Information Design

Dirk Bergemann and Stephen Morris

Johns Hopkins University April 2017

Mechanism Design and Information Design

Basic Mechanism Design:

- Fix an economic environment and information structure
- Design the rules of the game to get a desirable outcome

Information Design

- Fix an economic environment and rules of the game
- ▶ Design an information structure to get a desirable outcome

Mechanism Design and Information Design

Basic Mechanism Design:

- Can compare particular mechanisms...
 - e.g., first price auctions versus second price auctions
- Can work with space of all mechanisms...
 - without loss of generality, let each agent's action space be his set of types...revelation principle
 - e.g., Myerson's optimal mechanism

Information Design

- Can compare particular information structures
 - Linkage Principle: Milgrom-Weber 82
 - ▶ Information Sharing in Oligopoly: Novshek-Sonnenschein 82
- Can work with space of all information structures
 - without loss of generality, let each agent's type space be his set of actions.....revelation principle

Information Design: Some Leading Cases

- 1. Uninformed information designer (or "mediator"):
 - Myerson: "Bayesian games with communication"
 - ► Incomplete Information Correlated Equilibrium literature of the 1980s and 1990s (Forges 93)
- One player (a "receiver") and an informed information designer (or "sender")
 - "Bayesian Persuasion": Kamenica-Gentzkow 11 and large and important literature inspired by it
- 3. Many players and an informed information designer
 - Some of our recent theoretical and applied work with various co-authors....
 - ...and this lecture

This Lecture

- ► a general framework in two slides
- ▶ leading examples at length
- applications in brief
- various elaborations if time

Setup

- Maintained environment, fix:
- ▶ players 1,...,I; actions a_i ∈ A_i, payoff states Θ; utility function:

$$u_i: A \times \Theta \to \mathbb{R}$$
,

common prior on states $\psi \in \Delta(\Theta)$

Basic Game:

$$G:(A_i,u_i,\Theta,\psi)_{i=1,\ldots,I}$$

▶ Information Structure $S: (T_i)_{i=1...I}$ and likelihood function:

$$\pi:\Theta\to\Delta(T)$$

▶ Decision rule $\sigma: T \times \Theta \to \Delta(A)$, (recommendation)

Decision Rule and Obedience

Decision rule

$$\sigma: T \times \Theta \to \Delta(A)$$

▶ Decision rule $\sigma: T \times \Theta \to \Delta(A)$ is obedient for (G, S) if, for all i, t_i, a_i and a'_i ,

$$\begin{split} & \sum_{a_{-i},t_{-i},\theta} u_i\left(\left(a_i,a_{-i}\right),\theta\right)\sigma\left(a|t,\theta\right)\pi\left(t|\theta\right)\psi\left(\theta\right) \\ \geq & \sum_{a_{-i},t_{-i},\theta} u_i\left(\left(a_i',a_{-i}\right),\theta\right)\sigma\left(a|t,\theta\right)\pi\left(t|\theta\right)\psi\left(\theta\right); \end{split}$$

- Obedient decision rule σ is a Bayes correlated equilibrium (BCE).
- Characterizes the set of implementable decision rules by information designer.

Information Design: Three Interpretations

1. Literal: actual information designer with ex ante commitment: Information designer with payoff $v:A\times\Theta\to\mathbb{R}$ picks a Bayes correlated equilibrium $\sigma\in BCE\left(G,S\right)$ to maximize

$$V_{S}\left(\sigma\right) \equiv \sum_{\mathbf{a},t,\theta} \psi\left(\theta\right) \pi\left(t|\theta\right) \sigma\left(\mathbf{a}|t,\theta\right) v\left(\mathbf{a},\theta\right).$$

- 2. Metaphorical: e.g., adversarial / worst case
- Informational robustness: family of objectives characterize set of attainable outcomes

One Uninformed Player: Benchmark Investment Example

- ▶ a firm is deciding whether to invest or not:
- ▶ binary state: $\theta \in \{B, G\}$, bad or good
- ▶ binary action: $a \in \{\text{Invest}, \text{Not Invest}\}$
- payoffs

	bad state B	good state G
Invest	-1	X
Not Invest	0	0

with 0 < x < 1

- prior probability of each state is $\frac{1}{2}$
- firm is uninformed (so one uninformed player)
- information designer (government) seeks to maximize probability of investment (independent of state)
- leading example of Kamenica-Gentzkow 11

