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Abstract

We consider a robust version of the classic problem of optimal monopoly pricing with incomplete in-
formation. In the robust version, the seller faces model uncertainty and only knows that the true demand
distribution is in the neighborhood of a given model distribution. We characterize the pricing policies under
two distinct decision criteria with multiple priors: (i) maximin utility and (ii) minimax regret. The equi-
librium price under either criterion is lower then in the absence of uncertainty. The concern for robustness
leads the seller to concede a larger information rent to all buyers with values below the optimal price without
uncertainty.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

In the past decade, the theory of mechanism design has found increasingly widespread appli-
cations in the real world, favored partly by the growth of the electronic marketplace and trading
on the Internet. Many trading platforms, such as auctions and exchanges, implement key insights
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of the theoretical literature. With an increase in the use of optimal mechanisms, the robustness
of these mechanisms with respect to the model specification becomes an important issue. In this
note, we investigate a robust version of the classic monopoly problem under incomplete infor-
mation. The determination of the optimal monopoly price is the most elementary instance of a
revenue maximization problem in mechanism design.

We analyze the robustness of the optimal selling policy by enriching the standard model to
account for model uncertainty. In the classic model, the valuation of the buyer is drawn from
a given prior distribution. In contrast, in the robust version, the seller only knows that the true
distribution is in the neighborhood of a given model distribution. The size of the neighborhood
represents the extent of the model uncertainty faced by the seller.

The optimal pricing policy of the seller in the presence of model uncertainty is an instance of
decision-making with multiple priors. We therefore build on the axiomatic decision theory with
multiple priors and obtain interesting new insights for monopoly pricing. The methodological in-
sight is that robustness can be guaranteed by considering decision making under multiple priors.
The strategic insight is that we are able predict how an increase in uncertainty effects the pricing
policy by using exclusively the data of the model distribution.

There are two leading approaches to incorporate multiple priors into axiomatic decision mak-
ing: maximin utility and minimax regret. In the maximin utility approach with multiple priors,
due to Gilboa and Schmeidler [11], the decision maker evaluates each action by its minimum util-
ity across all priors. The decision maker selects the action that maximizes the minimum utility.
The minimax regret approach was axiomatized by Milnor [18] and recently adapted to multiple
priors by Hayashi [13] and Stoye [24]. Here, the decision maker evaluates foregone opportunities
using regret and chooses an action that minimizes the maximum expected regret among the set
of priors.

The analysis of the optimal pricing under the two decision criteria reveals that either criterion
leads to a robust policy in the sense of statistical decision theory. A family of policies, indexed by
the size of the uncertainty, is said to be robust, if for any demand sufficiently close to the model
distribution, the difference between the expected profit under the optimal policy for this demand
and the expected profit under the candidate policy is arbitrarily small. While the optimal policies
under maximin utility and minimax regret share the robustness property, the exact response to the
uncertainty leads to distinct qualitative features under these two criteria.

The pricing policy of the seller is obtained as the equilibrium strategy of a zero-sum game
between the seller and adversarial nature. In this construction, nature selects a least favorable
demand given the objective of the seller. The choice by nature attempts to exploit the sensitivity
of the objective function of the seller to the information regarding the demand. In consequence,
the strategy of the seller is to minimize the sensitivity of his objective function with respect
to the demand information. The sensitivity of the objective function to the private information
shapes the equilibrium under either criterion. The central role of the information sensitivity is
most immediate in the case of the maximin utility criterion, where the seller maximizes the min-
imal profit across a set of demand distributions. Consider for a moment the profit function of the
seller at a candidate price p. The expected profit depends on the distribution of valuations only
through the upper cumulative probability at price p, namely the probability that the valuation
of the buyer is equal to or exceeds p. In particular, any variation of the distribution function
which does not affect the upper cumulative probability at p, does not affect the value of the
profit function. Given the sensitivity of the profit function, nature then seeks to minimize the
upper cumulative probability. In turn, the seller minimizes the sensitivity to the information by
choosing his optimal price as if nature would choose the lowest possible upper cumulative prob-
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ability in the neighborhood of the model distribution. In consequence the equilibrium choice of
the seller always consists in lowering her price relative to the optimal price in the absence of
uncertainty.

The logic of the equilibrium is identical under the minimax regret criterion, the modifications
that arise are due to the distinct informational sensitivity of the objective function. When we
consider the minimax regret criterion, the notion of regret modifies the trade-off for the seller
and for nature. The regret of the seller is the difference between the realized valuation of the
buyer and the realized profit obtained by the seller. The regret of the seller can therefore be
positive for two reasons: (i) a buyer has a low valuation relative to the price and hence fails to
purchase the object, or (ii) he has a high valuation relative to the price and hence the seller could
have realized a higher price. In turn, the expected regret is the difference between the expected
valuation of the buyer and the expected profit, where the expected valuation represents the natural
upper bound on the profits of the seller. Given this additive form of the objective function, and
given a candidate price p, the expected regret therefore depends on the mean of the valuation
and the upper cumulative probability at the candidate price p. The later element appears as in the
maximin criterion, but the sensitivity to the mean of the demand distribution newly appears in the
regret minimization problem. In equilibrium, the pricing policy of the seller has to minimize the
exposure to these two different statistics of the demand distribution simultaneously. In particular,
if the seller were to concern herself exclusively with the upper cumulative probability, and hence
as in the profit maximization lower the price too much, then nature would take advantage by
increasing the mean of the valuation and hence increase the regret from this new, second, source.
The seller resolves the conflict between these two statistics by a random pricing policy which
offers trades at a range of prices. The range of the prices, i.e. the support of the equilibrium price
distribution is chosen so that the expected regret is equalized across all prices, and the frequency
of the prices is chosen such that no other demand distribution can lead to a larger regret. The
resulting randomized pricing policy still has the feature that, relative to the optimal price in the
absence of uncertainty, the expected price paid by almost all buyers with valuations within the
support of the mixed pricing policy decreases when uncertainty increases. Yet, the upper segment
of the buyers see higher prices with positive probability.

