
The Limits of Price Discrimination

Dirk Bergemann, Ben Brooks and Stephen Morris

University of Zurich
May 2014



Introduction: A classic economic issue ...

• a classic issue in the analysis of monpoly is the impact of
discriminatory pricing on consumer and producer surplus

• if monopolist has additional information beyond the aggregate
distribution of valuations (common prior), he can discriminate
among segments of the aggregate market using the additional
information about consumers’valuations

• a monopolist engages in third degree price discrimination if he
uses additional information - beyond the aggregate
distribution - about consumer characteristics to offer different
prices to different segments



...information and segmentation...

• with additional information about the valuations of the
consumers
seller can match/tailor prices

• additional information leads to segmentation of the population
• different segments are offered different prices
• what are then the possible (consumer surplus, producer
surplus) pairs (for some information)?

• in other words, what are possible welfare outcomes from third
degree price discrimination?



... and a modern issue

• if market segmentations are exogenous (location, time, age),
then only specific segmentations may be of interest,

• but, increasingly, data intermediaries collect and distribute
information, and in consequence segmentations become
increasingly endogeneous, choice variables

• for example, if data is collected directly by the seller, then as
much information about valuations as possible might be
collected, consumer surplus is extracted

• by contrast, if data is collected by an intermediary, to increase
consumer surplus, or for some broader business model, then
the choice of segmentation becomes an instrument of design

• implications for privacy regulations, data collection, data
sharing, etc....



A Classical Economic Problem: A First Pass

• Fix a demand curve
• Interpret the demand curve as representing single unit demand
of a continuum of consumers

• If a monopolist producer is selling the good, what is producer
surplus (monopoly profits) and consumer surplus (area under
demand curve = sum of surplus of buyers)?

• If the seller cannot discriminate between consumers, he must
charge uniform monopoly price
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The Uniform Price Monopoly

• Write u∗ for the resulting consumer surplus and π∗ for the
producer surplus ("uniform monopoly profits")
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Perfect Price Discrimination

• But what if the producer could observe each consumer’s
valuation perfectly?

• Pigou (1920) called this "first degree price discrimination"
• In this case, consumer gets zero surplus and producer fully
extracts effi cient surplus w∗ > π∗ + u∗
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Imperfect Price Discrimination

• But what if the producer can only observe an imperfect signal
of each consumer’s valuation, and charge different prices
based on the signal?

• Equivalently, suppose the market is split into different
segments (students, non-students, old age pensioners, etc....)

• Pigou (1920) called this "third degree price discrimination"
• What can happen?
• A large literature (starting with Pigou (1920)) asks what
happens to consumer surplus, producer surplus and thus total
surplus if we segment the market in particular ways
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The Limits of Price Discrimination

• Our main question:
• What could happen to consumer surplus, producer surplus and
thus total surplus for all possible ways of segmenting the
market?

• Our main result
• A complete characterization of all (consumer surplus, producer
surplus) pairs that can arise...
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Three Payoffs Bounds

1 Voluntary Participation: Consumer Surplus is at least zero
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Three Payoff Bounds

1 Voluntary Participation: Consumer Surplus is at least zero

2 Non-negative Value of Information: Producer Surplus
bounded below by uniform monopoly profits π∗



Payoff Bounds: Nonnegative Value of Information

0
Consumer surplus

Pr
od

uc
er

 s
ur

pl
us

Producer gets at least uniform price profit



Three Payoff Bounds

1 Voluntary Participation: Consumer Surplus is at least zero

2 Non-negative Value of Information: Producer Surplus
bounded below by uniform monopoly profits π∗

3 Social Surplus: The sum of Consumer Surplus and Producer
Surplus cannot exceed the total gains from trade



Payoff Bounds: Social Surplus
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Beyond Payoff Bounds

1 Includes point of uniform price monopoly, (u∗, π∗),

2 Includes point of perfect price discrimination, (0,w∗)

3 Segmentation supports convex combinations



Payoff Bounds and Convexity

1 Includes point of uniform price monopoly, (u∗, π∗),
2 Includes point of perfect price discrimination, (0,w∗)
3 Segmentation supports convex combinations
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Main Result: Payoff Bounds are Sharp

0
Consumer surplus

Pr
od

uc
er

 s
ur

pl
us

Main result



Main Result

• For any demand curve, any (consumer surplus, producer
surplus) pair consistent with three bounds arises with some
segmentation / information structure....

in particular, there
exist ...