Decision Rule

 $ightharpoonup p_{ heta}$ is probability of investment, conditional on being in state heta

	bad state <i>B</i>	good state G
Invest	p_B	p_G
Not Invest	$1-p_B$	$1-p_G$

▶ interpretation: firm observes signal = "action recommendation," drawn according to (p_B, p_G)

Obedience Constraints

▶ if "advised" to invest, invest has to be a best response:

$$-\frac{1}{2}p_B + \frac{1}{2}p_G x \geq 0 \Leftrightarrow p_G \geq \frac{p_B}{x}$$

▶ if "advised" to not invest, not invest has to be a best response

$$-\frac{1}{2}(1-p_B) + \frac{1}{2}(1-p_G)x \leq 0 \Leftrightarrow$$

$$p_G \geq \frac{p_B}{x} + 1 - \frac{1}{x}$$

- because x < 1, investment constraint is binding
- ▶ always invest $(p_B = 1 \text{ and } p_G = 1)$ cannot happen in equilibrium
- ▶ the full information equilibrium has invest only in good state $(p_B = 0 \text{ and } p_G = 1)$

Bayes Correlated Equilibria

• equilibrium outcomes (p_B, p_G) for x = 0.55

Information Design

recommendation maximizing the probability of investment:

$$p_{B} = x, \ p_{G} = 1$$

best BCE

	В	G
Invest	X	1
Not Invest	1-x	0

- Optimal for government to obfuscate: partially pooling good state and bad state
- Optimal for government to isolate: bad state is set apart

Food for Thought

- Literal Interpretation: Conflict of interest between information designer and player creates incentive for obfuscation (partial information revelation)
- 2. Robust Interpretation: Intuitively extremal information structures may not be extremal for outcomes

What do extremal information structures look like?

One Informed Player

- Firm receives a signal which is "correct" with probability q > 1/2.
- ▶ Formally, the firm observes a signal g or b, with signals g and b being observed with conditionally independent probability q when the true state is G or B respectively:

	bad state B	good state G
bad signal <i>b</i>	q	1-q
good signal <i>g</i>	1-q	q

Obedience Constraints with Informed Player

- ▶ p_{θ}^{t} is probability of investing in state $\theta \in \{B, G\}$ signal $t \in \{b, g\}$; a decision rule is $(p_{B}^{b}, p_{G}^{b}, p_{B}^{g}, p_{G}^{g})$.
- ▶ Same constraints signal by signal essentially as before...
 - ▶ A firm with good signal invests (when told to invest) if

$$p_G^g \ge \frac{1-q}{q} \frac{p_B^g}{x}$$

and not invest (when told to not invest) if

$$p_G^g \geq \frac{1-q}{q} \frac{p_B^g}{x} - \frac{1-q}{qx} + 1.$$

If private information of firm is sufficiently noisy, $q \leq \frac{1}{1+x}$, binding constraint remains investment constraint.

One Informed Player: Bayes Correlated Equilibrium equilibrium set for x = 0.55

Food for Thought

- 1. More information limits the ability of the information designer to achieve his objectives
- 2. But what does "more information" mean in general?
- 3. in single player case, Blackwell's information order
- in many player case, something new, Individual Sufficiency ""Bayes Correlated Equilibrium and the Comparison of Information Structures in Games", Theoretical Economics, 2016,

Many Players: Two Firms

payoffs almost as before....

$\theta = B$	I	N	$\theta = G$	1	N
I	$-1+\varepsilon$	-1	I	$x + \varepsilon$	X
N	0	0	N	0	0

- \triangleright ...up to ε term
- assume that information designer (government) wants to maximize the sum of probabilities that firms invest....
- if $\varepsilon = 0$, problem is exactly as before firm by firm; doesn't matter if and how firms' signals are correlated
- we will consider what happens when $|\varepsilon| \approx 0$ (so the analysis cannot change very much)
- will now have profile of action recommendations depending on the state
- $\varepsilon > 0$: strategic complements; $\varepsilon < 0$: strategic substitutes

Two Firms: Strategic Complementarities

▶ If $\varepsilon > 0$, optimal rule is

$\theta = B$	I	N	$\theta = G$	ı	N
I	$\frac{x+\varepsilon}{1-\varepsilon}$	0	I	1	0
N	0	$\frac{1-x-2\varepsilon}{1-\varepsilon}$	N	0	0

- the probability of any one firm investing is still about x...
- binding constraints are still investment constraints, slackened by having simultaneous investment...