This brief description of the equilibrium policies emphasizes the common determinants of the
policies under maximin utility and minimax regret, and traces the divergent aspects to differences
in the objective functions. We will return to these differences and their axiomatic foundations
in the final section. The common concern for robustness leads to many shared features in the
equilibrium policies. First, and most importantly, the equilibrium price is lower (at least with
positive probability) then it would be in the absence of uncertainty. With maximin utility, the
hedging concern is so strong that the lower price is quoted with probability one. With minimax
regret, the hedging concern leads to a range of offers, below and above, the price in the absence of
uncertainty. Second, in terms of the information rent, the concern for robustness leads the seller
to concede a larger information rent to all buyers with value below the optimal price without
uncertainty. In the conclusion we discuss the extent to which these arguments may carry over to
more general mechanism design settings.

We conclude the introduction with a brief discussion of the directly related literature. A re-
cent paper by Bose, Ozdenoren, and Pape [5] determines the optimal auction in the presence of
an uncertainty averse seller and bidders. Lopomo, Rigotti, and Shannon [17] consider a general
mechanism design setting when the agents, but not the principal, have incomplete preferences
due to Knightian uncertainty. In related work, Bergemann and Schlag [3] consider the optimal
monopoly problem under regret without any priors. There, the analysis is concerned with optimal
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policies in the absence of information rather than robustness and responsiveness to uncertainty
as in the current contribution. Linhart and Radner [15] analyzed bilateral trade under minimax
regret. A related notion of regret was considered by Engelbrecht-Wiggans [8] in the context
of auctions, and recently, Engelbrecht-Wiggans and Katok [9] and Filiz-Ozbay and Ozbay [10]
present experimental evidence indicating concern for regret in first price auctions. In a com-
plete information environment, Renou and Schlag [21] use minimax regret to analyze strategic
uncertainty.

2. Model

Monopoly. The seller faces a single potential buyer with value v ∈ [0,1] for a unit of the object.
The value v is private information to the buyer and unknown to the seller. The buyer wishes to
buy at most one unit of the object. The marginal cost of production is constant and normalized
to zero. The net utility of the buyer with value v of purchasing a unit of the object at price p is
v − p. The profit of selling a unit of the object at a deterministic price p ∈ R+ if the valuation of
the buyer is v is:

π(p,v) � pI{v�p},
where I{v�p} is the indicator function specifying:

I{v�p} =
{

0, if v < p,

1, if v � p.

By extension, if the seller chooses a randomized pricing policy, represented by a probability
distribution Φ ∈ �R+, then the expected profit when facing a buyer with value v equals:

π(Φ,v) �
∫

π(p,v) dΦ(p).

In the standard version of the monopoly with incomplete information, the seller maximizes the
expected profit for a given prior F over valuations. For a given distribution F and deterministic
price p the expected profit is:

π(p,F ) �
∫

π(p,v) dF (v).

We note that the demand generated by the distribution F can either represent a single large buyer
or many small buyers. Here we phrase the results in terms of a single large buyer, but the results
generalize naturally to the case of many small buyers. With a random pricing policy Φ , the
expected profit is given by:

π(Φ,F) �
∫ ∫

π(p,v) dF (v)dΦ(p).

A random pricing policy Φ∗(F ) that maximizes the profit for a given distribution F solves:

Φ∗(F ) ∈ arg max
Φ∈�R+

π(Φ,F).

A well-known result by [23] states that for every distribution F , there exists a deterministic price
p∗(F ) that maximizes profits.

Uncertainty. In the robust version the seller faces uncertainty (or ambiguity) in the sense of [7].
The uncertainty is represented by a set of possible distributions. The set is described by a model



D. Bergemann, K. Schlag / Journal of Economic Theory 146 (2011) 2527–2543 2531
distribution F0 and includes all distributions in a neighborhood of size ε of the model distribu-
tion F0. The magnitude of the uncertainty is quantified by the size of the neighborhood around
the model distribution. Given the model distribution F0 we denote by p0 a profit maximizing
price at F0: p0 � p∗(F0). For the remainder of the paper we shall assume that at the model dis-
tribution F0: (i) p0 is the unique maximizer of the profit function π(p,F0) and (ii) the density f0
is continuously differentiable near p0. These regularity assumptions enable us to use the implicit
function theorem for the local analysis.

We consider two different decision criteria that allow for multiple priors: maximin utility and
minimax regret. In either approach, the unknown state of the world is identified with the value v

of the buyer.

Neighborhoods. We consider the neighborhoods induced by the Prohorov metric, the standard
metric in robust statistical decision theory (see [14]). Given the model distribution F0, the ε

neighborhood under the Prohorov metric, denoted by Pε(F0), is:

Pε(F0) �
{
F

∣∣ F(A) � F0
(
Aε

) + ε, ∀ measurable A ⊆ [0,1]}, (1)

where the set Aε denotes the closed ε neighborhood of any measurable set A:

Aε �
{
x ∈ [0,1] ∣∣ min

y∈A
d(x, y) � ε

}
,

where d(x, y) = |x − y| is the distance on the real line. We shall use the language of small
neighborhood and ε-neighborhood in the following interchangeably.

The Prohorov metric has evidently two components. The additive term ε in (1) allows for a
small probability of large changes in the valuations relative to the model distribution whereas the
larger set Aε permits large probabilities of small changes in the valuations. The Prohorov metric
is a metric for weak convergence of probability measures. In the context of our demand model,
the Prohorov metric gives a literal description of the two relevant sources of model uncertainty.
With a large probability, the seller could misperceive the willingness to pay by a small margin,
and with a small probability, the seller could be mistaken about the market parameters by a large
margin.

Maximin utility. Under maximin utility, the seller maximizes the minimum utility, where the
utility of the seller is simply the profit, by searching for

Φm ∈ arg max
Φ∈�R+

min
F∈Pε(F0)

π(Φ,F ).

Accordingly, we say that Φm attains maximin utility. We refer to Fm as a least favorable demand
(for maximin utility) if

Fm ∈ arg min
F∈Pε(F0)

max
Φ∈�R+

π(Φ,F).

The least favorable demand Fm minimizes across all profit maximizing pricing policies. Occa-
sionally, it is useful to explicitly state the dependence of the optimal policies Φm and Fm on the
size ε of the neighborhood, in which case we write Φm,ε and Fm,ε .