1 a consumer surplus maximizing segmentation where

1 the producer earns uniform monopoly profits,
2 the allocation is effi cient,
3 and the consumers attain the difference between effi cient
surplus and uniform monopoly profit.

2 a social surplus minimizing segmentation where

1 the producer earns uniform monopoly profits,
2 the consumers get zero surplus,
3 and so the allocation is very ineffi cient.
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The Surplus Triangle

• convex combination of any pair of achievable payoffs as binary
segmentation between constituent markets

• it suffi ces to obtain the vertices of the surplus triangle
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Talk

1 Main Result

• Setup of Finite Value Case
• Proof for the Finite Value Case

• Constructions (and a little more intuition?)
• Continuum Value Extension

2 Context

• The Relation to the Classical Literature on Third Degree Price
Discrimination, including results for output and prices

• The General Screening / Second Degree Price Discrimination
Case

• Methodology:
• Concavification, Aumann and Maschler, Kamenica and
Gentzkow

• Many Player Version: "Bayes Correlated Equilibrium"
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Methodology of Bayes correlated equilibrium

• Characterize what can happen for a fixed "basic game"
(fundamentals) for any possible information structure

• we refer to this as "robust predictions", robust to the details
of the structure of the private information of the agents

• A solution concept, "Bayes correlated equilibrium,"
characterizes what could happen in (Bayes Nash) equilibrium
for all information structures

• Advantages:
• do not have to solve for all information structures separately
• nice linear programming characterization
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Model

• continuum of consumers

• finite set of valuations:

0 < v1 < v2 < ... < vk < ... < vK

• constant marginal cost normalized to zero

• a market is a probability vector

x = (x1, ..., xk , ..., xK )

where xk is the proportion of consumers with valuation vk
• set of possible markets X is the K -dimensional simplex,

X ,
{
x ∈ RK+

∣∣∣∣∣
K∑
k=1

xk = 1

}
.
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Markets and Monopoly Prices

• the price vi is optimal for a given market x if and only if

vi
∑
j≥i
xj ≥ vk

∑
j≥k

xj , ∀k

• write Xi for the set of markets where price vi is optimal,

Xi ,

x ∈ X
∣∣∣∣∣∣vi
∑
j≥i
xj ≥ vk

∑
j≥k

xj , ∀k

 .
• each Xi is a convex polytope in the probability simplex
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Aggregate Market

• there is an "aggregate market" x∗:

x∗ = (x∗1 , ..., x
∗
k , ..., x

∗
K )

• define the uniform monopoly price for aggregate market x∗:

p∗ = vi∗

such that:
vi∗
∑
j≥i∗

xj ≥ vk
∑
j≥k

xj , ∀k
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A Visual Representation: Aggregate Market

• given aggregate market x∗ as point in probability simplex
• here x∗ = (1/3, 1/3, 1/3) uniform across v ∈ {1, 2, 3}



A Visual Representation: Optimal Prices and Partition

• composition of aggregate market x∗ = (x∗1 , ..., x
∗
k , ..., x

∗
K )

determines optimal monopoly price: p∗ = 2



Segmentation of Aggregate Market

• segmentation: σ is a simple probability distribution over the
set of markets X ,

σ ∈ ∆ (X )