$$\frac{x+\varepsilon}{1-\varepsilon}\left(-1+\varepsilon\right)+x+\varepsilon\geq0$$

....so signals are public

Two Firms: Strategic Substitutes

• If ε < 0, optimal rule is

$\theta = B$	I	N	$\theta = G$	1	N
I	0	$x + \varepsilon$	I	1	0
N	$x + \varepsilon$	$1-2x-2\varepsilon$	N	0	0

- ▶ the probability of any one firm investing if the state is bad is still about *x*....
- binding constraints are still investment constraints, slackened by having minimally correlated investment...

$$(x+\varepsilon)(-1)+x+\varepsilon\geq 0$$

....and signals are private

Food for Thought

- 1. Public information under strategic complementarities / private information under strategic substitutes
- 2. How does this matter in applications?
- 3. How about alternative objectives for the information designer?

Application 1 - Information Sharing: Strategic Substitutes

- Classic Question: are firms better off if they share their information?
- Consider quantity competition when firms uncertain about level of demand (intercept of linear demand curve) with symmetry, normality and linear best response; two effects in conflict:
 - 1. Individual Choice Effect: Firms would like to be as informed as possible about the state of demand
 - 2. Strategic Effect: Firms would like to be as uncorrelated with each other as possible
- "Robust Predictions in Games with Incomplete Information", Econometrica, 2013

Application 1 - Information Sharing

- Classic Question: are firms better off if they share their information?
- Consider quantity competition when firms uncertain about level of demand: individual and strategic effects in conflict
- ► Resolution:
- 1. If inverse demand curve is flat enough... i.e., small strategic effect...individual choice effect wins and full sharing is optimal
- If inverse demand curve is very steep...i.e., large strategy effect...strategic effect wins and no sharing of information is optimal
- In intermediate cases, optimal to have firms observe imperfect information about demand, with conditionally independent signals, and thus signals which are as uncorrelated as possible conditional on their accuracy

Application 2 - Aggregate Volatility

- Classic Question: can informational frictions explain aggregate volatility?
- Consider a setting where each agent sets his output equal to his productivity which has a common component and an idiosyncratic component
- ▶ again with symmetry and normality.... common compenent y with variance σ^2 ; idiosyncratic component x_i with variance τ^2 ;
- Which information structure maximizes variance of average action?
- ▶ "Information and Volatility" Journal of Economic Theory, 2015,

Application 2 - Aggregate Volatility

What information structure maximizes variance of average action?

critical information structure has a confounding signal without noise:

$$s_i = \lambda x_i + (1 - \lambda) y$$

variance of average action is maximized when

$$\lambda = \frac{\sigma}{2\sigma + \sqrt{\sigma^2 + \tau^2}} < \frac{1}{2}$$

and maximum variance of average action is

$$\left(\frac{\sigma+\sqrt{\sigma^2+\tau^2}}{2}\right)^2$$

Application 2 - Aggregate Volatility

What information structure maximizes variance of average action?

- ▶ "optimal" information structure has a confounding (c.f., Lucas 72) signal $s_i = \lambda x_i + (1 \lambda) y$ without noise...
- ightharpoonup as $\sigma \to 0$:
 - "optimal" weight on idiosyncratic component goes to 0
 - agents put a lot of weight on their signal in order to put a non-trivial weight on their idiosyncratic component
 - in the limit, the common component becomes a payoff irrelevant but common "sentiments" shock:
- this was actually a non-strategic problem: logic can be extended to strategic setting
- ▶ can then be embedded in a richer setting (Angeletos La'O 13)

Application 3 - First Price Auction: Information Shrinking BCE, Adversarial Information Designer

- ► "First Price Auctions with General Information Structures", Econometrica 2017
- ► Example: Two bidders and valuations independently and uniformly distributed on the interval [0, 1]
- ▶ Plot: (expected bidders' surplus, expected revenue) pairs
- green = feasible pairs, blue = unknown value pairs, red = known value pairs

Application 3 - First Price Auction Robust Prediction

- 1. Known value case (red region) is subset of unknown value case (blue region)
- 2. Robust Prediction:
 - 2.1 revenue has lower bound $\approx 1/10$
 - 2.2 lower bound (w.r.t. first order stochastic dominance) on bids

Application 3: First Price Auction Partial Identification

- We can give explicit lower bound on bids for a given distribution of valuations
- ► Can therefore give an upper bound on valuations for a given distribution of observed winning bids