Minimax regret. The regret of the monopolist at a given price p and valuation v is:

r(p, v) � v − pI{v�p} = v − π(p,v). (2)
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The regret of the monopolist charging price p facing a buyer with value v is the difference
between the profit the monopolist could make if she were to know the value v of the buyer
before setting her price and the profit she makes without this information. The regret is non-
negative and can only vanish if p = v. The regret of the monopolist is strictly positive in either
of two cases: (i) the value v exceeds the price p, the indicator function is I{v�p} = 1; or (ii) the
value v is below the price p, the indicator function is I{v�p} = 0.

The expected regret of a random pricing policy Φ given a demand distribution F is:

r(Φ,F ) �
∫ ∫

r(p, v) dΦ(p)dF (v) =
∫

v dF(v) −
∫

π(p,F )dΦ(p). (3)

In the final expression of the expected regret in (3), we see that the expected regret is, as men-
tioned in the introduction, the difference between the expected valuation and the expected profit.
It follows that the probabilistic pricing policy Φ is profit maximizing at F if and only if Φ

minimizes (expected) regret when facing F . The pricing policy Φr attains minimax regret if it
minimizes the maximum regret over all distributions F in the neighborhood of a model distribu-
tion F0:

Φr ∈ arg min
Φ∈�R+

max
F∈Pε(F0)

r(Φ,F ).

Fr is called a least favorable demand if

Fr ∈ arg min
F∈Pε(F0)

max
Φ∈�R+

r(Φ,F ) = arg max
F∈Pε(F0)

(∫
v dF(v) − max

Φ
π(Φ,F)

)
.

Thus, a least favorable demand maximizes the regret of a profit maximizing seller who knows
the true demand. While the regret criterion seems to relate to foregone opportunities when the
information is revealed ex post, this particular interpretation is solely an additional feature of the
minimax regret model. In particular, the decision maker does not need the information to become
available ex post to evaluate his expected regret.1

Robust policy. For a given model distribution F0, we define a robust family of random pricing
policies, {Φε}ε>0, which are indexed by the size of the neighborhood ε as follows.

Definition 1 (Robust pricing policy). A family of pricing policies {Φε}ε>0 is called robust if, for
each γ > 0, there is ε > 0 such that F ∈ Pε(F0) ⇒ π(Φ∗(F ),F ) − π(Φε,F ) < γ .

The above notion requires that for every, arbitrarily small, upper bound γ , on the difference in
the profits between the optimal policy Φ∗(F ) without uncertainty and an element of the robust
family of policies {Φε}, we can find a sufficiently small neighborhood ε so that the robust policy
Φε meets the upper bound γ for all distributions in the neighborhood. An ideal candidate for a
robust policy is the optimal policy Φ∗(F ) itself. In other words, we would require that for each
γ > 0, there is ε > 0 such that:

F ∈ Pε(F0) ⇒ π
(
Φ∗(F ),F

) − π
(
Φ∗(F0),F

)
< γ. (4)

This notion of robustness, applied directly to the optimal policy Φ∗(F ), constitutes the defini-
tion of α robustness in [20] where it is shown that the profit maximizing price in the optimal

1 The axiomatic approach is distinct from the ex-post measure of regret due to Hannan [12] in the context of repeated
games and from the behavioral approaches to regret due to Bell [2] and Loomes and Sugden [16].
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monopoly problem is not robust to model misspecification.2 One of the objectives here is to
identify robust policies by considering decision making under multiple priors that do not suffer
from such discontinuity in the profits.

3. Maximin utility

We consider a monopolist who maximize the minimum profit for all distributions in the
neighborhood of the model distribution F0. The pricing rule that attains maximin utility is the
equilibrium strategy in a game between the seller and adversarial nature. The seller chooses a
probabilistic pricing policy, a distribution Φ ∈ �R+, and nature chooses a demand distribution
F ∈ Pε(F0). In this game, the payoff of the seller is the expected profit while the payoff of na-
ture is the negative of the expected profit. A Nash equilibrium of this zero-sum game is a solution
(Φm,Fm) to the saddle point problem:

π(Φ,Fm) � π(Φm,Fm) � π(Φm,F ), ∀Φ ∈ �R+, ∀F ∈ Pε(F0). (SPm)

The objective of adversarial nature is to lower the expected profit of the seller. For a given price p,
the expected profit of the seller is

π(p,F ) =
∫

π(p,v)dF (v) = p
(
1 − F(p)

)
.

The profit minimizing demand, given p, is then achieved by decreasing the cumulative probabil-
ity of valuations equal or larger than p by as much as possible within the neighborhood Pε(F0).
The profit minimizing demand thus minimizes the probability of sale, the upper cumulative prob-
ability 1 − F(p). Given the model distribution F0 and the size ε of the neighborhood, there is
a unique distribution, which minimizes the probability, 1 − F(p), for all p in the unit interval
simultaneously. We obtain this least favorable demand explicitly by shifting the probabilities as
far down as possible, given the constraints imposed by the model distribution F0 and the size ε

of the neighborhood. We shift, for every v, the cumulative probability of the model distribution
F0 at the point v + ε downwards to be the cumulative probability at the point v. In addition, we
transfer the very highest valuations with probability ε to the lowest valuation, namely v = 0. This
results in the distribution Fm,ε given by:

Fm,ε(v) � min
{
F0(v + ε) + ε,1

}
, (5)

that is within the ε neighborhood of F0. The first shift, generated by v + ε, represents small
changes in valuations that occur with large probability. The second shift, generated by F0(·) + ε,
represents large changes that occur with small probability. It is easily verified that Fm,ε is a profit
minimizing demand for any price p given the constraint imposed by the size of the neighborhood.
In other words, the profit minimizing demand does not depend on the, possibly probabilistic,
price p of the seller. Given that the profit minimizing demand Fm,ε does not depend on the
offered prices, the monopolist acts as if the demand is given by Fm,ε . In consequence, the seller
maximizes profits at Fm,ε by choosing a deterministic price pm,ε where pm,ε � p∗(Fm,ε).