• σ (x) is the proportion of the population in segment with
composition x ∈ X

• a segmentation is a two stage lottery over values {v1, ..., vK }
whose reduced lottery is x∗ :σ ∈ ∆ (X )

∣∣∣∣∣∣
∑

x∈supp(σ)
σ (x) · x = x∗, |supp (σ)| <∞

 .
• a pricing strategy for segmentation σ specifies a price in each
market in the support of σ,

φ : supp (σ)→ ∆ {v1, ..., vK } ,
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Segmentation as Splitting

• consider the uniform market with three values

• a segmentation of the uniform aggregate market into three
market segments:

v = 1 v = 2 v = 3 weight

market 1
1
2

1
6

1
3

2
3

market 2
0 1

3
2
3

1
6

market 3
0 1 0 1

6

total
1
3

1
3

1
3



Joint Distribution

• the segments of the aggregate market form a joint distribution
over market segmentations and valuations

v = 1 v = 2 v = 3

market 1
1
3

1
9

2
9

market 2
0 1

18
1
9

market 3
0 1

6 0



Signals Generating this Segmentation

• additional information (signals) can generate the segmentation
• likelihood function

λ : V → ∆ (S)

• in the uniform example

λ v = 1 v = 2 v = 3

signal 1
1 1

3
2
3

signal 2
0 1

6
1
3

signal 3
0 1

2 0



Segmentation into "Extremal Markets"

• this segmentation was special

v = 1 v = 2 v = 3 weight

{1, 2, 3}
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{2, 3} 0 1
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3

• price 2 is optimal in all markets

• in fact, seller is always indifferent between all prices in the
support of every market segment, "unit price elasticity"
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Geometry of Extremal Markets

• extremal segment xS : seller is indifferent between all prices in
the support of S



Minimal Pricing

• an optimal policy: always charge lowest price in the support of
every segment:

v = 1 v = 2 v = 3 price weight

{1, 2, 3}
1
2

1
6

1
3 1 2

3

{2, 3} 0 1
3

2
3 2 1

6

{2} 0 1 0 2 1
6

total
1
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1
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1
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Maximal Pricing

• another optimal policy: always charge highest price in each
segment:

v = 1 v = 2 v = 3 price weight

{1, 2, 3}
1
2

1
6

1
3 3 2

3

{2, 3} 0 1
3

2
3 3 1

6

{2} 0 1 0 2 1
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total
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Extremal Market: Definition

• for any support set S ⊆ {1, ...,K} 6= ∅, define market xS :

xS =
(
...., xSk , ...

)
∈ X ,

with the properties that:

1 no consumer has valuations outside the set {vi}i∈S ;
2 the monopolist is indifferent between every price in {vi}i∈S .



Extremal Markets

• for every S , this uniquely defines a market

xS =
(
...., xSk , ...

)
∈ X

• writing S for the smallest element of S , the unique
distribution is

xSk ,


vS
vk
−
∑
k ′>k

xk ′ if k ∈ S

0, if k /∈ S .

• for any S , market xS is referred to as extremal market



Geometry of Extremal Markets

• extremal markets



Convex Representation

• set of markets Xi∗ where uniform monopoly price p∗ = vi∗ is
optimal:

Xi∗ =

x ∈ X
∣∣∣∣∣∣vi∗

∑
j≥i∗

xj ≥ vk
∑
j≥k

xj , ∀k



• S∗ is subset of subsets S ⊆ {1, ..., i∗, ...,K} containing i∗

Lemma (Extremal Segmentation)

Xi∗ is the convex hull of
(
xS
)
S∈S∗
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• S∗ is subset of subsets S ⊆ {1, ..., i∗, ...,K} containing i∗
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Extremal Segmentations

• S∗ is subset of subsets S ⊆ {1, ..., i∗, ...,K} containing i∗

Lemma (Extremal Segmentation)

Xi∗ is the convex hull of
(
xS
)
S∈S∗

Sketch of Proof:

• pick any x ∈ X where price vi∗ is optimal (i.e., x ∈ Xi∗) but
there exists k such that valuation vk arises with strictly
positive probability (so xk > 0) but is not an optimal price

• let S be the support of x
• now we have

• xS 6= x
• both x + ε

(
xS − x

)
and x − ε

(
xS − x

)
are contained in Xi∗

for small enough ε > 0

• so x is not an extreme point of Xi∗
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Remainder of Proof of Main Result

• Split x∗ into any extremal segmentation
• There is a pricing rule for that one segmentation that attains
any point on the bottom of the triangle, i.e., producer surplus
π∗ anything between 0 and w∗ − π∗.

• The rest of the triangle attained by convexity



Pricing Rules

A pricing rule specifies how to break monopolist indifference

1 "Minimum pricing rule" implies effi ciency (everyone buys)

2 "Maximum pricing rule" implies zero consumer surplus (any
consumer who buys pays her value)

3 Any pricing rule (including maximum and minimum rules)
gives the monopolist exactly his uniform monopoly profits

• So minimum pricing rule maximizes consumer surplus (bottom
right corner of triangle)

• So maximum pricing rule minimizes total surplus (bottom left
corner of triangle)
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Main Result 1

Theorem (Minimum and Maximum Pricing)

1 In every extremal segmentation, minimum and maximum
pricing strategies are optimal;

2 producer surplus is π∗ under every optimal pricing strategy;

3 consumer surplus is zero under maximum pricing strategy;

4 consumer surplus is w∗ − π∗ under minimumpricing strategy.



A Simple "Direct" Construction

We first report a simple direct construction of a consumer surplus
maximizing segmentation (bottom right hand corner):

1 first split:

1 We first create a market which contains all consumers with the
lowest valuation v1 and a constant proportion q1 of valuations
greater than or equal to v2

2 Choose q1 so that the monopolist is indifferent between
charging price v1 and the uniform monopoly price vi∗

3 Note that vi∗ continues to be an optimal price in the residual
market

2 Iterate this process



A Simple "Direct" Construction

We first report a simple direct construction of a consumer surplus
maximizing segmentation (bottom right hand corner):

1 first split:

2 Iterate this process

3 thus at round k,

1 first create a market which contains all consumers with the
lowest remaining valuation vk and a constant proportion qk of
valuations greater than or equal to vk+1

2 Choose qk so that the monopolist is indifferent between
charging price vk and the uniform monopoly price vi∗ in the
new segment

3 Note that vi∗ continues to be an optimal price in the residual
market



A Simple "Direct" Construction

In our three value example, we get:

v = 1 v = 2 v = 3 price weight
first segment 1

2
1
4

1
4 1 2

3

second segment 0 1
2

1
2 2 1

3

total
1
3

1
3

1
3 1



A Simple "Direct" Construction



Advice for the Consumer Protection Agency?

• Allow producers to offer discounts (i.e., prices lower the
uniform monopoly price)

• Put enough high valuation consumers into discounted
segments so that the uniform monopoly price remains optimal



A Dual Purpose Segementation: Greedy Algorithm

1 Put as many consumers as possible into extremal market
x{1,2,...,K }

2 Generically, we will run out of consumers with some valuation,
say, vk

3 Put as many consumers as possible into residual extremal
market x{1,2,...,K }/{k}

4 Etc....



Greedy Algorithm

• In our three value example, we get first:

v = 1 v = 2 v = 3 weight

{1, 2, 3}
1
2

1
6

1
3

2
3

{2, 3} 0 2
3

1
3

1
3

total
1
3

1
3

1
3 1



Greedy Algorithm

• Then we get

v = 1 v = 2 v = 3 weight

market 1
1
2

1
6

1
3

2
3

market 2
0 1

3
2
3

1
6

market 3
0 1 0 1

6

total
1
3

1
3

1
3



A Visual Proof: Extremal Markets

• extremal markets x{...}

Extreme markets

x{2}

x{3} x{1}

x{1,2}

x{1,2,3}

x{2,3}

x{1,3}

x*



A Visual Proof: Splitting into Extremal Markets

• splitting the aggregate market x∗ into extremal markets x{...}

Split off x {1,2,3}

x{2}

x{2,3}

x{1,2,3}

x*

Residual



A Visual Proof: Splitting and Greedy Algorithm

• splitting greedily: maximal weight on the maximal market

Split residual

x{2}

x{2,3}

x{1,2,3}

x*

Residual



A Visual Proof: Extremal Market Segmentation

• splitting the aggregate market x∗ into extremal market
segments all including p∗ = 2

Final segmentation

x{2}

x{2,3}

x{1,2,3}

x*



Surplus Triangle

• minimal and maximal pricing rule maintained π∗

• first degree price discrimination resulted in third vertex

Theorem (Surplus Triangle)

There exists a segmentation and optimal pricing rule with
consumer surplus u and producer surplus π if and only if (u, π)
satisfy u ≥ 0, π ≥ π∗ and π + u ≤ w∗

• convexity of information structures allows to establish the
entire surplus triangle



Continuous Demand Case

• All results extend
• Main result can be proved by a routine continuity argument
• Constructions use same economics, different math (differential
equations)

• Segments may have mass points



Third Degree Price Discrimination

• classic topic:
• Pigou (1920) Economics of Welfare
• Robinson (1933) The Economics of Imperfect Competition

• middle period: e.g.,
• Schmalensee (1981)
• Varian (1985)
• Nahata et al (1990)

• latest word:
• Aguirre, Cowan and Vickers (AER 2010)
• Cowan (2012)



Existing Results: Welfare, Output and Prices

• examine welfare, output and prices
• focus on two segments
• price rises in one segment and drops in the other if segment
profits are strictly concave and continuous: see Nahata et al
(1990))

• Pigou:
• welfare effect = output effect + misallocation effect
• two linear demand curves, output stays the same, producer
surplus strictly increases, total surplus declines (through
misallocation), and so consumer surplus must strictly decrease

• Robinson: less curvature of demand (−p·q
′′

q′ ) in "strong"
market means smaller output loss in strong market and higher
welfare



Our Results (across all segmentations)

• Welfare:
• Main result: consistent with bounds, anything goes
• Non first order suffi cient conditions for increasing and
decreasing total surplus (and can map entirely into consumer
surplus)

• Output:
• Maximum output is effi cient output
• Minimum output is given by conditionally effi cient allocation
generating uniform monopoly profits as total surplus (note:
different argument)

• Prices:
• all prices fall in consumer surplus maximizing segmentation
• all prices rise in total surplus minimizing segmentation
• prices might always rise or always fall whatever the initial
demand function (this is sometimes - as in example -
consistent with weakly concave profits, but not always)



Beyond Linear Demand and Cost

• our results concerned a special "screening" problem: each
consumer has single unit demand

• can ask the same question.... look for feasible (information
rent, principal utility) pairs... in general screening problems

• no complete characterization
• we study what drives our results by seeing what happens as
we move towards general screening problems by adding a little
non-linearity

• corresponds to Pigou’s "second degree price discrimination",
i.e., charging different prices for different quantities / qualities



Beyond Linear Demand and Cost

• our results concerned a special "screening" problem: each
consumer has single unit demand

• can ask the same question.... look for feasible (information
rent, principal utility) pairs... in general screening problems

• no complete characterization
• we study what drives our results by seeing what happens as
we move towards general screening problems by adding a little
non-linearity

• corresponds to Pigou’s "second degree price discrimination",
i.e., charging different prices for different quantities / qualities



Beyond Linear Demand and Cost

• our results concerned a special "screening" problem: each
consumer has single unit demand

• can ask the same question.... look for feasible (information
rent, principal utility) pairs... in general screening problems