Access to Players' Information

- We want to assume that information designer knows the state θ ...
- ...but what should we assume about what information designer knows about players' information? Consider three scenarios:
 - Omniscient Designer: the designer knows all players' information too...[maintained assumption so far]
 - Communicating Designer: the designer can condition his announcements about the state only on players' reports of their types
 - Non-Communicating Designer: the designer can tell players about the state but without conditioning on players' information

Back to One Informed Player: Communicating Designer

- Kotolinin et al. 15
- ▶ as before, firm observes a signal $t \in T$ and government makes a recommendation to invest p_{θ}^t as a function of reported signal t and state θ
- incentive constraint: add truth-telling to obedience
- to insure truth-telling, differences in recommendations must be bounded across states

Communicating Designer

▶ adding truth-telling constraints...(x = 0.9, q = 0.7)

communicating (red), omniscient (pink)

Communicating Designer

- ▶ if there is a large discrepency in recommendations, then firm has an incentive to misreport his signal
- e.g., at maximum investment BCE (top right), firm with good signal is always told to invest;
- might as well mis-report good signal as bad signal to get information

Non-communicating designer

- firm observes his signal
- government offers a recommendation, independent of the signal, depending on the true state
- ▶ In our example, communicating and non-communicating designer can attain the same set of outcomes; Kotolin et al show this in a more general but still restrictive class of environments

Taxonomy

		Many	Many
	Single	Agent	Agent
	Agent	Uninformed	Informed
		Designer	Designer
Omniscient		Bayesian	BCE
Ommiscient	•	Solution	DCE
Communicating	Kolotilin	Communication	
Communicating	et al	Equilibrium	•
	KG	Strategic	
Non	informed	Form	
Communicating	receiver	Correlated	•
	receiver	Equilibrium	

Elaborations

- 1. Other Objectives
 - Ely 15, Arieli 15, Taneva 16
- 2. Comparing Information
 - many player Blackwell order generalization
- 3. Concavification and its many player generalizations
 - Kamenica-Gentzkow 11 get a lot of action out of "concavification" (Aumann-Maschler 95); many player generalization harder - Mathevet, Perego and Taneva 16
- 4. Adversarial Information Design
 - Carroll 15, Taneva et al 16, Kajii-Morris 97
- 5. Incomplete information correlated equilibrium literature
 - ► Forges 93
- 6. Relation to Mechanism Design
 - Myerson 82, 87, 91

Applications and Elaborations

- 1. Other Objectives
- 2. Comparing Information
- 3. Concavification and its many player generalizations
- 4. Adversarial Information Design
- 5. Incomplete information correlated equilibrium literature
- 6. Relation to Mechanism Design

1. Other Objectives

- Suppose the government was interested in maximizing the probability of at least one firm investing
- (Assuming x > 1/2) This can always be achieved with probability 1....

$\theta = B$	I	N	$\theta = G$	I	Ν
I	0	$\frac{1}{2}$	I	1	0
N	$\frac{1}{2}$	0	N	0	0

This is true for $\varepsilon=0$ and by continuity for $|\varepsilon|$ independent of the sign...

Compare Ely 15, Arieli 15, Taneva 16

Other Objectives and a Benevolent Information Designer

- ▶ In one firm case, if government had the same objective as the firm, he would always give them full information...
- But in the two firm case, a benevolent government maximizing the (joint) profits of the two firms might still manipulate information in order to correct for externalities and coordinate behavior
- In game

$\theta = B$	I	N	$\theta = G$	I	N
I	$-1+\varepsilon+z$	-1	I	$x + \varepsilon + z$	X
N	Z	0	N	Z	0

benevolent government will behave as an investment maximizing government if z is large enough

2. Ordering Information

▶ in one informed player example, more information shrunk attainable outcomes on primitives... for x = 0.55:

2. Ordering Information

- Intuition: more information for the player imposes more constraints on the information designer and reduces the set of outcomes she can induce
- Recall Auction Example
- Say that information structure S "is more incentive constrained than" (= more informed than) S' if it gives rise to a smaller set of BCE outcomes than S' in all games
 - in one player case, this ordering corresponds to Blackwell's sufficiency ordering
 - in many player case, corresponds to "individual sufficiency" ordering
- ▶ Bergemann-Morris 16, see also Lehrer et al 10 and 11