2 The non-robustness is demonstrated in [20] by the following example: consider a Dirac distribution which puts proba-
bility one on valuation v. The optimal monopoly price p is equal to v. This policy is not robust to model misspecification,
since if the true model puts probability one on a value arbitrarily close, but strictly below v, then the revenue is 0 rather
than v.
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Proposition 1 (Maximin utility). For every ε > 0, there exists a pair (pm,ε,Fm,ε), such that
pm,ε ∈ [0,1] attains maximin utility and Fm,ε is a least favorable demand.

An important aspect of the above result is that the construction of the profit minimizing de-
mand does not require a local argument, and hence the above equilibrium characterization is
valid for arbitrarily large neighborhoods around the model distribution. The construction of the
least favorite demand, given by (5), also reveals that Fm,ε is first-order stochastically dominated
by any other distribution in the neighborhood Pε(F0). By this constructive argument, the result
of Proposition 1 then extends to any notion of neighborhood (and/or generating metric) which
forms a lattice (strictly speaking, we only need the semi-lattice property) with respect to first
order stochastic dominance.3 The optimal pricing policy of the seller can easily be recast as
canonical mechanism design problem, using the language of virtual utility, as shown by Myer-
son [19] and Bulow and Roberts [6]. By using the incentive constraints to replace the transfers,
the maximization problem of the seller can be represented as:

∫ (
max

x∈[0,1]
x(v)

(
v − 1 − F(v)

f (v)

))
f (v) dv. (6)

For a given distribution F , the pointwise optimal solution x∗(v) ∈ {0,1} is to assign the object,
x∗(v) = 1, if the virtual utility v − (1 − F(v))/f (v) is positive, and to not assign the object,
x∗(v) = 0, if it is negative. We can rewrite the above integral after disregarding the valuations
which have negative virtual utility as they receive zero weight, x∗(v) = 0, in the optimal solution:

∫
{v|v−(1−F(v))/f (v)�0}

(
vf (v) − (

1 − F(v)
))

dv. (7)

In this reformulation of the objective function of the seller, we see that the least favorable de-
mand, as established in Proposition 1, depresses the mean valuation, conditional on allocating
the good, and simultaneously depresses the information cost, or sensitivity to the private infor-
mation, 1−F(v). Thus, the least favorable demand generates the lowest feasible mean valuation,
but the resulting allocation improves the ex-post efficiency as there are some intermediate types
with willingness-to-pay v which will receive the object under Fm,ε , but would not receive it
under any other distribution F ∈ Pε(F0).

How does the optimal price change with an increase in uncertainty? The rate of the change
in the price depends on the curvature of the profit function at the model distribution F0. By
the assumption of concavity, we know that the curvature is negative. We can apply the implicit
function theorem to the optimal price p0 at the model distribution F0 and obtain the following
comparative static result.

Proposition 2 (Pricing under maximin utility). The price pm,ε responds to an increase in uncer-
tainty at ε = 0 by:

dpm,ε

dε
|ε=0 = −1 + 1 − f0(p0)

∂π2(p0,F0)/∂p2
< −1

2
.

3 We thank the editor for pointing out the relationship to the lattice property of the neighborhoods.
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Accordingly, the price that attains maximin utility responds to an increase in uncertainty with
a lower price. Marginally, this response is equal to −1 if the objective function is infinitely
concave.

Consider now the profits realized by the price pm,ε – which attains maximin utility within
the neighborhood Pε(F0) – at a given distribution F ∈ Pε(F0). By construction, these profits
are at least as high as those obtained when facing the least favorable demand Fm,ε . We use the
lower bound on the profits supported by Fm to show that the optimal profits are continuous in
the demand distribution F . This implies that profits achieved by pm,ε when facing F are close to
those achieved by p∗(F ) when facing F . The family of pricing rules that attain maximin utility
thus qualify as robust.

Proposition 3 (Robustness). The family of pricing policies {pm,ε}ε>0 is a robust family of pricing
policies.

4. Minimax regret

Next we consider the minimax regret problem of the seller, where a (probabilistic) pricing
policy Φr and a least favorable demand Fr are the equilibrium policies of a zero-sum game. In
this zero-sum game, the payoff of the seller is the negative of the regret while the payoff to nature
is regret itself. A Nash equilibrium (Φr,Fr) is a solution to the saddle point problem:

r(Φr,F ) � r(Φr,Fr) � r(Φ,Fr), ∀Φ ∈ �R+, ∀F ∈ Pε(F0). (SPr )

The saddlepoint result permits us to link minimax regret behavior to payoff maximizing behavior
under a prior as follows. If the minimax regret is derived from the equilibrium characterization
in (SPr ) then any price chosen by a monopolist who minimizes maximal regret, is at the same
time a price which maximizes expected profit against a particular demand, namely, the least
favorable demand. In fact, the saddle point condition requires that Φr is a probabilistic price that
maximizes profits given Fr and Fr is a regret maximizing demand given Φr .

In the equilibrium of the zero-sum game, the probabilistic price has to resolve the conflict
between the regret which arises with low prices, against the regret associated with high prices.
If she offers a low price, nature can cause regret with a distribution which puts substantial prob-
ability on high valuation buyers. On the other hand, if she offers a high price, nature can cause
regret with a distribution which puts substantial probability at valuations just below the offered
price. If we consider the formula of the expected regret at a deterministic price p, rather than a
general random pricing policy Φ , as in (3),

r(p,F ) =
∫

v dF(v) −
∫

π(p,v) dF (v) =
∫

v dF(v) − p
(
1 − F(p)

)
(8)

we see this tension in terms of the expected valuation, the first term, and the expected profit, the
second term. The first term is controlled by the mean valuation, whereas the second is controlled
by the upper cumulative probability, 1 − F(p), the probability of a sale at price p. Now, the
analysis of the maximin utility problem showed that a distribution which minimizes 1 − F(p)

can be determined independently of p. The unique solution, given by the distribution Fm,ε in (5)
has the property that it is first order stochastically dominated by all other distributions in the
neighborhood Pε(F0). An immediate consequence of the first order stochastic dominance is that
the distribution Fm,ε achieves the lowest mean valuation among all distributions of F ∈ Pε(F0).
Now, as nature is seeking to maximize regret, the first term would suggest for nature to choose
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the distribution with highest mean in Pε(F0), whereas the second term would suggest to choose
the distribution with the lowest upper cumulative probability, namely Fm,ε , which by the above
argument is also the distribution with the lowest mean. The relative importance of these two
terms depends on the choice of the price p by the seller, and hence, in contrast to the case of
maximin utility, the least favorable demand is the result of an equilibrium argument and cannot
be constructed independently of the strategy of the seller (as it was the case with maximin utility).
It also suggests that a deterministic pricing policy in the form of single price p exposes the seller
to substantial regret, and that the seller can decrease her exposure by offering many prices in the
form of a random pricing policy. We prove the existence of a solution to the saddlepoint problem
(SPr ) using results from [22].

