sum_{x \in \mathsf{supp}(\sigma)} \sigma\left(x\right) \cdot x = x^*, \ \left| \mathsf{supp}\left(\sigma\right) \right| < \infty \right. \right\}.$$

Segmentation of Aggregate Market

• segmentation: σ is a simple probability distribution over the set of markets X,

$$\sigma \in \Delta(X)$$

- $\sigma(x)$ is the proportion of the population in segment with composition $x \in X$
- a segmentation is a two stage lottery over values {v₁, ..., v_K}
 whose reduced lottery is x*:

$$\left\{\sigma \in \Delta\left(X\right) \left| \sum_{x \in \operatorname{supp}(\sigma)} \sigma\left(x\right) \cdot x = x^*, \ \left| \operatorname{supp}\left(\sigma\right) \right| < \infty \right.\right\}.$$

• a pricing strategy for segmentation σ specifies a price in each market in the support of σ ,

$$\phi : \mathsf{supp} (\sigma) \to \Delta \{v_1, ..., v_K\},$$

Segmentation as Splitting

- consider the uniform market with three values
- a segmentation of the uniform aggregate market into three market segments:

	v=1	v = 2	v = 3	weight
market 1	$\frac{1}{2}$	<u>1</u>	<u>1</u> 3	<u>2</u> 3
market 2	0	$\frac{1}{3}$	<u>2</u> <u>3</u>	$\frac{1}{6}$
market 3	0	1	0	<u>1</u>
total	<u>1</u> 3	<u>1</u> 3	1/3	

Joint Distribution

• the segments of the aggregate market form a joint distribution over market segmentations and valuations

	v = 1	v = 2	<i>v</i> = 3
market 1	$\frac{1}{3}$	$\frac{1}{9}$	<u>2</u>
market 2	0	1 18	<u>1</u>
market 3	0	<u>1</u>	0

Signals Generating this Segmentation

- additional information (signals) can generate the segmentation
- likelihood function

$$\lambda: V \rightarrow \Delta(S)$$

• in the uniform example

λ	v=1	v=2	v = 3
signal 1	1	$\frac{1}{3}$	<u>2</u> 3
signal 2	0	$\frac{1}{6}$	$\frac{1}{3}$
signal 3	0	1/2	0

Segmentation into "Extremal Markets"

• this segmentation was special

	v=1	v = 2	<i>v</i> = 3	weight
{1, 2, 3}	$\frac{1}{2}$	<u>1</u> 6	<u>1</u> 3	<u>2</u> 3
{2,3}	0	$\frac{1}{3}$	<u>2</u> <u>3</u>	$\frac{1}{6}$
{2}	0	1	0	<u>1</u>
total	<u>1</u> 3	1/3	<u>1</u> 3	

• price 2 is optimal in all markets

Segmentation into "Extremal Markets"

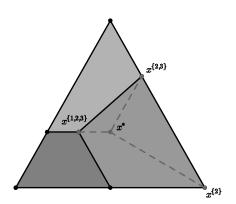
• this segmentation was special

	v=1	v=2	v=3	weight
{1, 2, 3}	$\frac{1}{2}$	<u>1</u> 6	<u>1</u> 3	<u>2</u> 3
{2,3}	0	$\frac{1}{3}$	<u>2</u> <u>3</u>	$\frac{1}{6}$
{2}	0	1	0	<u>1</u>
total	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	

- price 2 is optimal in all markets
- in fact, seller is always indifferent between all prices in the support of every market segment, "unit price elasticity"

Geometry of Extremal Markets

• extremal segment x^S : seller is indifferent between all prices in the support of S



Minimal Pricing

 an optimal policy: always charge lowest price in the support of every segment:

	v = 1	v = 2	<i>v</i> = 3	price	weight
{1,2,3}	$\frac{1}{2}$	$\frac{1}{6}$	<u>1</u> 3	1	2/3
{2,3}	0	$\frac{1}{3}$	<u>2</u> <u>3</u>	2	<u>1</u>
{2}	0	1	0	2	<u>1</u>
total	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$		1