• no complete characterization

• we study what drives our results by seeing what happens as
we move towards general screening problems by adding a little
non-linearity

• corresponds to Pigou’s "second degree price discrimination",
i.e., charging different prices for different quantities / qualities



Beyond Linear Demand and Cost

• our results concerned a special "screening" problem: each
consumer has single unit demand

• can ask the same question.... look for feasible (information
rent, principal utility) pairs... in general screening problems

• no complete characterization
• we study what drives our results by seeing what happens as
we move towards general screening problems by adding a little
non-linearity

• corresponds to Pigou’s "second degree price discrimination",
i.e., charging different prices for different quantities / qualities



Beyond Linear Demand and Cost

• our results concerned a special "screening" problem: each
consumer has single unit demand

• can ask the same question.... look for feasible (information
rent, principal utility) pairs... in general screening problems

• no complete characterization
• we study what drives our results by seeing what happens as
we move towards general screening problems by adding a little
non-linearity

• corresponds to Pigou’s "second degree price discrimination",
i.e., charging different prices for different quantities / qualities



Re-interpret our Setting and adding small concavity

• Our main setting: Consumer type v consuming quantity
q ∈ {0, 1} gets utility v · q

• It is well known that allowing q ∈ [0, 1] changes nothing

• But now suppose we change utility to v · q + εq (1− q) for
small ε (i.e., add small type independent concave component
to utility)

• Equivalently, we are adding small convexity to cost, i.e.,
increasing marginal cost

• Note that effi cient allocation for all types is 1
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Three Types and Three Output Levels

• Suppose v ∈ {1, 2, 3}; q ∈
{
0, 12 , 1

}
• Always effi cient to have allocation of 1
• Note that in this case, utilities are given by

0 1
2 1

1 0 1
2 + ε 1

2 0 1+ ε 2
3 0 3

2 + ε 3

• contract q = (q1, q2, q3) specifies output level for each type

• six contracts which are monotonic and effi cient at the top:
• (0, 0, 1) ,

(
0, 12 , 1

)
, (0, 1, 1) ,

(
1
2 ,

1
2 , 1
)
,
(
1
2 , 1, 1

)
and (1, 1, 1)

• Now we can look at analogous simplex picture
• Illustrates geometric structure in the general case



Picture

• richer partition of probability simplex

• additional allocations beyond binary appear as optimal



Two Types and Three Output Levels

• Now restrict attention to v ∈ {1, 2}
• probability simplex becomes unit interval
• denote by x probabilit of low valuation:

x , Pr (v = 1)

• extremal markets are x and x



Surplus and Concavified Surplus

• Now it is natural to plot consumer surplus and producer
surplus as a function of x , the probability of type 1

0 0.5 1
0

0.2

0.4

0 0.5 1
1

1.5

2

0 0.5 1
0.3

0.4

0.5
0.6

0.7



Concavification

• Now solving for feasible (consumer surplus, producer surplus
pairs) for x = 1

2 comes from concavifying weighted sums of
these expressions



Two Types, Continuous Output

• Now allow any q ∈ [0, 1]

• If x is the proportion of low types, the optimal contract is now:

q̃ (x) =


0, if x ≤ 1

2+4ε
1
2 −

1
8ε

(
2− 1

x

)
, if 1

2+4ε ≤ x ≤
1

2−4ε
1, if x ≥ 1

2−4ε



Two Types, Continuous Output



Two Types, Continuous Output



Bottom Line

1 The set of prior distributions of types where it is possible to
attain bottom left and bottom right corner will shrink fast as
the setting gets more complex

2 As long as there are a finite set of output levels,

1 There is an analogous restriction to extreme points of best
response regions of the simplex (geometric approach translates)

2 The "bottom flat" survives: there is an open set of information
rents consistent with principal getting uninformed profit

3 With continuum output levels

1 The "bottom flat" goes
2 Multiple information rents consistent with other levels of
consumer profit, approaching the triangle continuously as we
approach a linear case



Bayesian Persuasion

1 Kamenica and Gentzkow (2010): Suppose that a sender could
commit (before observing his type) to cheap talk signals to
send to a receiver. What would he send?