Proposition 4 (Existence of minimax regret). A solution (Φr,Fr) to the saddlepoint condition
(SPr ) exists.

We should emphasize that the above existence result does not use local arguments, and es-
tablishes the existence of a Nash equilibrium for arbitrary neighborhoods, small or large. By
contrast, the following explicit characterization of the equilibrium pricing strategy of the seller
uses a local argument, namely the implicit function theorem, and hence is valid only for small
neighborhoods.

The tension between the mean valuation and the upper cumulative probability changes the
structure of the least favorable demand and the equilibrium pricing policy relative to the max-
imin utility analysis. Intuitively, nature seeks to accomplish two conflicting goals. First she tries
to maximize the expected valuation, which represents the upper bound for the profit of the seller,
and hence also the maximal value of regret, while, second, she attempts to minimize the expected
profits. These goals are conflicting as an increase in the expected valuation ought to lead even-
tually to an increase in the surplus the seller can extract. Now for a given candidate price p,
the expected profit only depends on the upper cumulative probability, 1 − F(p), at p. Now, to
the extent that the upper cumulative probability is held constant at p (and so is p itself), nature
would seek to maximize the expected valuation. But by the logic of the first order stochastic
dominance, this means to maximize the upper cumulative probability everywhere but at p. This
means, that in contrast to the least favorable demand, under maximin utility, the least favorable
demand in the minimax regret will maximize rather than minimize 1 − F(p′) for all p′ �= p. But
this thought experiment suggests a discontinuity in the form of a downward jump of the upper
cumulative probability to 1 − F(p) (or correspondingly an upward jump to F(p)) from the left,
and a constant upper cumulative probability to the right of p, as long as permitted by the size of
the neighborhood. But now observe, that if there were a flat segment in the probability distribu-
tion to the right of p, then the seller would a profitable deviation. By increasing the price from p

to the largest price p′′ > p where the equality F(p′′) = F(p) would still prevail, the seller could
raise his price without losing sales, clearly an improvement. It follows that in equilibrium, nature
has to suspend the maximization of the upper cumulative probability precisely in the support of
the prices offered by the seller, denoted by [a, c] in the proposition below. In this interval, a real
trade-off arises between the maximization of the expected valuation and the minimization of the
profits. In particular, nature is attempting to maintain the prices offered sufficiently low and by
the logic familiar from maximin utility this involves lowering the upper cumulative probabil-
ity as much as feasible within the constraint imposed by the size of the neighborhood Pε(F0).
The constraint on the choice set is going to be binding at some point b ∈ [a, c], where nature
cannot lower the upper probability, 1 − F(b), any further, and at this insensitive point b where
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“undercutting” is infeasible, the random pricing strategy of the seller can place a single atom.
Everywhere else, the random pricing strategy Φr keeps nature exactly indifferent with respect to
local changes of the demand distribution.

Proposition 5 (Minimax regret).

1. Given δ > 0, for every ε sufficiently small, there exist a, b and c with 0 < a < b < c < 1 and
p0 − δ < a < p0 < c < p0 + δ such that a minimax regret probabilistic price Φr is given by:

Φr(p) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 � p < a,

ln p
a

if a � p < b,

1 − ln c
p

if b � p � c,

1 if c < p � 1.

2. The boundary points a, b and c respond to an increase in uncertainty at ε = 0:
(i) limε→0 a′(0) = −∞;

(ii) limε→0 b′(0) is finite; and
(iii) limε→0 c′(0) = ∞.

The proof of Proposition 5 relies on a straightforward but lengthy application of the implicit
function theorem and is provided in Proposition 5 of [4]. The least favorable demand makes the
seller indifferent among all prices p ∈ [a, c]. As uncertainty increases, the interval over which
the seller randomizes increases rapidly in order to protect against nature either undercutting or
moving mass towards higher valuations. At the same time, the mass point b does not change
drastically.

We now investigate the comparative static behavior of the random price pr,ε governed by
the distribution Φr,ε . The response of the expected price, E[pr,ε], to a marginal increase in un-
certainty can be explained by the first order effects. For a small level of uncertainty, we may
represent the regret through a linear approximation r∗ = r0 + ε · ∂r∗/∂ε, where r0 is the regret
at the model distribution. The optimal response of the seller to an increase in uncertainty is now
to find a probabilistic price which minimizes the additional regret ε · ∂r∗/∂ε coming from the
increase in uncertainty. Locally, the cost of moving the price away from the optimum is given by
the second derivative of the objective function. With small uncertainty, the curvature of the re-
gret is identical to the curvature of the profit function. The rate at which the minimax regret price
responses to an increase in uncertainty is then simply the ratio of the response of the marginal
regret to a change in price divided by the curvature of the profit function.

Corollary 1 (Comparative statics with minimax regret).

1. The expected price E[pr,ε] responds to an increase in uncertainty at ε = 0 by:

d

dε
E[pr,ε]|ε=0 =

⎧⎨
⎩

−1 − f0(p0)+1
∂π2(p0,F0)/∂p

2 > −1 if p0 � 1
2 ,

−1 − f0(p0)−1
∂π2(p0,F0)/∂p

2 < − 1
2 if p0 > 1

2 .
(9)

2. If ε is sufficiently small, then for any v ∈ (a, c) \ b,

d

dε
E[pr,ε | pr,ε � v] < 0.
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By comparing Corollary 1 and Proposition 2, we find that the marginal response of the
expected price E[pr,ε] to an increase in uncertainty is identical under minimax regret and max-
imin profit for p0 > 1

2 . In both cases, the (expected) equilibrium price is lower than under
the model distribution F0 without uncertainty. The difference between the two criteria arises
at a low level of p0 at which the seller is less aggressive in lowering her price under min-
imax regret. When the optimal price in the absence of uncertainty is low, p0 < 1