Maximal Pricing

 another optimal policy: always charge highest price in each segment:

	v=1	v = 2	v = 3	price	weight
{1,2,3}	$\frac{1}{2}$	$\frac{1}{6}$	<u>1</u> 3	3	2/3
{2,3}	0	$\frac{1}{3}$	<u>2</u> <u>3</u>	3	$\frac{1}{6}$
{2}	0	1	0	2	<u>1</u>
total	1/3	1/3	<u>1</u> 3		1

Extremal Market: Definition

• for any support set $S \subseteq \{1,...,K\} \neq \emptyset$, define market x^S :

$$x^S = \left(...., x_k^S, ...\right) \in X$$
,

with the properties that:

- 1 no consumer has valuations outside the set $\{v_i\}_{i \in S}$;
- 2 the monopolist is indifferent between every price in $\{v_i\}_{i\in S}$.

• for every S, this uniquely defines a market

$$x^{S} = (...., x_{k}^{S}, ...) \in X$$

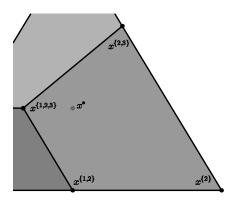
 writing <u>S</u> for the smallest element of S, the unique distribution is

$$x_k^S \triangleq \begin{cases} \frac{v_S}{v_k} - \sum_{k' > k} x_{k'} & \text{if } k \in S \\ 0, & \text{if } k \notin S. \end{cases}$$

• for any S, market x^S is referred to as extremal market

Geometry of Extremal Markets

extremal markets



Convex Representation

• set of markets X_{i^*} where uniform monopoly price $p^* = v_{i^*}$ is optimal:

$$X_{i^*} = \left\{ x \in X \middle| v_{i^*} \sum_{j \ge i^*} x_j \ge v_k \sum_{j \ge k} x_j, \ \forall k \right\}$$

Convex Representation

• set of markets X_{i^*} where uniform monopoly price $p^* = v_{i^*}$ is optimal:

$$X_{i^*} = \left\{ x \in X \middle| v_{i^*} \sum_{j \ge i^*} x_j \ge v_k \sum_{j \ge k} x_j, \ \forall k \right\}$$

• \mathcal{S}^* is subset of subsets $S \subseteq \{1,...,i^*,...,K\}$ containing i^*

Convex Representation

• set of markets X_{i^*} where uniform monopoly price $p^* = v_{i^*}$ is optimal:

$$X_{i^*} = \left\{ x \in X \middle| v_{i^*} \sum_{j \ge i^*} x_j \ge v_k \sum_{j \ge k} x_j, \ \forall k \right\}$$

• \mathcal{S}^* is subset of subsets $S \subseteq \{1,...,i^*,...,K\}$ containing i^*

Lemma (Extremal Segmentation)

 X_{i^*} is the convex hull of $(x^S)_{S \in S^*}$

Extremal Segmentations

• S^* is subset of subsets $S \subseteq \{1, ..., i^*, ..., K\}$ containing i^*

Lemma (Extremal Segmentation)

 X_{i^*} is the convex hull of $(x^S)_{S \in \mathcal{S}^*}$

• S^* is subset of subsets $S \subseteq \{1, ..., i^*, ..., K\}$ containing i^*

Lemma (Extremal Segmentation)

 X_{i^*} is the convex hull of $(x^S)_{S \in S^*}$ Sketch of Proof:

• pick any $x \in X$ where price v_{i^*} is optimal (i.e., $x \in X_{i^*}$) but there exists k such that valuation v_k arises with strictly positive probability (so $x_k > 0$) but is not an optimal price

• S^* is subset of subsets $S \subseteq \{1, ..., i^*, ..., K\}$ containing i^*

Lemma (Extremal Segmentation)

- pick any $x \in X$ where price v_{i^*} is optimal (i.e., $x \in X_{i^*}$) but there exists k such that valuation v_k arises with strictly positive probability (so $x_k > 0$) but is not an optimal price
- let S be the support of x

• S^* is subset of subsets $S \subseteq \{1, ..., i^*, ..., K\}$ containing i^*

Lemma (Extremal Segmentation)