2 de facto, this is what happened in Aumann and Maschler
(1995) repeated games with one sided information who
showed sender "concavifies" payoffs

3 We can solve for feasible surplus pairs by this method if the
"sender" were a social planner maximizing a arbitrary
weighted sum of consumer and producer surplus and the
"receiver" were the monopolist

4 Very helpful in two type case, implicit in many type case



Many Player Version

• robust predictions research agenda....
• the set of all outcomes that could arise in Bayes Nash
equilibrium in given "basic game" for all possible information
structures = "Bayes correlated equilibria"

• "The comparison of information structures in games: Bayes
correlated equilibrium and individual suffi ciency" (general
theory)

• "Robust predictions in games with incomplete information
games" (applications in symmetric continuum player linear
best response games, Ecta (2013))

• seller problem here is single player application

• this paper is by-product of many player application:
• Bergemann, Brooks and Morris: "Extremal Information
Structures in First Price Auction"



Auction Teaser

• First price auction
• Bidder i’s valuations drawn according to cdf Fi
• Lower bound on interim bidder surplus of bidder with
valuation v is

ui (v) = max
b

(v − b)
∏
j 6=i
Fj (b)

• Lower bound on ex ante expected surplus of bidder i is

U i =

1∫
v=0

ui (v)fi (v) dv

• Upper bound on expected revenue is total expected surplus
minus each bidder’s surplus lower bound

• Claim: there is an information structure where these bounds
are attained in equilibrium



Auction Teaser: Information Structure Attaining the Lower
Bound

• Tell each bidder if he has the highest value or not
• Losing bidders bid their values and lose (undominated
strategy)

• Winning bidder’s "uniform monopoly profit" (maximum profit
if he knows nothing about the losing bid) is now the lower
bound U i

• Our main result states that we can provide (partial)
information to the winner about highest losing bid in just such
a way that he is still held down to his uniform monopoly profit
and always wins



Two Bidders: Information and Revenue

• 2 bidders, valuations uniform on [0, 1]

• Ex ante expected surplus is 23
• No information:

• bid 1
2 v , each bidder surplus

1
6 , revenue

1
3

• Complete information = Bertrand:
• each bidder surplus 16 , revenue

1
3

• Our intermediate information structure:
• each bidder surplus 1

12 , revenue
1
2



The Payoff Space of the Bidders

• distribution of bidders (surplus) and implications for revenue
equivalence, ...

0.1 0.15 0.2 0.25 0.3 0.35

0.1

0.15

0.2

0.25
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0.35

Bidder  1's  surplus
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 2
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s
Bidder s urplus  w ith 20 v alues  and 20 bids

Frontier of equilibr ium payoffs
Frontier of effic ient equilibr ia
C omplete information



Conclusion

• It is feasible and interesting to see what happens under many
information structures at once.

• This methodology generates striking new answers for classical
economic questions

• In mechanism design we design the payoffs of the game,
assuming the information structure is fixed

• In information design , we design the information received by
the players, assuming the game is fixed.



Do We Care about Extremal Segmentations?

• extremal segmentations are "extreme"...
• might not arise exogenously....
• but suppose someone could choose segments endogenously?



Endogenous Segmentations and a Modern Perspective

• extremal segmentations are "extreme"
• might not arise exogenously
• but suppose someone could choose segments endogenously?
• Google knows everyone’s values of everything (pretty much)

• Google wants to "do no evil"
• Operationalization of "do no evil": report noisy signals of
values to sellers in such a way that sellers choose to price
discriminate in a way that attains effi ciency and gives all the
effi ciency gains to consumers
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