2 , then the
trade-off that nature faces in her two conflicting goals, namely to maximize the expected val-
uation, while, second, to minimize the expected profits, is resolved in favor of the former,
namely to maximize the expected valuation. We discussed this trade-off above following Propo-
sition 4. Now, if p0 < 1

2 , and hence in the lower half of the support [0,1], an increase in the
expected valuation is guaranteed to increase regret by more, namely 1 − p0 > 1

2 than a lost
sale which would increase regret only by p0 < 1

2 . This explains the change in the derivative
of the expected price E[pr,ε] at the midpoint of the support [0,1]. In fact, for the case of
p0 < 1

2 , it turns out that the expected price can be strictly increasing in ε. As nature finds
it to her advantage to increase the mean value of the distribution, and hence also to increase
the upper cumulative probability, the seller is responding to the increase in the demand dis-
tribution with a raise in the expected equilibrium price. But since the expected equilibrium
price is close to p0 < 1

2 , the resulting least favorable demand still leads to an increase in re-
gret relative to the model distribution. For example, the increase in the price occurs if the
model density is linear and strictly decreasing. This response of the equilibrium price to an
increase in uncertainty stands in stark contrast to the maximin behavior where any increase in
the size of the uncertainty has a downward effect on prices, regardless of the model distribu-
tion.

The change in the expected price, as given by Corollary 1(1) also represent the change in
welfare to a buyer who purchases with probability one, or v > c. The impact of the uncertainty on
a buyer whose purchase occurs with probability less than one, or v < c is stated in Corollary 1(2).
The derivative of the conditional price is defined everywhere but at b, where it has a discontinuity
as the mass point at b changes its location with an increase in ε. It shows that the price conditional
on a purchase decreases when the uncertainty increases. The decrease in the price conditional
on purchase does not contradict the possible increase in the expected price. The increase in the
unconditional price is driven by the changes in the support of Φr – in particular the increase of c –
and increases (in the sense of first order stochastic dominance) of the unconditional distribution
of prices. In [4], we established this result in terms of menu of prices, where we showed that
for every type v ∈ (a, c), the price paid per unit of the object is decreasing with an increase in
uncertainty, see Proposition 7 in [4].4

We conclude by showing that the solution to the minimax regret problem also generates a
robust family of policies in the sense of Definition 1.

Proposition 6 (Robustness). If {Φr,ε}ε>0 attains minimax regret at F0 for all sufficiently small ε,
then {Φr,ε}ε>0 is a robust family of pricing policies.

4 In the menu representation, a buyer with willingness-to-pay v, pays a transfer tr (v) to receive the object with probabil-
ity qr (v). The conditional expected price with random pricing here is equal to the per unit price in the menu representation
there, or: E[pr,ε | pr,ε � v] = tr (v)/qr (v).
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5. Discussion

We conclude by relating the pricing behavior of the seller in the incomplete information
monopoly to the axiomatic foundations. Finally, we spell out how the insights from the specific
model here might relate to more general models of mechanism design and uncertainty.

Axioms and behavioral implications. From an axiomatic perspective, the maximin utility and
minimax regret criteria represent different departures from the standard model of [1] by allowing
for multiple priors. The maximin utility criterion emerges when imposing the independence ax-
iom only when mixing with constant actions. The minimax regret criterion allows the choice to
be menu dependent by requiring independence of irrelevant alternatives only when the changes
in the menu do not change the best outcome in any of the states (see [24]). Both criteria include
an additional axiom to capture aversion to ambiguity by postulating that the decision maker will
hedge against uncertainty by mixing whenever indifferent. This hedging leads the decision maker
under either criterion to sometimes offer the object for sale at lower prices than he would at the
model distribution F0, but in the absence of uncertainty. Interestingly, the difference between
maximin utility and minimax regret then arises in the strength of the hedging motive. In the
absence of the axiom of independence of irrelevant alternatives, the choice under regret does
depend on the opportunities, both in terms of missed sales and missed revenues, the respective
downward and upward opportunities. In contrast, the maximin utility maintains the independence
of irrelevant alternatives, and this leads the decision-maker to act as if the lowest distribution (in
terms of first-order dominance) were the true distribution.

The choice of metric (and neighborhoods). We investigated the robust policies with respect to
neighborhoods generated by the Prohorov metric. The question then arises as to how sensitive
the results are to the choice of the metric. In particular, there are a number of other distances,
such as the Levy metric or the bounded Lipschitz metric which also metrize the weak topology.
Of course, these distances define different neighborhoods and hence different choice sets for
nature. However, these distinct notions differ only in the support sets over which the distributions
are evaluated. Therefore the comparative static results near ε = 0 are unaffected by the specific
notion for the metric.