- pick any $x \in X$ where price v_{i^*} is optimal (i.e., $x \in X_{i^*}$) but there exists k such that valuation v_k arises with strictly positive probability (so $x_k > 0$) but is not an optimal price
- let S be the support of x
- now we have
 - $x^S \neq x$

• S^* is subset of subsets $S \subseteq \{1, ..., i^*, ..., K\}$ containing i^*

Lemma (Extremal Segmentation)

- pick any $x \in X$ where price v_{i^*} is optimal (i.e., $x \in X_{i^*}$) but there exists k such that valuation v_k arises with strictly positive probability (so $x_k > 0$) but is not an optimal price
- let S be the support of x
- now we have
 - $x^S \neq x$
 - both $x + \varepsilon (x^5 x)$ and $x \varepsilon (x^5 x)$ are contained in X_{i^*} for small enough $\varepsilon > 0$

• S^* is subset of subsets $S \subseteq \{1, ..., i^*, ..., K\}$ containing i^*

Lemma (Extremal Segmentation)

- pick any $x \in X$ where price v_{i^*} is optimal (i.e., $x \in X_{i^*}$) but there exists k such that valuation v_k arises with strictly positive probability (so $x_k > 0$) but is not an optimal price
- let S be the support of x
- now we have
 - $x^S \neq x$
 - both $x + \varepsilon (x^S x)$ and $x \varepsilon (x^S x)$ are contained in X_{i^*} for small enough $\varepsilon > 0$
- so x is not an extreme point of X_{i*}

Remainder of Proof of Main Result

- Split x* into any extremal segmentation
- There is a pricing rule for that one segmentation that attains any point on the bottom of the triangle, i.e., producer surplus π^* anything between 0 and $w^* \pi^*$.
- The rest of the triangle attained by convexity

Pricing Rules

A pricing rule specifies how to break monopolist indifference

1 "Minimum pricing rule" implies efficiency (everyone buys)

Pricing Rules

- 1 "Minimum pricing rule" implies efficiency (everyone buys)
- 2 "Maximum pricing rule" implies zero consumer surplus (any consumer who buys pays her value)

Pricing Rules

- 1 "Minimum pricing rule" implies efficiency (everyone buys)
- 2 "Maximum pricing rule" implies zero consumer surplus (any consumer who buys pays her value)
- 3 Any pricing rule (including maximum and minimum rules) gives the monopolist exactly his uniform monopoly profits

- 1 "Minimum pricing rule" implies efficiency (everyone buys)
- 2 "Maximum pricing rule" implies zero consumer surplus (any consumer who buys pays her value)
- 3 Any pricing rule (including maximum and minimum rules) gives the monopolist exactly his uniform monopoly profits
 - So minimum pricing rule maximizes consumer surplus (bottom right corner of triangle)

- 1 "Minimum pricing rule" implies efficiency (everyone buys)
- 2 "Maximum pricing rule" implies zero consumer surplus (any consumer who buys pays her value)
- 3 Any pricing rule (including maximum and minimum rules) gives the monopolist exactly his uniform monopoly profits
- So minimum pricing rule maximizes consumer surplus (bottom right corner of triangle)
- So maximum pricing rule minimizes total surplus (bottom left corner of triangle)

Theorem (Minimum and Maximum Pricing)

- 1 In every extremal segmentation, minimum and maximum pricing strategies are optimal;
- 2 producer surplus is π^* under every optimal pricing strategy;
- 3 consumer surplus is zero under maximum pricing strategy;
- **4** consumer surplus is $w^* \pi^*$ under minimum pricing strategy.