2. Ordering Information with Many Players

Nice Properties of Individual Sufficiency Ordering

- Reduces to Blackwell in one player case
- Transitive
- Neither implies nor implied by Blackwell on join of players' information
- ► Two information structures are each individually sufficient for each other if and only if they share the same higher order beliefs about Θ
- ▶ S is individually sufficient for S' if and only if giving extra signals to S' equals S plus an appropriate correlation device

3. Concavification

- ▶ We described two step procedure for solving information design problem (with one or many players):
 - 1. Characterize all implementable decision rules
 - 2. Pick the designer's favorite
- Concavification procedure (with one player)
 [Aumann-Maschler 95 and Kamenica-Gentzkow 11]
 - Identify information designer's utility for every belief of the single player
 - Identify utility from optimal design by concavification, identifying information design only implicitly
- Many player generalization: Mathevet al 16
- ► Always nice interpretation, sometimes (but not always) useful in solving information design problem

4. Adversarial Equilibrium Selection

- ▶ Suppose that an information designer gets to make a communication $\Phi: T \times \Theta \to \Delta(M)$; new game of incomplete information (G, S, Φ)
- ▶ Write $E\left(G,S,\Phi\right)$ for the set of Bayes Nash equilibria of $\left(G,S,\Phi\right)$ and write $V_{S}^{*}\left(\Phi,\beta\right)$ for the information designer's utility
- $\,\blacktriangleright\,$ We have been studying the maxmax problem

$$\max_{\mathcal{C}}\max_{\beta}V_{\mathcal{S}}^{*}\left(\Phi,eta
ight)$$

using a revelation principle argument to show that this equals

$$\max_{\sigma \in BCE(G,S)} V_S(\sigma)$$

► The maxmin problem

$$\max_{C} \min_{\beta} \ V^* \left(S, \Phi, \beta \right)$$

does not have a revelation principle characterization

► Carroll 15, Taneva et al 16, Kajii-Morris 97

5. Incomplete Information Correlated Equilibrium

▶ Decision rule σ : $T \times \Theta \to A$ is incentive compatible for (G, S) if, for each i, t_i and a_i , we have

$$\sum_{a_{-i},t_{-i},\theta} u_{i}\left(\left(a_{i},a_{-i}\right),\theta\right)\sigma\left(a|t,\theta\right)\pi\left(t|\theta\right)\psi\left(\theta\right) \tag{1}$$

$$\geq \sum_{a_{-i},t_{-i},\theta} u_{i}\left(\left(\delta\left(a_{i}\right),a_{-i}\right),\theta\right)\sigma\left(a|\left(t'_{i},t_{-i}\right),\theta\right)\pi\left(t|\theta\right)\psi\left(\theta\right);$$

for all t'_i and $\delta_i : A_i \to A_i$.

- ▶ Decision rule σ : $T \times \Theta \to A$ is join feasible for (G, S) if $\sigma(a|t, \theta)$ is independent of θ , i.e., $\sigma(a|t, \theta) = \sigma(a|t, \theta')$ for each $t \in T$, $a \in A$,and $\theta, \theta' \in \Theta$.
- Solution Concepts:
 - Bayes correlated equilibrium = obedience
 - Communication equilibrium = incentive compatibility (and thus obedience) and join feasibility
 - etc...

6. Mechanism Design and Information Design

- Myerson Mechanism Design:
 - Dichotomy in Myerson (1991) textbook
 - Bayesian games with communication (game is fixed)
 - Bayesian collective choice problems (mechanism is chosen by designer)
 - both combined in Myerson (1982, 1987)
- Truth-telling (honesty) and obedience constraints always maintained
- "information design" = "Bayesian games with communication" - truth-telling + informed information designer/mediator
- compare also informed principal literature

Conclusion and Literature

- Our methodology papers:
 - "Robust Predictions in Incomplete Information Games," Ecta 13
 - "Bayes Correlated Equilibrium and The Comparison of Information Structures," TE 16
 - "Information Design, Bayesian Persuasion and Bayes Correlated Equilibrium," AER P&P 2016
 - Information Design: A Unified Perspective
- ► Taneva (2016): name "information design" and two player examples
- ► Kamenica and Gentzkow (2011) and huge follow up literature: "Bayes persuasion" (single player uninformed case)
- ► Carroll (2016), Kajii and Morris (1997), Methevet, Perego and Taneva (2016)
- ► Myerson (1991): Bayesian games with communication and "Bayesian collective choice problems" dichotomy
- Kotolin et al (2015)