Beyond small neighborhoods. We analyzed the pricing policies when robustness is required
with respect to small neighborhoods. But we required the assumption of small neighborhoods
only in the use of the implicit function theorem for the comparative static results and in the ex-
plicit construction of the random pricing under minimax regret. In related work, Bergemann and
Schlag [3], we considered the monopoly problem under minimax regret in the absence of any
restrictions about the uncertainty, in other words, very large neighborhoods. The analysis there
was notably easier as there were no constraints on the choice of strategy by nature. But inter-
estingly, the distinct features of minimax regret strategy were preserved, namely the logarithmic
distribution of the prices with a single mass point. This suggests that the intermediate case of
large neighborhoods would support similar results for minimax regret. The associated analysis,
however, is beyond the scope of this note, as it requires the use of general optimal control tech-
niques to keep track of the multitude of constraints imposed by the neighborhood on the least
favorable demand. But as we know that the minimax regret policy has to remain a random pric-
ing policy, and as we have established the general form of the maximin policy, we already know
that the distinct features of the minimax regret and maximin utility are preserved beyond small
neighborhoods.
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Beyond monopoly pricing. We analyzed robust policies in a simple mechanism design envi-
ronment, namely the monopolistic sale of a single unit under incomplete information. The robust
pricing policies displayed less sensitivity to private information and hedged against the uncer-
tainty by offering sales at lower prices relative to the policy without uncertainty. We expect these
insights to extend to mechanism design problems beyond the single good monopoly pricing as
the logic of the equilibrium construction indicates. The common element of revenue maximizing
mechanism, whether it pertains to single good, multi-unit goods (nonlinear pricing) or multi-
person problems (auctions) is that the principal maximizes the virtual utility rather than the social
utility. In all of the above problems, the virtual utility takes the form, v − (1−F(v))/f (v), where
the later term represents the cost of private information to the seller. Now, we saw in the max-
imin utility that nature lowers the revenue by lowering the entire social surplus by minimizing
the upper cumulative probability. But, as we saw then, this means that the virtual utility of each
type v is increased, and hence that low types v will have positive virtual utility in the presence
of uncertainty, whereas the would not have in the absence of uncertainty. It follows that agents
with lower valuation v now receive the object or receive an assignment more generally. But as
the participation constraint still binds for these types, it means that the prices will be lower, and
overall the cost of the private information, represented by (1 − F(v))/f (v) will be lower. It is
this general aspect of the robust policy, namely lower prices through lower inverse hazard rates,
that we expect to emerge in general allocation environments as well. In other words, the robust
revenue maximizing policy is closer to the socially efficient allocation as the information cost,
(1 − F(v))/f (v), carries less weight, and the resulting prices are closer to the externality prices
imposed by the efficient Groves mechanism. Given the prominent role of the notion of first-order
stochastic dominance and the immediate link to the information cost (1 − F(v))/f (v) in the ar-
gument presented here, it is conceivable that the present argument extends directly to the above
mentioned, more general, allocation problems.

By contrast, in the minimax regret problem, we can expect the general downward trend of
information cost and allocation policy to be attenuated relative to the maximin problem as ad-
versarial nature attempts to maximize the potential for regret,namely the social value. But the
exact determination of the robust policy appears to be much more difficult to establish in general
environments, where we cannot exploit the specific structure of the allocation problem as in this
note.

Appendix A

The appendix contains the proofs for the results in the main body of the text.

Proof of Proposition 1. As Fm is given by (5), we have that π(p,Fm) � π(p,F ) for all F ∈
Pε(F0). On the other hand, if pm = p∗(Fm), then π(pm,Fm) � π(p,Fm) holds for all p by
definition of pm. Jointly this implies that (pm,Fm) is a saddle point of (SPm) and pm attains
maximin payoff and Fm is a least favorable demand. �
Proof of Proposition 2. For sufficiently small ε our assumptions on F0 imply that Fm is differ-
entiable near pm. Since pm is optimal given demand Fm, we find that pm satisfies the associated
first order conditions:

d (
p
(
1 − Fm(p)

))∣∣
p=pm

= 0.

dp
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The earlier strict concavity assumption on π(p,F0) implies that we can apply the implicit func-
tion theorem at ε = 0 to the above equation to obtain

dpm

dε

∣∣∣∣
ε=0

= −1 + 1 − f0(p0)

−2f0(p0) − p0f
′
0(p0)

= f0(p0) + p0f
′
0(p0) + 1

−2f0(p0) − p0f
′
0(p0)

.

Since −2f0(p0)−p0f
′
0(p0) < 0, we observe that the l.h.s. of the above equation as a function of

f0(p0) is increasing in f0(p0) and hence by taking the limit as f0(p0) tends to infinity it follows
that this expression is bounded above by −1/2. �
Proof of Proposition 3. We show that for any γ > 0, there exists ε > 0 such that F ∈ Pε(F0) im-
plies π(p∗(F ),F ) − π(pm,F ) < γ . Note that π(pm,F ) � π(pm,Fm) and thus π(p∗(F ),F ) −
π(pm,F ) � π(p∗(F ),F ) − π(pm,Fm). Since π(pm,Fm) = π(p∗(Fm),Fm) the proof is com-
plete once we show that π(p∗(F ),F ) is a continuous function of F with respect to the weak
topology. Consider F,G such that G ∈ Pε(F ). Using the fact that G(p) � F(p + ε) + ε, we
obtain

π
(
p∗(G),G

)
� π

(
p∗(F ) − ε,G

) = (
p∗(F ) − ε

)(
1 − G

(
p∗(F ) − ε

))
�

(
p∗(F ) − ε

)(
1 − F

(
p∗(F )

) − ε
)
� π

(
p∗(F ),F

) − 2ε.

Since the Prohorov norm is symmetric and thus F ∈ Pε(G), it follows that

π
(
p∗(F ),F

) + 2ε � π
(
p∗(G),G

)
� π

(
p∗(F ),F

) − 2ε,

and hence we have proven that π(p∗(F ),F ) is continuous in F . �
Proof of Proposition 4. We apply Corollary 5.2 in [22] to show that a saddle point exists. For
this we need to verify that the zero-sum game between the seller and nature is a compact Haus-
dorff game for which the mixed extension is both reciprocally upper semi continuous and payoff
secure.

Clearly we have a compact Hausdorff game. Reciprocal upper semi continuity follows directly
as we are investigating a zero-sum game. So all we have to ensure is payoff security. Payoff
security for the monopolist means that we have to show for each (Fr ,Φr) with Fr ∈ Pε(F0)

and for every δ > 0 that there exists γ > 0 and Φ such that F ∈ Pγ (Fr) implies r(Φ,F ) �
r(Φr,Fr) + δ.

Let γ � δ/4 and let Φ be such that Φ(p) � Φr(p + γ ). Then using the fact that F(v) �
Fr(v − γ ) − γ we obtain

1∫
0

v dF(v) � 2γ +
1∫

0

v dFr(v).

Using the fact that F(v) � Fr(v + γ ) + γ we obtain

π(Φ,F ) � π
(
Φr(p + γ ),min

{
Fr(v + γ ) + γ,1

})
� π(Φr,Fr) − 2γ,

and hence r(Φ,F ) � r(Φr,Fr)+ δ. To show payoff security for nature we have to show for each
(Φr,Fr) with Fr ∈ Pε(F0) and for every δ > 0 that there exists γ > 0 and F ∈ Pε(F0) such that
Φ ∈ Pγ (Φr) implies r(Φ,F ) � r(Φr,Fr) − δ.