We first report a simple direct construction of a consumer surplus maximizing segmentation (bottom right hand corner):

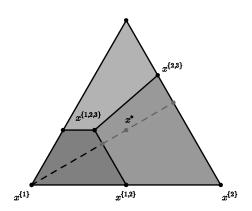
- 1 first split:
 - 1 We first create a market which contains all consumers with the lowest valuation v_1 and a constant proportion q_1 of valuations greater than or equal to v_2
 - 2 Choose q_1 so that the monopolist is indifferent between charging price v_1 and the uniform monopoly price v_{i*}
 - Note that v_{i*} continues to be an optimal price in the residual market
- 2 Iterate this process

We first report a simple direct construction of a consumer surplus maximizing segmentation (bottom right hand corner):

- 1 first split:
- 2 Iterate this process
- \odot thus at round k,
 - 1 first create a market which contains all consumers with the lowest remaining valuation v_k and a constant proportion q_k of valuations greater than or equal to v_{k+1}
 - 2 Choose q_k so that the monopolist is indifferent between charging price v_k and the uniform monopoly price v_{i*} in the new segment
 - 3 Note that v_{i*} continues to be an optimal price in the residual market

In our three value example, we get:

	v=1	v = 2	v = 3	price	weight
first segment	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	1	$\frac{2}{3}$
second segment	0	$\frac{1}{2}$	$\frac{1}{2}$	2	$\frac{1}{3}$
total	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$		1



Advice for the Consumer Protection Agency?

- Allow producers to offer discounts (i.e., prices lower the uniform monopoly price)
- Put enough high valuation consumers into discounted segments so that the uniform monopoly price remains optimal

A Dual Purpose Segementation: Greedy Algorithm

- 1 Put as many consumers as possible into extremal market $_{\mathbf{X}}\{1,2,...,K\}$
- 2 Generically, we will run out of consumers with some valuation, say, v_k
- 3 Put as many consumers as possible into residual extremal market $x^{\{1,2,...,K\}/\{k\}}$
- 4 Etc....

Greedy Algorithm

• In our three value example, we get first:

	v=1	v=2	<i>v</i> = 3	weight
{1,2,3}	$\frac{1}{2}$	$\frac{1}{6}$	<u>1</u> 3	$\frac{2}{3}$
{2,3}	0	<u>2</u> <u>3</u>	$\frac{1}{3}$	$\frac{1}{3}$
total	<u>1</u> 3	<u>1</u> 3	<u>1</u> 3	1

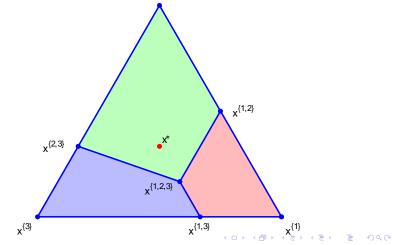
Greedy Algorithm

• Then we get

	v=1	v=2	v=3	weight
market 1	1/2	<u>1</u>	<u>1</u> 3	<u>2</u> 3
market 2	0	$\frac{1}{3}$	<u>2</u> 3	<u>1</u>
market 3	0	1	0	<u>1</u> 6
total	<u>1</u> 3	$\frac{1}{3}$	<u>1</u> 3	

A Visual Proof: Extremal Markets

• extremal markets $x^{\{...\}}$



Extreme markets $x^{\{2\}}$

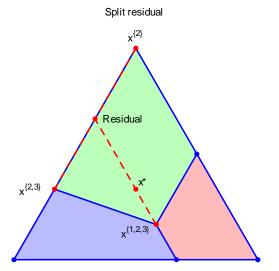
A Visual Proof: Splitting into Extremal Markets

• splitting the aggregate market x^* into extremal markets $x^{\{...\}}$

Split off x ${1,2,3}$ Residual x^{2,3} x^{1,2,3}

A Visual Proof: Splitting and Greedy Algorithm

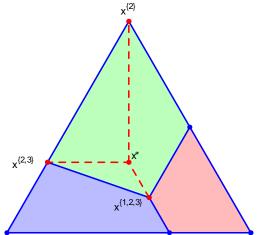
• splitting greedily: maximal weight on the maximal market



A Visual Proof: Extremal Market Segmentation

• splitting the aggregate market x^* into extremal market segments all including $p^* = 2$

Final segmentation



Surplus Triangle

- ullet minimal and maximal pricing rule maintained π^*
- first degree price discrimination resulted in third vertex

Theorem (Surplus Triangle)

There exists a segmentation and optimal pricing rule with consumer surplus u and producer surplus π if and only if (u,π) satisfy $u \geq 0$, $\pi \geq \pi^*$ and $\pi + u \leq w^*$

 convexity of information structures allows to establish the entire surplus triangle

Continuous Demand Case

- All results extend
- Main result can be proved by a routine continuity argument
- Constructions use same economics, different math (differential equations)
- Segments may have mass points

Third Degree Price Discrimination

- classic topic:
 - Pigou (1920) Economics of Welfare
 - Robinson (1933) The Economics of Imperfect Competition
- middle period: e.g.,
 - Schmalensee (1981)
 - Varian (1985)
 - Nahata et al (1990)
- latest word:
 - Aguirre, Cowan and Vickers (AER 2010)
 - Cowan (2012)

Existing Results: Welfare, Output and Prices

- examine welfare, output and prices
- focus on two segments
- price rises in one segment and drops in the other if segment profits are strictly concave and continuous: see Nahata et al (1990))
- Pigou:
 - welfare effect = output effect + misallocation effect
 - two linear demand curves, output stays the same, producer surplus strictly increases, total surplus declines (through misallocation), and so consumer surplus must strictly decrease
- Robinson: less curvature of demand $\left(-\frac{p\cdot q''}{q'}\right)$ in "strong" market means smaller output loss in strong market and higher welfare

Our Results (across all segmentations)

Welfare:

- · Main result: consistent with bounds, anything goes
- Non first order sufficient conditions for increasing and decreasing total surplus (and can map entirely into consumer surplus)

Output:

- Maximum output is efficient output
- Minimum output is given by conditionally efficient allocation generating uniform monopoly profits as total surplus (note: different argument)

Prices:

- all prices fall in consumer surplus maximizing segmentation
- all prices rise in total surplus minimizing segmentation
- prices might always rise or always fall whatever the initial demand function (this is sometimes - as in example consistent with weakly concave profits, but not always)

• our results concerned a special "screening" problem: each consumer has single unit demand

- our results concerned a special "screening" problem: each consumer has single unit demand
- can ask the same question.... look for feasible (information rent, principal utility) pairs... in general screening problems

- our results concerned a special "screening" problem: each consumer has single unit demand
- can ask the same question.... look for feasible (information rent, principal utility) pairs... in general screening problems
- no complete characterization

- our results concerned a special "screening" problem: each consumer has single unit demand
- can ask the same question.... look for feasible (information rent, principal utility) pairs... in general screening problems
- no complete characterization
- we study what drives our results by seeing what happens as we move towards general screening problems by adding a little non-linearity

- our results concerned a special "screening" problem: each consumer has single unit demand
- can ask the same question.... look for feasible (information rent, principal utility) pairs... in general screening problems
- no complete characterization
- we study what drives our results by seeing what happens as we move towards general screening problems by adding a little non-linearity
- corresponds to Pigou's "second degree price discrimination",
 i.e., charging different prices for different quantities / qualities

Re-interpret our Setting and adding small concavity

• Our main setting: Consumer type v consuming quantity $q \in \{0,1\}$ gets utility $v \cdot q$

Re-interpret our Setting and adding small concavity

- Our main setting: Consumer type v consuming quantity $q \in \{0,1\}$ gets utility $v \cdot q$
- It is well known that allowing $q \in [0,1]$ changes nothing

Re-interpret our Setting and adding small concavity

- Our main setting: Consumer type v consuming quantity $q \in \{0,1\}$ gets utility $v \cdot q$
- It is well known that allowing $q \in [0,1]$ changes nothing
- But now suppose we change utility to $v \cdot q + \varepsilon q (1-q)$ for small ε (i.e., add small type independent concave component to utility)

Re-interpret our Setting and adding small concavity

- Our main setting: Consumer type v consuming quantity $q \in \{0,1\}$ gets utility $v \cdot q$
- It is well known that allowing $q \in [0,1]$ changes nothing
- But now suppose we change utility to $v \cdot q + \varepsilon q (1 q)$ for small ε (i.e., add small type independent concave component to utility)
- Equivalently, we are adding small convexity to cost, i.e., increasing marginal cost