Here we set F � Fr . Given γ > 0 consider any Φ ∈ Pγ (Φr). All we have to show is that
π(Φ,Fr) � π(Φr,Fr) + δ for sufficiently small γ . Note that Φ(p) � Φr(p + γ ) + γ implies
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π(Φ,Fr) � γ +
∫

(p + γ )

1∫
p

dFr(v) dΦr(p + γ ) = γ +
∫

p

1∫
p−γ

dFr(v) dΦr(p)

= γ + π(Φr,Fr) +
∫

p

∫
[p−γ,p)

dFr(v) dΦr(p)

� γ + π(Φr,Fr) +
∫ ∫

[p−γ,p)

dFr(v) dΦr(p).

Given the continuity of the last integral term above in the boundary point γ , the claim is estab-
lished. �
Proof of Proposition 6. Assume that Φr attains minimax regret but is not robust. So there exists
γ > 0, such that for all ε > 0, there exists Fε such that Fε ∈ Pε(F0) but

π
(
p∗(Fε),Fε

) − π(Φr,Fε) � γ. (10)

Assume that (Φr,Fr) is a saddle point of the regret problem (SPr ) given ε > 0. Then
π(Φr,Fr) = π(p∗(Fr),Fr) and we can rewrite the left-hand side of (10) as follows:

π
(
p∗(Fε),Fε

) − π(Φr,Fε) = π
(
p∗(Fε),Fε

) − π
(
p∗(Fr),Fr

)
+ π(Φr,Fr) − π(Φr,Fε). (11)

Using (SPr ) we also obtain

0 � r(Φr,Fr) − r(Φr,Fε) =
∫

v dFr(v) −
∫

v dFε(v) + π(Φr,Fε) − π(Φr,Fr),

so that:

π(Φr,Fr) − π(Φr,Fε) �
∫

v dFr(v) −
∫

v dFε(v).

Entering this into (11) we obtain from (10) that:

π
(
p∗(Fε),Fε

) − π
(
p∗(Fr),Fr

) +
∫

v dFr(v) −
∫

v dFε(v) � γ. (12)

Since Fε,Fr ∈ Pε(F0) and since h(v) = v is a continuous function and the Prohorov norm
metrizes the weak topology we obtain, if ε is sufficiently small, that∫

v dFr(v) −
∫

v dFε(v) < γ/2. (13)

In the proof of Proposition 3 we showed that π(p∗(F ),F ) as a function of F is continuous with
respect to the weak topology. Hence

π
(
p∗(Fε),Fε

) − π
(
p∗(Fr),Fr

)
< γ/2, (14)

if ε is sufficiently small. Comparing (12) to (13) and (14) yields the desired contradiction. �



D. Bergemann, K. Schlag / Journal of Economic Theory 146 (2011) 2527–2543 2543
References

[1] F. Anscombe, R. Aumann, A definition of subjective probability, Ann. Math. Statist. 34 (1963) 199–205.
[2] D. Bell, Regret in decision making under uncertainty, Oper. Res. 30 (1982) 961–981.
[3] D. Bergemann, K. Schlag, Pricing without priors, J. Europ. Econ. Assoc. Papers Proc. 6 (2008) 560–569.
[4] D. Bergemann, K. Schlag, Robust monopoly pricing, Discussion paper 1527RR, Cowles Foundation for Research

in Economics, Yale University, 2008.
[5] S. Bose, E. Ozdenoren, A. Pape, Optimal auctions with ambiguity, Theoret. Econ. 1 (2006) 411–438.
[6] J. Bulow, J. Roberts, The simple economics of optimal auctions, J. Polit. Economy 97 (1989) 1060–1090.
[7] D. Ellsberg, Risk, ambiguity and the savage axioms, Quart. J. Econ. 75 (1961) 643–669.
[8] R. Engelbrecht-Wiggans, The effect of regret on optimal bidding in auctions, Management Sci. 35 (1989) 685–692.
[9] R. Engelbrecht-Wiggans, E. Katok, Regret in auctions: Theory and evidence, Econ. Theory 33 (2007) 81–101.

[10] E. Filiz-Ozbay, E. Ozbay, Auctions with anticipated regret: Theory and experiment, Amer. Econ. Rev. 97 (2007)
1407–1418.

[11] I. Gilboa, D. Schmeidler, Maxmin expected utility with non-unique prior, J. Math. Econ. 18 (1989) 141–153.
[12] J. Hannan, Approximation to Bayes risk in repeated play, in: M. Dresher, A. Tucker, P. Wolfe (Eds.), Contributions

to the Theory of Games, Princeton University Press, Princeton, 1957, pp. 97–139.
[13] T. Hayashi, Regret aversion and opportunity dependence, J. Econ. Theory 139 (2008) 242–268.
[14] P.J. Huber, Robust Statistics, John Wiley and Sons, New York, 1981.
[15] P. Linhart, R. Radner, Minimax – Regret strategies for bargaining over several variables, J. Econ. Theory 48 (1989)

152–178.
[16] G. Loomes, R. Sugden, Regret theory: An alternative theory of rational choice under uncertainty, Econ. J. 92 (1982)

805–824.
[17] G. Lopomo, L. Rigotti, C. Shannon, Uncertainty in mechanism design, Discussion paper, 2009.
[18] J. Milnor, Games against nature, in: R. Thrall, C. Coombs, R. Davis (Eds.), Decision Processes, Wiley, New York,

1954.
[19] R. Myerson, Optimal auction design, Math. Oper. Res. 6 (1981) 58–73.
[20] K. Prasad, Non-robustness of some economic models, Top. Theor. Econ. 3 (2003) 1–7.
[21] L. Renou, K. Schlag, Minimax regret and strategic uncertainty, J. Econ. Theory 145 (2010) 264–286.
[22] P.J. Reny, On the existence of pure and mixed strategy Nash equilibria in discontinuous games, Econometrica 67

(1999) 1029–1056.
[23] J. Riley, R. Zeckhauser, Optimal selling strategies: When to haggle, when to hold firm, Quart. J. Econ. 98 (1983)

267–290.
[24] J. Stoye, Axioms for minimax regret choice correspondences, Discussion paper, New York University, 2008.


	Robust monopoly pricing
	1 Introduction
	2 Model
	3 Maximin utility
	4 Minimax regret
	5 Discussion
	References