Re-interpret our Setting and adding small concavity

- Our main setting: Consumer type v consuming quantity $q \in \{0,1\}$ gets utility $v \cdot q$
- It is well known that allowing $q \in [0,1]$ changes nothing
- But now suppose we change utility to $v \cdot q + \varepsilon q (1 q)$ for small ε (i.e., add small type independent concave component to utility)
- Equivalently, we are adding small convexity to cost, i.e., increasing marginal cost
- Note that efficient allocation for all types is 1

Three Types and Three Output Levels

- Suppose $v \in \{1, 2, 3\}; q \in \{0, \frac{1}{2}, 1\}$
- Always efficient to have allocation of 1
- Note that in this case, utilities are given by

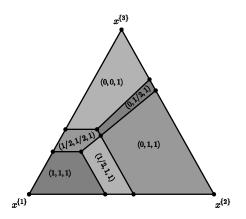
	0	$\frac{1}{2}$	1
1	0	$\frac{1}{2} + \varepsilon$	1
2	0	$1 + \varepsilon$	2
3	0	$\frac{3}{2} + \varepsilon$	3

- contract $q = (q_1, q_2, q_3)$ specifies output level for each type
- six contracts which are monotonic and efficient at the top:

•
$$(0,0,1)$$
, $(0,\frac{1}{2},1)$, $(0,1,1)$, $(\frac{1}{2},\frac{1}{2},1)$, $(\frac{1}{2},1,1)$ and $(1,1,1)$

- Now we can look at analogous simplex picture
- Illustrates geometric structure in the general case

• richer partition of probability simplex

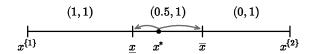


• additional allocations beyond binary appear as optimal

Two Types and Three Output Levels

- Now restrict attention to $v \in \{1, 2\}$
- probability simplex becomes unit interval
- denote by x probabilit of low valuation:

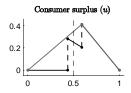
$$x \triangleq \Pr(v = 1)$$

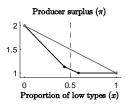


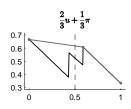
• extremal markets are \underline{x} and \overline{x}

Surplus and Concavified Surplus

 Now it is natural to plot consumer surplus and producer surplus as a function of x, the probability of type 1

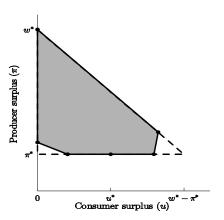






Concavification

• Now solving for feasible (consumer surplus, producer surplus pairs) for $x=\frac{1}{2}$ comes from concavifying weighted sums of these expressions

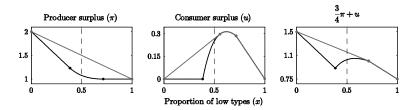


Two Types, Continuous Output

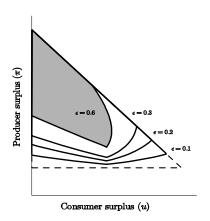
- Now allow any $q \in [0, 1]$
- If x is the proportion of low types, the optimal contract is now:

$$\widetilde{q}(x) = \begin{cases} 0, & \text{if } x \leq \frac{1}{2+4\varepsilon} \\ \frac{1}{2} - \frac{1}{8\varepsilon} \left(2 - \frac{1}{x}\right), & \text{if } \frac{1}{2+4\varepsilon} \leq x \leq \frac{1}{2-4\varepsilon} \\ 1, & \text{if } x \geq \frac{1}{2-4\varepsilon} \end{cases}$$

Two Types, Continuous Output



Two Types, Continuous Output



- 1 The set of prior distributions of types where it is possible to attain bottom left and bottom right corner will shrink fast as the setting gets more complex
- 2 As long as there are a finite set of output levels,
 - 1 There is an analogous restriction to extreme points of best response regions of the simplex (geometric approach translates)
 - 2 The "bottom flat" survives: there is an open set of information rents consistent with principal getting uninformed profit
- 3 With continuum output levels
 - 1 The "bottom flat" goes
 - Multiple information rents consistent with other levels of consumer profit, approaching the triangle continuously as we approach a linear case

Bayesian Persuasion

- Kamenica and Gentzkow (2010): Suppose that a sender could commit (before observing his type) to cheap talk signals to send to a receiver. What would he send?
- 2 de facto, this is what happened in Aumann and Maschler (1995) repeated games with one sided information who showed sender "concavifies" payoffs
- We can solve for feasible surplus pairs by this method if the "sender" were a social planner maximizing a arbitrary weighted sum of consumer and producer surplus and the "receiver" were the monopolist
- 4 Very helpful in two type case, implicit in many type case

Many Player Version

- robust predictions research agenda....
- the set of all outcomes that could arise in Bayes Nash equilibrium in given "basic game" for all possible information structures = "Bayes correlated equilibria"
 - "The comparison of information structures in games: Bayes correlated equilibrium and individual sufficiency" (general theory)
 - "Robust predictions in games with incomplete information games" (applications in symmetric continuum player linear best response games, Ecta (2013))
- seller problem here is single player application
- this paper is by-product of many player application:
 - Bergemann, Brooks and Morris: "Extremal Information Structures in First Price Auction"

- First price auction
- Bidder i's valuations drawn according to cdf F_i
- Lower bound on interim bidder surplus of bidder with valuation v is

$$\underline{u}_{i}(v) = \max_{b} (v - b) \prod_{j \neq i} F_{j}(b)$$

Lower bound on ex ante expected surplus of bidder i is

$$\underline{U}_{i} = \int_{v=0}^{1} \underline{u}_{i}(v) f_{i}(v) dv$$

- Upper bound on expected revenue is total expected surplus minus each bidder's surplus lower bound
- Claim: there is an information structure where these bounds are attained in equilibrium

Auction Teaser: Information Structure Attaining the Lower Bound

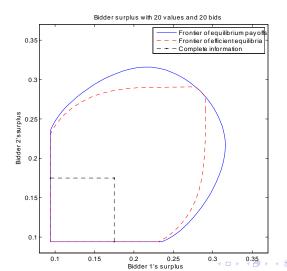
- Tell each bidder if he has the highest value or not
- Losing bidders bid their values and lose (undominated strategy)
- Winning bidder's "uniform monopoly profit" (maximum profit if he knows nothing about the losing bid) is now the lower bound \underline{U}_i
- Our main result states that we can provide (partial)
 information to the winner about highest losing bid in just such
 a way that he is still held down to his uniform monopoly profit
 and always wins

Two Bidders: Information and Revenue

- 2 bidders, valuations uniform on [0,1]
- Ex ante expected surplus is $\frac{2}{3}$
- No information:
 - bid $\frac{1}{2}v$, each bidder surplus $\frac{1}{6}$, revenue $\frac{1}{3}$
- Complete information = Bertrand:
 - each bidder surplus $\frac{1}{6}$, revenue $\frac{1}{3}$
- Our intermediate information structure:
 - each bidder surplus $\frac{1}{12}$, revenue $\frac{1}{2}$

The Payoff Space of the Bidders

• distribution of bidders (surplus) and implications for revenue equivalence, ...



Conclusion

- It is feasible and interesting to see what happens under many information structures at once.
- This methodology generates striking new answers for classical economic questions
- In mechanism design we design the payoffs of the game, assuming the information structure is fixed
- In information design , we design the information received by the players, assuming the game is fixed.

Do We Care about Extremal Segmentations?

- extremal segmentations are "extreme"...
- might not arise exogenously....
- but suppose someone could choose segments endogenously?

Endogenous Segmentations and a Modern Perspective

- extremal segmentations are "extreme"
- might not arise exogenously
- but suppose someone could choose segments endogenously?
- Google knows everyone's values of everything (pretty much)
- Google wants to "do no evil"
- Operationalization of "do no evil": report noisy signals of values to sellers in such a way that sellers choose to price discriminate in a way that attains efficiency and gives all the efficiency gains to consumers